JP2005005558A - 半導体発光素子及び半導体発光素子用エピタキシャルウェハ - Google Patents

半導体発光素子及び半導体発光素子用エピタキシャルウェハ Download PDF

Info

Publication number
JP2005005558A
JP2005005558A JP2003168760A JP2003168760A JP2005005558A JP 2005005558 A JP2005005558 A JP 2005005558A JP 2003168760 A JP2003168760 A JP 2003168760A JP 2003168760 A JP2003168760 A JP 2003168760A JP 2005005558 A JP2005005558 A JP 2005005558A
Authority
JP
Japan
Prior art keywords
layer
light
gaas
semiconductor
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003168760A
Other languages
English (en)
Inventor
Taiichiro Konno
泰一郎 今野
Masahiro Arai
優洋 新井
Kenji Shibata
憲治 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2003168760A priority Critical patent/JP2005005558A/ja
Publication of JP2005005558A publication Critical patent/JP2005005558A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】GaAs層とAlInP層を一対のペアとした光反射層からの赤外発光を抑制した高輝度の半導体発光素子を提供すること。
【解決手段】半導体基板1上に順次形成した第一光反射層3及び第二光反射層10と、その上に設けられたpn接合を有する活性層5を含む発光部を備えた半導体発光素子において、前記第二光反射層10がAlIn1−XP(0≦X≦1)と(AlGa1−XIn1−YP(0≦X≦1、0≦Y≦1)とを交互に積層した多層膜からなり、それぞれの膜厚が、発光ピーク波長の1/4×半導体材料の屈折率であり1:1で形成され、また前記第一光反射層3がAlIn1−XP(0≦X≦1)とGaAsとが交互に積層された多層膜からなり、その各AlIn1−XP(0≦X≦1)の膜厚が、発光ピーク波長の1/4×半導体材料の屈折率の150〜105%であり、且つ各GaAsの膜厚が発光ピーク波長の1/4×半導体材料の屈折率の50〜95%あり、各AlIn1−XP(0≦X≦1)とGaAsの一対の膜厚が発光ピーク波長の2/4とする。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、高い反射率を有する光反射層を備え、且つ該光反射層から発光する860〜880nm帯の赤外光を外部に放出することを抑止することで、フォトダイオード等の光センサ類の誤動作を防止する高輝度の半導体発光素子に関するものである。
【0002】
【従来の技術】
最近、AlGaInP系エピタキシャルウェハを用いて製造する高輝度の赤色から緑色の発光ダイオードの需要が大幅に伸びている。主な需要は、携帯電話の液晶用バックライト、表示灯、交通用信号灯、自動車のブレーキランプなどである。AlGaInPは、窒化物を除くIII/V族化合物半導体の中で最大のバンドギャップを有する直接遷移型半導体であり、従来のGaPや、AlGaAsなどの間接遷移型半導体を用いた発光ダイオードと比較して、赤色から緑色に相当する可視波長域において高輝度の発光が可能である。また一般に製造販売されている高輝度発光ダイオードの内部量子効率は極めて高い値にあり、これまで以上の高輝度化を求めるには、内部量子効率を向上させるよりも外部量子効率を向上させた方が効果的であり、その方法として、特開平11−87767号公報や特開平3−114277号公報、特開平7−86638号公報(特許文献1〜3)等に開示されたものがある。
【0003】
前記開示例の典型的な構造を、図4に示す。この図4の全てのエピタキシャル層は、有機金属気相成長法(以降MOVPE法と書く)によって成長されている。図4における発光ダイオードでは、n型GaAs基板1の上にn型GaAsバッファ層が成長され、その上にn型光反射層3が積層されている。n型光反射層3は、活性層5から前記n型GaAs基板1に向かう光を反対方向へ反射させる役割を担い、これにより、光がn型GaAs基板1に吸収されることなく発光ダイオードの外部に取り出せる。
【0004】
例えば、前記開示例では、n型光反射層3の構成は、Al0.5In0.5P層とGaAs層をペアとしたものと、Al0.5In0.5P層と(Al0.4Ga0.60.5In0.5P層をペアとしたものの、何れかが用いられている。このn型光反射層3での光反射率を良くするためには、異なる半導体材料A、及びBの屈折率の差が大きければ大きいほど光反射の効果が大きい。つまり屈折率差を考慮すると、Al0.5In0.5P層とGaAs層のペアで製作した光反射層の方が優れている(AlInP屈折率=約3.11、Al0.4GaInP屈折率=約3.38、GaAsの屈折率は約3.85)。また、前記n型光反射層3は、ペア数が多ければ多いほど、光反射効果は大きくなる。因みにn型光反射層3のn型GaAs層及びn型AlInP層の各々の膜厚は、n型GaAs層の屈折率C、n型AlInP層の屈折率をDとすると、発光波長λに対して、λ/4×C、λ/4×Dと設計される。
【0005】
【特許文献1】
特開平11−87767号公報
【0006】
【特許文献2】
特開平3−114277号公報
【0007】
【特許文献3】
特開平7−86638号公報
【0008】
【発明が解決しようとする課題】
しかしながら、Al0.5In0.5P、GaAsペアの光反射層には、大きな問題があった。それは、活性層5のバンドギャップに相当する波長域の光(以下、第一放射光と称す)に加え、GaAsのバンドギャップに相当する波長域の光、つまり強い赤外光(860〜880nm)を同時に放出することである。同時に強い赤外光(第二放射光)を放出する原因は、活性層5から放射された光の内、n型GaAs基板1、及びn型光反射層3側へ向かった光は、その殆どがn型光反射層3によってその反対側である、主光取り出し面へ反射される。しかし一部の第一放射光は、n型光反射層3を構成するAl0.5In0.5P、GaAsのGaAs層に入る。そこでGaAs層に入った第一放射光によって光励起され、GaAs層のバンドギャップに相当する光を放出するからである。即ち、n型光反射層3のペアの片方にGaAs層を用いた半導体発光素子では、どうしても強い第二放射光を放出してしまう。従って、このような半導体発光素子の周囲に存在する一般的な半導体フォトダイオードにおいては、該半導体発光素子から放射される赤外光(第二放射光)に反応し、誤動作を招くことがあった。
【0009】
そこで、本発明の目的は、高輝度の半導体発光素子を得る為に備えた高反射率光反射層、詳しくはGaAs層とAlInP層を一対のペアとした光反射層を擁する半導体発光素子において、該光反射層からの赤外発光現象が見出される点に鑑み、これを改善、抑制することを可能とする高輝度の半導体発光素子を提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するため、本発明は、次のように構成したものである。
【0011】
請求項1の発明に係る半導体発光素子は、半導体基板上に直接に又はバッファ層を介して順次形成した第一光反射層及び第二光反射層と、その上に設けられたpn接合を有する活性層を含む発光部を備えた半導体発光素子において、前記活性層側の第二光反射層がAlIn1−XP(0≦X≦1)と(AlGa1−XIn1−YP(0≦X≦1、0≦Y≦1)とを交互に積層した多層膜からなり、該第二光反射層のそれぞれの膜厚が、発光ピーク波長の1/4×半導体材料の屈折率であり1:1で形成され、また前記半導体基板側の第一光反射層がAlIn1−XP(0≦X≦1)とGaAsとが交互に積層された多層膜からなり、その第一光反射層の各AlIn1−XP(0≦X≦1)の膜厚が、発光ピーク波長の1/4×半導体材料の屈折率の150〜105%であり、且つ各GaAsの膜厚が発光ピーク波長の1/4×半導体材料の屈折率の50〜95%あり、各AlIn1−XP(0≦X≦1)とGaAsの一対の膜厚が発光ピーク波長の2/4であることを特徴とする。
【0012】
なお、活性層側の第二光反射層の二種類の多層膜は(AlGa1−XIn1−YP(0≦X≦1、0≦Y≦1)からなることもできる。
【0013】
請求項2の発明は、請求項1記載の半導体発光素子において、前記活性層側の第二光反射層がAlIn1−XP(0≦X≦1)と(AlGa1−XIn1−YP(0≦X≦1、0≦Y≦1)を一対とする膜を、少なくとも5対以上積層して成り、また、前記半導体基板側の第一光反射層がAlIn1−XP(0≦X≦1)とGaAsを一対とする膜を、少なくとも5対以上積層して成ることを特徴とする。
【0014】
請求項3の発明は、請求項1又は2記載の半導体発光素子において、活性層に多重量子井戸を用いたことを特徴とする。
【0015】
請求項4の発明に係る半導体発光素子用エピタキシャルウェハは、請求項1〜3のいずれかに記載の半導体発光素子用のエピタキシャル層構造を有することを特徴とする。
【0016】
<発明の要点>
本発明では、活性層側の第二光反射層を、AlInPとAlGaInPとを交互に積層した多層膜から構成し、それぞれの膜厚を、発光ピーク波長の1/4×半導体材料の屈折率であり1:1で形成する。また半導体基板側の第一光反射層をAlInPとGaAsとが交互に積層された多層膜から構成し、その各AlInPの膜厚を、発光ピーク波長の1/4×半導体材料の屈折率の150〜105%とし、且つ各GaAsの膜厚を発光ピーク波長の1/4×半導体材料の屈折率の50〜95%とし、各AlInPとGaAsの一対の膜厚を発光ピーク波長の2/4とする。
【0017】
上記構成とする理由は、次による。すなわち、発光部から半導体基板の方向に向かって放射された第一放射光を、発光した光に対して透明である前記発光部側に設けられた前記GaAsを含まない第二光反射層で、ある程度の光を、主光取り出し面である上面側に反射させてしまう。これにより、前記半導体基板側に設けられた屈折率差が大きく、光反射帯域が広く、且つ光反射効率の良い前記GaAsを含む第一光反射層に入る前記第一放射光を減らす。そして、その第一放射光による前記第一光反射層の一部であるGaAs層での光励起による第二放射光である赤外光を抑制する。このようにすることによって、高輝度、且つ所望の発光波長域以外の光を放射すること無く、単色性に優れた半導体発光素子を得ることが可能となる。
【0018】
説明を補足するに、第一導電型半導体基板側に設けるGaAs層とAlInP層を一対として用いた第一光反射層は、前記GaAs層が発光した光に対して透明ではなく、一方の前記AlInP層は透明である。このため第一光反射層の一対のGaAs層とAlInP層の内、GaAs層の膜厚を薄くして、その分AlInP層の膜厚を厚くすれば、光吸収が減少するので、発光出力を高くすることが出来る。但し、第一光反射層のGaAs層とAlInP層の膜厚の和、つまり第一光反射層一対の膜厚の和が発光波長の2/4になっていなければ、光反射層としての効果が薄れる。また、第一光反射層の前記一対の膜厚の和が発光波長の2/4であっても、あまりにもバランスが悪いと、光反射効果が薄れる。従って、第一光反射層のGaAs層とAlInP層の膜厚のバランスには、適正値がある。好ましくは、第一光反射層一対の膜厚が、発光波長の2/4であり、GaAs層膜厚とAlInP層の膜厚が50%:150%〜95%:105%である。より好ましくは、GaAs層膜厚とAlInP層の膜厚が60%:140%〜80%:120%である。
【0019】
【発明の実施の形態】
以下、本発明を図示の実施形態に基づいて説明する。
【0020】
半導体基板上に直接に又はバッファ層を介して設けられた光反射層と、その上に活性層をクラッド層で挟んで形成した発光部を備えた半導体発光素子において、前記光反射層を、半導体基板側のGaAsを含む第一光反射層と、前記活性層側のGaAsを含まないP系化合物から成る第二光反射層とで構成する。すなわち、第一光反射層と第二光反射層は、それぞれ互いに異なる屈折率を有する2種類の膜を一対として、この対が複数積層されてなり、且つ前記複数の対が、活性層側の第二光反射層では、発光波長に対して透明な半導体材料の組み合わせであり、また、半導体基板側の第一光反射層では、発光波長に対して透明な半導体材料と、透明ではない半導体材料の組み合わせにより形成される。
【0021】
具体的には、図1に示すように、第一導電型半導体基板1上に直接に又はバッファ層2を介して第一光反射層3及び第二光反射層10を順次形成し、その上に第一(下部)クラッド層4、活性層5、第二(上部)クラッド層6、更に電流分散層7を順次積層し、その上に表面電極9を、また基板の裏面に全面又は部分電極(裏面電極)8を形成した半導体発光素子において、活性層側の第二光反射層10を、AlIn1−XP(0≦X≦1)と(AlGa1−XIn1−YP(0≦X≦1、0≦Y≦1)を交互に積層した多層膜から構成し、また半導体基板側の第一光反射層3をAlIn1−XP(0≦X≦1)とGaAsを交互に積層した多層膜から構成する。代表的には、第二光反射層10は、Al0.5In0.5Pと(Al0.4Ga0.60.5In0.5Pとを交互に積層して構成し、また第一光反射層3はAl0.5In0.5PとGaAsとが交互に積層して構成する。また第一導電型半導体基板1はGaAsから、第一及び第二クラッド層4、6は(AlGa1−XIn1−YP(0≦X≦1、0≦Y≦1)から、そして活性層5は(AlGa1−XIn1−YP(0≦X≦1、0≦Y≦1)から構成する。
【0022】
第一導電型半導体基板側に設けるGaAs層とAl0.5In0.5P層を一対として用いた第一光反射層3は、GaAs層が発光した光に対して透明ではなく、一方のAl0.5In0.5P層は透明である。このため第一光反射層3の一対のGaAs層とAl0.5In0.5P層の内、GaAs層の膜厚を薄くして、その分Al0.5In0.5P層の膜厚を厚くし、光吸収を減少させる。
【0023】
但し、第一光反射層3のGaAs層とAl0.5In0.5P層の膜厚の和、つまり第一光反射層3一対の膜厚の和は発光波長の2/4とする。これを外れると、光反射層としての効果が薄れるためである。また、第一光反射層3の一対の膜厚の和が発光波長の2/4であっても、あまりにもバランスが悪いと、光反射効果が薄れるので、GaAs層膜厚とAl0.5In0.5P層の膜厚は50%:150%〜95%:105%、より好ましくは、60%:140%〜80%:120%とする。
【0024】
なお、活性層側の第二光反射層10のそれぞれの膜厚は、発光ピーク波長の1/4×半導体材料の屈折率であり1:1とする。
【0025】
【実施例】
本発明の効果を確認するため、従来例及び実施例1、2の半導体発光素子を試作した。
【0026】
[従来例]
図4に示した構造の発光波長630nm付近の赤色帯発光ダイオードを製作した。
【0027】
製作の過程は、n型GaAs基板1上に、MOVPE法でn型GaAsバッファ層2、n型第一光反射層3、n型(Al0.7Ga0.30.5In0.5Pクラッド層4、アンドープ(Al0.10Ga0.900.5In0.5P活性層5、p型(Al0.7Ga0.30.5In0.5Pクラッド層6、p型GaP電流分散層7を順次成長させた。因みに上記n型光反射層3は、n型Al0.5In0.5P(約50nm)とn型GaAs(約40nm)を順次積層した構造とし、そのペア数は15ペアとした。そして、このエピタキシャルウェハ上面には直径125μmの円形のp側電極9を、マトリックス状に蒸着で形成した。p型電極(表面電極)9は、金・亜鉛、ニッケル、金を、それぞれ60nm、10nm、1000nmの順に蒸着した。更にエピタキシャルウェハ底面には、全面にn側電極8を形成した。n型電極(裏面電極)8は、金・ゲルマニウム、ニッケル、金を、それぞれ60nm、10nm、500nmの順に蒸着し、その後、電極の合金化であるアロイを、窒素ガス雰囲気中400℃で5分行った。
【0028】
その後、このエピタキシャルウェハをダイシング等でチップサイズ300μm角のチップ形状に加工し、更にダイボンディング、ワイヤボンディングを行って半導体発光素子を製作した。この従来例の半導体発光素子の製作方法は、前述した開示例と殆ど同じである。
【0029】
この半導体発光素子の発光スペクトルを測定した結果、630nm近傍と870nm近傍に発光を観測した。この従来例における発光スペクトルを図5に示す。この時の強度比は630nm:870nm=14:1であり、非常に強い赤外発光が起きていることが確認された。更に、この半導体発光素子の特性を調べた結果、発光出力は、2.53mW、順方向動作電圧(20mA通電時)は、1.95Vであった。
【0030】
[実施例1]
本発明の第一の実施例にかかる、図1に示した構造の発光波長630nm付近の赤色帯発光ダイオードを製作した。
【0031】
製作の過程は、n型GaAs基板1上に、MOVPE法でn型GaAsバッファ層2、n型第一光反射層3、n型第二光反射層10、n型(Al0.7Ga0.30.5In0.5Pクラッド層4、アンドープ(Al0.10Ga0.900.5In0.5P活性層5、p型(Al0.7Ga0.30.5In0.5Pクラッド層6、p型GaP電流分散層7を順次成長させた。
【0032】
因みに、上記n型第一光反射層3は、n型Al0.5In0.5P(約50nm)とn型GaAs(約40nm)を順次積層した構造とし、そのペア数は10ペアとした。更に、前記n型第二光反射層10は、n型Al0.5In0.5P(約50nm)とn型(Al0.4Ga0.60.5InP(約47nm)を順次積層した構造とし、そのペア数は5ペアとした。
【0033】
そして、このエピタキシャルウェハ上面には、直径125μmの円形のp側電極9を、マトリックス状に蒸着で形成した。p型電極(表面電極)9は、金・亜鉛、ニッケル、金を、それぞれ60nm、10nm、1000nmの順に蒸着した。更にエピタキシャルウェハ底面には、全面にn側電極(裏面電極)8を形成した。n型電極8は、金・ゲルマニウム、ニッケル、金を、それぞれ60nm、10nm、500nmの順に蒸着し、その後、電極の合金化であるアロイを、窒素ガス雰囲気中400℃で5分行った。
【0034】
その後、このエピタキシャルウェハをダイシング等でチップサイズ300μm角のチップ形状に加工し、更にダイボンディング、ワイヤボンディングを行って半導体発光素子を製作した。
【0035】
この半導体発光素子の発光スペクトルを測定した結果、630nm近傍に強い発光を、870nm近傍に極めて微弱な発光を観測した。本実施例における発光スペクトルを図2に示す。この時の強度比は630nm:870nm=90:1であり、GaAs基板、及び第一光反射層中に含まれるGaAsによる赤外発光が抑制されていることが確認された。
【0036】
更に、この半導体発光素子の特性を調べた結果、発光出力は、2.51mW、順方向動作電圧(20mA通電時)は、1.95Vであった。このため、従来例とほぼ同程度の発光出力、順方向動作電圧であり、且つ赤外発光を大幅に低減することが出来た。発光出力が従来例より、若干低くなった様に見えるが、これはバラツキの範囲であり、発光出力は同等である。
【0037】
[実施例2]
本発明の第二の実施例にかかる、図1に示した構造の発光波長630nm付近の赤色帯発光ダイオードを製作した。
【0038】
製作の過程は、n型GaAs基板1上に、MOVPE法でn型GaAsバッファ層2、n型第一光反射層3、n型第二光反射層10、n型(Al0.7Ga0.30.5In0.5Pクラッド層4、アンドープ(Al0.10Ga0.900.5In0.5P活性層5、p型(Al0.7Ga0.30.5In0.5Pクラッド層6、p型GaP電流分散層7を順次成長させた。
【0039】
因みに上記n型第一光反射層3は、n型Al0.5In0.5P(約63nm)とn型GaAs(約27nm)を順次積層した構造とし、そのペア数は10ペアとした。更に、上記n型第二光反射層10は、n型Al0.5In0.5P(約50nm)とn型(Al0.4Ga0.60.5In0.5P(約47nm)を順次積層した構造とし、そのペア数は5ペアとした。
【0040】
そして、このエピタキシャルウェハ上面には、直径125μmの円形のp側電極(表面電極)9を、マトリックス状に蒸着で形成した。p型電極9は、金・亜鉛、ニッケル、金を、それぞれ60nm、10nm、1000nmの順に蒸着した。更にエピタキシャルウェハ底面には、全面にn側電極8を形成した。n型電極(裏面電極)8は、金・ゲルマニウム、ニッケル、金を、それぞれ60nm、10nm、500nmの順に蒸着し、その後、電極の合金化であるアロイを、窒素ガス雰囲気中400℃で5分行った。
【0041】
その後、このエピタキシャルウェハをダイシング等でチップサイズ300μm角のチップ形状に加工し、更にダイボンディング、ワイヤボンディングを行って半導体発光素子を製作した。つまり、n型第一光反射層3のGaAs層とn型Al0.5In0.5P層の膜厚を変えた以外は、前記実施例1と同じである。
【0042】
この半導体発光素子の発光スペクトルを測定した結果は、前記実施例1と同等であった(図2参照)。更に、この半導体発光素子の特性を調べた結果、発光出力は2.65mW、順方向動作電圧(20mA通電時)は、1.96Vであった。
【0043】
<最適条件について>
第一光反射層3は、活性層5から半導体基板1に向かって放射された第一放射光を反対方向へ反射する役割を持ち、高出力の半導体発光素子を得るには前記第一放射光に対し高い反射率が必要になる。本発明における第一光反射層3のペア数と第一放射光反射率の関係図を図3に示す。図から分かるように、充分な光反射効果を有し、高い発光出力を得るためには、少なくとも5ペア以上の第一光反射層3を設けることが望ましい。
【0044】
また、GaAsを含まないP系化合物から成る第二光反射層10も、ペア数が少なくなると活性層5から半導体基板1に向かって放射された第一放射光の反射率が悪くなり、第一光反射層3に達する第一反射光が増加し、第一光反射層3の一部であるGaAs層での光励起による第二放射光(赤外光)を抑制する効果が薄れてしまう。このため第二放射光を抑制するためには、第二光反射層10のペア数を多くすれば多くするほど程良い。つまり、ほぼ完全に第二反射光を抑止するには、第二光反射層10のペア数を増加させれば良い。しかし、第二光反射層10のペア数を多くすると、コストが高くなる。また反射率の高い第一光反射層3の効果が少なくなる。このため第二光反射層10のペア数にも最適値がある。よって、第二光反射層10のペア数は、少なくとも2ペア以上積層することが望ましい。より好ましくは、製造コスト等の兼ね合いから、5〜15ペアにするのが良い。
【0045】
<他の実施例、変形例>
本発明の実施例においては、アンドープ活性層についてのみ例を示したが、当然の如く活性層の導電型はn型であってもp型であっても同様の効果が得られることは容易に類推出来る。
【0046】
また本発明の実施例においては、第一導電型をn型とし、第二導電型をp型としたが、第一導電型をp型とし、第二導電型をn型としても同様の効果があることは容易に類推出来る。更に実施例では、表面電極の形状は、円形であるが、異形状、例えば四角,菱形,多角形等でも同様の効果が出ることが、容易に類推できる。
【0047】
【発明の効果】
以上説明したように本発明によれば、半導体基板の上に設けられた光反射層と、この光反射層の上に設けられたpn接合を有する活性層を含む発光部が形成された半導体発光素子において、前記光反射層を、GaAsを含む第一光反射層と、GaAsを含まないP系化合物から成る第二光反射層とで構成していることから、前記第一光反射層及び前記半導体基板から放射される赤外光を、半導体発光素子の外部に放出することなく発光させることができ、単色性に優れた半導体発光素子を得ることが出来る。即ち、前述した赤外光を抑止することによって、従来危惧されたフォトダイオードなどの光センサ類を用いた装置、家庭用電化製品、更には自動車関連の機器類などで誤動作を未然に防止することが出来る。
【図面の簡単な説明】
【図1】本発明の実施例にかかるAlGaInP系LED用エピタキシャルウェハの断面構造図である。
【図2】本発明の一実施例にかかる発光スペクトルの測定結果を示す図である。
【図3】本発明の実施例にかかる630nm帯赤色半導体発光素子における第一光反射層のペア数とその光反射率の関係を示す図である。
【図4】従来例にかかるAlGaInP系LED用エピタキシャルウェハの断面構造図である。
【図5】従来例にかかる発光スペクトルの測定結果を示す図である。
【符号の説明】
1 半導体基板
2 GaAsバッファ層
3 第一光反射層
4 クラッド層
5 活性層
6 クラッド層
7 電流分散層
10 第二光反射層

Claims (4)

  1. 半導体基板上に直接に又はバッファ層を介して順次形成した第一光反射層及び第二光反射層と、その上に設けられたpn接合を有する活性層を含む発光部を備えた半導体発光素子において、
    前記活性層側の第二光反射層がAlIn1−XP(0≦X≦1)と(AlGa1−XIn1−YP(0≦X≦1、0≦Y≦1)とを交互に積層した多層膜からなり、該第二光反射層のそれぞれの膜厚が、発光ピーク波長の1/4×半導体材料の屈折率であり1:1で形成され、
    また、前記半導体基板側の第一光反射層がAlIn1−XP(0≦X≦1)とGaAsとが交互に積層された多層膜からなり、
    その第一光反射層の各AlIn1−XP(0≦X≦1)の膜厚が、発光ピーク波長の1/4×半導体材料の屈折率の150〜105%であり、且つ各GaAsの膜厚が発光ピーク波長の1/4×半導体材料の屈折率の50〜95%あり、各AlIn1−XP(0≦X≦1)とGaAsの一対の膜厚が発光ピーク波長の2/4であることを特徴とする半導体発光素子。
  2. 請求項1記載の半導体発光素子において、
    前記活性層側の第二光反射層がAlIn1−XP(0≦X≦1)と(AlGa1−XIn1−YP(0≦X≦1、0≦Y≦1)を一対とする膜を、少なくとも5対以上積層して成り、
    また、前記半導体基板側の第一光反射層がAlIn1−XP(0≦X≦1)とGaAsを一対とする膜を、少なくとも5対以上積層して成ることを特徴とする半導体発光素子。
  3. 請求項1又は2記載の半導体発光素子において、
    活性層に多重量子井戸を用いたことを特徴とする半導体発光素子。
  4. 請求項1〜3のいずれかに記載の半導体発光素子用のエピタキシャル層構造を有することを特徴とする半導体発光素子用エピタキシャルウェハ。
JP2003168760A 2003-06-13 2003-06-13 半導体発光素子及び半導体発光素子用エピタキシャルウェハ Pending JP2005005558A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003168760A JP2005005558A (ja) 2003-06-13 2003-06-13 半導体発光素子及び半導体発光素子用エピタキシャルウェハ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003168760A JP2005005558A (ja) 2003-06-13 2003-06-13 半導体発光素子及び半導体発光素子用エピタキシャルウェハ

Publications (1)

Publication Number Publication Date
JP2005005558A true JP2005005558A (ja) 2005-01-06

Family

ID=34094106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003168760A Pending JP2005005558A (ja) 2003-06-13 2003-06-13 半導体発光素子及び半導体発光素子用エピタキシャルウェハ

Country Status (1)

Country Link
JP (1) JP2005005558A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010007841A1 (ja) * 2008-07-17 2010-01-21 Dowaエレクトロニクス株式会社 発光素子
JP2011054722A (ja) * 2009-09-01 2011-03-17 Dowa Electronics Materials Co Ltd 発光素子
JP2021114594A (ja) * 2019-08-27 2021-08-05 株式会社東芝 光半導体素子

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010007841A1 (ja) * 2008-07-17 2010-01-21 Dowaエレクトロニクス株式会社 発光素子
JP2010027805A (ja) * 2008-07-17 2010-02-04 Dowa Electronics Materials Co Ltd 発光素子
US8278822B2 (en) 2008-07-17 2012-10-02 Dowa Electronics Materials Co., Ltd. Light-emitting element
JP2011054722A (ja) * 2009-09-01 2011-03-17 Dowa Electronics Materials Co Ltd 発光素子
JP2021114594A (ja) * 2019-08-27 2021-08-05 株式会社東芝 光半導体素子

Similar Documents

Publication Publication Date Title
JP6722221B2 (ja) 発光ダイオード
US7982207B2 (en) Light emitting diode
JP4054631B2 (ja) 半導体発光素子およびその製造方法、ledランプ並びにled表示装置
CN100466310C (zh) 发光二极管及其制造方法
US20110037049A1 (en) Nitride semiconductor light-emitting device
KR101441168B1 (ko) 복사­방출 반도체 몸체
JP2002222989A (ja) 半導体発光素子
KR20080003901A (ko) 질화물 반도체 발광 소자
KR20080070696A (ko) 질화물 반도체 발광소자
JP2008282851A (ja) 半導体発光素子
JP2010245312A (ja) 発光素子
JP2012084692A (ja) 発光素子
WO2014065259A1 (ja) 発光ダイオードおよびその製造方法
JP2010263085A (ja) 発光素子
KR20040091293A (ko) 반도체 발광 다이오드 및 그 제조방법
JP2002151734A (ja) 発光ダイオード
JP2005276899A (ja) 発光素子
JP2006040998A (ja) 半導体発光素子、半導体発光素子用エピタキシャルウェハ
JP2009070929A (ja) 面発光ダイオード
JP3330044B2 (ja) 半導体発光ダイオード
JP2011192821A (ja) 発光ダイオード
JP2005005558A (ja) 半導体発光素子及び半導体発光素子用エピタキシャルウェハ
JP2006270073A (ja) 発光ダイオード及びその製造方法
JP2004241462A (ja) 発光素子及び発光素子用エピタキシャルウエハ
JP2007150075A (ja) 窒化物半導体発光素子

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Effective date: 20060922

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060922

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070206