JP2013512657A - 連続的に可変なスイッチドキャパシタdc−dc電圧コンバータ - Google Patents

連続的に可変なスイッチドキャパシタdc−dc電圧コンバータ Download PDF

Info

Publication number
JP2013512657A
JP2013512657A JP2012542127A JP2012542127A JP2013512657A JP 2013512657 A JP2013512657 A JP 2013512657A JP 2012542127 A JP2012542127 A JP 2012542127A JP 2012542127 A JP2012542127 A JP 2012542127A JP 2013512657 A JP2013512657 A JP 2013512657A
Authority
JP
Japan
Prior art keywords
voltage
signal
output signal
output
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012542127A
Other languages
English (en)
Other versions
JP5905393B2 (ja
JP2013512657A5 (ja
Inventor
リプリー,デイビッド・エス
リウ,ホイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Skyworks Solutions Inc
Original Assignee
Skyworks Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Skyworks Solutions Inc filed Critical Skyworks Solutions Inc
Publication of JP2013512657A publication Critical patent/JP2013512657A/ja
Publication of JP2013512657A5 publication Critical patent/JP2013512657A5/ja
Application granted granted Critical
Publication of JP5905393B2 publication Critical patent/JP5905393B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Electronic Switches (AREA)
  • Analogue/Digital Conversion (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

電圧コンバータは、2以上のモードの間で切換わり、それらのレベルに対応する個々のレベルの間の中間レベルであり得る参照電圧に一致する出力電圧を生成する。出力電圧は、参照電圧と比較されて、そのモードを調整するべきかどうかを決定する。

Description

背景
あるDC電圧レベルを別のレベルに変換する一種の装置は、DC−DCコンバータとしてよく知られている。DC−DCコンバータは、携帯電話、ラップトップコンピュータなど、装置のさまざまなサブシステムが複数の別々の電圧レベルを要求する、電池で動作する装置に一般的に含まれている。多数の異なるモードで動作する、携帯電話のようなある種の装置において、動作モードに対して最も効率的なレベルの電源電圧を、パワーアンプのような特定の素子に供給することが特に望ましいが、そうでなければ電力を浪費して電池をより速く消耗させる。そのような装置において、より多くの数の異なる電圧レベルを生成することが可能なDC−DCコンバータを用いることが望ましい。
スイッチドモードDC−DCコンバータおよびパルス幅変調(PWM)を採用するDC−DCコンバータを含む、複数の種類のDC−DCコンバータが知られている。スイッチドモードDC−DCコンバータは、入力エネルギを一時的にインダクタまたは容量に蓄えて、次に、そのエネルギを異なる電圧で出力することによって、あるDC電圧レベルを別のレベルに変換する。スイッチング回路は、したがって、連続的に2つの状態またはフェーズ、すなわちインダクタまたは容量の回路網が充電する第1の状態と、その回路網が放電する第2の状態との間で連続的に切換わる。スイッチング回路は、バッテリ電圧の固定された割合、たとえば1/3、1/2、2/3などの出力電圧を生成するように構成可能であり、この場合、どの割合が用いられるかを制御するために、モード選択信号がスイッチング回路への入力として与えられる。モード選択信号を用いてその回路網のスイッチを操作することによって、インダクタまたは容量の回路網の異なる構成を選択することができる。
スイッチドモードDC−DCコンバータが生成可能な、異なる出力電圧の数は、インダクタまたは容量の数と関連する。携帯電話のような持ち運び可能な携帯装置において、サイズおよび重量を最小化することが望まれる。多数のインダクタまたは容量を有するDC−DCコンバータは携帯電話のサイズおよび重量の最小化には貢献しない。PWMベースのDC−DCコンバータは、著しく多くのインダクタ、容量または他の素子を用いることなく、スイッチドモードDC−DCコンバータに比べて多数の別々の電圧を生成することができる。しかしながら、PWMベースのDC−DCコンバータは、携帯電話あるいは他の周波数に敏感な装置の動作に逆に影響を与え得る、広いスペクトルのスプリアス出力信号を生成し得る。大きなキャパシタンスまたはインダクタンスを有するフィルタをPWMベースのDC−DCコンバータに含めて、これらのスプリアス信号を最小化することが可能であるが、上記の理由と同じ理由のため、大きなフィルタのキャパシタまたはインダクタは望ましくない。
概要
発明の実施形態は、各々が異なる複数の電圧レベルの1つに対応する2以上の選択可能なモードを切換えることによって、多数の別々の電圧レベルのうちのいずれかだけではなく、それらの別々の電圧レベルの間の中間の値の出力信号を生成可能なスイッチング電圧コンバータに関する。例示的な実施の形態において、電圧コンバータは、複数のモード構成を有するスイッチマトリクスと、比較器ロジック回路と、制御ロジック回路とを含み得る。各々のモード構成は、複数の出力信号電圧のうちの1つに対応する。モード構成は、モード制御信号に応答して選択可能である。比較器ロジック回路は、出力信号を参照信号と比較して方向比較信号を生成するように実現される。制御ロジック回路は、方向比較信号に応答してモード制御信号を生成するように実現される。例示的な実施の形態において、電圧変換方法は、複数のモード構成を有するスイッチマトリクスを用いて、モード制御信号に応答してモード構成を選択するステップを含み得る。各々のモード構成は、複数の出力信号電圧のうちの1つに対応する。出力信号は参照信号と比較されて方向比較信号を生成する。方向比較信号は、モード制御信号を生成するために用いられる。
例示的な実施の形態において、電圧コンバータは、2以上の容量と、スイッチマトリクスと、比較器ロジック回路と、制御ロジック回路とを有するスイッチドキャパシタ電圧コンバータである。参照信号は比較器ロジック回路に入力され、比較器ロジック回路は、また出力信号をフィードバックとして受ける。各々のモード構成は、電位と出力ノードとの間に互いに接続された複数の容量を有する容量回路によって定義される。すなわち、各々のモードにおいてスイッチマトリクスは複数の容量を異なる構成で相互接続する。各々のモード構成は、容量回路が充電される第1のフェーズ構成と、容量回路が放電される第2のフェーズ構成とを有する。スイッチマトリクスは、クロック信号に応答して、選択されたモード構成のうちのそれら2つのフェーズ構成の間で切換わる。この切換わりの結果として、電圧コンバータは、選択されたモード構成に対応する電圧を有する出力信号を生成する。それらのモードのうちの2つの間で交互に切換わることにより、電圧コンバータは、一例において、参照信号電圧がそれらのモードに対応する異なる電圧レベルのうちの2つの間に存在する参照信号電圧に対応するレベルを有する出力電圧を生成することができる。
例示的な実施の形態において、比較器ロジック回路は、出力信号を参照信号と比較してその出力信号と参照信号とのうちのいずれが大きいかを示す方向比較信号を生成する。比較信号は、したがって、制御ロジック回路が、出力信号電圧を増大または低下させて参照信号と一致させることを示す。
例示的な実施の形態において、制御ロジック回路は、参照信号が出力信号よりも大きいことを示す方向比較信号に応答して、モード制御信号を生成して、参照信号よりも大きい出力信号電圧に対応するモード構成を選択し、出力信号が参照信号よりも大きいことを示す方向比較信号に応答して、モード制御信号を生成して、参照信号よりも小さい出力信号電圧に対応するモード構成を選択する。すなわち、制御ロジック回路は、方向比較信号を含む、比較器ロジック回路からの1以上の信号を用いて、モードを選択する。方向比較信号が、参照信号が出力信号よりも大きいことを示す場合、制御ロジック回路は、そのモードを参照信号よりも大きい出力信号電圧に対応するものへと切換え得る。この方式でモードを変更することは、出力信号電圧を増大させる。しかしながら、方向比較信号が、出力信号が参照信号よりも大きいことを示す場合には、制御ロジック回路は、そのモードを、参照信号未満の出力信号電圧に対応するものへと変更し得る。この方式におけるモードの変更は、出力信号電圧を減少させる。
例示的な実施の形態において、スイッチマトリクスは3つのモード構成を有する。3つのモード構成は、基準参照電圧の1/3の出力信号電圧に対応する第1のモード構成と、基準参照電圧の1/2の出力信号電圧に対応する第2のモード構成と、基準参照電圧の2/3の出力信号電圧に対応する第3のモード構成とを含み得る。
例示的な実施の形態において、比較器ロジック回路は、複数の比較器と、電圧レベル生成回路とを含み、電圧レベル生成回路は複数の参照電圧レベルを生成して、選択された参照電圧レベルを各々の比較器の第1の入力に与え、各々の電圧レベルは、複数の出力信号電圧のうちの1つに対応する。各々の比較器の第2の入力は、出力信号に結合されて、各々の比較器は対応する比較信号を与える。
例示的な実施の形態において、比較器ロジック回路は3つの比較器を含む。第1の比較器は、出力信号を基準参照電圧の第1の割合を有する第1の参照電圧信号と比較して第1の比較信号を生成し、第1の比較信号は、出力信号電圧が基準参照電圧の第1の割合を上回るかどうかを示す。第2の比較器は、出力信号を、基準参照電圧の第1の割合よりも大きい、基準参照電圧の第2の割合を有する第2の参照電圧信号と比較して第2の比較信号を生成する。第2の比較信号は、出力信号電圧が基準参照電圧の第2の割合を上回るかどうかを示す。第3の比較器は、出力信号を、基準参照電圧の第2の割合よりも大きい、基準参照電圧の第3の割合を有する第3の参照電圧と比較して第3の比較信号を生成する。第3の比較信号は、出力信号電圧が基準参照電圧の第3の割合を上回るかどうかを示す。
例示的な実施の形態において、3つのモード構成は、基準参照電圧の第1の割合の出力信号電圧に対応する第1のモード構成と、基準参照電圧の第2の割合の出力信号電圧に対応する第2のモード構成と、基準参照電圧の第3の割合の出力信号電圧に対応する第3のモード構成とを含む。
例示的な実施の形態において、制御ロジック回路は、第1、第2および第3の比較信号の組合せに応答する組合せのロジック回路を備える。
例示的な実施の形態において、組合せのロジック回路は、第1の比較信号が、出力信号電圧が基本参照電圧の第1の割合を上回らないことを示し、かつ、方向比較信号が、参照信号が出力信号よりも大きいことを示す場合に、モード制御信号を生成して、基本参照電圧の第1の割合の出力信号電圧に対応するモード構成を選択する。
例示的な実施の形態において、組合せのロジック回路は、第1の比較信号が、出力信号電圧が基本参照電圧の第1の割合を上回ることを示し、第2の比較信号が、出力電圧が基本参照電圧の第2の割合を上回らないことを示し、方向比較信号が、参照信号が出力信号よりも小さいことを示す場合に、モード制御信号を生成して、基本参照電圧の第1の割合の出力信号電圧に対応するモード構成を選択する。
例示的な実施の形態において、組合せのロジック回路は、第1の比較信号が、出力信号電圧が基本参照電圧の第1の割合を上回ることを示し、第2の比較信号が、出力電圧が基本参照電圧の第2の割合を上回らないことを示し、方向比較信号が、参照信号が出力信号よりも大きいことを示す場合に、モード制御信号を生成して、基本参照電圧の第2の割合の出力信号電圧に対応するモード構成を選択する。
例示的な実施の形態において、組合せのロジック回路は、第2の比較信号が、出力電圧が基本参照電圧の第2の割合を上回ることを示し、第3の比較信号が、出力電圧が基本参照電圧の第3の割合を上回らないことを示し、方向比較信号が、参照信号が出力信号よりも小さいことを示す場合に、モード制御信号を生成して、基本参照電圧の第2の割合の出力信号電圧に対応するモード構成を選択する。
例示的な実施の形態において、組合せのロジック回路は、第2の比較信号が、出力電圧が基本参照電圧の第2の割合を上回ることを示し、第3の比較信号が、出力電圧が基本参照電圧の第3の割合を上回らないことを示し、方向比較信号が、参照信号が出力信号よりも大きいことを示す場合に、モード制御信号を生成して、基本参照電圧の第3の割合の出力信号電圧に対応するモード構成を選択する。
例示的な実施の形態において、組合せのロジック回路は、第3の比較信号が、出力電圧が基本参照電圧の第3の割合を上回ることを示し、方向比較信号が、参照信号が出力信号よりも小さいことを示す場合に、モード制御信号を生成して、基本参照電圧の第3の割合の出力信号電圧に対応するモード構成を選択する。
発明の他のシステム、方法、特徴および利点は、以下の図および詳細な説明を詳しく調べることによって、当業者にとって明らかであるかまたは明らかになるであろう。
発明は、以下の図面を参照してよりよく理解可能である。図面中の要素は、拡大縮小、または強調される必要はなく、むしろ発明の原理を明確に示すために配置される。さらに、図面において、同様の参照符号は、異なる図面全体を通じて対応する部分を示す。
本発明の例示的な実施の形態に従う電圧コンバータのブロック図である。 第1のモード構成の第1のフェーズ構成における、図1に示されたスイッチマトリクスを示す回路図である。 第1のモード構成の第2のフェーズ構成における、スイッチマトリクスを示す、図2Aと同様の回路図である。 第2のモード構成の第1のフェーズ構成における、図1に示されたスイッチマトリクスを示す回路図である。 第2のモード構成の第2のフェーズ構成における、スイッチマトリクスを示す、図2Aと同様の回路図である。 図1に示したスイッチマトリクスを示す回路図であり、第2のモード構成の変形例の第1のフェーズ構成におけるスイッチマトリクスを示す回路図である。 図3Bと同様の回路図であり、第2のモード構成の変形例の第2のフェーズ構成におけるスイッチマトリクスを示す回路図である。 図1に示したスイッチマトリクスを示す回路図であり、第3のモード構成の第1のフェーズ構成におけるスイッチマトリクスを示す回路図である。 図2Aと同様の回路図であり、第3のモード構成の第2のフェーズ構成におけるスイッチマトリクスを示す回路図である。 図1に示した比較器回路の回路図である。 図1に示したモード選択論理の組合せ論理を示すテーブルである。 図1に示したスイッチ制御ロジック回路を示す回路図である。 図1の電圧コンバータの動作の例示的な実体を示すタイミング図である。 図1の電圧コンバータの例示的な動作方法を示すフロー図である。
詳細な説明
図1に示されるように、発明の例証的な、または例示的な実施の形態において、電圧コンバータ10は、2つの容量12および14と、スイッチマトリクス16と、比較器回路18と、制御ロジック回路20とを含む。参照電圧信号(V_REF)が制御入力として電圧コンバータ10に与えられる。以下に説明する方式において、電圧コンバータ10は、参照電圧信号に対応する、または追随する出力電圧信号(V_OUT)を生成する。電圧コンバータ10は、さらに、クロック信号発生回路22と、イネーブル(ENABLE)信号によって活性化され得る、関連する発振器24とを含む。イネーブル信号は、以下に説明する動作の間有効に保たれる。
スイッチマトリクス16は、容量12および14が異なる構成で相互接続される、以下に説明する複数のモード構成のうちの1つを担うことができる。各々のモード構成において、スイッチマトリクス16は、相互接続された容量12および14によって定義される容量回路が充電する第1のフェーズ構成、または、相互接続された容量12および14によって定義される容量回路が放電する第2のフェーズ構成を担うことができる。スイッチマトリクス16は、出力ノード26において容量回路の出力を与える。動作において、スイッチマトリクス16は、クロック信号に応答して第1のフェーズ構成および第2のフェーズ構成の間で交互に切換わる。容量28のようなフィルタ回路は、出力ノード26に接続されて出力電圧信号にフィルタをかけることができる。
以下にさらに説明するように、比較器回路18は、出力電圧信号を参照電圧信号と比較して、応じて、複数の比較信号30を生成する。制御ロジック回路20は、モード選択ロジック回路32と、スイッチ制御ロジック回路34とを含む。モード選択ロジック回路32は、比較信号30を受けて、応じて、モード選択信号36を生成する。スイッチ制御ロジック回路34は、モード選択信号36を受けて、応じて、スイッチ制御信号38を生成する。
図2A,2B,3A,3B,4A,4B,5A,5Bに示されるように、スイッチマトリクス16は、電位(すなわちバッテリ電圧または接地)および出力ノード26との間の複数の異なる構成において容量12および14を相互接続し得る。スイッチマトリクス16は、9つのスイッチ40,42,44,46,48,50,52,54,56を含み、それらは上記で参照されるスイッチ制御信号38(S1−S9)によって制御される。スイッチ40−56は、図2−5において概略的に、制御可能な、単極単投(SPST)スイッチの形態で示されているが、それらは、電界効果トランジスタ(FET)のような任意の適切なスイッチング素子を含み得る。たとえば、スイッチ40および50の各々は、P型FET(PFET)を含み、スイッチ46および56の各々は、N型FET(NFET)を含み、スイッチ42,44,48,52,54の各々は、PFETおよびNFETの並列の組合せを含み得る。各々のFETの制御端子(たとえばゲート)は、スイッチ制御信号38(S1−S9)のうちの1つを受けることができる。
例示的な実施の形態において、スイッチマトリクス16は示されるように配置され得る9つのスイッチを含んでいるが、他の実施の形態において、スイッチマトリクスは、他の任意の適切な方式で配置された他の複数のスイッチを含み得る。同様に、例示的な実施の形態は、2つの容量12および14を含み、スイッチマトリクス16は、以下に説明するように、それらを相互接続可能であるが、他の実施の形態は、2よりも多い容量を含み、スイッチマトリクスは、他の適切な構成においてそれらを相互接続し得る。
図2A,2Bにおいて示されるように、第1の構成において、スイッチマトリクス16は、図2Aに示される第1のフェーズ構成、または図2Bに示される第2のフェーズ構成において容量12および14を相互接続し得る。この第1の構成は、本明細書において、「1/3モード」と呼ばれる。その理由は、このモードにおける動作が、出力ノード26における出力電圧信号(V_OUT)が、公称的にまたは平均的に、バッテリ電圧(V_BATT)の約1/3となる電圧レベルを有することを目的とするためである。
図2Aに示されるように、1/3モードの第1のフェーズ構成において、スイッチ40,48,44,50,54は開いており、スイッチ42,46,52,56は閉じている。スイッチ42および46の閉状態の組合せは、容量12を、接地電位(0ボルト)と出力ノード26との間に結合させる。スイッチ52および56の閉状態の組合せは、同様に、容量14を、接地電位と出力ノード26との間に結合させる(すなわち容量12に並列接続させる)。すなわち、1/3モードの第1のフェーズ構成において、互いに並列な容量12および14によって定義される容量回路は、出力ノード26に対して放電する。
図2Bに示されるように、1/3モードの第2のフェーズ構成において、スイッチ42,44,46,50,52,56は開いており、スイッチ40,48,54は閉じている。スイッチ40,48,54の閉状態の組合せは、容量12および14を、バッテリによって与えられる基準参照電圧(V_BATT)のような正の電位と、出力ノード26との間に直列に接続させる。すなわち、1/3モードの第2のフェーズ構成において、互いに直列な容量12および14によって定義される容量回路は、出力ノード26に対して充電する。
図3Aおよび図3Bに示されるように、第2の構成において、スイッチマトリクス16は、図3Aに示される第1のフェーズ構成、または図3Bに示される第2のフェーズ構成で容量12および14を相互接続し得る。この第2の構成は、本明細書において「1/2Aモード」と呼ばれる。その理由は、このモードにおける動作が、出力ノード26における出力電圧信号(V_OUT)が、公称的にまたは平均的に、バッテリ電圧(V_BATT)の約1/2となる電圧レベルを有することを目的とするためである。また、以下に説明するように、1/2Aモードの変形例があり、それは1/2Bモードと呼ばれる。
図3Aに示されるように、1/2Aモードの第1のフェーズ構成において、スイッチ40,44,48,50,54は開いており、スイッチ42,46,52,56は閉じている。スイッチ42および46の閉状態の組合せは、容量12を、接地と出力ノード26との間に結合させる。スイッチ52および56の閉状態の組合せは、同様に、容量14を接地と出力ノード26との間に結合させる(すなわち容量12に並列接続させる)。すなわち、1/2Aモードの第1のフェーズ構成において、並列な容量12および14によって定義される容量回路は、出力ノード26に対して放電する。
図3Bに示されるように、1/2Aモードの第2のフェーズ構成において、スイッチ42,46,48,52,56は開いており、スイッチ40,44,50,54は閉じている。スイッチ40および44の閉状態の組合せは、容量12をバッテリ電圧と出力ノード26との間に結合させる。スイッチ50および54の閉状態の組合せは、同様に、容量14をバッテリ電圧と出力ノード26との間に結合させる(すなわち容量12に並列接続させる)。すなわち、1/2Aモードの第2のフェーズ構成において、互いに並列な容量12および14によって定義される容量回路は、出力ノード26に対して充電する。
第2のモード構成の変形である1/2Bモードが図4A,図4Bに示される。第2のモード構成は、1/2Aモードおよび1/2Bモードの両方またはサブモードを含み、以下で説明するような、あるモードから別のモードへの切換わりの間に状態を変化させるスイッチの数を最小化する。例示的な実施の形態において、これらのサブモードが含まれているが、他の実施の形態ではサブモードは含まれる必要はない。
図4Aに示されるように、1/2Bモードの第1のフェーズ構成において、スイッチ42,46,48,52,56は開いており、スイッチ40,44,50,54は閉じている。スイッチ40および44の閉状態の組合せは、容量12をバッテリ電圧と出力ノード26との間に結合させる。スイッチ50および54の閉状態の組合せは、同様に、容量14をバッテリ電圧と出力ノード26との間に結合させる(すなわち容量12に並列接続させる)。すなわち、1/2Bモードの第2のフェーズ構成において、並列な容量12および14によって定義される容量回路は、出力ノード26に対して充電する。
図4Bに示されるように、1/2Bモードの第2のフェーズ構成において、スイッチ40,44,48,50,54は開いており、スイッチ42,46,52,56は閉じている。スイッチ42および46の閉状態の組合せは、容量12を接地と出力ノード26との間に結合させる。スイッチ52および56の閉状態の組合せは、同様に、容量14を、接地と出力ノード26との間に結合させる(すなわち容量12に並列接続させる)。すなわち、1/2Bモードの第2のフェーズ構成において、互いに並列な容量12および14によって定義される容量回路は、出力ノード26に対して放電する。
図5Aおよび図5Bに示されるように、第3の構成において、スイッチマトリクス16は、図3Aに示される第1のフェーズ構成、または図3Bに示される第2のフェーズ構成において容量12および14を相互接続し得る。この第3の構成は、本明細書において「2/3モード」と呼ばれる。その理由は、このモードにおける動作が、出力ノード26における出力電圧信号を、公称的に、バッテリ電圧の約2/3の電圧レベルにすることを目的とするためである。
図5Aに示されるように、2/3モードの第1のフェーズ構成において、スイッチ42,46,48,52,56が開いており、スイッチ40,44,50,54が閉じている。スイッチ40および44の閉状態の組合せは、容量12を、バッテリ電圧と出力ノード26との間に結合させる。スイッチ50および54の閉状態の組合せは、同様に、容量14を、バッテリ電圧と出力ノード26との間に結合させる(すなわち容量12に並列接続させる)。すなわち、2/3モードの第1のフェーズ構成において、互いに並列な容量12および14によって定義される容量回路は、出力ノード26に対して充電する。
図5Bに示されるように、2/3モードの第2のフェーズ構成において、スイッチ40,44,46,50,52,54が開いており、スイッチ42,48,56が閉じている。スイッチ42,48,56の閉状態の組合せは、容量12および14を、接地と出力ノード26との間に直列接続させる。すなわち、2/3モードの第2のフェーズ構成において、互いに直列な容量12および14によって定義される容量回路は、出力ノード26に対して放電する。
図6に示されるように、比較器回路18は、4つの比較器58,60,62,64と、4つの抵抗66,68,70,72を備える電圧レベル生成器とを含む。抵抗66−72は、バッテリ電圧と接地との間に互いに直列に接続される。抵抗66−72の抵抗値は、比較器60の第1の入力(たとえば反転入力)におけるノード74での電圧が2/3(V_BATT)であり、比較器62の第1の入力におけるノード76での電圧が1/2(V_BATT)であり、比較器64の第1の入力におけるノード78での電圧が1/3(V_BATT)であるように選択される。比較器60,62,64の各々の第2の入力(たとえば非反転入力)は、出力電圧信号(V_OUT)に接続される。すなわち、比較器60の出力(V_23)がハイであることは、出力電圧が2/3(V_BATT)を上回る(すなわち強度において大きい)ことを示す。比較器62の出力(V_12)がハイであることは、出力電圧が1/2(V_BATT)を上回ることを示す。比較器64の出力(V_13)がハイであることは、出力電圧が1/3(V_BATT)を上回ることを示す。比較器58の一方の入力(たとえば反転入力)は、同様に、出力電圧信号に接続される。しかしながら、比較器58の他の入力(たとえば非反転入力)は、参照電圧信号(V_REF)に接続される。すなわち、比較器58の出力(V_UD)がハイであることは、参照電圧が出力電圧を上回ることを示す。逆に、比較器58の出力がローであることは、出力電圧が参照電圧を上回ることを示す。比較器58の出力(V_UD)は、方向比較信号として機能し、方向比較信号は、制御ロジック回路20(図1)が、出力電圧信号を、「上」または「下」のどちらの方向に変更すべきかを制御ロジック回路20に示すものである。
例示的な実施の形態において、制御ロジック回路20のモード選択ロジック回路32(図1)は、組合せのロジック回路を含み得るが、その組合せのロジック回路は、方向比較信号によって指示される方向に出力電圧信号を変化させるために、制御ロジック回路20がスイッチマトリクス16に切換えさせるモードを決定する。モード選択ロジック回路32は、比較器58−64の出力を含む比較信号30を受ける。比較信号30は、組合せロジック回路に対する入力として与えられ得る。組合せロジック回路は、ロジックゲートの回路網(図示せず)のような任意の適切な形態で与えられ得る。明確さの目的のため、組合せのロジック回路は、本明細書において、図7に示されるテーブル80の形態で表現される。しかしながら、当業者は、テーブル80の論理をロジックゲートの回路網、または他の適切な形態で直ちに提供することができる。モード選択ロジック回路32は、比較信号30と組合せのロジックとに応答してモード選択信号36(図1)を出力する。
テーブル80は、制御ロジック回路20がスイッチマトリクス16を、比較器58−64の出力(V_UD,V_23,V_12,V_13のそれぞれ)の組合せに応答して切換えさせるための「次のモード」を示す。テーブル80において示されるモードは、上記のモードであり、すなわち、1/3モード、1/2Aモード、1/2Bモード、2/3モードである。テーブル80は、また、現在のモードを「保持する」、すなわち、現在のモードを次のモードとして維持するか否かを示す。具体的には、比較器58−64のすべての出力がローであることは、現在のモードが1/3モード(の第2のフェーズ構成)に保持されていることを示す。他の例において、テーブル80は、切換わるべきモードを示す。以下で説明するように、モードは、他のクロックサイクル毎に、現在のモードから次のモードへと切換わり得る。なお、本明細書においてモードを「切換える」または「変更する」こと、またはモード制御信号を与えることは、異なるモードへの変更だけでなく、モードの切換が行なわれ得る間に同じモードに維持すること、すなわち現在のモードと次のモードとが同じである実例において、現在のモードから次のモードへと切換わるまたは変更するという意味の範囲内に包含されるということを目的とするものである。また、例示的な実施の形態において、テーブル80では比較器58−64のすべての出力がハイである例が省略されているが、これは、この組合せが、制御ロジック回路20が出力電圧信号をバッテリ電圧に近づけること、すなわち望ましくない可能性があることを示すであろうためである。しかしながら、他の実施の形態において、そのような出力および関連する追加のモードが与えられ得る。
明確さの目的のために示されていないが、モード選択ロジック回路32(図1)は、テーブル80に反映されたロジック回路だけではなく、出力のいくつかあるいはすべて、すなわち次のモードを符号化するための符号化ロジック回路を含み、符号化された形態でモード選択信号36を与え得る。この符号化ロジック回路は、その出力を、たとえば、3ビットワードの形態(MODE[2:0])の形態で符号化し得る。たとえば、次のモードの出力「1/3」は、「001」と符号化され、次のモードの出力「1/2A」は、「010」として符号化され、次のモードの出力「1/2B」は「011」として符号化され、次のモードの出力「2/3」は、「100」として符号化され得る。そのような符号化ロジック回路を与えることは、当業者の能力の範囲内に十分に収まるので、本明細書ではさらなる詳細については示さずあるいは説明しない。
図8において示されるように、スイッチ制御ロジック回路34は、3ビットワード(MODE[2:0])の上記の符号化された形態であるモード選択信号36と、「ホールド(HOLD)」信号とを受けることができる。なお、MODE[2:0]ワードおよび「ホールド」信号は、ともに、制御ロジック回路20が切換わるべき次のモードを示す。「ホールド」信号は、制御ロジック回路34におけるフリップフロップ82においてラッチされ得る。MODE[2]ビットは、制御ロジック回路34におけるフリップフロップ84においてラッチされ得る。MODE[1]ビットは、制御ロジック回路34におけるフリップフロップ86においてラッチされ得る。MODE[0]ビットは、制御ロジック回路34におけるフリップフロップ88においてラッチされ得る。フリップフロップ82−88は、クロック信号(CLOCK)の他のサイクル毎に、トリガされる、すなわちその入力をラッチし得る。別のフリップフロップ90は、クロック信号を2つに分けてその分けられたクロック信号をフリップフロップ82−88のクロック入力へと与える。
スイッチ制御ロジック回路34は、また、フリップフロップ82−88の出力に結合されるデコーダロジック回路92を含む。デコーダロジック回路92は、ラッチされたMODE[2:0]ワードおよび「ホールド」信号を、スイッチマトリクス16の上記のスイッチ40−56を制御する個々のスイッチ制御信号38(S1−S9)へと復号化する。なお、モード選択信号36は「次の」モードを示しているが、ラッチされたMODE[2:0]ワードと「保持された」信号は、「現在の」モードを示す。デコーダロジック回路92は、現在のモードとクロック信号とに応答して、スイッチ制御信号38(S1−S9)を生成する。
デコーダロジック回路92の動作は、図2−図5の回路図に反映される。なお、各々のモード構成において、図2−図5のスイッチ40−56は、各々のクロックサイクルの1/2の間、第1のフェーズ構成を担い、各々のクロックサイクルの他の1/2の間、第2のフェーズ構成を担う。1/3モードまたは「001」を示すラッチされたMODE[2:0]ワードに応答して、デコーダロジック回路92は、スイッチ制御信号38(S1−S9)を生成して、各々のクロックサイクルの最初の1/2の間に、図2Aに示された状態にスイッチ40−56を設定し、各々のクロックサイクルの第2の1/2の間に図2Bに示された状態にスイッチ40−56を設定する。1/2Aモードまたは「010」を示すラッチされたMODE[2:0]ワードに応答して、デコーダロジック回路92は、スイッチ制御信号38(S1−S9)を生成して、スイッチ40−56を、各々のクロックサイクルの第1の1/2の間に図3Aに示す状態に設定し、各々のクロックサイクルの第2の1/2の間に図3Bに示す状態に設定する。1/2Bモードまたは「011」を示すラッチされたMODE[2:0]ワードに応答して、デコーダロジック回路92は、スイッチ制御信号38(S1−S9)を生成して、スイッチ40−56を、各々のクロックサイクルの第1の1/2の間に図4Aに示す状態に設定し、各々のクロックサイクルの第2の1/2の間に図4Bに示す状態に設定する。2/3モードまたは「100」を示すラッチされたMODE[2:0]ワードに応答して、デコーダロジック回路92は、スイッチ制御信号38(S1−S9)を生成して、スイッチ40−56を、各々のクロックサイクルの第1の1/2の間、図5Aに示す状態に設定し、各々のクロックサイクルの第2の1/2の間、図5Bに示す状態に設定する。「保持された」モードを示すラッチされた「ホールド」信号に応答して、デコーダロジック回路92は、スイッチ制御信号38(S1−S9)を生成して、次のクロックサイクルの各々の1/2の間、スイッチ40−56を、それ以前のモード構成に維持する。
例示的な実施の形態における電圧コンバータ10の動作の一例が図9に示される。明確さの目的のために示されていないが、出力電圧(V_OUT)は、0ボルトまたは接地(GND)の初期レベルで始まる。示された例において、参照電圧(V_REF)が入力される。最初に、すなわち、時刻94以前に、V_REFは、バッテリ電圧の1/2(1/2(V_BATT))と、バッテリ電圧の2/3(2/3(V_BATT))の間のレベルの電圧を有する。最初に、比較信号30(V_UD,V_13,V_12,V23)の状態の組合せが1/3モードに対応するが、それは、V_OUTがバッテリ電圧の1/3(1/3(V_BATT))未満であるためである。すなわち、モード選択信号36(図1)は、次のモードが1/3モードであることを示す。1/3モードにおいて、容量回路の動作により、V_OUTは1/3(V_BATT)のレベルへと立上り始める。なお、図9に示されたクロック信号(CLOCK)の周波数は、単に例示することを意図しており、他の実施の形態では、それより高くなることもあり得る。図9に示されたクロック信号は、明確さの目的のため、比較的低い周波数を有するものとして示されているが、容量回路の充電および放電に対応するV_OUTのわずかな変動は、容量回路がクロックサイクルの1/2毎にスイッチマトリクス16によって切換わるので、図9には明らかにはされていない。
時刻94において、V_OUTは1/3(V_BATT)のレベルに達する。応じて、比較信号30(V_UD,V_13,V_12,V23)の状態の組合せは変化して、1/2Aモードに対応するが、その理由は、V_OUTが1/3(V_BATT)を上回るが、1/2(V_BATT)未満となるためである。なお、現在のモード、またはデコーダロジック回路92の出力(図8)は、他のクロックサイクル毎に変化して次のモードの値をラッチする。1/2Aモードにおいて、容量回路の動作により、V_OUTが1/2V_BATTのレベルへと上昇し続ける。
この例において、時刻96において、V_OUTは、1/2(V_BATT)のレベルに達する。応じて、比較信号30(V_UD,V_13,V_12およびV23)の状態の組合せは変化して、2/3モードに対応するが、その理由は、V_OUTが1/2(V_BATT)を上回るが、2/3(V_BATT)未満となるためである。2/3モードにおいて、容量回路の動作により、V_OUTは、2/3V_BATTのレベルへと上昇し続ける。しかしながら、時刻98において、V_OUTはV_REFに達する。応じて、比較信号30(V_UD,V_13,V_12およびV23)の状態の組合せは変化して、1/2Bモードに対応する。1/2Bモードにおいて、容量回路の動作により、V_OUTは、1/2(V_BATT)のレベルへと下がる。しかしながら、時刻100において、V_OUTはV_REFと再び交差する。応じて、比較信号30(V_UD,V_13,V_12およびV23)の状態の組合せは変化して2/3モードに対応し、時刻103において、V_OUTは2/3(V_BATT)のレベルへと再び上昇し始める。したがって、V_OUTがV_REFに一旦達すると、V_OUTは、それが2/3モード構成へと上昇するときにはV_REFと交差し、それが1/2Bモード構成へと下がるときには、V_REFへと交差するように、V_REFと交互に交差する。時刻98と時刻102との間において、平均的に、V_OUTはV_REFにほぼ等しい電圧に維持される。V_REFからのV_OUTのばらつきまたは偏差は、容量28(図1)のような電圧コンバータ10の出力におけるフィルタ回路を含むことによって最小化され得る。
図9に示された例において、時刻104において、V_REFは1/3(V_BATT)と1/2(V_BATT)の間の新しいレベルへと変化する。応じて、比較信号30(V_UD,V_13,V_12およびV23)の状態の組合せは変化して、1/3モードに対応する。1/3モードにおいて、容量回路の動作により、V_OUTが1/3(V_BATT)のレベルへと下がる。しかしながら、時刻106において、V_OUTはV_REFに達する。応じて、比較信号30(V_UD,V_13,V_12およびV23)の状態の組合せは変化して、1/2Aモードに対応する。1/2Aモードにおいて、容量回路の動作により、V_OUTが1/2(V_BATT)のレベルへと上昇させる。しかしながら、時刻108において、V_OUTはV_REFと再び交差する。応じて、比較信号30(V_UD,V_13,V_12およびV23)の状態の組合せは変化して1/3モードに対応し、V_OUTは1/3(V_BATT)のレベルへと再び低下する。すなわち、V_OUTが新しいV_REFレベルに一旦達すると、V_OUTは、交互に、1/2モード構成に向けて上昇するときにV_REFと交差し、1/3モード構成へと低下するときにV_REFと交差する。ほぼ時刻106の後において、平均的に、V_OUTは新しいV_REFにほぼ等しい電圧に維持される。
図10に示されるように、図9に示された例に関する上記の方法が次のように一般化されあるいは要約される。ブロック110および112により示されるように、上記のモード構成のいずれか(たとえば、1/3モード、1/2Aモード、1/2Bモードおよび2/3モード)において、スイッチマトリクス16(図1)は連続的に容量回路をそのモードの第1のフェーズ構成と第2のフェーズ構成との間で切換える。このフェーズの切換は、クロック信号に応答して行なわれ、第1のフェーズ構成は、各々のクロックサイクルの一方の1/2の間に生じ、第2のフェーズ構成は、各々のクロックサイクルの他の1/2の間に生じる。このフェーズ切換は、モード切換と並行して行なわれる。ブロック114および116によって示されるように、比較器回路18(図1)は、出力電圧信号(V_OUT)を、参照信号(V_REF)と比較して比較信号30を生成する。比較信号は、出力電圧信号と参照電圧信号とのうちのどちらが他よりも強度において大きいかを示す方向比較信号を含む。制御ロジック回路20は、そのモードを、ブロック118によって示されるように、V_OUTがV_REF未満である場合には、より高い出力電圧に対応するモードへと切換える。制御ロジック回路20は、そのモードを、ブロック120によって示されるように、V_OUTがV_REFより大きい場合には、より低い出力電圧に対応するモードへと切換える。例示的な実施の形態において、バッテリ電圧に対して相対的に固定されたレベルを有する3つのモードが本質的に必要である。3つのモードとは、すなわち、V_OUTがバッテリ電圧の1/3である電圧レベルへと駆動される1/3モード、V_OUTがバッテリ電圧の1/2である電圧レベルへと駆動される1/2モード、およびV_OUTがバッテリ電圧の2/3である電圧レベルへと駆動される2/3モードである。これらのモードのうちの2つの間で切換わることにより、制御ロジック回路20は、V_REFが2つのモードに対応する電圧の間にあるときに、V_OUTの平均値をV_REFにほぼ等しくさせる。例示的な実施の形態において3つのモードが存在するが、他の実施の形態において、より多い、あるいはより少ないモードがあってもよい。同様に、例示的な実施の形態において、V_OUTがバッテリ電圧へと駆動されるモードおよびV_OUTが接地へと駆動されるモードは存在しないが、他の実施の形態ではそのようなモードも含まれ得る。
発明のさまざまな実施の形態が説明されてきたが、当業者にとっては、より多くの実施の形態および実現例がこの発明の範囲内で可能であることが明らかであるであろう。したがって、発明は、次に続く特許請求の範囲に照らして制限されるものではない。

Claims (15)

  1. 電圧コンバータであって、
    複数のモード構成を有するスイッチマトリクスを備え、各々のモード構成は、複数の出力信号電圧のうちの1つに対応し、前記モード構成は、モード制御信号に応答して選択可能であり、
    前記出力信号を参照信号と比較して、方向比較信号を生成するように実現された比較器ロジック回路と、
    前記方向比較信号に応答して前記モード制御信号を生成するように実現された制御ロジック回路とをさらに備える、電圧コンバータ。
  2. 各々のモード構成は、電位と出力ノードとの間に互いに接続された複数の容量を有する容量回路によって定義され、
    各々のモード構成は、前記容量回路が充電される第1のフェーズ構成と、前記容量回路が放電される第2のフェーズ構成とを有し、
    前記スイッチマトリクスは、クロック信号に応答して、選択されたモード構成の前記第1のフェーズ構成と前記第2のフェーズ構成との間で切換わり、前記選択されたモード構成に対応する出力信号電圧を有する出力ノードにおいて出力信号を生成する、請求項1に記載の電圧コンバータ。
  3. 前記方向比較信号は、前記出力信号と前記参照信号とのうちのどちらが大きいかを示し、
    前記制御ロジック回路は、前記参照信号が前記出力信号よりも大きいことを示す前記方向比較信号に応答して、前記参照信号よりも大きい出力信号電圧に対応するモード構成を選択するためにモード制御信号を生成し、
    前記制御ロジック回路は、前記出力信号が前記参照信号よりも大きいことを示す前記方向比較信号に応答して、前記参照信号よりも小さい出力信号電圧に対応するモード構成を選択するために前記モード制御信号を生成する、請求項1に記載の電圧コンバータ。
  4. 前記スイッチマトリクスは、3つのモード構成を有し、
    前記3つのモード構成は、
    基本参照電圧の1/3の出力信号電圧に対応する第1のモード構成と、
    前記基本参照電圧の1/2の出力信号電圧に対応する第2のモード構成と、
    前記基本参照電圧の2/3の出力信号電圧に対応する第3のモード構成とを含む、請求項1に記載の電圧コンバータ。
  5. 前記比較器ロジック回路は、
    複数の比較器と、
    複数の参照電圧レベルを生成して、選択された参照電圧レベルを、各々の比較器の第1の入力に与える電圧レベル発生器とを含み、
    各々の電圧レベルは、前記複数の出力信号電圧のうちの1つに対応し、
    各々の比較器の第2の入力は、前記出力信号に結合され、
    各々の比較器は、対応する比較信号を出力する、請求項4に記載の電圧コンバータ。
  6. 前記複数の比較器は、3つの比較器を含み、
    第1の比較器は、前記出力信号を、基準参照電圧の第1の割合の電圧を有する第1の参照電圧信号と比較して第1の比較信号を生成し、前記第1の比較信号は、前記出力信号電圧が前記基準参照電圧の前記第1の割合を上回るかどうかを示し、
    第2の比較器は、前記出力信号を、基準参照電圧の前記第1の割合よりも大きい、前記基準参照電圧の第2の割合の電圧を有する第2の参照電圧信号と比較して第2の比較信号を生成し、前記第2の比較信号は、前記出力信号電圧が前記基準参照電圧の前記第2の割合を上回るかどうかを示し、
    第3の比較器は、前記出力信号を、基準参照電圧の前記第2の割合よりも大きい、前記基準参照電圧の第3の割合の電圧を有する第3の参照電圧と比較して第3の比較信号を生成し、
    前記第3の比較信号は、前記出力信号電圧が前記基準参照電圧の前記第3の割合を上回るかどうかを示す、請求項5に記載の電圧コンバータ。
  7. 前記3つのモード構成は、
    前記基本参照電圧の前記第1の割合の出力信号電圧に対応する第1のモード構成と、
    前記参照電圧の前記第2の割合の出力信号電圧に対応する第2のモード構成と、
    前記参照電圧の前記第3の割合の出力信号電圧に対応する第3のモード構成とを含む、請求項6に記載の電圧コンバータ。
  8. 前記第1の割合は、1/3であり、
    前記第2の割合は、1/2であり、
    前記第3の割合は、2/3である、請求項7に記載の電圧コンバータ。
  9. 前記組合わせのロジック回路は、前記第1の比較信号が、前記出力信号電圧が前記基本参照電圧の前記第1の割合を上回らないことを示し、かつ、前記方向比較信号が、前記参照信号が前記出力信号よりも大きいことを示す場合に、前記モード制御信号を生成して、前記基本参照電圧の前記第1の割合の出力信号電圧に対応するモード構成を選択し、
    前記組合わせのロジック回路は、前記第1の比較信号が、前記出力信号電圧が前記基本参照電圧の前記第1の割合を上回ることを示し、前記第2の比較信号が、前記出力電圧が前記基本参照電圧の前記第2の割合を上回らないことを示し、前記方向比較信号が、前記参照信号が前記出力信号よりも小さいことを示す場合に、前記モード制御信号を生成して、前記基本参照電圧の前記第1の割合の出力信号電圧に対応するモード構成を選択し、
    前記組合わせのロジック回路は、前記第1の比較信号が、前記出力信号電圧が前記基本参照電圧の前記第1の割合を上回ることを示し、前記第2の比較信号が、前記出力電圧が前記基本参照電圧の前記第2の割合を上回らないことを示し、前記方向比較信号が、前記参照信号が前記出力信号よりも大きいことを示す場合に、前記モード制御信号を生成して、前記基本参照電圧の前記第2の割合の出力信号電圧に対応するモード構成を選択し、
    前記組合わせのロジック回路は、前記第2の比較信号が、前記出力電圧が前記基本参照電圧の前記第2の割合を上回ることを示し、前記第3の比較信号が、前記出力電圧が前記基本参照電圧の前記第3の割合を上回らないことを示し、前記方向比較信号が、前記参照信号が前記出力信号よりも小さいことを示す場合に、前記モード制御信号を生成して、前記基本参照電圧の前記第2の割合の出力信号電圧に対応するモード構成を選択し、
    前記組合わせのロジック回路は、前記第2の比較信号が、前記出力電圧が前記基本参照電圧の前記第2の割合を上回ることを示し、前記第3の比較信号が、前記出力電圧が前記基本参照電圧の前記第3の割合を上回らないことを示し、前記方向比較信号が、前記参照信号が前記出力信号よりも大きいことを示す場合に、前記モード制御信号を生成して、前記基本参照電圧の前記第3の割合の出力信号電圧に対応するモード構成を選択し、
    前記組合わせのロジック回路は、前記第3の比較信号が、前記出力電圧が前記基本参照電圧の前記第3の割合を上回ることを示し、前記方向比較信号が、前記参照信号が前記出力信号よりも小さいことを示す場合に、前記モード制御信号を生成して、前記基本参照電圧の前記第3の割合の出力信号電圧に対応するモード構成を選択する、請求項7に記載の電圧コンバータ。
  10. 電圧コンバータにおける電圧変換の方法であって、
    複数のモード構成を有するスイッチマトリクスを用いて、モード制御信号に応答してモード構成を選択するステップを備え、各々のモード構成は、複数の出力信号電圧のうちの1つに対応し、
    前記出力信号を参照信号と比較して、方向比較信号を生成するステップと、
    前記方向比較信号に応答して前記モード制御信号を生成するステップとをさらに備える、方法。
  11. 各々のモード構成は、電位と出力ノードとの間に互いに接続された複数の容量を有する容量回路によって定義され、
    モード構成を選択するステップは、前記容量回路における前記複数の容量を構成するステップを含み、
    各々のモード構成は、前記容量回路が充電される第1のフェーズ構成と、前記前記容量回路が放電される第2のフェーズ構成とを有し、
    モード構成を選択するステップは、クロック信号に応答して、選択されたモード構成の前記第1のフェーズ構成と前記第2のフェーズ構成との間で切換わり、前記選択されたモード構成に対応する出力信号電圧を有する出力ノードにおいて出力信号を生成するステップを含む、請求項10に記載の方法。
  12. 前記方向比較信号は、前記出力信号と前記参照信号とのうちのどちらが、強度において大きいかを示し、
    前記モード制御信号を生成するステップは、
    前記参照信号が前記出力信号よりも大きいことを示す前記方向比較信号に応答して、前記参照信号よりも大きい出力信号電圧に対応するモード構成を選択するステップと、
    前記出力信号が前記参照信号よりも大きいことを示す前記方向比較信号に応答して、前記参照信号よりも小さい出力信号電圧に対応するモード構成を選択するステップとを含む、請求項10に記載の方法。
  13. 前記スイッチマトリクスは、3つのモード構成を有する、請求項10に記載の方法。
  14. 前記3つのモード構成は、
    基本参照電圧の1/3の出力信号電圧に対応する第1のモード構成と、
    前記参照電圧の1/2の出力信号電圧に対応する第2のモード構成と、
    前記参照電圧の2/3の出力信号電圧に対応する第3のモード構成とを含み、
    前記出力信号を参照信号と比較するステップは、さらに、前記出力信号を、前記基本参照電圧の1/3の電圧を有する第1の参照電圧信号と比較して、前記出力信号電圧が前記基本参照電圧の1/3を上回るかどうかを示す第1の比較信号を生成するステップを含み、
    前記出力信号を参照信号と比較するステップは、さらに、前記出力信号を、前記基本参照電圧の1/2の電圧を有する第2の参照電圧信号と比較して、前記出力信号電圧が前記基本参照電圧の1/2を上回るかどうかを示す第2の比較信号を生成するステップを含み、
    前記出力信号を参照信号と比較するステップは、さらに、前記出力信号を、前記基本参照電圧の2/3の電圧を有する第3の参照電圧信号と比較して、前記出力信号電圧が前記基本参照電圧の2/3を上回るかどうかを示す第3の比較信号を生成するステップを含む、請求項13に記載の方法。
  15. 前記制御ロジック回路は、前記第1の比較信号が、前記出力信号電圧が前記基本参照電圧の1/3を上回らないことを示し、かつ、前記方向比較信号が、前記参照信号が前記出力信号よりも大きいことを示す場合に、前記モード制御信号を生成して、前記基本参照電圧の1/3の出力信号電圧に対応するモード構成を選択し、
    前記制御ロジック回路は、前記第1の比較信号が、前記出力信号電圧が前記基本参照電圧の1/3を上回ることを示し、前記第2の比較信号が、前記出力電圧が前記基本参照電圧の1/2を上回らないことを示し、前記方向比較信号が、前記参照信号が前記出力信号よりも小さいことを示す場合に、前記モード制御信号を生成して、前記基本参照電圧の1/3の出力信号電圧に対応するモード構成を選択し、
    前記制御ロジック回路は、前記第1の比較信号が、前記出力信号電圧が前記基本参照電圧の1/3を上回ることを示し、前記第2の比較信号が、前記出力電圧が前記基本参照電圧の1/2を上回らないことを示し、前記方向比較信号が、前記参照信号が前記出力信号よりも大きいことを示す場合に、前記モード制御信号を生成して、前記基本参照電圧の1/2の出力信号電圧に対応するモード構成を選択し、
    前記制御ロジック回路は、前記第2の比較信号が、前記出力電圧が前記基本参照電圧の1/2を上回ることを示し、前記第3の比較信号が、前記出力電圧が前記基本参照電圧の2/3を上回らないことを示し、前記方向比較信号が、前記参照信号が前記出力信号よりも小さいことを示す場合に、前記モード制御信号を生成して、前記基本参照電圧の1/2の出力信号電圧に対応するモード構成を選択し、
    前記制御ロジック回路は、前記第2の比較信号が、前記出力電圧が前記基本参照電圧の1/2を上回ることを示し、前記第3の比較信号が、前記出力電圧が前記基本参照電圧の2/3を上回らないことを示し、前記方向比較信号が、前記参照信号が前記出力信号よりも大きいことを示す場合に、前記モード制御信号を生成して、前記基本参照電圧の2/3の出力信号電圧に対応するモード構成を選択し、
    前記制御ロジック回路は、前記第3の比較信号が、前記出力電圧が前記基本参照電圧の2/3を上回ることを示し、前記方向比較信号が、前記参照信号が前記出力信号よりも小さいことを示す場合に、前記モード制御信号を生成して、前記基本参照電圧の2/3の出力信号電圧に対応するモード構成を選択する、請求項14に記載の方法。
JP2012542127A 2009-12-01 2010-11-30 連続的に可変なスイッチドキャパシタdc−dc電圧コンバータ Active JP5905393B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US26545409P 2009-12-01 2009-12-01
US61/265,454 2009-12-01
PCT/US2010/058274 WO2011068776A2 (en) 2009-12-01 2010-11-30 Continuously variable switched capacitor dc-dc voltage converter

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016052099A Division JP6272928B2 (ja) 2009-12-01 2016-03-16 連続的に可変なスイッチドキャパシタdc−dc電圧コンバータ

Publications (3)

Publication Number Publication Date
JP2013512657A true JP2013512657A (ja) 2013-04-11
JP2013512657A5 JP2013512657A5 (ja) 2014-01-23
JP5905393B2 JP5905393B2 (ja) 2016-04-20

Family

ID=44068794

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012542127A Active JP5905393B2 (ja) 2009-12-01 2010-11-30 連続的に可変なスイッチドキャパシタdc−dc電圧コンバータ
JP2016052099A Active JP6272928B2 (ja) 2009-12-01 2016-03-16 連続的に可変なスイッチドキャパシタdc−dc電圧コンバータ

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2016052099A Active JP6272928B2 (ja) 2009-12-01 2016-03-16 連続的に可変なスイッチドキャパシタdc−dc電圧コンバータ

Country Status (6)

Country Link
US (5) US20110128761A1 (ja)
EP (1) EP2507900B1 (ja)
JP (2) JP5905393B2 (ja)
KR (1) KR101770848B1 (ja)
CN (1) CN106887950B (ja)
WO (1) WO2011068776A2 (ja)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110128761A1 (en) * 2009-12-01 2011-06-02 Skyworks Solutions, Inc. Continuously variable switched capacitor dc-dc voltage converter
US9136795B2 (en) 2011-05-19 2015-09-15 Skyworks Solutions, Inc. Variable switched DC-to-DC voltage converter
US8861233B2 (en) * 2011-10-27 2014-10-14 Infineon Technologies Ag Programmable switching for switched capacitor DC-DC converter
US10305377B2 (en) 2011-10-27 2019-05-28 Infineon Technologies Ag Digital controller for switched capacitor DC-DC converter
US9007791B2 (en) * 2011-10-27 2015-04-14 Infineon Technologies Ag Digital slope control for switched capacitor dc-dc converter
US9800150B2 (en) * 2011-10-27 2017-10-24 Infineon Technologies Ag Digital controller for switched capacitor DC-DC converter
US9906126B2 (en) * 2011-10-27 2018-02-27 Infineon Technologies Ag Pulse frequency modulation control for switched capacitor DC-DC converter
JP5874350B2 (ja) * 2011-11-28 2016-03-02 オムロン株式会社 電圧変換回路、および電子機器
CN103219883B (zh) * 2012-01-19 2017-03-01 瑞昱半导体股份有限公司 电荷泵电路及其动态调整电压的供电方法
US9647464B2 (en) * 2013-03-15 2017-05-09 Fujifilm Sonosite, Inc. Low noise power sources for portable electronic systems
US9547348B2 (en) * 2013-05-10 2017-01-17 Walter Kidde Portable Equipment Inc. Reactive power supply
US20160087460A1 (en) * 2014-09-23 2016-03-24 The Paper Battery Company, Inc. Ultra-capacitor structures with multiple ultra-capacitor cells and methods thereof
US9998114B2 (en) * 2013-10-31 2018-06-12 Honeywell International Inc. Matrix ferrite driver circuit
US9871511B2 (en) 2014-07-01 2018-01-16 Honeywell International Inc. Protection switching for matrix of ferrite modules with redundant control
US9912233B2 (en) 2014-09-30 2018-03-06 Skyworks Solutions, Inc. Variable switched DC-to-DC voltage converter using pulse skipping mode and frequency modulation
WO2016134527A1 (en) 2015-02-27 2016-09-01 The University Of Hong Kong Power converter and power conversion method
US9647548B2 (en) 2015-03-13 2017-05-09 Infineon Technologies Austria Ag Method for operating a power converter circuit and power converter circuit
US9680363B2 (en) * 2015-09-25 2017-06-13 Intel Corporation Low ripple mechanism of mode change in switched capacitor voltage regulators
US9778290B2 (en) * 2015-12-28 2017-10-03 Veris Industries, Llc Branch current monitor with reconfiguration
JP6505624B2 (ja) * 2016-03-15 2019-04-24 株式会社東芝 降圧回路
US9935552B2 (en) 2016-08-18 2018-04-03 Lg Chem, Ltd. Control system for controlling operational modes of a DC-DC voltage converter
TWI607623B (zh) * 2016-10-07 2017-12-01 新唐科技股份有限公司 切換式電容型直流轉直流轉換器及其控制方法
EP3343769B1 (en) * 2016-12-27 2019-02-06 GN Hearing A/S Integrated circuit comprising adjustable back biasing of one or more logic circuit regions
US10158292B2 (en) * 2017-01-23 2018-12-18 Nxp B.V. Power configuration
EP3396834B1 (en) * 2017-04-28 2023-03-22 Nxp B.V. Switched capacitor power converter
US10353015B2 (en) 2017-07-24 2019-07-16 Lg Chem, Ltd. Diagnostic system for a DC-DC voltage converter
US10714928B2 (en) 2017-07-31 2020-07-14 Lg Chem, Ltd. Diagnostic system for a vehicle electrical system having a DC-DC voltage converter and a voltage regulator
US10090759B1 (en) 2017-08-31 2018-10-02 Micron Technology, Inc. Electronic device with a reconfigurable charging mechanism
US10790740B2 (en) 2018-05-02 2020-09-29 Analog Devices Global Unlimited Company Techniques for switch capacitor regulator power savings
CN108880256B (zh) * 2018-06-29 2019-12-24 西安交通大学 一种适用于多层堆叠负载的多路输出开关电容变换器
KR20200010830A (ko) 2018-07-23 2020-01-31 삼성전자주식회사 동적으로 출력 전압을 변경하는 스위칭 레귤레이터 및 이를 포함하는 전원 회로
US11082021B2 (en) 2019-03-06 2021-08-03 Skyworks Solutions, Inc. Advanced gain shaping for envelope tracking power amplifiers
WO2020231393A1 (en) 2019-05-10 2020-11-19 Huawei Technologies Co., Ltd. Switched capacitor converter and control method
KR20200136594A (ko) 2019-05-28 2020-12-08 삼성전자주식회사 전압 분배 비율을 적응적으로 변경하는 전압 분배 회로를 포함하는 전자 장치
JP7370783B2 (ja) 2019-09-24 2023-10-30 キヤノン株式会社 電子機器および制御方法
US11239800B2 (en) 2019-09-27 2022-02-01 Skyworks Solutions, Inc. Power amplifier bias modulation for low bandwidth envelope tracking
US11855595B2 (en) 2020-06-05 2023-12-26 Skyworks Solutions, Inc. Composite cascode power amplifiers for envelope tracking applications
US11482975B2 (en) 2020-06-05 2022-10-25 Skyworks Solutions, Inc. Power amplifiers with adaptive bias for envelope tracking applications
US11296597B1 (en) * 2020-09-25 2022-04-05 Apple Inc. Switched-capacitor regulators with output transient compensation
CN114035635B (zh) * 2021-11-12 2023-04-11 中国电子科技集团公司第二十四研究所 用于调制器的基准电压产生电路与方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010038279A1 (en) * 2000-02-29 2001-11-08 Jaworski Frank B. Circuit for providing a regulated output voltage
JP2007336722A (ja) * 2006-06-15 2007-12-27 Sharp Corp 昇圧回路及び昇圧回路を用いた半導体装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4581603A (en) * 1983-03-11 1986-04-08 The Maxi-Switch Company Switch matrix key closure validation device and method
US4497054A (en) * 1983-04-29 1985-01-29 Honeywell Inc. One-for-N redundancy in a digital switch matrix
US4719447A (en) * 1987-02-09 1988-01-12 Tektronix, Inc. Analog-to-digital converter with push-pull input signal configuration
US4983865A (en) * 1989-01-25 1991-01-08 Pacific Monolithics High speed switch matrix
US5227781A (en) * 1991-03-01 1993-07-13 Litton Systems, Inc. Mosfet switch matrix
US6055168A (en) 1998-03-04 2000-04-25 National Semiconductor Corporation Capacitor DC-DC converter with PFM and gain hopping
US6198645B1 (en) * 1998-07-02 2001-03-06 National Semiconductor Corporation Buck and boost switched capacitor gain stage with optional shared rest state
DE19935249C2 (de) * 1999-07-27 2001-09-27 Texas Instruments Deutschland Gleichspannungswandler
US6373340B1 (en) 2000-08-14 2002-04-16 K. S. Waves, Ltd. High-efficiency audio power amplifier
US6753623B2 (en) * 2000-12-05 2004-06-22 National Semiconductor Corporation Switched capacitor array circuits having universal rest state and method
JP2002315308A (ja) * 2001-04-10 2002-10-25 Fujitsu Ltd Dc−dcコンバータ及び記憶装置
JP3553554B2 (ja) * 2002-03-05 2004-08-11 ローム株式会社 スイッチマトリックス回路、論理演算回路およびスイッチ回路
CN1474500A (zh) 2002-08-05 2004-02-11 电子科技大学 利用开关电容矩阵实现直流变压器的电路及方法
GB2398648B (en) 2003-02-19 2005-11-09 Nujira Ltd Power supply stage for an amplifier
US7286069B1 (en) * 2004-05-25 2007-10-23 Cirrus Logic, Inc. Systems and methods for clock mode determination utilizing divide ratio testing
CN101095276B (zh) 2005-01-14 2011-09-07 半导体元件工业有限责任公司 直流-直流转换器及其方法
CN100454736C (zh) * 2005-08-02 2009-01-21 蜜蜂工房半导体有限公司 电源装置
US8013664B2 (en) 2006-08-28 2011-09-06 Semiconductor Components Industries, Llc Charge pump controller and method therefor
US7342389B1 (en) 2007-01-09 2008-03-11 Diodes, Inc. High efficiency charge pump DC to DC converter circuits and methods
WO2009004715A1 (ja) * 2007-07-03 2009-01-08 Mitsubishi Electric Corporation 電力素子の駆動回路
US7907429B2 (en) 2007-09-13 2011-03-15 Texas Instruments Incorporated Circuit and method for a fully integrated switched-capacitor step-down power converter
CN101478234A (zh) 2009-01-13 2009-07-08 浙江大学 一种开关电容式直流-直流变换器
US20110128761A1 (en) * 2009-12-01 2011-06-02 Skyworks Solutions, Inc. Continuously variable switched capacitor dc-dc voltage converter
CN102545900B (zh) 2010-12-20 2015-05-20 意法半导体研发(上海)有限公司 用于模数(a/d)转换的系统和方法
GB2486698B (en) 2010-12-23 2014-01-15 Wolfson Microelectronics Plc Charge pump circuit
US8704408B2 (en) * 2011-04-14 2014-04-22 National Instruments Corporation Switch matrix modeling system and method
US9136795B2 (en) 2011-05-19 2015-09-15 Skyworks Solutions, Inc. Variable switched DC-to-DC voltage converter
US8848947B2 (en) 2011-06-30 2014-09-30 Blackberry Limited Low-noise microphone pre-amplifier with active load element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010038279A1 (en) * 2000-02-29 2001-11-08 Jaworski Frank B. Circuit for providing a regulated output voltage
JP2007336722A (ja) * 2006-06-15 2007-12-27 Sharp Corp 昇圧回路及び昇圧回路を用いた半導体装置

Also Published As

Publication number Publication date
CN102754321A (zh) 2012-10-24
EP2507900A2 (en) 2012-10-10
US20110128762A1 (en) 2011-06-02
US10033277B2 (en) 2018-07-24
CN106887950B (zh) 2020-12-11
WO2011068776A2 (en) 2011-06-09
KR20120092681A (ko) 2012-08-21
US20110128761A1 (en) 2011-06-02
CN106887950A (zh) 2017-06-23
JP5905393B2 (ja) 2016-04-20
US9473019B2 (en) 2016-10-18
US20170133932A1 (en) 2017-05-11
US20140077774A1 (en) 2014-03-20
US20150236583A1 (en) 2015-08-20
JP2016154439A (ja) 2016-08-25
EP2507900A4 (en) 2015-08-12
EP2507900B1 (en) 2017-10-11
KR101770848B1 (ko) 2017-08-23
US8537579B2 (en) 2013-09-17
US9054575B2 (en) 2015-06-09
WO2011068776A3 (en) 2011-11-17
JP6272928B2 (ja) 2018-01-31

Similar Documents

Publication Publication Date Title
JP6272928B2 (ja) 連続的に可変なスイッチドキャパシタdc−dc電圧コンバータ
US10749434B2 (en) Power converter with capacitive energy transfer and fast dynamic response
US8350631B1 (en) Relaxation oscillator with low power consumption
CN101340142B (zh) 一种电源软启动的方法、装置及系统
KR101547416B1 (ko) 충전 펌프 서지 전류 감소
JP2013512657A5 (ja)
KR20100133947A (ko) 적응적-이득 스텝-업/다운 스위치드-커패시터 dc/dc 컨버터
US11469672B2 (en) Interleaved multi-level buck-boost switching power converter with pulse-width modulation
US7852642B2 (en) Full digital soft-start circuit and power supply system using the same
CN107612318B (zh) 电荷泵电路
CN111355368A (zh) 功率转换器
US20160036327A1 (en) Buck converter using variable pulse
CN108574408B (zh) 一种开关电源自适应展频电路及其自适应展频方法
JP5589769B2 (ja) スイッチング電源の制御回路及び電子機器
Liu et al. A dynamic buck converter with ultra fast response and low voltage ripples designed for DVS systems
US11502619B1 (en) Hybrid multi-level inverter and charge pump
CN102754321B (zh) 持续可变切换的电容器dc-dc电压转换器
CN112187049A (zh) 电路、对应的多相转换器设备及操作方法
JP2011259167A (ja) 三角波発生回路

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160316

R150 Certificate of patent or registration of utility model

Ref document number: 5905393

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250