JP2014086533A - 発光ダイオードおよびその製造方法 - Google Patents

発光ダイオードおよびその製造方法 Download PDF

Info

Publication number
JP2014086533A
JP2014086533A JP2012233768A JP2012233768A JP2014086533A JP 2014086533 A JP2014086533 A JP 2014086533A JP 2012233768 A JP2012233768 A JP 2012233768A JP 2012233768 A JP2012233768 A JP 2012233768A JP 2014086533 A JP2014086533 A JP 2014086533A
Authority
JP
Japan
Prior art keywords
layer
substrate
light emitting
emitting diode
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012233768A
Other languages
English (en)
Inventor
Noriyuki Aihara
範行 粟飯原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2012233768A priority Critical patent/JP2014086533A/ja
Priority to TW102137849A priority patent/TW201421738A/zh
Priority to PCT/JP2013/078534 priority patent/WO2014065259A1/ja
Publication of JP2014086533A publication Critical patent/JP2014086533A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • H01L33/105Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector with a resonant cavity structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/387Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape with a plurality of electrode regions in direct contact with the semiconductor body and being electrically interconnected by another electrode layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials

Abstract

【課題】指向性に優れ、高輝度発光が可能となる発光ダイオードおよびその製造方法を提供する。
【解決手段】本発明の発光ダイオードは、支持基板1上に、金属反射層2と、下部DBR層3b、活性層4及び上部DBR層3aを順に含む化合物半導体層5とを順に含む発光部6を備え、支持基板1と発光部6とが接合されてなることを特徴とする。
【選択図】図1B

Description

本発明は、発光ダイオードおよびその製造方法に関するものである。
2つのミラーからなる共振器内で発生する定在波の腹が共振器内に配置した発光層に位置するように構成すると共に、光出射側のミラー(上部DBR層)の反射率を基板側のミラー(下部DBR層)の反射率よりも低く設定することによりレーザ発振させないでLEDモードで動作する、高効率の発光素子である共振器型発光ダイオード(RCLED:Resonant-Cavity Light Emitting Diode)が知られている(特許文献1,2)。共振器型発光ダイオードは通常の発光ダイオードと比較して、共振器構造の効果によって、発光スペクトル線幅が狭い、出射光の指向性が高い、自然放出によるキャリア寿命が短いため高速応答が可能である、等の特徴があるため、センサなどに適している。
特開2002−76433号公報 特開2007−299949号公報
共振器型発光ダイオードは、上述したように2つのミラー(下部DBR層と上部DBR層)からなる共振器内で発生する定在波の腹が発光層に位置するように構成されているが、下部DBRに入射する光のうち垂直方向以外の光に関しては、反射が十分でない場合がある。
そこで、高指向性を維持しつつ、より高出力を有する発光ダイオードのニーズがある。
本発明は、上記事情を鑑みてなされたものであり、高指向性及び高出力を有する発光ダイオード、及び、その製造方法を提供することを目的とする。
本発明者らは、上記目的を達成するために鋭意研究を重ねた結果、以下に示す本発明を完成させるに至った。
[1]支持基板上に、金属反射層と、下部DBR層、活性層及び上部DBR層を順に含む化合物半導体層とを順に含む発光部を備え、
前記支持基板と前記発光部とが接合されてなることを特徴とする発光ダイオード。
[2]前記支持基板は、Ge基板、金属基板、Si基板、GaAs基板、GaP基板、のいずれかを含んでなることを特徴とする上記[1]に記載の発光ダイオード。
[3]前記金属反射層は、金、銅、銀、アルミニウム、Pt、又はこれらの合金のいずれか一層又は二層以上からなることを特徴とする上記[1]又は[2]のいずれかに記載の発光ダイオード。
[4]前記金属反射層上に形成された拡散防止層及び/又は接合層を介して、前記発光部が前記前記支持基板に接合されていることを特徴とする上記[1]から[3]のいずれか一項に記載の発光ダイオード。
[5]前記下部DBR層は、屈折率の異なる2種類の層が交互に10〜50対積層されてなることを特徴とする上記[1]から[4]のいずれか一項に記載の発光ダイオード。
[6]前記上部DBR層は、屈折率の異なる2種類の層が交互に3〜10対積層されてなることを特徴とする上記[1]から[5]のいずれか一項に記載の発光ダイオード。
[7]前記屈折率の異なる2種類の層は、組成の異なる2種類の(AlXhGa1−XhY3In1−Y3P(0<Xh≦1、Y3=0.5)、(AlXlGa1−XlY3In1−Y3P;0≦Xl<1、Y3=0.5)の対であり、両者のAlの組成差ΔX=xh−xlが0.5より大きいか又は等しくなる組み合わせか、又は、GaInPとAlInPの組み合わせか、又は、組成の異なる2種類のAlxlGa1−xlAs(0.1≦xl≦1)、AlxhGa1−xhAs(0.1≦xh≦1)の対であり、両者の組成差ΔX=xh−xlが0.5より大きいか等しくなる組み合わせかのいずれかから選択されることを特徴とする上記[1]から[6]のいずれか一項に記載の発光ダイオード。
[8]前記活性層に含まれる発光層は、((AlX1Ga1−X1Y1In1−Y1P(0≦X1≦1,0<Y1≦1)、(AlX2Ga1−X2)As(0≦X2≦1)、(InX3Ga1−X3)As(0≦X3≦1))、のいずれかからなることを特徴とする上記[1]から[7]のいずれか一項に記載の発光ダイオード。
[9]支持基板上に、金属反射層と、下部DBR層、活性層及び上部DBR層を順に含む化合物半導体層とを順に含む発光部を備えた発光ダイオードの製造方法であって、成長用基板上に、上部DBR層及び活性層及び下部DBR層を順に含む化合物半導体層を形成する工程と、前記化合物半導体層上に金属反射層を形成して発光部を形成する工程と、前記発光部と支持基板とを接合する工程と、前記成長用基板を除去する工程と、を有することを特徴とする発光ダイオードの製造方法。
本発明の発光ダイオードによれば、金属反射層及び下部DBR層と上部DBR層によって共振器型構造を構成する。当該共振器型構造を備えることにより高指向性を有する。
また、従来の上部DBR層と下部DBR層のみからなる共振器型構造では、反射側である下部DBR層の直上の反射率はほぼ100%とすることもできるが、斜めから入射する光に対する反射率は例えば、30度を超えると60%以下の反射率となる。これに対して、下部DBR層の下方にさらに金属反射層を設けることにより、斜めからの入射光に対しても金属反射層により補うことができ、十分に反射させることができる。つまり、基板側から順に金属反射層、下部DBR層、上部DBR層を有する共振器型構造とすることにより、入射角度によらず、90%以上の反射率を有するものとすることができ、これにより、本発明の発光ダイオードは、従来の共振器型構造を有する共振器型発光ダイオードよりも高出力となる。
なお、本発明の発光ダイオードは、支持基板と化合物半導体層との間に金属反射層が挟まれた構造となっているが、この構造は、化合物半導体層の成長に用いた成長用基板を除去して、支持基板に改めて、その化合物半導体層を含む発光部を貼り付けた構成を採用することにより可能となったものである。
本発明の一実施形態である発光ダイオードの断面摸式図である。 本発明の一実施形態の変形例である発光ダイオードの断面摸式図である。 図1中に示す活性層4を詳細に説明するための拡大断面模式図である。 本発明の一実施形態である発光ダイオードにおける支持基板1に、Ge基板を用いた例を説明するための断面摸式図である。 本発明の一実施形態である発光ダイオードにおける支持基板1に、金属基板を用いた例を説明するための断面摸式図である。 本発明の一実施形態である支持基板を、Ge基板を用いて製造する方法を説明するための断面模式図である。 本発明の一実施形態である支持基板を、金属基板を用いて製造する方法を説明するための断面模式図である。 本発明の一実施形態である発光ダイオードの製造方法を説明するための断面摸式図である。 本発明の一実施形態である発光ダイオードの製造方法を説明するための断面摸式図である。 本発明の一実施形態である発光ダイオードの製造方法を説明するための断面摸式図である。 本発明の一実施形態である発光ダイオードの製造方法を説明するための断面摸式図である。
以下、本発明を適用した実施形態の発光ダイオードおよびその製造方法について、図を用いてその構成を説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際と同じであるとは限らない。また、以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
[発光ダイオード]
図1Aは、本発明を適用した一実施形態の発光ダイオードの一例を示す断面模式図である。
本実施形態の発光ダイオード100は、支持基板1上に、金属反射層2と、下部DBR層3b、活性層4、及び上部DBR層3aを順に含む化合物半導体層5とを順に含む発光部6を備え、支持基板1と発光部6とが接合されてなる、ことを特徴とする。
図1で示す例では、金属反射層2と下部DBR層3bとの間には下部電流拡散層7が、そして上部DBR層3aとコンタクト層8との間には上部電流拡散層9が形成されている。また、図1Aで示す例では、化合物半導体層5の支持基板1の反対側には、コンタクト層8を介して表面電極12が設けられており、支持基板1の金属反射層2の反対側には裏面電極13設けられているが、電極の形態は特に限定せず、例えば、金属反射層2と下部電流拡散層7との間に透光膜(SiO膜)が成膜され、当該透光膜にp型のオーミック電極が形成された形態でもよい。
<金属反射層>
金属反射層2は、後述する発光層43からの光を金属反射層2で正面方向fへ反射させて、正面方向fでの光取り出し効率を向上させることができ、これにより、発光ダイオードをより高輝度化できる。
金属反射層2の材料としては、AgPdCu合金(APC)、金、銅、銀、アルミニウム、Ptなどの金属、又はこれらの合金等の一層又は二層以上を用いることができる。
<下部電流拡散層>
下部電流拡散層7は、電流拡散とともに接合ダメージの活性層への伝播の抑制を目的として配置するものであり、材料としては、GaPの他、発光波長に対し透明なAlGaInP、AlGaAs等を用いることができる。
<下部DBR層>
下部DBR(Distributed Bragg Reflector)層3bは、λ/(4n)の膜厚で(λ:反射すべき光の真空中での波長、n:層材料の屈折率)、屈折率が異なる2種類の層を交互に積層した多層膜からなるものである。反射率は2種類の屈折率の差が大きいと、比較的少ない層数の多層膜で高反射率が得られる。通常の反射膜のようにある面で反射されるのでなく、多層膜の全体として光の干渉現象に基づき反射が起きることが特徴である。
下部DBR層3bの材料は発光波長に対して透明であることが好ましく、又、下部DBR層を構成する2種類の材料の屈折率の差が大きくなる組み合わせとなるよう選択されるのが好ましい。
下部DBR層3bは、屈折率の異なる2種類の層3ba、3bbが交互に10〜50対積層されてなるのが好ましい。10対以下である場合は反射率が低すぎるために出力の増大に寄与せず、50対以上にしてもさらなる反射率の増大は小さいからである。
下部DBR層3bを構成する屈折率の異なる2種類の層3ba、3bbは、組成の異なる2種類の(AlXhGa1−XhY3In1−Y3P(0<Xh≦1、Y3=0.5)、(AlXlGa1−XlY3In1−Y3P;0≦Xl<1、Y3=0.5)の対であり、両者のAlの組成差ΔX=xh−xlが0.5より大きいか又は等しくなる組み合わせか、又は、GaInPとAlInPの組み合わせか、又は、組成の異なる2種類のAlxlGa1−xlAs(0.1≦xl≦1)、AlxhGa1−xhAs(0.1≦xh≦1)の対であり、両者の組成差ΔX=xh−xlが0.5より大きいか等しくなる組み合わせかのいずれかから選択されるのが効率よく高い反射率が得られることから望ましい。
組成の異なるAlGaInPの組み合わせは、結晶欠陥を生じやすいAsを含まないので好ましく、GaInPとAlInPはその中で屈折率差を最も大きくとれるので、反射層の数を少なくすることができ、組成の切り替えも単純であるので好ましい。また、AlGaAsは、大きな屈折率差をとりやすいという利点がある。
<活性層>
本実施形態において、化合物半導体層5は、金属反射層2上に、下部電流拡散層7、下部DBR層3b、活性層4及び上部DBR層3aを順に含むことを特徴とする。
活性層4は、図2に示すように、下部クラッド層41、下部ガイド層42、発光層43、上部ガイド層44、上部クラッド層45が順次積層されて構成されている。すなわち、活性層4は、放射再結合をもたらすキャリア(担体;carrier)及び発光を発光層43に「閉じ込める」ために、発光層43の下側及び上側に対峙して配置した下部クラッド層41、下部ガイド層42、及び上部ガイド層44、上部クラッド層45を含む、所謂、ダブルヘテロ(英略称:DH)構造とすることが高強度の発光を得る上で好ましい。
図2に示すように、発光層43は、発光ダイオード(LED)の発光波長を制御するため、量子井戸構造を構成することができる。すなわち、発光層43は、バリア層(障壁層ともいう)48を両端に有する、井戸層47とバリア層48との多層構造(積層構造)とすることができる。
発光層43の層厚は、0.02〜2μmの範囲であることが好ましい。発光層43の伝導型は特に限定されるものではなく、アンドープ、p型及びn型のいずれも選択することができる。発光効率を高めるには、結晶性が良好なアンドープ又は3×1017cm−3未満のキャリア濃度とすることが望ましい。
井戸層47の材料としては、((AlX1Ga1−X1Y1In1−Y1P(0≦X1≦1,0<Y1≦1)、(AlX2Ga1−X2)As(0≦X2≦1)、(InX3Ga1−X3)As(0≦X3≦1))等を用いることができる。
井戸層47の層厚は、3〜30nmの範囲が好適である。より好ましくは、3〜10nmの範囲である。
バリア層(障壁層)48の材料としては、井戸層47の材料に対して適した材料を選択するのが好ましい。バリア層48での吸収を防止して発光効率を高めるため、井戸層47よりもバンドギャップが大きくなる組成とするのが好ましい。
例えば、井戸層47の材料としてAlGaAs又はInGaAsを用いた場合にはバリア層48の材料としてAlGaAsやAlGaInPが好ましい。バリア層18の材料としてAlGaInPを用いた場合、欠陥を作りやすいAsを含まないので結晶性が高く、高出力に寄与する。
井戸層47の材料として(AlX1Ga1−X1Y1In1−Y1P(0≦X1≦1,0<Y1≦1)を用いた場合、バリア層48の材料としてよりAl組成の高い(AlX4Ga1−X4Y1In1−Y1P(0≦X4≦1,0<Y1≦1,X1<X4)、または井戸層47の(AlX1Ga1−X1Y1In1−Y1P(0≦X1≦1,0<Y1≦1)よりバンドギャップエネルギーが大きくなるAlGaAsを用いることができる。
バリア層48の層厚は、井戸層47の層厚と等しいか又は井戸層47の層厚より厚いのが好ましい。トンネル効果が生じる層厚範囲で十分に厚くすることにより、トンネル効果による井戸層間への広がりが抑制されてキャリアの閉じ込め効果が増大し、電子と正孔の発光再結合確率が大きくなり、発光出力の向上を図ることができる。
井戸層47とバリア層48との多層構造において、井戸層47とバリア層48とを交互に積層する対の数は特に限定されるものではないが、2対以上40対以下であることが好ましい。すなわち、活性層41には、井戸層47が2〜40層含まれていることが好ましい。ここで、活性層41の発光効率が好適な範囲としては、井戸層47が5層以上であることが好ましい。一方、井戸層47及びバリア層48は、キャリア濃度が低いため、多くの対にすると順方向電圧(V)が増大してしまう。このため、40対以下であることが好ましく、20対以下であることがより好ましい。
下部ガイド層42及び上部ガイド層44は、図2に示すように、発光層43の下面及び上面にそれぞれ設けられている。具体的には、発光層43の下面に下部ガイド層42が設けられ、発光層43の上面に上部ガイド層44が設けられている。
下部ガイド層42および上部ガイド層44の材料としては、公知の化合物半導体材料を用いることができ、発光層43の材料に対して適した材料を選択するのが好ましい。例えば、AlGaAs、AlGaInPを用いることができる。
例えば、井戸層47の材料としてAlGaAs又はInGaAsを用い、バリア層48の材料としてAlGaAs又はAlGaInPを用いた場合、下部ガイド層42および上部ガイド層44の材料としてはAlGaAs又はAlGaInPが好ましい。下部ガイド層42および上部ガイド層44の材料としてAlGaInPを用いた場合、欠陥を作りやすいAsを含まないので結晶性が高く、高出力に寄与する。
井戸層47の材料として(AlX1Ga1−X1Y1In1−Y1P(0≦X1≦1,0<Y1≦1)を用いた場合、ガイド層44の材料としてよりAl組成の高い(AlX4Ga1−X4Y1In1−Y1P(0≦X4≦1,0<Y1≦1,X1<X4)または井戸層(AlX1Ga1−X1Y1In1−Y1P(0≦X1≦1,0<Y1≦1)よりバンドギャップエネルギーが大きくなるAlGaAsを用いることができる。
下部ガイド層42及び上部ガイド層44は、夫々、下部クラッド層41及び上部クラッド層15と活性層41との欠陥の伝搬を低減するために設けられている。このため、下部ガイド層42および上部ガイド層44の層厚は10nm以上が好ましく、20nm〜100nmがより好ましい。
下部ガイド層42及び上部ガイド層44の伝導型は特に限定されるものではなく、アンドープ、p型及びn型のいずれも選択することができる。発光効率を高めるには、結晶性が良好なアンドープ又は3×1017cm−3未満のキャリア濃度とすることが望ましい。
下部クラッド層41及び上部クラッド層45は、図2に示すように、下部ガイド層42の下面及び上部ガイド層44上面にそれぞれ設けられている。
下部クラッド層41及び上部クラッド層45の材料としては、公知の化合物半導体材料を用いることができ、発光層43の材料に対して適した材料を選択するのが好ましい。例えば、AlGaAs、AlGaInPを用いることができる。
例えば、井戸層47の材料としてAlGaAs又はInGaAsを用い、バリア層48の材料としてAlGaAs又はAlGaInPを用いた場合、下部クラッド層41及び上部クラッド層45の材料としてはAlGaAs又はAlGaInPが好ましい。下部クラッド層41及び上部クラッド層45の材料としてAlGaInPを用いた場合、欠陥を作りやすいAsを含まないので結晶性が高く、高出力に寄与する。
井戸層47の材料として(AlX1Ga1−X1Y1In1−Y1P(0≦X1≦1,0<Y1≦1)を用いた場合、クラッド層45の材料としてよりAl組成の高い(AlX4Ga1−X4Y1In1−Y1P(0≦X4≦1,0<Y1≦1,X1<X4)または井戸層(AlX1Ga1−X1Y1In1−Y1P(0≦X1≦1,0<Y1≦1)よりバンドギャップエネルギーが大きくなるAlGaAsを用いることができる。
下部クラッド層41と上部クラッド層45とは、極性が異なるように構成されている。また、下部クラッド層41及び上部クラッド層45のキャリア濃度及び厚さは、公知の好適な範囲を用いることができ、活性層41の発光効率が高まるように条件を最適化することが好ましい。なお、下部および上部クラッド層は設けなくてもよい。
なお、本実施形態においては、下部DBR層3bと活性層4との間に、AlGaAsや、AlGaInP等の半導体層を適宜設けてもよい。
<上部DBR層>
上部DBR層3aも、上記下部DBR層3bと同様の層構造を用いることができるが、上部DBR層3aを透過させて光を射出する必要があるので、下部DBR層3bよりも反射率が低くなるように構成する。具体的には、下部DBR層3bと同じ材料からなる場合、下部DBR層3bよりも層数が少なくなるように、屈折率の異なる2種類の層が交互に3〜10対積層されてなるのが好ましい。2対以下である場合は反射率が低すぎるために出力の増大に寄与せず、11対以上にすると上部DBR層3aを透過する光量が低下しすぎるからである。
上部DBR層3aを構成する屈折率の異なる2種類の層3aa、3abは、上記下部DBR層3bと同様に、組成の異なる2種類の(AlXhGa1−XhY3In1−Y3P(0<Xh≦1、Y3=0.5)、(AlXlGa1−XlY3In1−Y3P;0≦Xl<1、Y3=0.5)の対であり、両者のAlの組成差ΔX=xh−xlが0.5より大きいか又は等しくなる組み合わせか、又は、GaInPとAlInPの組み合わせか、又は、組成の異なる2種類のAlxlGa1−xlAs(0.1≦xl≦1)、AlxhGa1−xhAs(0.1≦xh≦1)の対であり、両者の組成差ΔX=xh−xlが0.5より大きいか等しくなる組み合わせかのいずれかから選択されるのが効率よく高い反射率が得られることから望ましい。
組成の異なるAlGaInPの組み合わせは、結晶欠陥を生じやすいAsを含まないので好ましく、GaInPとAlInPはその中で屈折率差を最も大きくとれるので、反射層の数を少なくすることができ、組成の切り替えも単純であるので好ましい。また、AlGaAsは、大きな屈折率差をとりやすいという利点がある。
<上部電流拡散層>
上部電流拡散層9は、下部電流拡散層7と同様に、電流拡散を目的として配置するものであり、材料としては、GaPの他、発光波長に対し透明なAlGaInP、AlGaAs等を用いることができる。
<コンタクト層>
コンタクト層8は、表面電極12との接触抵抗を低下させるために設けられている。コンタクト層8の材料は、発光層43よりバンドギャップの大きい材料であることが好ましい。また、コンタクト層8のキャリア濃度の下限値は、電極との接触抵抗を低下させるために5×1017cm−3以上であることが好ましく、1×1018cm−3以上がより好ましい。キャリア濃度の上限値は、結晶性の低下が起こりやすくなる2×1019cm−3以下が望ましい。コンタクト層5の厚さは、0.05μm以上が好ましい。コンタクト層5の厚さの上限値は特に限定されないが、エピタキシャル成長に係るコストを適正範囲にするため、10μm以下とすることが望ましい。
ここで、上述してきた金属反射層2及び化合物半導体層5(下部電流拡散層7、下部DBR層3b、活性層4、上部DBR層3a、上部電流拡散層9、コンタクト層8)の構造には、公知の機能層を適時加えることができる。例えば、素子駆動電流の通流する領域を制限するための電流阻止層や電流狭窄層など公知の層構造を設けることができる。
また、表面電極12及び裏面電極13については、それぞれ公知の電極材料を用いることができるが、表面電極12としては、AuGeNiを用いることができ、裏面電極13としてはAuBeを用いることができる。
ここで、上述してきたような図1Aで示す半導体装置では、支持基板1の金属反射層2の反対側に裏面電極13を設ける例を示したが、本実施形態における表面電極12及び裏面電極13の形態は特に限定しない。例えば、図1Bに示すように、金属反射層2と下部電流拡散層7との間に透光膜(SiO膜)14が成膜され、当該透光膜14にオーミック電極15が形成された形態でもよい。
なお、図1Bにおいては、図1Aに示す半導体装置における部材と同一の部材については同一の符号を付して示している。
<支持基板>
本実施形態における支持基板1としては、Ge基板、金属基板、Si基板、GaAs基板、GaP基板等を用いることができる。
以下、それぞれの基板を用いた場合について説明する。
図3は、本実施形態の発光ダイオードにおいて、支持基板1としてGe基板51とした例の断面模式図である。
支持基板1としてGe基板51を用いた場合、後述する接合層10側のおもて面にTi/Au/Inでなる層52を配置し、裏面にTi/Auでなる層53を配置することで、本実施形態に係る支持基板1に適用することができる。
なお、上記層52及び層53の材料としては、他にもGeと密着性がよい金属層、例えばPtやAuを用いることができる。
「金属基板」
支持基板1として金属基板を用いる場合、複数の金属層(金属板)を積層した構造とすることができる。
複数の金属層(金属板)を積層した構造とする場合、2種類の金属層が交互に積層されてなるのが好ましく、特に、この2種類の金属層(例えば、これらを第1の金属層、第2の金属層という)の層数は合わせて奇数とするのが好ましい。
例えば、前記2種類の金属層を第1の金属層61b、第2の金属層61aとし、層数を3層とした場合は、図4に示すような構造となる。
図4に示すように、第2の金属層61aを第1の金属層61bで挟んだ金属基板とした場合、金属基板の反りや割れの観点から、第2の金属層61aとして化合物半導体層5(図4には図示せず)より熱膨張係数が小さい材料を用いるときは、第1の金属層61bを化合物半導体層より熱膨張係数が大きい材料からなるものを用いるのが好ましい。金属基板全体としての熱膨張係数が化合物半導体層5の熱膨張係数に近いものとなるため、化合物半導体層5と金属基板とを接合する際の金属基板の反りや割れを抑制することができ、発光ダイオードの製造歩留まりを向上させることができるからである。同様に、第2の金属層61aとして化合物半導体層5より熱膨張係数が大きい材料を用いるときは、第1の金属層61bを化合物半導体層5より熱膨張係数が小さい材料からなるものを用いるのが好ましい。金属基板全体としての熱膨張係数が化合物半導体層5の熱膨張係数に近いものとなるため、化合物半導体層5と金属基板とを接合する際の金属基板の反りや割れを抑制でき、発光ダイオードの製造歩留まりを向上できるからである。
2種類の金属層としては、例えば、銀(熱膨張係数=18.9ppm/K)、銅(熱膨張係数=16.5ppm/K)、金(熱膨張係数=14.2ppm/K)、アルミニウム(熱膨張係数=23.1ppm/K)、ニッケル(熱膨張係数=13.4ppm/K)およびこれらの合金のいずれかからなる金属層と、モリブデン(熱膨張係数=5.1ppm/K)、タングステン(熱膨張係数=4.3ppm/K)、クロム(熱膨張係数=4.9ppm/K)およびこれらの合金のいずれかからなる金属層との組み合わせを用いることができる。
好適な例としては、Cu/Mo/Cuの3層からなる金属基板があげられる。上記の観点ではMo/Cu/Moの3層からなる金属基板でも同様な効果が得られるが、Cu/Mo/Cuの3層からなる金属基板は、機械的強度が高いMoを加工しやすいCuで挟んだ構成なので、Mo/Cu/Moの3層からなる金属基板よりも切断等の加工が容易であるという利点がある。
金属基板全体としての熱膨張係数は例えば、Cu(30μm)/Mo(25μm)/Cu(30μm)の3層からなる金属基板では6.1ppm/Kであり、Mo(25μm)/Cu(70μm)/Mo(25μm)の3層からなる金属基板では5.7ppm/Kとなる。
また、後述する成長用基板に化合物半導体層等を成長させた後に、金属基板を接合してその成長用基板をエッチング液を用いて除去する際に、そのエッチング液による劣化を回避するために、金属基板の上面及び下面を金属保護膜61cで覆うことが好ましい。
金属保護膜61cの材料としては、密着性に優れるクロム、ニッケル、化学的に安定な白金、又は金の少なくともいずれか一つを含む金属からなるものであることが好ましい。
金属保護膜61cは密着性がよいニッケルと耐薬品に優れる金を組み合わせた層からなるのが最適である。
また、本実施形態における支持基板1としては、上述したようなGe基板または金属基板のほかにも、Si基板、GaAs基板、GaP基板のいずれかを用いることができる。
Si基板を用いる場合には、例えば、シリコン基板の金属反射層側の表面に、Ti/Au/Inでなる層を配置し、さらにシリコン基板の裏面に、Ti/Auでなる層を配置することにより適用できる。
なお、本実施形態においては、金属反射層2の基板側上に拡散防止層11及び/又は接合層10を配置して、発光部6が支持基板1に接合されていてもよい。
<拡散防止層>
拡散防止層11は、支持基板1に含まれる金属が拡散して、金属反射層2と反応するのを抑制することができる。
拡散防止層11の材料としては、ニッケル、チタン、白金、クロム、タンタル、タングステン、モリブデン等を用いることができる。
拡散防止層11は、2種類以上の金属の組み合わせ、たとえば白金とチタンの組み合わせなどにより、拡散防止の性能を向上させることができる。
なお、拡散防止層11を設けなくても、後述する接合層にそれらの材料を添加することにより接合層に拡散防止層11と同様な機能を持たせることもできる。
<接合層>
接合層10は、活性層4を含む化合物半導体層5等を支持基板1に接合するための層である。
接合層10の材料としては、化学的に安定で、融点の低いAu系の共晶金属などが用いられる。Au系の共晶金属としては、例えば、AuGe、AuSn、AuSi、AuInなどの合金の共晶組成を挙げることができる。
本実施形態の発光ダイオード100は、活性層4を、金属反射層2及び下部DBR層3bと、上部DBR層3aとで挟む構造である。すなわち、活性層4で発光した光が下部DBR層3bと上部DBR層3aとで共振して定在波の腹が発光層に位置させるともに、活性層4で発光した光のうち斜めからの入射光に対しては、下部DBR層3bの下方に形成した金属反射層2により反射させる構成をとることにより、レーザ発振させないで、従来の発光ダイオードよりも指向性が高く、高効率の発光ダイオードとなっている。
[発光ダイオードの製造方法]
次に、本発明の一実施形態である発光ダイオードの製造方法について説明する。
本実施形態の発光ダイオードの製造方法は、成長用基板上に、上部DBR層、活性層及び下部DBR層を順に含む化合物半導体層を形成する工程と、化合物半導体層上に金属反射層を形成して発光部を形成する工程と、発光部と支持基板とを接合する工程と、成長用基板を除去する工程と、を有することを特徴とする。
<支持基板の製造工程>
〔1〕支持基板1としてGe基板を用いた場合
図5に示すように、Ge基板51のおもて面51Aに例えば、Ti/Au/Inでなる層52を形成し、Ge基板51の裏面に例えば、Ti/Auでなる層53を形成して、支持基板1を作製する。
なお、層52及び層53の材料はこれらに限らず、本発明の効果を損なわない範囲において選択してよい。
〔2〕支持基板1として金属基板を用いた場合
本実施形態では、熱膨張係数がそれぞれ異なる3層の金属を積層した構造について説明する。
図6に示すように、支持基板1として金属基板を用いる場合、熱膨張係数が活性層の材料より大きい第1の金属層(第1の金属板)61bと、熱膨張係数が活性層の材料より小さい第2の金属層(第2の金属板)61aとを採用して、ホットプレスして金属基板を形成する。
具体的にはまず、2枚の略平板状の第1の金属層61bと、1枚の略平板状の第2の金属層61aを用意する。例えば、第1の金属層61bとしては厚さ10μmのCu、第2の金属層61aとしては厚さ75μmのMoを用いる。
次に、2枚の第1の金属層61bの間に第2の金属層61aを挿入してこれらを重ねて配置する。
次に、重ね合わせたそれらの金属層を所定の加圧装置に配置して、高温下で第1の金属層61bと第2の金属層61aに荷重をかける。これにより、図6に示すように、第1の金属層61bがCuであり、第2の金属層61aがMoであり、Cu(10μm)/Mo(75μm)/Cu(10μm)の3層からなる金属基板を形成する。
金属基板は、例えば、熱膨張係数が5.7ppm/Kとなり、熱伝導率は220W/m・Kとなる。
次に、図6に示すように、金属基板の全面すなわち、上面、下面及び側面を覆う金属保護膜61cを形成する。このとき、金属基板は各発光ダイオードに個片化のために切断される前なので、金属保護膜61cが覆う側面とは金属基板の外周側面である。
従って、個片化後の各発光ダイオードの金属基板の側面を金属保護膜61cで覆う場合には別途、金属保護膜61cで側面を覆う工程を実施する。
なお、図6は、金属基板の外周端側でない箇所の一部を示しているものであり、外周側面の金属保護膜は図に表れていない。
金属保護膜61cは公知の膜形成方法を用いることができるが、側面を含めた全面に膜形成ができるめっき法が最も好ましい。例えば、無電解めっき法では、ニッケルその後、金をめっきし、金属基板の上面、側面、下面をニッケル膜及び金膜(金属保護膜)で覆われた金属基板を作製できる。
めっき材質は、特に制限はなく、銅、銀、ニッケル、クロム、白金、金など公知の材質が適用できるが、密着性がよいニッケルと耐薬品に優れる金を組み合わせた層が最適である。
めっき法は、公知の技術、薬品が使用できる。電極が不要な無電解めっき法が、簡便で望ましい。
〔3〕支持基板1としてSi基板を用いた場合
Si基板のおもて面に例えば、Au/Ptでなる層を形成し、Si基板の裏面に例えば、Pt/Auでなる層を形成して、支持基板1を作製する。
なお、Si基板のおもて面または裏面に形成する各層の材料はこれらに限らず、本発明の効果を損なわない範囲において選択してよい。
〔4〕支持基板1としてGaP基板を用いた場合
例えば、p型GaPからなる機能性基板を用意し、そのおもて面に例えば、Au/Ptでなる層を形成し、Si基板の裏面に例えば、Pt/Auでなる層を形成して、支持基板1を作製する。
なお、Si基板のおもて面または裏面に形成する各層の材料はこれらに限らず、本発明の効果を損なわない範囲において選択してよい。
なお、本実施形態においては、上述してきたような支持基板のほかに、GaAs基板も支持基板1として用いることができる。
<化合物半導体層の形成工程>
次に、成長用基板上に、上部DBR層、活性層及び下部DBR層を順に含む化合物半導体層を形成する工程について説明する。
まず、図7に示すように、半導体基板(成長用基板)21の一面21a上に、複数のエピタキシャル層を成長させて化合物半導体層5を含むエピタキシャル積層体30を形成する。
半導体基板21は、エピタキシャル積層体30形成用基板であり、例えば、一面21aが(100)面から15°傾けた面とされた、Siドープしたn型のGaAs単結晶基板である。エピタキシャル積層体30としてAlGaInP層またはAlGaAs層を用いる場合、エピタキシャル積層体30を形成する基板として砒化ガリウム(GaAs)単結晶基板を用いることができる。
化合物半導体層10の形成方法としては、有機金属化学気相成長(Metal Organic Chemical Vapor Deposition:MOCVD)法、分子線エピタキシャル(Molecular Beam Epitaxicy:MBE)法や液相エピタキシャル(Liquid Phase Epitaxicy:LPE)法などを用いることができる。
本実施形態では、トリメチルアルミニウム((CHAl)、トリメチルガリウム((CHGa)及びトリメチルインジウム((CHIn)をIII族構成元素の原料に用いた減圧MOCVD法を用いて、各層をエピタキシャル成長させる。
なお、Mgのドーピング原料にはビスシクロペンタジエニルマグネシウム((CMg)を用いる。また、Siのドーピング原料にはジシラン(Si)を用いる。また、V族構成元素の原料としては、ホスフィン(PH)又はアルシン(AsH)を用いる。
具体的には、まず、半導体基板21の一面21a上に、Siをドープしたn型のGaAsからなる緩衝層22aを成膜する。緩衝層22aとしては、例えば、Siをドープしたn型のGaAsを用い、キャリア濃度を2×1018cm−3とし、層厚を0.2μmとする。
次に、本実施形態では、緩衝層22a上に、Siドープしたn型の(Al0.5Ga0.50.5In0.5Pからなるエッチングストップ層22bを成膜する。
エッチングストップ層22bは、半導体基板をエッチング除去する際、クラッド層および発光層までがエッチングされてしまうことを防ぐための層であり、例えば、Siドープの(Al0.5Ga0.50.5In0.5Pからなり、層厚を0.5μmとする。
次に、エッチングストップ層22b上に、Siドープしたn型のGaAsからなるコンタクト層8を成膜する。
次に、コンタクト層8上に、Siドープしたn型の、例えばAlGaInPからなる上部電流拡散層(n型半導体層)9を成膜する。
次に、上記電流拡散層9上に、上部DBR層3aを形成する。
具体的には、屈折率の異なる2種類の層3aa、3abを交互に積層する。本実施形態では、屈折率の異なる2種類の層3aa、3abは、組成の異なる2種類の(AlXhGa1−XhY3In1−Y3P(0<Xh≦1、Y3=0.5)、(AlXlGa1−XlY3In1−Y3P;0≦Xl<1、Y3=0.5)の対とすることができ、両者のAlの組成差ΔX=xh−xlが0.5より大きいか又は等しくなる組み合わせか、又は、GaInPとAlInPの組み合わせか、又は、組成の異なる2種類のAlxlGa1−xlAs(0.1≦xl≦1)、AlxhGa1−xhAs(0.1≦xh≦1)の対であり、両者の組成差ΔX=xh−xlが0.5より大きいか等しくなる組み合わせかのいずれかから選択されるのが好ましい。
なお、上部DBR層3aは、後述する下部DBR層3bと同様の層構造で形成することができるが、上部DBR層3aを透過させて光を射出する必要があるので、下部DBR層3bよりも反射率が低くなるように形成する。
具体的には、下部DBR層3bと同じ材料からなる場合、下部DBR層3bよりも層数が少なくなるように、屈折率の異なる2種類の層が交互に3〜10対積層されてなるのが好ましい。
次に、上部DBR層3a上に、活性層4を形成する。
具体的には、まず、図8に示すように、Siをドープしたn型のAl0.5In0.5Pからなる上部クラッド層45を成膜する。
なお、上部クラッド層45は、光取り出し向上の為に表面を粗面化させる表面粗面化層と、クラッド層の2層構造としてもよい。この場合は、上部クラッド層45を成膜する前に、表面粗面化層を成膜すればよく、表面粗面化層としては、Siをドープしたn型の(Al0.5Ga0.50.5In0.5Pを用いることができる。
次に、上部クラッド層45上に、例えば、アンドープの(Al0.1Ga0.90.5In0.5P/(Al0.7Ga0.30.5In0.5Pの20対の量子井戸構造からなる発光層43を成膜する。
具体的には、発光層43は、バリア層(障壁層ともいう)48を両端に有する、井戸層47とバリア層48との多層構造(積層構造)とすることができる。
井戸層47の材料としては、((AlX1Ga1−X1Y1In1−Y1P(0≦X1≦1,0<Y1≦1)、(AlX2Ga1−X2)As(0≦X2≦1)、(InX3Ga1−X3)As(0≦X3≦1))のいずれかを用いることができる。
バリア層48の材料としては、井戸層47の材料に対して適した材料を選択するのが好ましい。バリア層48での吸収を防止して発光効率を高めるため、井戸層47よりもバンドギャップが大きくなる組成とするのが好ましい。
次に、発光層43上に、Mgをドープしたp型のAl0.5In0.5Pからなる下部クラッド層41を成膜する。
次に、活性層4上に、下部DBR層3bを形成する。
具体的には、上記上部DBR層3aと同様に、屈折率の異なる2種類の層3ba、3bbを交互に積層する。本実施形態では、屈折率の異なる2種類の層3ba、3bbは、組成の異なる2種類の(AlXhGa1−XhY3In1−Y3P(0<Xh≦1、Y3=0.5)、(AlXlGa1−XlY3In1−Y3P;0≦Xl<1、Y3=0.5)の対とすることができ、両者のAlの組成差ΔX=xh−xlが0.5より大きいか又は等しくなる組み合わせか、又は、GaInPとAlInPの組み合わせか、又は、組成の異なる2種類のAlxlGa1−xlAs(0.1≦xl≦1)、AlxhGa1−xhAs(0.1≦xh≦1)の対であり、両者の組成差ΔX=xh−xlが0.5より大きいか等しくなる組み合わせかのいずれかから選択されるのが好ましい。
なお、下部DBR層3bは、屈折率の異なる2種類の層3ba、3bbが交互に10〜50対積層されてなるのが好ましい。10対以下である場合は反射率が低すぎるために出力の増大に寄与せず、50対以上にしてもさらなる反射率の増大は小さいからである。
次に、下部DBR層3b上に、Mgドープしたp型の、例えばGaPからなる下部電流拡散層(p型半導体層)7を成膜する。
なお、上部クラッド層45、下部クラッド層41それぞれと発光層43との間に、上部ガイド層44、下部ガイド層42を設けてもよい。
<金属反射層の形成工程>
次に、図7に示すように、下部電流拡散層7上に金属反射層2を形成する。
具体的には、例えば、蒸着法を用いて、金、銅、銀、アルミニウム、Pt、又はこれらの合金のいずれか一層又は二層以上からなる金属反射層2を下部電流拡散層7に形成する。
<拡散防止層の形成工程>
本実施形態においては、金属反射層2の支持基板側表面上に、適宜、拡散防止層又は/及び接合層を形成してもよい。
具体的には、まず金属反射層2上に拡散防止層11を形成する。例えば、蒸着法を用いて、ニッケルからなるバリア層を金属反射層2上に形成できる
<接合層の形成工程>
次に、拡散防止層11上に接合層10を形成する。例えば、蒸着法を用いて、Au系の共晶金属であるAuGeからなる接合層を上記拡散防止層11上に形成する。
<支持基板の接合工程>
次に、図9に示すように、エピタキシャル積層体30や金属反射層2等を形成した半導体基板21と、上記支持基板の製造工程で形成した支持基板1とを接合する。
具体的には、例えば、支持基板1としてGe基板を用いた場合、図5に示したようなGe基板51のおもて面51Aに形成したTi/Au/Inでなる層52と、図7に示した構造体の金属反射層2とを重ね合わせて、例えば、320℃で加熱・500g/cmで加圧し、図9に示すように、支持基板1を、エピタキシャル積層体30を含む構造体に接合する。
また、支持基板1として金属基板を用いた場合は、図6に示したような金属基板と、図7に示した構造体の金属反射層2とが対向して重ね合わされるように配置する。次に、減圧装置内を3×10−5Paまで排気した後、400℃に加熱した状態で、500kgの荷重を印加して図7に示した構造体の金属反射層2と金属基板とを接合する。
<半導体基板および緩衝層除去工程>
次に、図10に示すように、図9に示す接合構造体から、成長用基板(半導体基板)21及び緩衝層22aをアンモニア系エッチャントにより選択的に除去する
<エッチングストップ層除去工程>
次に、エッチングストップ層22bを塩酸系エッチャントにより選択的に除去する。
<表面電極及び裏面電極の形成工程>
次に、コンタクト層8上に、例えば、AnGe/Niを含有する材料からなる表面電極12を形成すると共に、支持基板1の金属反射層2が形成されているのと反対側に、AuBeを含有する材料からなる裏面電極13を形成する。
具体的には例えば、蒸着法を用いて、AnGe/Niを含有する材料をコンタクト層8上に、そしてAuBeを含有する材料を支持基板1上に成膜する。
なお、上述したように、本実施形態における半導体装置では、上述したような裏面電極13の配置形態に限らない。
以下に、図1Bに示したような電極構造を形成するための工程について説明する。
まず、上述した方法により下部電流拡散層7を成膜した後、下部電流拡散層(p型半導体層)7上にp型電極(p型オーミック電極)15を形成する。
具体的には、下部電流拡散層7全面に、例えば、CVD法を用いて透光膜(SiO膜)14を形成する。なお、透光膜14を構成する材料としては、SiO、SiN、SiON、Al、MgF、TiO、TiN、ZnO、ITO、IZOなどを用いることができる。
次に、フォトリソグラフィー技術及びエッチング技術を用いて、透光膜14に、p型オーミック電極15を構成する導電性部材を埋め込むための複数の貫通孔を形成する。
具体的には、それらの貫通孔に対応する孔を有するフォトレジストパターンを透光膜14上に形成し、フッ酸系のエッチャントを用いて貫通孔に対応する箇所の透光膜14を除去することにより、透光膜14に複数の貫通孔を形成する。
次に、例えば、蒸着法を用いて、下部電流拡散層7上であって、透光膜14の複数の貫通孔にAuとBeとNiとを含有する材料からなるp型オーミック電極15を形成する。なお、p型オーミック電極15は、AuBeNiの合金からなることが好ましく、さらに合金中のNiの含有量が5〜40mol%であり、かつ、mol%で、Be/Auが0.01〜0.3であることが好ましい。
次に、p型オーミック電極15及び透光膜14上に金属反射層2を形成するが、これ以降の工程は上述した工程を採用することで、図1Bに示したような半導体装置を製造できる。
<個片化工程>
次に、ウェハ上の発光ダイオードを個片化する。
切断する領域の半導体層を除去した後に、以上の工程で形成された支持基板1を含む構造体をレーザで例えば、350μm間隔で切断し、発光ダイオード100を作製する。
<支持基板側面の金属保護膜形成工程>
個片化された各発光ダイオード100では、基板1の側面には金属保護膜は形成されていないが、上面及び下面の金属保護膜の形成条件と同様な条件で、切断された基板1の側面に金属保護膜を形成してもよい。
以下、本発明を実施例に基づいて具体的に説明する。しかし、本発明はこれらの実施例のみに限定されるものではない。
(実施例1)
実施例1は、図1および図2に示した実施形態の実施例である。本実施例では、特性評価のために発光ダイオードチップを基板上に実装した発光ダイオードランプを作製した。また、支持基板1としてGe基板を用い作製した。
まず、Ge基板の表面にAu/Ptでなる層を0.5μm/0.1μmの厚さで形成した。Ge基板の裏面に、Pt/Auでなる層43を0.1μm/0.5μmの厚さで形成した。
次に、Siをドープしたn型のGaAs単結晶からなるGaAs基板上に、化合物半導体層を順次積層して発光波長730nmのエピタキシャルウェハを作製した。
GaAs基板は、(100)面から(0−1−1)方向に15°傾けた面を成長面とし、キャリア濃度を2×1018cm−3とした。また、GaAs基板の層厚は、約0.5μmとした。化合物半導体層としては、SiをドープしたGaAsからなるn型の緩衝層、Siドープの(Al0.5Ga0.50.5In0.5Pからなるエッチングストップ層、Siドープしたn型のAl0.1GaAsからなるコンタクト層、Al0.3Ga0.7Asからなる上部電流拡散層、Al0.9Ga0.1As/Al0.3Ga0.7Asからなる上部DBR層、SiドープのAl0.5In0.5Pからなるn型の上部クラッド層、(Al0.1Ga0.90.5In0.5P/(Al0.5Ga0.50.5In0.5Pの20対からなる井戸層/バリア層の発光層、Al0.5In0.5Pからなるp型の下部クラッド層、Al0.9Ga0.1As/Al0.3Ga0.7Asからなる下部DBR層、Al0.3Ga0.7Asからなる下部電流拡散層である。
本実施例では、減圧有機金属化学気相堆積装置法(MOCVD装置)を用い、直径50mm、厚さ350μmのGaAs基板に化合物半導体層をエピタキシャル成長させて、エピタキシャルウェーハを形成した。エピタキシャル成長層を成長させる際、III族構成元素の原料としては、トリメチルアルミニウム((CHAl)、トリメチルガリウム((CHGa)及びトリメチルインジウム((CHIn)を使用した。また、Mgのドーピング原料としては、ビスシクロペンタジエニルマグネシウム(bis−(CMg)を使用した。また、Siのドーピング原料としては、ジシラン(Si)を使用した。また、V族構成元素の原料としては、ホスフィン(PH)、アルシン(AsH)を使用した。また、各層の成長温度としては、700℃で成長させた。
GaAsからなる緩衝層は、キャリア濃度を約1×1018cm−3、層厚を約0.5μmとした。エッチングストップ層は、キャリア濃度を1×1018cm−3、層厚を約0.5μmとした。コンタクト層は、キャリア濃度を約1×1018cm−3、層厚を約0.05μmとした。上部電流拡散層はキャリア濃度を約1.0×1018cm−3、層厚を約5μmとしたAl0.3Ga0.7Asを積層した。上部DBR層はキャリア濃度を約1×1018cm−3、層厚を約57nmとしたAl0.9Ga0.1Asと、キャリア濃度を約1×1018cm−3、層厚を約52nmとしたAl0.3Ga0.7Asを交互に8対積層した。上部クラッド層は、キャリア濃度を約2×1018cm−3、層厚を約0.5μmとした。井戸層は、アンドープで層厚が約5nmの(Al0.1Ga0.90.5In0.5Pとし、バリア層はアンドープで層厚が約5nmの(Al0.5Ga0.50.5In0.5Pとした。また、井戸層とバリア層とを交互に20対積層した。下部クラッド層は、キャリア濃度を約8×1017cm−3、層厚を約0.5μmとした。また、下部DBR層はキャリア濃度を約1×1018cm−3、層厚を約57nmとしたAl0.9Ga0.1Asと、キャリア濃度を約1×1018cm−3、層厚を約52nmとしたAl0.3Ga0.7Asを交互に40対積層した。又、下部電流拡散層はキャリア濃度を約1×1018cm−3、層厚を約3μmとしたAl0.3Ga0.7Asを積層した。
次に、下部電流拡散層上にp型電極(p型オーミック電極)を形成した。
具体的には、下部電流拡散層全面に、例えば、CVD法を用いて厚さ0.3μmの透光膜(SiO膜)を形成した。
次に、フォトリソグラフィー技術及びエッチング技術を用いて、透光膜膜に、p型オーミック電極を構成する導電性部材を埋め込むための直径9μmの複数の貫通孔を形成した。
次いで、蒸着法を用いて、透光膜の複数の貫通孔にAuBe合金を充填することにより、下部電流拡散層上に高さ0.3μm、直径9μmの複数の円柱状のp型オーミック電極を形成した。
次に、下部DBR層上に、蒸着法を用いて、厚さ0.7μmのAu膜からなる金属反射層を形成した。
次に、金属反射層上に、蒸着法を用いて、厚さ0.5μmのTi膜からなる拡散防止層を形成した。
次に、拡散防止層上に、蒸着法を用いて、厚さ1.0μmのAuGeからなる接合層を形成した。
次に、GaAs基板上に化合物半導体層及び金属反射層等を形成した構造体(図7参照)と、Ge基板とを対向して重ね合わせるように配置して減圧装置内に搬入し、400℃で加熱した状態で、500kg重の荷重でそれらを接合して接合構造体を形成した。
次に、接合構造体から、化合物半導体層の成長基板であるGaAs基板と緩衝層とをアンモニア系エッチャントにより選択的に除去し、さらに、エッチングストップ層を塩酸系エッチャントにより選択的に除去した。
次に、コンタクト層のGe基板と反対側の面に、AuGe、Ni合金を厚さが0.5μm、Ptを0.2μm、Auを1.0μmとなるように真空蒸着法を用いて成膜し表面電極(n型電極)を形成した。
次に、ウェットエッチングとレーザ切断を順に行って個片化して、実施例の発光ダイオードを作製した。
次に、上述のように作製した実施例1の発光ダイオードチップをマウント基板上に実装して発光ダイオードランプを組み立てた。
次に、得られた発光ダイオード(発光ダイオードランプ)の特性を評価した。
この発光ダイオード(発光ダイオードランプ)のn型及びp型オーミック電極間に電流を流したところ、ピーク波長730nmとする赤外光が出射された。順方向に20ミリアンペア(mA)の電流を通流した際の順方向電圧(V)は、約1.9ボルトとなった。順方向電流を20mAとした際の発光出力は、13mWであった。
(比較例)
比較例の発光ダイオードは上記実施例1の発光ダイオードにおける下部DBR層及び上部DBR層が無いこと以外は実施例と同様である。
この発光ダイオードのn型及びp型オーミック電極間に電流を流したところ、ピーク波長730nmとする赤外光が出射された。順方向に20ミリアンペア(mA)の電流を通流した際の順方向電圧(V)は、約1.9ボルトであり、発光出力は、10mWであった。
実施例1のランプは、比較例に比べて出力が30%高く、またランプ直上の発光出力に関しては70%高い出力が得られた。これは、実施例1においては金属反射層、下部DBR層での反射および上部DBR層との間での共振により発光部からの光が干渉により効率よく取り出し可能となったためであると考えられる
1 支持基板
2 金属反射層
3a 上部DBR層
3b 下部DBR層
4 活性層
5 化合物半導体層
6 発光部
7 下部電流拡散層
8 コンタクト層
9 上部電流拡散層
10 接合層
11 拡散防止層
12 表面電極(n型電極)
13 裏面電極
14 透光膜
15 p型電極(p型オーミック電極)
21 半導体基板(成長用基板)
30 化合物半導体層
41 下部クラッド層
42 下部ガイド層
43 発光層
44 上部ガイド層
45 上部クラッド層
47 井戸層
48 バリア層(障壁層)
100 発光ダイオード

Claims (9)

  1. 支持基板上に、金属反射層と、下部DBR層、活性層及び上部DBR層を順に含む化合物半導体層とを順に含む発光部を備え、
    前記支持基板と前記発光部とが接合されてなることを特徴とする発光ダイオード。
  2. 前記支持基板は、Ge基板、金属基板、Si基板、GaAs基板、GaP基板、のいずれかを含んでなることを特徴とする請求項1に記載の発光ダイオード。
  3. 前記金属反射層は、金、銅、銀、アルミニウム、Pt、又はこれらの合金のいずれか一層又は二層以上からなることを特徴とする請求項1又は2のいずれかに記載の発光ダイオード。
  4. 前記金属反射層上に形成された拡散防止層及び/又は接合層を介して、前記発光部が前記前記支持基板に接合されていることを特徴とする請求項1から3のいずれか一項に記載の発光ダイオード。
  5. 前記下部DBR層は、屈折率の異なる2種類の層が交互に10〜50対積層されてなることを特徴とする請求項1から4のいずれか一項に記載の発光ダイオード。
  6. 前記上部DBR層は、屈折率の異なる2種類の層が交互に3〜10対積層されてなることを特徴とする請求項1から5のいずれか一項に記載の発光ダイオード。
  7. 前記屈折率の異なる2種類の層は、組成の異なる2種類の(AlXhGa1−XhY3In1−Y3P(0<Xh≦1、Y3=0.5)、(AlXlGa1−XlY3In1−Y3P;0≦Xl<1、Y3=0.5)の対であり、両者のAlの組成差ΔX=xh−xlが0.5より大きいか又は等しくなる組み合わせか、又は、GaInPとAlInPの組み合わせか、又は、組成の異なる2種類のAlxlGa1−xlAs(0.1≦xl≦1)、AlxhGa1−xhAs(0.1≦xh≦1)の対であり、両者の組成差ΔX=xh−xlが0.5より大きいか等しくなる組み合わせかのいずれかから選択されることを特徴とする請求項1から6のいずれか一項に記載の発光ダイオード。
  8. 前記活性層に含まれる発光層は、((AlX1Ga1−X1Y1In1−Y1P(0≦X1≦1,0<Y1≦1)、(AlX2Ga1−X2)As(0≦X2≦1)、(InX3Ga1−X3)As(0≦X3≦1))、のいずれかからなることを特徴とする請求項1から7のいずれか一項に記載の発光ダイオード。
  9. 支持基板上に、金属反射層と、下部DBR層、活性層及び上部DBR層を順に含む化合物半導体層とを順に含む発光部を備えた発光ダイオードの製造方法であって、
    成長用基板上に、上部DBR層、活性層及び下部DBR層を順に含む化合物半導体層を形成する工程と、
    前記化合物半導体層上に金属反射層を形成して発光部を形成する工程と、
    前記発光部と支持基板とを接合する工程と、
    前記成長用基板を除去する工程と、
    を有することを特徴とする発光ダイオードの製造方法。
JP2012233768A 2012-10-23 2012-10-23 発光ダイオードおよびその製造方法 Pending JP2014086533A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012233768A JP2014086533A (ja) 2012-10-23 2012-10-23 発光ダイオードおよびその製造方法
TW102137849A TW201421738A (zh) 2012-10-23 2013-10-21 發光二極體及其製造方法
PCT/JP2013/078534 WO2014065259A1 (ja) 2012-10-23 2013-10-22 発光ダイオードおよびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012233768A JP2014086533A (ja) 2012-10-23 2012-10-23 発光ダイオードおよびその製造方法

Publications (1)

Publication Number Publication Date
JP2014086533A true JP2014086533A (ja) 2014-05-12

Family

ID=50544638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012233768A Pending JP2014086533A (ja) 2012-10-23 2012-10-23 発光ダイオードおよびその製造方法

Country Status (3)

Country Link
JP (1) JP2014086533A (ja)
TW (1) TW201421738A (ja)
WO (1) WO2014065259A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105609602A (zh) * 2015-12-29 2016-05-25 中国科学院半导体研究所 可见光通信用倒装rcled及其制备方法
WO2020080159A1 (ja) * 2018-10-17 2020-04-23 スタンレー電気株式会社 半導体発光素子
WO2020100392A1 (ja) * 2018-11-12 2020-05-22 株式会社ジャパンディスプレイ 表示装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015108876B3 (de) * 2015-06-04 2016-03-03 Otto-Von-Guericke-Universität Magdeburg, Ttz Patentwesen Lichtemittierendes Gruppe-III-Nitrid basiertes Bauelement
CN108134005B (zh) * 2017-12-13 2023-12-22 华灿光电(浙江)有限公司 一种发光二极管芯片及其制备方法
CN111758193A (zh) 2017-12-28 2020-10-09 普林斯顿光电子公司 窄光束发散半导体源
CN113948593B (zh) * 2021-09-23 2022-09-09 中山德华芯片技术有限公司 一种太阳能电池背金结构及其应用
CN115602769B (zh) * 2022-12-16 2023-03-24 南昌凯捷半导体科技有限公司 具有滤光结构的反极性红外led外延片及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076433A (ja) * 2000-09-04 2002-03-15 Sharp Corp 半導体発光素子
JP2006157024A (ja) * 2004-11-30 2006-06-15 Osram Opto Semiconductors Gmbh 発光半導体素子
JP2007096327A (ja) * 2005-09-29 2007-04-12 Osram Opto Semiconductors Gmbh ビーム放射半導体チップ
JP2009038355A (ja) * 2007-07-10 2009-02-19 Toyoda Gosei Co Ltd 発光装置
WO2012035760A1 (ja) * 2010-09-14 2012-03-22 パナソニック株式会社 バックライト装置、およびそのバックライト装置を用いた液晶表示装置、およびそれらに用いる発光ダイオード
WO2012124420A1 (ja) * 2011-03-14 2012-09-20 昭和電工株式会社 発光ダイオード及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076433A (ja) * 2000-09-04 2002-03-15 Sharp Corp 半導体発光素子
JP2006157024A (ja) * 2004-11-30 2006-06-15 Osram Opto Semiconductors Gmbh 発光半導体素子
JP2007096327A (ja) * 2005-09-29 2007-04-12 Osram Opto Semiconductors Gmbh ビーム放射半導体チップ
JP2009038355A (ja) * 2007-07-10 2009-02-19 Toyoda Gosei Co Ltd 発光装置
WO2012035760A1 (ja) * 2010-09-14 2012-03-22 パナソニック株式会社 バックライト装置、およびそのバックライト装置を用いた液晶表示装置、およびそれらに用いる発光ダイオード
WO2012124420A1 (ja) * 2011-03-14 2012-09-20 昭和電工株式会社 発光ダイオード及びその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105609602A (zh) * 2015-12-29 2016-05-25 中国科学院半导体研究所 可见光通信用倒装rcled及其制备方法
WO2020080159A1 (ja) * 2018-10-17 2020-04-23 スタンレー電気株式会社 半導体発光素子
JP2020064955A (ja) * 2018-10-17 2020-04-23 スタンレー電気株式会社 半導体発光素子
JP7262965B2 (ja) 2018-10-17 2023-04-24 スタンレー電気株式会社 半導体発光素子
WO2020100392A1 (ja) * 2018-11-12 2020-05-22 株式会社ジャパンディスプレイ 表示装置
JP2020080356A (ja) * 2018-11-12 2020-05-28 株式会社ジャパンディスプレイ 表示装置
JP7237536B2 (ja) 2018-11-12 2023-03-13 株式会社ジャパンディスプレイ 表示装置

Also Published As

Publication number Publication date
TW201421738A (zh) 2014-06-01
WO2014065259A1 (ja) 2014-05-01

Similar Documents

Publication Publication Date Title
WO2014065259A1 (ja) 発光ダイオードおよびその製造方法
US9166110B2 (en) Light-emitting diode and method of manufacturing the same
US7982207B2 (en) Light emitting diode
US9318656B2 (en) Light-emitting diode and method of manufacturing the same
JP5961358B2 (ja) 発光ダイオード及びその製造方法
US9299885B2 (en) Light-emitting diode, light-emitting diode lamp, and illumination device
JP6077201B2 (ja) 発光ダイオードおよびその製造方法
WO2010095361A1 (ja) 発光ダイオード、発光ダイオードランプ及び発光ダイオードの製造方法
KR20080087135A (ko) 질화물 반도체 발광 소자
JP5593163B2 (ja) 発光ダイオード及び発光ダイオードランプ
TWI426626B (zh) 發光二極體、發光二極體燈及照明裝置
JP6088132B2 (ja) 発光ダイオード及びその製造方法
JP2010212401A (ja) 光半導体装置及びその製造方法
JP5538006B2 (ja) 発光ダイオード
TWI446580B (zh) 發光二極體、發光二極體燈及照明裝置
WO2014042198A1 (ja) 発光ダイオードおよびその製造方法
JP2007150075A (ja) 窒化物半導体発光素子
JP5876897B2 (ja) 発光ダイオード、発光ダイオードランプ及び照明装置
JP2006013381A (ja) 発光素子
JP2014168101A (ja) 発光ダイオード、発光ダイオードランプ及び照明装置
JP2005005558A (ja) 半導体発光素子及び半導体発光素子用エピタキシャルウェハ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160916

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170221