JP2014002079A - 転がり抵抗試験機に備えられた多分力検出器の校正方法 - Google Patents

転がり抵抗試験機に備えられた多分力検出器の校正方法 Download PDF

Info

Publication number
JP2014002079A
JP2014002079A JP2012138368A JP2012138368A JP2014002079A JP 2014002079 A JP2014002079 A JP 2014002079A JP 2012138368 A JP2012138368 A JP 2012138368A JP 2012138368 A JP2012138368 A JP 2012138368A JP 2014002079 A JP2014002079 A JP 2014002079A
Authority
JP
Japan
Prior art keywords
tire
force detector
rolling resistance
load
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012138368A
Other languages
English (en)
Other versions
JP5843706B2 (ja
Inventor
Toru Okada
徹 岡田
Takayuki Fukuda
貴之 福田
Takashi Sumiya
敬志 住谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2012138368A priority Critical patent/JP5843706B2/ja
Priority to PCT/JP2013/066206 priority patent/WO2013191055A1/ja
Priority to KR1020147035477A priority patent/KR101622869B1/ko
Priority to US14/397,246 priority patent/US9791344B2/en
Priority to CN201380032229.7A priority patent/CN104412086B/zh
Priority to TW102121949A priority patent/TWI513965B/zh
Publication of JP2014002079A publication Critical patent/JP2014002079A/ja
Application granted granted Critical
Publication of JP5843706B2 publication Critical patent/JP5843706B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres
    • G01M17/022Tyres the tyre co-operating with rotatable rolls
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L25/00Testing or calibrating of apparatus for measuring force, torque, work, mechanical power, or mechanical efficiency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Tires In General (AREA)

Abstract

【課題】転がり抵抗試験機に設けられた多分力検出器のクロストーク補正係数を簡便に且つ精度良く校正する方法を提供する。
【解決手段】タイヤTが装着されるスピンドル軸5と、タイヤTが押し付けられる模擬走行路面2を有する走行ドラム3とを有する転がり抵抗試験機1に備えられた多分力検出器の校正方法であって、多分力検出器で発生するクロストークの影響を補正するクロストーク補正係数を用いて、多分力検出器の計測値からタイヤTに作用する力を算出する処理を行うに際しては、転がり抵抗の値が既知である基準タイヤTを少なくとも1本以上用いて試験を行い、基準タイヤTを用いた試験時に多分力検出器で計測された力からなる転がり試験データと、計測に用いた基準タイヤの転がり抵抗値とを用いて、クロストーク補正係数を校正する。
【選択図】図1

Description

本発明は、転がり抵抗試験機に備えられた多分力検出器の校正方法に関する。
トラック、乗用自動車および他の車両用タイヤの性質および性能を測定するにあたり、重要な測定項目の一つとしてタイヤの転がり抵抗がある。タイヤの転がり抵抗は、タイヤと地面との間に作用する接線方向の力であり、転がり抵抗試験機においては試験用タイヤとドラム等の模擬走行路面との間に接線方向に作用する力Fx(押し付け荷重Fzを変化させた際の転がり抵抗Fxの変化)として計測される。
転がり抵抗Fxを測定する方法としては、ドラム式の転がり抵抗試験機による方法が代表的である。ドラム式の転がり抵抗試験機は、走行ドラムの外周に形成された模擬走行路面にタイヤを押圧状態で接触させ、このタイヤを支持するスピンドル軸に設けられた多分力検出器(ロードセル)により押し付け荷重Fzと転がり抵抗Fxとの関係を測定する構成となっている。
具体的に転がり抵抗Fxを計測する場合には、スピンドル軸に設けられた多分力検出器により転がり抵抗方向の荷重fxを計測して、「Fx=fx(L/Rd)」とすることによりFxを算出することができる(荷重法)。ここで、Rdは走行ドラムの半径、Lは走行ドラムとタイヤスピンドル軸との軸心間距離である。また、別の方法としては、走行ドラムを回転させる為の駆動トルクτを計測して、「Fx=τ/Rd」とすることで転がり抵抗Fxを計測する方法もある(トルク法)。
ところで、このような転がり抵抗試験機では、試験機を使用するにあたって多分力検出器の校正を行う必要がある。加えて、長時間に亘って多分力検出器を使用し続けると検出値に誤差が生じることがある故、例えば、一定の使用時間毎に多分力検出器の校正が必要となる。
多分力検出器を校正する方法としてはさまざまなものが開発されているが、特許文献1に示すように質量が既知の錘を用いて各方向に試験荷重を加えた上で校正を行うものがある。また、特許文献2や特許文献3に示すように、高精度な荷重検定器を介して外力を与えることにより校正を行う方法も開示されている。
特開昭59−151032号公報 特開昭61−116637号公報 特開2003−4598号公報
ところで、多分力検出器のように複数の力(並進荷重成分やモーメント成分)を同時に測定する計測器では、本来加えられた荷重の方向とは異なった方向においても荷重(偽の荷重)を計測してしまう「クロストーク」といわれる現象が発生する。
特に、転がり抵抗試験機に備えられた多分力検出器においては、押し付け荷重が転がり荷重へ影響してしまう等のクロストークが問題となる。
すなわち、タイヤの押し付け荷重Fzは、通常、転がり抵抗Fxの約100倍のオーダであり、タイヤの横力Fyは、Fxの約10倍のオーダの荷重となる。また、タイヤ中心は、構造上、多分力検出器からオフセットした位置となるため、荷重Fzによりモーメントmxも比較的大きな値として多分力検出器に作用する。それ故、クロストークの影響は無視できず、多分力検出器のx方向の出力値fx’が、x方向以外の荷重の影響を受けて正しい値を表さなくなる。また、軸荷重(押し付け荷重)を与える向きが少しでもずれていると、試験条件が変動して校正実験自体が満足に行えなくなる。例えば、5000Nの軸荷重Fzを与える場合に、その押し付け方向に0.1度でも誤差があればx方向に9Nの荷重が余計に加わってしまい、実験条件自体が所望のものからずれてしまう。当然、このようにしっかりと定まっていない実験条件では、クロストーク補正係数を精度良く校正することも困難である。
これらクロストークを調べる為に、特許文献1の技術を用い、x方向に既知の荷重を与え、その荷重がy軸、z軸方向に及ぼす影響を計測することが考えられる。しかしながら、この方法であると、多分力検出器に付与する値としてFx以外にも、Fy,FzやMx,My,Mzを与える校正実験が必要となり、手間がかかるため現実的ではない。
前述した特許文献2,3では、クロストークの影響を加味した多分力検出器の校正方法が一部開示されてはいるものの、具体的な手法が開示されるに至っておらず、実際の現場で採用できる技術とは言い難い。
本発明は、上述の問題に鑑みてなされたものであり、転がり抵抗試験機に設けられた多分力検出器のクロストーク補正係数を簡便に且つ精度良く校正することができる校正方法を提供することを目的とする。
前記目的を達成するため、本発明は次の技術的手段を講じている。
即ち、本発明の転がり抵抗試験機に備えられた多分力計の校正方法は、タイヤが装着されるスピンドル軸と、前記タイヤが押し付けられる模擬走行路面を有する走行ドラムとを有する転がり抵抗試験機に備えられた多分力検出器の校正方法であって、前記多分力検出器で発生するクロストークの影響を補正するクロストーク補正係数を用いて、多分力検出器の計測値からタイヤに作用する力を算出する処理を行うに際しては、転がり抵抗の値が既知である基準タイヤを少なくとも1本以上用いて試験を行い、前記基準タイヤを用いた試験時に前記多分力検出器で計測された力からなる「転がり試験データ」と、計測に用いた基準タイヤの転がり抵抗値とを用いて、前記クロストーク補正係数を校正することを特徴とする。
本発明者は、多分力検出器の計測値がその軸方向に十分な精度で校正されている状況で、転がり抵抗値の既知である基準タイヤ実験時の多分力検出器の計測結果と、基準タイヤの転がり抵抗値に差異が見られる場合は、それ以外の荷重が作用することによるクロストークの影響が主要因であると考えた。よって、両者の転がり抵抗とが等しくなるものとしてクロストーク補正係数を校正すれば、簡便に且つ高精度な校正が可能となることを見出して本発明を完成させたのである。
なお、上述した基準タイヤとは、JIS D4234等に規定されている基準試験機により転がり抵抗値が計測されたタイヤのことである。JIS D4234では、乗用車、トラック及びバス用として設計された空気入りタイヤにおいて、試験用新品タイヤの転がり抵抗を制御された試験室条件下で測定する方法について規定している。JIS D4234では、試験機間の比較を可能にするため、基準試験機により計測された基準タイヤを用いた整合化によって測定結果の相関を求める方法も規定している。基準タイヤは、日本国内においても販売されており、当業者は容易に入手可能である。
好ましくは、前記スピンドル軸には多分力検出器が取り付けられていて、前記多分力検出器により、走行ドラムの接線方向をx軸、スピンドル軸芯方向をy軸、タイヤに加えられる荷重方向をz軸とした際に、各軸方向に作用する力fx,fy,fz、及び各軸回りのモーメントmx,my,mzのうち、少なくともfxおよびfzを含む2以上を計測可能とされているとよい。
また好ましくは、前記多分力検出器がfx,fz,mxの計測が可能であるに際しては、前記fx,fz,mxを含み且つ少なくとも2種類の一次独立となっている「転がり試験データ」を用いて、fxに対するfz及びmxのクロストーク補正係数を校正するとよい。
fz及びmxは、多分力検出器で計測される荷重及びモーメントの中でもfxにクロストークの影響を及ぼしやすいものである。それゆえ、少なくともfx、fz、mxを検出可能な多分力検出器に対して、fxに対するfz及びmxのクロストーク補正係数の校正を行うのが良い。
好ましくは、前記多分力検出器がfx,fz,fyの計測が可能であるに際しては、前記fx,fz,fyを含み且つ少なくとも2種類の一次独立となっている「転がり試験データ」を用いて、fxに対するfz及びfyのクロストーク補正係数を校正するとよい。
多分力検出器で計測されるmxは、タイヤ半径rとfyとの積を含み、タイヤの横力fyとの相関が高い。それゆえ、fx、fy、fzの並進荷重を計測する多分力検出器に対しては、mxに替えてfyを利用し、fxに対するfz及びfyのクロストーク補正係数の校正を行っても良い。
好ましくは、前記多分力検出器がfx,fz,fy,mxの計測が可能であるに際しては、前記fx,fz,fy,mxを含み且つ少なくとも3種類の一次独立となっている「転がり試験データ」を用いて、fxに対するfz、fy及びmxのクロストーク補正係数を校正するとよい。
上述したfx,fz,fy,mxのすべての計測が可能な多分力検出器に対しては、fxに対するfz、fy及びmxのクロストーク補正係数をすべて校正することで、さらに精度の高い多分力検出器の校正が可能となる。
また、前記走行ドラムにタイヤを試験荷重で押し当てた際に得られる多分力検出器の計測値から、タイヤを試験荷重と異なる荷重で押し当てた際に得られる多分力検出器の計測値を差し引いた「差分荷重」を求め、求められた「差分荷重」を「転がり試験データ」とし、クロストーク補正係数の校正を行うとよい。
タイヤを取り付けるスピンドル軸や回転ドラムの回転軸に設けられた軸受けには、少なからず回転摩擦の影響が存在する。この回転摩擦が転がり抵抗力の計測値に上乗せされると、精度の良いfxの計測やクロストーク補正係数の校正が困難となる。そこで、試験荷重が加えられた状態から試験荷重と異なる荷重(例えばスキム荷重)が加えられた状態を差し引いた差分荷重を用いてクロストーク補正係数を校正すれば、回転摩擦の影響を排除しつつ校正を行うことができ、クロストーク補正係数を精度良く校正することが可能となるのである。
本発明の転がり抵抗試験機に備えられる多分力検出器の校正方法によれば、転がり抵抗
試験機に設けられた多分力検出器のクロストーク補正係数を簡便に且つ精度良く校正することができる。
(a)は本発明の校正方法で校正される多分力検出器が設けられた転がり抵抗試験機の平面図であり、(b)は転がり抵抗試験機の正面図である。 スピンドル軸の拡大図である。 既知質量の錘を用いてx方向に沿った荷重成分を校正する校正方法を示す図である。 z方向に沿って荷重を付与する校正方法を示す図である。 第4実施形態に係る校正方法を示すフローチャートである。
以下、本発明の校正方法で校正される多分力検出器が設けられた転がり抵抗試験機1を図面に基づき説明する。
本発明の転がり抵抗試験機1は、タイヤT(試験用タイヤ、基準タイヤ)を走行させる模擬走行路面2が外周面に備えられた円筒状の走行ドラム3と、この走行ドラム3の模擬走行路面2にタイヤTを押し付けるキャリッジ4とを備えている。このキャリッジ4は、タイヤTを回転自在に保持するスピンドル軸5を搭載するスライド台であって、走行ドラム3から水平方向に距離をあけて配備されている。
以下の説明において、図1(b)の左側を転がり抵抗試験機1を説明する際の左側、図1(b)の右側を右側とする。
走行ドラム3は、左右方向と垂直な水平方向に沿った軸回りに回転自在に取り付けられた円筒体であり、その外周面にはタイヤTが転動可能な無端の模擬走行路面2が形成されている。走行ドラム3の回転軸には走行ドラム3を回転させるモータ6が取り付けられており、走行ドラム3はモータ6で駆動可能となっている。
一方、キャリッジ4は荷重が加わった際に変形しないように剛性に優れた構造のスライド台である。このキャリッジ4には、スピンドル軸5が挿入される中空な円筒状のハウジング8が、当該軸芯が走行ドラム3の軸芯と軸平行な状態となるようにキャリッジ4の垂直壁部4aに設けられている。このハウジング8の内周面にはベアリング15を介してスピンドル軸5が回転自在に挿入されている。
キャリッジ4の下部には、キャリッジ4を左右方向に沿って水平移動するリニアガイド9が配備されている。また、キャリッジ4の左側には、キャリッジ4を水平方向に移動させると共に、スピンドル軸5に取り付けられたタイヤTを走行ドラム3に押し付け可能な
ように押圧する油圧シリンダ10が配備されている。
なお、上述したスピンドル軸5は、先端にタイヤTを保持可能な軸部材であり、円筒状のハウジング8に水平方向を向く軸回りに回転自在に挿入された状態で取り付けられている。このスピンドル軸5の回転軸心は走行ドラム3の回転軸心と上下方向で同じ高さに且つ平行となるように配備されており、キャリッジ4を水平移動させるとスピンドル軸5に取り付けられたタイヤTが走行ドラム3の模擬走行路面2に対してその法線方向から押し当てられるようになっている。このスピンドル軸5を回転自在に支持するハウジング8には多分力検出器が設けられている。
多分力検出器(図示せず)は外観が円盤状であり、中央部から径方向に放射状に伸びる複数の梁部材(起歪体)とそれに取り付けられたロードセルから構成される。多分力検出器は、その中央部にベアリング15が配設されており、スピンドル軸5を回転自在に支持する。多分力検出器の外周部は、ハウジング8の端部と連結するようになっている。
図1に示すような座標軸、すなわち、キャリッジ4の移動方向(軸荷重の付与方向)を向くz軸、スピンドル軸5の軸芯と同軸なy軸、z軸及びy軸と直交する方向であって走行ドラム3の外周接線方向を向くx軸を設定した場合に、多分力検出器は、これらの座標軸に沿った荷重(fx、fy、fz)、及びこれらの座標軸回りのモーメント(mx、my、mz)のうち、少なくともfxおよびfzを含む2以上を検出する。なお、タイヤTに作用する力を表現する際は大文字のFを用いることとする。(たとえば、Fx、Fy、Fz)
この多分力検出器で計測された荷重は制御部11に送られる。
図1(a)に示すように、制御部11は、キャリッジ4を走行ドラム3側に押し付ける油圧シリンダ10や走行ドラム3を駆動回転させるモータ6を制御するものである。
また、制御部11は、多分力検出器で計測された計測データに基づいて、真の転がり抵抗Fxなどを算出する計測部12を備えている。この計測部12においては、多分力検出器で計測されたfx’、fz’、mx’などの荷重計測値が入力され、後述の式(1)を用いて、fxが算出される。なお、式(1)には、係数a,bなどが存在するが、これらa,bは、多分力検出器におけるクロストークの影響を補正する係数である。この係数a,bを正確に知ること、言い換えるならば、正確に校正しておくことは、計測部12においてfxを正確に算出するためには不可欠なことである。
ところで、係数a,bなどを正確に校正しておいたとしても、転がり抵抗試験機1を長時間に亘って使用していると、fxの値などがずれるなどして真の転がり抵抗Fxが求められない状況が発生する。このような状況が発生する原因にはさまざまな要因が挙げられるが、その原因の一つとして係数a、bが正しい値からずれてしまっていることが考えられる。
そこで、本発明の転がり抵抗試験機1に設けられた制御部11には、クロストークの影響を補正する係数a、bを正しい値へと校正してfxを正確に算出できるようにする校正部13を設けている。
次に、制御部11内に設けられたこの校正部13で行われる信号処理、言い換えれば本発明の多分力検出器の校正方法を説明する。
本発明の多分力検出器の校正方法は、多分力検出器で発生するクロストークの影響を補正するクロストーク補正係数a,bを用いて、多分力検出器の計測値からタイヤTに作用する力を算出する処理を行うに際して、クロストーク補正係数a,bを、基準タイヤの試験において多分力検出器で計測された力からなる「転がり試験データ」と、基準タイヤの転がり抵抗値とを用いて校正することを特徴としている。校正の為に実施する基準タイヤの転がり抵抗計測試験は、JIS D4234で規定される方法で実施されるものとする。
具体的には、本発明の多分力検出器の校正方法には、多分力検出器で計測される荷重、すなわち、多分力検出器から得られる「転がり試験データ」の種類に合わせて、第1実施形態〜第4実施形態が考えられる。
[第1実施形態]
まず、第1実施形態の多分力検出器の校正方法について説明する。
第1実施形態の校正方法は、fx,fz,mxの計測が可能な多分力検出器を用いた場合に採用されるものである。
fxに対する軸荷重fzのクロストーク補正係数a、及びmxのクロストーク補正係数bの校正は、次の順序で行われる。
まず、図3に示すように、質量が既知の錘をスピンドル軸5に取り付けてx方向に荷重を加え、多分力検出器で同方向に加わる荷重を計測し、校正(キャリブレーション)を行う。このようにすると、fxに対する多分力検出器の計測値fx’の校正係数αを求めることができる。
さらに、図4に示すように、精度の高い荷重検定器14をスピンドル軸5と走行ドラム3との間に設置し、キャリッジ4を走行ドラム3方向に動かすことにより、スピンドル軸5にz方向の押し付け荷重fz(=Fzであり、ドラム荷重)を与える。
その状態で、多分力検出器から出力される荷重fz’の計測値と荷重検定器14で示される荷重fzの信号から、転がり抵抗の場合と同様に校正係数を求めるなどして真の軸荷重fzの校正を行う。
なお、図4に示される校正試験において、クロストーク補正係数aを求めることも可能であるが、押し付け荷重fzはfxに比べてかなり大きな値となる為、油圧シリンダ10に僅かな設置誤差があってもfx方向に無視できない大きさの余計な荷重が付与される。よって、図4に示すようなz方向に荷重fzを与える校正実験から、fxに対するfz’のクロストーク補正係数を求めることは困難である。
それ故、本実施形態では、クロストーク補正係数の校正に関し、以下の方法を採用する。
まず、図3のやり方で求めた校正係数α、及びクロストーク補正係数a、bを用いることで、fxは式(1)のように示される。
fx=α・fx’+a・fz’+b・mx’ (1)
なお、式(1)において、係数aは、z方向の計測値fz’に起因するクロストークの影響度合いを表す係数であり、fz’のクロストーク補正係数である。係数bは、x軸回りのモーメントの計測値mx’に起因するクロストークの影響度合いを表す係数であり、mx’のクロストーク補正係数である。
一方、fxは、基準試験機で求められた基準タイヤの転がり抵抗係数Crを基に、式(2)により算出される。式(2)のLmは、試験荷重である。
fx=Cr・Lm (2)
上述した式(1)から得られるfxと、式(2)から得られるfxとを等しいとおくことで、クロストーク補正係数a,bの具体的な数値を算出することができる。
Cr・Lm=α・fx’+a・fz’+b・mx’ (1)’
ただし、式(1)には、2つの未知な係数a、bがあるため、2つのクロストーク補正係数a、bを求めるためには、少なくとも2種類の一次独立となっている「転がり試験データ」を得る必要がある。2種類以上の一次独立となっている「転がり試験データ」が得られれば、式(1)’を基にした独立な2次連立方程式を得ることができ、変数a、bを算出可能となる。
2種類以上の一次独立な転がり抵抗試験データを得る方法であるが、一般に基準タイヤは、サイズの異なる2本のタイヤが準備されている為に、それぞれのタイヤの「転がり試験データ」を得るとよい。
また、1本の基準タイヤをスピンドル軸5に取り付けたまま、正転させた場合の試験データと、逆転させた場合の試験データとを採集してもよい。この際には基準タイヤの転がり抵抗荷重として正負反転させた値を与える。なお、1本の基準タイヤについてその回転速度条件を変えたり、押し付け荷重を変えたりして得たデータは1次独立とはならないので、本発明の「転がり試験データ」とは言えない。
また、タイヤの正転・反転を含めた転がり試験データを複数回(3回以上)採集し、得られた転がり試験データを最小二乗法を用いて処理することで、さらに精度の高いクロストーク補正係数a、bを算出することも可能である。
以上述べた第1実施形態の校正方法によれば、転がり抵抗試験機1に設けられた多分力検出器のクロストーク補正係数a,bを手間や時間をかけることなく精度良く校正することができ、ひいては、fxを精確に求めることができるようになる。
[第2実施形態]
次に、第2実施形態の多分力検出器の校正方法について、説明する。
第2実施形態の校正方法は、第1実施形態とは異なりfx,fz,fyの計測が可能な多分力検出器を用いるものであり、fxに対する、fz’のクロストーク補正係数a、及びfy’のクロストーク補正係数cの校正を行うものである。
第2実施形態のクロストーク補正係数a及びcの校正は、次の順序で行われる。
まず、図3に示す如く、第1実施形態と同様に、fxに対して転がり抵抗方向の計測値fx’が有する校正係数αを求める。
次に、mx'に替えてfy'のクロストークの影響を考慮すると、転がり抵抗方向の力fxは式(3)のように示される。なお、この式(3)中のcは、y方向の計測値fy’に起因するクロストーク補正係数である。
fx=α・fx’+a・fz’+c・fy’ (3)
一方、fxは、基準試験機で求められた基準タイヤの転がり抵抗係数Crを基に、式(2)により算出される。それゆえ、式(3)の右辺と式(2)の右辺とを等しいとおくことで、式(3)’を導出できる。
Cr・Lm=α・fx’+a・fz’+c・fy’ (3)’
この式(3)’においても、2つの未知な係数a,cがあるため、2つのクロストーク補正係数a、cを求めるためには、少なくとも2種類の一次独立となっている「転がり試験データ」を得る必要がある。2種類の一次独立となっている「転がり試験データ」が得られれば、式(3)’を基にした独立な2次連立方程式を得ることができ、変数a、cを算出可能となる。
一次独立な「転がり試験データ」は、第1実施形態と同様な手法で得ることができる。例えば、一般に基準タイヤは、サイズの異なる2本のタイヤが準備されている為に、それぞれのタイヤの「転がり試験データ」を得るとよい。1本の基準タイヤを表向きと裏向きとに分けて取り付けて試験データをそれぞれ採集してもよい。
以上述べた第2実施形態の校正方法が奏する作用効果は、第1実施形態の校正方法と略同様である故、説明は省略する。
ところで、x軸芯回りのモーメントmxは、多分力検出器の中心からタイヤTの中心までのy方向に沿った距離をLt、タイヤTの半径をRtとおくと、式(4)で示される。
mx=−Lt・Fz−Rt・Fy (4)
この式(4)から分かるように、タイヤ径Rtが変わらない場合には、mxとFyは線形の関係にあり、タイヤTの横力fyとの相関が高いことを意味する。つまり、mxに替えてfyを利用してクロストーク補正係数の校正を行っても、第1実施形態と同様に精度の高いクロストーク補正係数を求めることができる。
なお、タイヤ径Rtが大きく変化する様な場合においては、mxとFyは一次独立の関係にある為に、第3実施形態に示す様に、fxに対するmx’のクロストーク補正係数b及びfy’のクロストーク補正係数cの両方を同時に考慮する必要がある。
[第3実施形態]
次に、第3実施形態の多分力検出器の校正方法について、説明する。
第3実施形態の校正方法は、第1及び第2実施形態とは異なりfx,fz,fy,mxのすべてが計測可能な多分力検出器を用いるものであり、上述したクロストーク補正係数a、b、cのすべてについて校正を行うものである。
第3実施形態のクロストーク補正係数a,b,cの校正は、次の順序で行われる。
まず、第1実施形態及び第2実施形態と同様に、図3に示す如く、fxに対する転がり抵抗方向の計測値fx’の校正係数αを求める。
校正係数αやクロストーク補正係数a,b,cを考慮すると、本実施形態でのfxは式(5)のように示される。
fx=α・fx’+a・fz’+b・mx’+c・fy’ (5)
一方、fxは、基準試験機で求められた基準タイヤの転がり抵抗係数Crを基に、式(2)により算出される。それゆえ、式(5)の右辺と式(2)の右辺とを等しいとおくことで、式(5)’を導出できる。
Cr・Lm=α・fx’+a・fz’+b・mx’+c・fy’ (5)’
このようにして求めた式(5)’は、3つの未知な変数があるため、これらを解く(言い換えれば、校正係数から成る校正行列を求める)ためには、一次独立な3種類の「転がり試験データ」を得る必要がある。
3種類の「転がり試験データ」を得るためには、例えば、上述の2本の基準タイヤの正転・逆転の試験により4種類の「転がり試験データ」を採集し、そのうちの3種類の「転がり試験データ」を用いるとよい。
また、2本の基準タイヤの正転・逆転の試験により4種類の「転がり試験データ」を採集し、採集した転がり試験データを最小二乗法を用いて処理してさらに精度の高いクロストーク補正係数a,b,cを算出することも可能である。複数の転がり試験データが一次独立なデータ群になっているか否かは、特異値分解により評価することができる。
以上の方法により、クロストーク補正係数a,b,cがすべて校正されるため、より精
度の高いfxの計測が可能となり、ひいては、真の転がり抵抗Fxを正確に求めることができるようになる。
[第4実施形態]
次に、第4実施形態の多分力検出器の校正方法について、説明する。
前述した第1実施形態〜第3実施形態の校正方法を行うに際しては、タイヤTを取り付けるスピンドル軸5や回転ドラムの回転軸に設けられた軸受けには、少なからず回転摩擦の影響が存在することとなる。この回転摩擦が転がり抵抗の計測値に上乗せされると、精度の良いfx’の計測やクロストーク補正係数の校正が困難となる場合がある。そのような場合、第4実施形態で述べる校正方法が有効となる。
すなわち、図5に示すように、第4実施形態の校正方法は、上述した第1実施形態〜第3実施形態で「転がり試験データ」を得る際に用いるfx’、fz’、fy’及びmx’に、多分力検出器で計測された計測値を直接入力するのではなく、軸荷重(z方向の押し付け荷重)が試験荷重で得られた計測値からスキム荷重(試験荷重とは異なる荷重)で得られた計測値を差し引いた「差分荷重」を入力して、校正を行うものである。
第3実施形態のクロストーク補正係数の校正は、次の順序で行われる。
まず、第1実施形態及び第2実施形態と同様にして、真の転がり抵抗fxに対して転がり抵抗の計測値fx’が有する校正係数αを求めておく。
そして、標準荷重(例えば、5000N)でタイヤTを走行ドラム3に押し付けた状態で時計回りCW(正転方向)にタイヤTを回転させ、多分力検出器でfx1、fz1、fy1及びmx1を計測する。
次に、タイヤTを走行ドラム3に押し付ける荷重を標準荷重より小さなスキム荷重(例えば、100N)に変更し、スキム荷重でタイヤTを走行ドラム3に押し付けた状態で時計回りCWにタイヤTを回転させ、多分力検出器でfsx1、fsz1、fsy1及びmsx1を計測する。このとき、転がり抵抗自体は小さな値となる。なお、軸荷重以外の条件、タイヤ走行速度は同じものとする。
このスキム荷重と標準荷重との双方には、スピンドル軸5や走行ドラム3の軸受けに発生する回転摩擦に由来する荷重成分やトルク成分が誤差分として重畳しており、式(6)に示すように試験荷重で得られた計測値からスキム荷重で得られた計測値を差し引くことで、より精度の高いfx1’、fz1’、fy1’及びmx1’を求めることができる。
fx1’=fx1−fsx1
fz1’=fz1−fsz1 (6)
fy1’=fy1−fsy1
mx1’=mx1−msx1
上述したようにして求めたfx1’、fz1’、fy1’及びmx1’を、式(1)'、式(3)'、式(5)'のfx’、fz’、fy’及びmx’に適用することで、第1実施形態〜第3実施形態の手法により、校正係数を求めることが可能となる。
なお、図5に示すように、一次独立な複数の「転がり試験データ」を得るに際しては、まずは、タイヤTを正転方向に回転させて計測を行った後、タイヤTの回転方向を逆転させて、反時計回り(CCW)で、試験荷重とスキム荷重との2回に分けて荷重成分やトルク成分を計測し、式(7)にて、別の転がり試験データを採取するとよい。
fx2’=fx2−fsx2
fz2’=fz2−fsz2 (7)
fy2’=fy2−fsy2
mx2’=mx2−msx2
上述したようにして求めたfx2’、fz2’、fy2’及びmx2’を、式(1)'、式(3)'、式(5)'のfx’、fz’、fy’及びmx’に適用することで、第1実施形態〜第3実施形態の手法により、校正係数を求めることが可能となる。
このようにして得られた「転がり試験データ」は、スピンドル軸5や走行ドラム3の軸受けに発生する回転摩擦に由来する荷重成分やトルク成分が差し引かれたデータとなっており、このような誤差成分の少ないデータを用いることで、クロストーク補正係数をより確実に且つ精度良く校正することができる。
なお、今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。特に、今回開示された実施形態において、明示的に開示されていない事項、例えば、運転条件や操業条件、各種パラメータ、構成物の寸法、重量、体積などは、当業者が通常実施する範囲を逸脱するものではなく、通常の当業者であれば、容易に想定することが可能な値を採用している。
例えば、上記した実施形態以外のやり方として、fxに対するfz’のクロストークの影響、言い換えればクロストーク補正係数aのみを校正することもできる。
1 転がり抵抗試験機
2 模擬走行路面
3 走行ドラム
4 キャリッジ
4a 垂直壁部
5 スピンドル軸
6 モータ
8 ハウジング
9 リニアガイド
10 油圧シリンダ
11 制御部
12 計測部
13 校正部
14 荷重検定器
15 ベアリング
T タイヤ

Claims (6)

  1. タイヤが装着されるスピンドル軸と、前記タイヤが押し付けられる模擬走行路面を有する走行ドラムとを有する転がり抵抗試験機に備えられた多分力検出器の校正方法であって、
    前記多分力検出器で発生するクロストークの影響を補正するクロストーク補正係数を用いて、多分力検出器の計測値からタイヤに作用する力を算出する処理を行うに際しては、
    転がり抵抗の値が既知である基準タイヤを少なくとも1本以上用いて試験を行い、
    前記基準タイヤを用いた試験時に前記多分力検出器で計測された力からなる「転がり試験データ」と、計測に用いた基準タイヤの転がり抵抗値とを用いて、前記クロストーク補正係数を校正することを特徴とする転がり抵抗試験機に備えられた多分力検出器の校正方法。
  2. 前記スピンドル軸には多分力検出器が取り付けられていて、
    前記多分力検出器により、走行ドラムの接線方向をx軸、スピンドル軸芯方向をy軸、タイヤに加えられる荷重方向をz軸とした際に、各軸方向に作用する力fx,fy,fz、及び各軸回りのモーメントmx,my,mzのうち、少なくともfxおよびfzを含む2以上を計測可能とされていることを特徴とする請求項1に記載の転がり抵抗試験機に備えられた多分力検出器の校正方法。
  3. 前記多分力検出器がfx,fz,mxの計測が可能であるに際しては、
    前記fx,fz,mxを含み且つ少なくとも2種類の一次独立となっている「転がり試験データ」を用いて、fxに対するfz及びmxのクロストーク補正係数を校正することを特徴とする請求項2に記載された転がり抵抗試験機に備えられた多分力検出器の校正方法。
  4. 前記多分力検出器がfx,fz,fyの計測が可能であるに際しては、
    前記fx,fz,fyを含み且つ少なくとも2種類の一次独立となっている「転がり試験データ」を用いて、fxに対するfz及びfyのクロストーク補正係数を校正することを特徴とする請求項2に記載された転がり抵抗試験機に備えられた多分力検出器の校正方法。
  5. 前記多分力検出器がfx,fz,fy,mxの計測が可能であるに際しては、
    前記fx,fz,fy,mxを含み且つ少なくとも3種類の一次独立となっている「転がり試験データ」を用いて、fxに対するfz、fy及びmxのクロストーク補正係数を校正することを特徴とする請求項2に記載された転がり抵抗試験機に備えられた多分力検出器の校正方法。
  6. 前記走行ドラムにタイヤを試験荷重で押し当てた際に得られる多分力検出器の計測値から、タイヤを試験荷重と異なる荷重で押し当てた際に得られる多分力検出器の計測値を差し引いた「差分荷重」を求め、
    求められた「差分荷重」を「転がり試験データ」とし、クロストーク補正係数の校正を行うことを特徴とする請求項2〜5のいずれかに記載の転がり抵抗試験機に備えられた多分力検出器の校正方法。
JP2012138368A 2012-06-20 2012-06-20 転がり抵抗試験機に備えられた多分力検出器の校正方法 Expired - Fee Related JP5843706B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012138368A JP5843706B2 (ja) 2012-06-20 2012-06-20 転がり抵抗試験機に備えられた多分力検出器の校正方法
PCT/JP2013/066206 WO2013191055A1 (ja) 2012-06-20 2013-06-12 転がり抵抗試験機に備えられた多分力検出器の校正方法
KR1020147035477A KR101622869B1 (ko) 2012-06-20 2013-06-12 구름 저항 시험기에 구비된 다분력 검출기의 교정 방법
US14/397,246 US9791344B2 (en) 2012-06-20 2013-06-12 Calibration method for multi-component force detector provided in rolling resistance testing machine
CN201380032229.7A CN104412086B (zh) 2012-06-20 2013-06-12 滚动阻力试验机所具备的多分力检测器的校正方法
TW102121949A TWI513965B (zh) 2012-06-20 2013-06-20 Rolling resistance testing machine with multi - component force detector calibration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012138368A JP5843706B2 (ja) 2012-06-20 2012-06-20 転がり抵抗試験機に備えられた多分力検出器の校正方法

Publications (2)

Publication Number Publication Date
JP2014002079A true JP2014002079A (ja) 2014-01-09
JP5843706B2 JP5843706B2 (ja) 2016-01-13

Family

ID=49768655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012138368A Expired - Fee Related JP5843706B2 (ja) 2012-06-20 2012-06-20 転がり抵抗試験機に備えられた多分力検出器の校正方法

Country Status (6)

Country Link
US (1) US9791344B2 (ja)
JP (1) JP5843706B2 (ja)
KR (1) KR101622869B1 (ja)
CN (1) CN104412086B (ja)
TW (1) TWI513965B (ja)
WO (1) WO2013191055A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017015643A (ja) * 2015-07-06 2017-01-19 住友ゴム工業株式会社 タイヤ性能値の推定方法
JP6170647B1 (ja) * 2016-05-20 2017-07-26 株式会社Ihi タイヤ試験装置
WO2017199467A1 (ja) * 2016-05-20 2017-11-23 株式会社Ihi タイヤ試験装置
CN110057495A (zh) * 2019-05-24 2019-07-26 广州市斯巴拓电子科技有限公司 一种多分力传感器标定机
JP2021067477A (ja) * 2019-10-18 2021-04-30 住友ゴム工業株式会社 検定治具及びその製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5860485B2 (ja) * 2014-01-24 2016-02-16 住友ゴム工業株式会社 タイヤの転がり抵抗試験方法、及び試験装置
CN104236792B (zh) * 2014-08-20 2016-06-01 上海采埃孚转向系统有限公司 一种用于转向系统的传感器总成动态标定系统
JP6647994B2 (ja) * 2016-09-20 2020-02-14 株式会社神戸製鋼所 タイヤの転がり抵抗評価装置
JP6602734B2 (ja) * 2016-09-20 2019-11-06 株式会社神戸製鋼所 タイヤの転がり抵抗評価装置
US11175200B2 (en) * 2017-02-22 2021-11-16 Mitsubishi Heavy Industries Machinery Systems, Ltd. Rotating body load measuring device
DE202017101176U1 (de) * 2017-03-02 2017-03-20 Cartesy Gmbh Vorrichtung zum Prüfen und/oder Kalibrieren eines Prüfstands
CN108195701B (zh) * 2017-12-26 2020-04-24 重庆程顺汽车配件制造有限公司 轮胎磨损测试装置及其制造方法
CN110686820B (zh) * 2019-10-25 2021-04-13 重庆凯瑞汽车试验设备开发有限公司 用于车轮定位的力和力矩的测量计算方法
CN112504554B (zh) * 2020-10-19 2022-11-04 中国空气动力研究与发展中心高速空气动力研究所 一种六分量高精度微量滚转力矩测量装置的校准方法
CN117600911B (zh) * 2024-01-24 2024-09-03 哈尔滨理工大学 一种车削测力仪标定设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4197736A (en) * 1978-10-18 1980-04-15 Gse, Inc. Bi-axial load cell
JPH02115739A (ja) * 1988-10-26 1990-04-27 Yokohama Rubber Co Ltd:The タイヤ転がり抵抗測定値の補正方法
JP2000304632A (ja) * 1999-04-20 2000-11-02 Ohbayashi Corp ロードセル用本体及びそれを用いたロードセル
JP2003004598A (ja) * 2001-04-20 2003-01-08 Nissho Denki Kk タイヤのころがり抵抗測定方法および装置
WO2010101159A1 (ja) * 2009-03-03 2010-09-10 株式会社神戸製鋼所 タイヤの転がり抵抗測定装置
JP2012078286A (ja) * 2010-10-05 2012-04-19 Kobe Steel Ltd タイヤ試験機に用いられる多分力計測スピンドルユニットの校正方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2582886A (en) * 1948-03-13 1952-01-15 Baldwin Lima Hamilton Corp Differential load weighing device
US4344324A (en) * 1979-02-23 1982-08-17 Mts Systems Corporation Flat belt tire tester
JPS59151032A (ja) 1983-02-18 1984-08-29 Hitachi Ltd 力センサの評価、校正用治具
JPS61116637A (ja) 1984-11-09 1986-06-04 Sumitomo Rubber Ind Ltd タイヤの転がり抵抗試験機
EP0498648B1 (en) * 1991-02-06 1996-02-28 Honda Giken Kogyo Kabushiki Kaisha Method of controlling a motor vehicle vibrating system
US6575024B2 (en) * 2000-11-28 2003-06-10 Michelin Recherche Et Technique S.A. Apparatus and method for testing tires and calibrating flat belt tire testing machines
DE10206259B4 (de) 2002-02-15 2005-02-10 Seichter Gmbh Verfahren zur Korrektur von Lateralkraftmesswerten
US7591167B2 (en) * 2006-11-20 2009-09-22 Potts Gerald R Methods and systems for measurement of tire rolling resistance
JP4310365B1 (ja) * 2008-02-26 2009-08-05 株式会社神戸製鋼所 タイヤ試験機及びタイヤの試験方法
JP5001345B2 (ja) * 2009-12-16 2012-08-15 株式会社小野測器 タイヤ試験装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4197736A (en) * 1978-10-18 1980-04-15 Gse, Inc. Bi-axial load cell
JPH02115739A (ja) * 1988-10-26 1990-04-27 Yokohama Rubber Co Ltd:The タイヤ転がり抵抗測定値の補正方法
JP2000304632A (ja) * 1999-04-20 2000-11-02 Ohbayashi Corp ロードセル用本体及びそれを用いたロードセル
JP2003004598A (ja) * 2001-04-20 2003-01-08 Nissho Denki Kk タイヤのころがり抵抗測定方法および装置
WO2010101159A1 (ja) * 2009-03-03 2010-09-10 株式会社神戸製鋼所 タイヤの転がり抵抗測定装置
JP2012078286A (ja) * 2010-10-05 2012-04-19 Kobe Steel Ltd タイヤ試験機に用いられる多分力計測スピンドルユニットの校正方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017015643A (ja) * 2015-07-06 2017-01-19 住友ゴム工業株式会社 タイヤ性能値の推定方法
JP6170647B1 (ja) * 2016-05-20 2017-07-26 株式会社Ihi タイヤ試験装置
WO2017199467A1 (ja) * 2016-05-20 2017-11-23 株式会社Ihi タイヤ試験装置
US10197475B2 (en) 2016-05-20 2019-02-05 Ihi Corporation Sub-frame mechanism for a tire testing machine
CN110057495A (zh) * 2019-05-24 2019-07-26 广州市斯巴拓电子科技有限公司 一种多分力传感器标定机
JP2021067477A (ja) * 2019-10-18 2021-04-30 住友ゴム工業株式会社 検定治具及びその製造方法
JP7400332B2 (ja) 2019-10-18 2023-12-19 住友ゴム工業株式会社 検定治具及びその製造方法

Also Published As

Publication number Publication date
TWI513965B (zh) 2015-12-21
JP5843706B2 (ja) 2016-01-13
CN104412086A (zh) 2015-03-11
WO2013191055A1 (ja) 2013-12-27
KR101622869B1 (ko) 2016-05-19
TW201418684A (zh) 2014-05-16
US20150143868A1 (en) 2015-05-28
KR20150021942A (ko) 2015-03-03
CN104412086B (zh) 2016-03-30
US9791344B2 (en) 2017-10-17

Similar Documents

Publication Publication Date Title
JP5843706B2 (ja) 転がり抵抗試験機に備えられた多分力検出器の校正方法
JP5225367B2 (ja) 転がり抵抗試験機に備えられた多分力検出器の校正方法
JP5225370B2 (ja) 転がり抵抗試験機に備えられた多分力検出器の校正方法
JP4310365B1 (ja) タイヤ試験機及びタイヤの試験方法
JP4817213B2 (ja) タイヤのころがり抵抗測定方法および装置
US6609074B2 (en) Tire uniformity prediction using balance and low speed uniformity data
EP2642270B1 (en) Multi-component force measurement spindle unit of tire testing machine
KR20120035872A (ko) 타이어 시험기에 사용되는 다분력 계측 스핀들 유닛의 교정 방법
JP2010139470A (ja) タイヤ転がり抵抗試験機及びタイヤ転がり抵抗試験方法
JP6195768B2 (ja) センサ付車輪用軸受のキャリブレーション方法
CN114556073A (zh) 用于检验车辆轮胎的检验台和方法
JP2013195390A (ja) タイヤ試験機の多分力計測スピンドルユニット

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151117

R150 Certificate of patent or registration of utility model

Ref document number: 5843706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees