JP2013505422A - 炭化水素ガス処理 - Google Patents

炭化水素ガス処理 Download PDF

Info

Publication number
JP2013505422A
JP2013505422A JP2012529781A JP2012529781A JP2013505422A JP 2013505422 A JP2013505422 A JP 2013505422A JP 2012529781 A JP2012529781 A JP 2012529781A JP 2012529781 A JP2012529781 A JP 2012529781A JP 2013505422 A JP2013505422 A JP 2013505422A
Authority
JP
Japan
Prior art keywords
stream
feed position
distillation column
receiving
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012529781A
Other languages
English (en)
Other versions
JP5793145B2 (ja
JP2013505422A5 (ja
Inventor
マルティネス,トニー・エル
ウィルキンソン,ジョン・ディー
リンチ,ジョー・ティー
ハドソン,ハンク・エム
クエラー,カイル・ティー
Original Assignee
オートロフ・エンジニアーズ・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オートロフ・エンジニアーズ・リミテッド filed Critical オートロフ・エンジニアーズ・リミテッド
Publication of JP2013505422A publication Critical patent/JP2013505422A/ja
Publication of JP2013505422A5 publication Critical patent/JP2013505422A5/ja
Application granted granted Critical
Publication of JP5793145B2 publication Critical patent/JP5793145B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0238Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/30Processes or apparatus using separation by rectification using a side column in a single pressure column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/76Refluxing the column with condensed overhead gas being cycled in a quasi-closed loop refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/78Refluxing the column with a liquid stream originating from an upstream or downstream fractionator column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/90Details relating to column internals, e.g. structured packing, gas or liquid distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/90Details relating to column internals, e.g. structured packing, gas or liquid distribution
    • F25J2200/92Details relating to the feed point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/90Details relating to column internals, e.g. structured packing, gas or liquid distribution
    • F25J2200/94Details relating to the withdrawal point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/60Natural gas or synthetic natural gas [SNG]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/60Methane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/08Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/60Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being (a mixture of) hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/02Internal refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/12Particular process parameters like pressure, temperature, ratios
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/40Vertical layout or arrangement of cold equipments within in the cold box, e.g. columns, condensers, heat exchangers etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

炭化水素ガスストリームからより重質の炭化水素成分を回収するためのプロセスおよび装置が開示される。炭化水素ガスストリームを冷却し、第1のストリームと第2のストリームとに分割する。第1のストリームをさらに冷却して、第1の部分と第2の部分に分割される。第1の部分と第2の部分を分留塔圧力まで膨張し、膨張した第2の部分が加熱された後、上側中央カラムフィード位置において分留塔に供給する。第2のストリームを分留塔圧力まで膨張し、中央カラムフィード位置において供給する。蒸留蒸気ストリームを、第2のストリームのフィードポイントよりも上から抜き取り、塔オーバーヘッド蒸気ストリームの一部分と合流させ、より高い圧力まで圧縮し、冷却してその少なくとも一部を凝縮し、凝縮したストリームを形成する。凝縮したストリームの少なくとも一部分を塔圧力まで膨張させ、分留塔の頂部フィードとして分留塔に導かれる。
【選択図】図3

Description

本発明は炭化水素を含有するガスの分離のためのプロセスおよび装置に関する。
エチレン、エタン、プロピレン、プロパンおよび/またはより重質の炭化水素は、たとえば、天然ガス、精油所ガス、ならびに他の炭化水素材料(たとえば、石炭、原油、ナフサ、油母頁岩、タールサンドおよび亜炭)から得られる混合ガスストリームなどの様々な気体から回収することができる。天然ガスは、通常、大部分がメタンおよびエタンであり、すなわち、メタンおよびエタンを合わせると、ガスの少なくとも50モルパーセントを構成する。天然ガスは、また、比較的少量のより重質の炭化水素(たとえば、プロパン、ブタン、ペンタンなど)、ならびに水素、窒素、二酸化炭素および他の気体を含有する。
本発明は、一般に、そのようなガスストリームからのエチレン、エタン、プロピレン、プロパンおよびより重質の炭化水素の回収に関する。本発明に従って処理されるべきガスストリームの典型的な分析結果は、(近似モルパーセントで)メタン90.5%、エタンおよび他のC成分4.1%、プロパンおよび他のC成分1.3%、イソブタン0.4%、ノルマルブタン0.3%、ならびにペンタン0.5%、残りは窒素と二酸化炭素とからなる。また、含硫黄ガスが存在することもある。
歴史的に、天然ガス構成成分とその天然ガス液(NGL)構成成分の価格はいずれも、周期的に変動するので、液体生成物としてのエタン、エチレン、プロパン、プロピレン、およびより重質の成分の利益額が低減されることがある。この結果、これらの生成物のより効率的な回収を行うことができるプロセス、より安価な設備投資で効率的な回収を行うことができるプロセス、ならびに広範囲にわたる特定の成分の回収を変動させるように、容易に適合または調節することができるプロセスが求められるようになった。これらの材料を分離するために利用可能なプロセスには、ガスの冷却および冷凍、油の吸収ならびに冷凍油の吸収に基づくプロセスが含まれる。さらに、処理されているガスを膨張させ、同時に、そこから熱を抽出しながら、動力を生成する経済的な機器が入手できるようになったことにより、低温プロセスが普及した。ガス源の圧力、気体の豊富さ(エタン、エチレンおよびより重質の炭化水素含有成分)、および所望の最終生成物に応じて、これらのプロセスをそれぞれ採用しても、またはその組合せを採用してもよい。
低温膨張プロセスは、容易に開始し、動作を柔軟にし、効率を高め、安全性を高め、信頼性を高めるとともに、最も単純になるので、一般に、現在は天然ガス液回収のために好まれている。米国特許第3,292,380号、米国特許第4,061,481号、米国特許第4,140,504号、米国特許第4,157,904号、米国特許第4,171,964号、米国特許第4,185,978号、米国特許第4,251,249号、米国特許第4,278,457号、米国特許第4,519,824号、米国特許第4,617,039号、米国特許第4,687,499号、米国特許第4,689,063号、米国特許第4,690,702号、米国特許第4,854,955号、米国特許第4,869,740号、米国特許第4,889,545号、米国特許第5,275,005号、米国特許第5,555,748号、米国特許第5,566,554号、米国特許第5,568,737号、米国特許第5,771,712号、米国特許第5,799,507号、米国特許第5,881,569号、米国特許第5,890,378号、米国特許第5,983,664号、米国特許第6,182,469号、米国特許第6,578,379号、米国特許第6,712,880号、米国特許第6,915,662号、米国特許第7,191,617号、米国特許第7,219,513号、再発行米国特許第33,408号、ならびに同時係属中の米国特許出願第11/430,412号、米国特許出願第11/839,693号、米国特許出願第11/971,491号、米国特許出願第12/206,230号、米国特許出願第12/689,616号、米国特許出願第12/717,394号、米国特許出願第12/750,862号、米国特許出願第12/772,472号、および米国特許出願第12/781、259号には、関連するプロセスについて記載している(ただし、本発明の記載は、場合によっては引用された米国特許に記載するものとは異なる処理条件に基づく)。
典型的な低温膨張回収プロセスでは、圧力下のフィードガスストリームは、プロセスの他のストリームとの熱交換、および/またはプロパン圧縮冷凍システムなどの外部冷凍源によって冷却される。フィードガスが冷却されるにつれて、1つまたは複数のセパレータ中で、所望のC+成分のうちの一部を含有する高圧液体として液体を凝縮し、収集することができる。気体の豊富さと生成された液体の量とに応じて、高圧液体を、より低い圧力になるまで膨張させ、分留することができる。液体が膨張中に蒸発した結果、ストリームはさらに冷却される。いくつかの条件下では、膨張の前に高圧液体を事前に冷却することは、膨張後の温度をさらに低下させるために望ましいことがある。膨張したストリームは、液体と蒸気との混合物を含み、蒸留(脱メタン装置または脱エタン装置)カラムで分留される。蒸留カラムでは、(1つまたは複数の)膨張冷却されたストリームを蒸留して、底部液体生成物としての所望のC成分、C成分およびより重質の炭化水素成分から、残留するメタン、窒素および他の揮発性ガスをオーバーヘッド蒸気として分離するか、あるいは底部液体生成物としての所望のC成分およびより重質の炭化水素成分から、残留するメタン、C成分、窒素および他の揮発性ガスをオーバーヘッド蒸気として分離する。
フィードガスが完全には凝縮しない(典型的に、凝縮しない)場合、部分的な凝縮の結果として残留する蒸気を、2つのストリームに分割することができる。蒸気の一方の部分を、仕事膨張装置またはエンジン、あるいは膨張弁を通過させて、より低い圧力にし、ストリームのさらなる冷却の結果として、さらなる液体を凝縮させる。膨張後の圧力は、基本的には、蒸留カラムを動作する圧力と同じである。膨張の結果として生じる合流された気相と液相とは、蒸留カラムにフィードとして供給される。
蒸気の残りの部分は、他のプロセスストリーム(たとえば、低温分留塔オーバーヘッド)との熱交換によって冷却されて、実質的な凝縮物となる。高圧液体の一部または全部は、冷却の前に、この蒸気部分と合流させることができる。次いで、得られた冷却されたストリームは、膨張弁などの適切な膨張デバイスを通って膨張し、脱メタン装置が動作する圧力とすることができる。膨張中に液体の一部分が蒸発し、その結果、ストリーム全体が冷却される。フラッシュ膨張したストリームは、次いで、頂部フィードとして脱メタン装置に供給される。典型的には、フラッシュ膨張したストリームの蒸気部分と脱メタン装置のオーバーヘッド蒸気とを、分留塔の上側セパレータセクションで残留メタン生成物ガスとして合流させる。代替的には、冷却され、膨張したストリームをセパレータに供給して、蒸気ストリームと液体ストリームとを提供してもよい。蒸気は分留塔オーバーヘッドと合流し、液体は頂部カラムフィードとして蒸留カラムに供給される。
そのような分離プロセスの理想的な動作では、プロセスから出る残留ガスは、フィードガス中の実質的にすべてのメタンを含有し、本質的にはより重質の炭化水素成分は全く含まず、脱メタン装置から出る底部画分は、より重質の炭化水素成分の実質的にすべてを含有し、本質的にはメタンまたはより高い揮発性の成分を含まない。しかしながら、実際には、従来の脱メタン装置は主にストリッピングカラムとして動作するので、この理想状態は得られない。したがって、プロセスのメタン生成物は、典型的には、いずれの精留ステップでも処理されない蒸気とともに、カラムの頂部分留ステージから出る蒸気を含む。頂部液体フィードが相当量のC成分、C成分、C成分およびより重質の炭化水素成分を含有し、その結果、それに対応する均衡量のC成分、C成分、C成分およびより重質の炭化水素成分が脱メタン装置の頂部分留ステージから出る蒸気中に生じるので、相当量のC成分、C成分およびC+成分が損失する。これらの望ましい成分の損失は、蒸気からC成分、C成分、C成分およびより重質の炭化水素成分を吸収することが可能な有意な量の液体(還流)に上昇蒸気を接触させることができる場合、著しく低減され得る。
近年、炭化水素分離のための好ましいプロセスは、上側アブソーバセクションを使用して、上昇蒸気のさらなる精留を行う。上側精留セクションのための還流ストリーム源は、一般に、圧力下で供給された残留ガスからのリサイクルストリームである。リサイクルされた残留ガスストリームは、通常、他のプロセスストリーム(たとえば、低温分留塔オーバーヘッド)との熱交換によって冷却されて、実質的な凝縮物となる。次いで、得られた実質的に凝縮したストリームを、膨張弁などの適当な膨張デバイスを通して、脱メタン装置が動作する圧力まで膨張させる。通常、膨張中に液体の一部分が蒸発し、その結果、ストリーム全体が冷却される。次いで、フラッシュ膨張したストリームは、頂部フィードとして脱メタン装置に供給にされる。典型的には、膨張したストリームの蒸気部分と脱メタン装置のオーバーヘッド蒸気とを、分留塔の上側セパレータセクションで残留メタン生成物ガスとして合流させる。代替的には、冷却され、膨張したストリームをセパレータに供給して、蒸気ストリームおよび液体ストリームを提供してもよく、それにより、その後、蒸気は、分留塔オーバーヘッドと合流し、液体は、頂部カラムフィードとして蒸留カラムに供給される。このタイプの典型的なプロセススキームは、米国特許第4,889,545号、米国特許第5,568,737号、および米国特許第5,881,569号、ならびに譲受人による同時係属中の米国特許出願第12/717,394号に、また「Efficient,High Recovery of Liquids from Natural Gas Utilizing a High Pressure Absorber」(Mowrey,E.Ross著、米国ガス処理協会、第81回年次総会抄録、テキサス州ダラス、2002年3月11〜13日)に開示されている。これらのプロセスは、コンプレッサを使用して、脱メタン装置に還流ストリームをリサイクルするための原動力を提供し、それにより、これらのプロセスを使用する施設の資本コストと運転コストの両方がかさむことになる。
また、本発明は、上側精留セクション(または、プラントサイズまたは他のファクタにおいて、別個の精留カラムとストリッピングカラムとを使用したほうが好ましい場合には、別個の精留カラム)を採用する。しかしながら、この精留セクションのための還流ストリームは、蒸留カラムオーバーヘッド蒸気の一部分と合流した分留塔の下方部分中で上昇する蒸気のサイドドローを使用することによって提供される。分留塔の下方の蒸気中のC成分は比較的高濃度なので、冷却のほとんどを行うために蒸留カラムの上側精留セクションから出る低温オーバーヘッド蒸気の残留部分で利用可能な冷却を用いて、圧力を少しずつ上昇させるだけで、この合流された蒸気ストリームから有意な量の液体を凝縮させることができる。次いで、主に液状メタンである、この凝縮した液体を使用して、上側精留セクションを通って上昇する蒸気からC成分、C成分、C成分およびより重質の炭化水素成分を吸収し、それにより、底部液体生成物中のこれらの有用な成分を脱メタン装置から捕捉することができる。
今までは、蒸留カラムの上側精留セクションに還流を提供するために、譲受人による米国特許第4,889,545号および譲受人による同時係属中の米国特許出願第11/839,693号にそれぞれ示されるように、低温オーバーヘッド蒸気ストリームの一部分を圧縮すること、またはサイドドロー蒸気ストリームを圧縮することのいずれかを、C+回収システム中で採用してきた。驚くべきことに、出願人らは、低温オーバーヘッド蒸気の一部分をサイドドロー蒸気ストリームと合流させ、次いで、合流ストリームを圧縮すると、運転コストを低減しつつ、システム効率が改善されることが分かった。
米国特許第3,292,380号明細書 米国特許第4,061,481号明細書 米国特許第4,140,504号明細書 米国特許第4,157,904号明細書 米国特許第4,171,964号明細書 米国特許第4,185,978号明細書 米国特許第4,251,249号明細書 米国特許第4,278,457号明細書 米国特許第4,519,824号明細書 米国特許第4,617,039号明細書 米国特許第4,687,499号明細書 米国特許第4,689,063号明細書 米国特許第4,690,702号明細書 米国特許第4,854,955号明細書 米国特許第4,869,740号明細書 米国特許第4,889,545号明細書 米国特許第5,275,005号明細書 米国特許第5,555,748号明細書 米国特許第5,566,554号明細書 米国特許第5,568,737号明細書 米国特許第5,771,712号明細書 米国特許第5,799,507号明細書 米国特許第5,881,569号明細書 米国特許第5,890,378号明細書 米国特許第5,983,664号明細書 米国特許第6,182,469号明細書 米国特許第6,578,379号明細書 米国特許第6,712,880号明細書 米国特許第6,915,662号明細書 米国特許第7,191,617号明細書 米国特許第7,219,513号明細書 再発行米国特許第33,408号明細書 米国特許出願第11/430,412号明細書 米国特許出願第11/839,693号明細書 米国特許出願第11/971,491号明細書 米国特許出願第12/206,230号明細書 米国特許出願第12/689,616号明細書 米国特許出願第12/717,394号明細書 米国特許出願第12/750,862号明細書 米国特許出願第12/772,472号明細書 米国特許出願第12/781、259号明細書
本発明によれば、84%を上回るC回収率、ならびに99%を上回るC回収率およびC+回収率が得られることが分かった。さらに、本発明により、回収レベルを維持しつつ、従来技術と比較してより低いエネルギー必要量で、C成分およびより重質の成分から、メタンおよびより軽質の成分を本質的に100%分離することができるようになる。本発明は、より低い圧力およびより高温において適用可能であるが、NGL回収カラムのオーバーヘッド温度が華氏−50度[摂氏−46度]以下であることが必要な条件下で、400〜1500psia[2,758〜10,342kPa(a)]の範囲またはそれよりも高圧でフィードガスを処理するときに、特に有利である。
本発明をよりよく理解するために、以下の例および図面を参照する。図面を参照すると以下の通りである。
譲受人による同時係属中の米国特許出願第11/839,693号による、従来技術の天然ガス処理プラントのフロー図である。 本発明による、天然ガス処理プラントのフロー図である。 本発明を天然ガスストリームに適用した場合の代替手段を示すフロー図である。 本発明を天然ガスストリームに適用した場合の代替手段を示すフロー図である。 本発明を天然ガスストリームに適用した場合の代替手段を示すフロー図である。 本発明を天然ガスストリームに適用した場合の代替手段を示すフロー図である。
上述の各図に関する以下の説明では、代表的なプロセス条件について計算された流量をまとめた表が提供される。本明細書に示した表において、流量に関する値(モル/時)は、便宜上小数点第1位で四捨五入されている。表に示される総ストリーム速度は、すべての非炭化水素成分を含み、したがって一般的には、炭化水素成分に関するストリーム流量の合計よりも大きい。示された温度は、少数点第1位で四捨五入した概算値(度)である。また、図に示されたプロセスを比較する目的で実行されたプロセス設計の計算は、周囲からプロセスへの(またはプロセスから周囲への)熱漏れはないという仮定に基づいていることを留意されたい。市販の絶縁材料の品質によれば、この仮定は極めて妥当であり、一般に当業者が成し得るものである。
便宜上、プロセスパラメータは、従来の英国単位と国際単位系(SI)の単位の両方で報告されている。表に示されたモル流量は、ポンドモル/時またはキログラムモル/時のどちらで解釈してもよい。馬力(HP)および/または1000英国熱単位/時(MBTU/Hr)として報告されたエネルギー消費量は、記載されたモル流量(ポンドモル/時)に相当する。キロワット(kW)として報告されたエネルギー消費量は、記載されたモル流量(キログラムモル/時)に相当する。
従来技術の説明
図1は、譲受人による同時係属中の米国特許出願第11/839,693号に従って、従来技術を使用して天然ガスからC+成分を回収するための処理プラントの設計を示すプロセスフロー図である。プロセスのこのシミュレーションでは、入口ガスは、華氏120度[摂氏49度]、1025psia[7,067kPa(a)]で、ストリーム31としてプラントに入る。入口ガスに含有される硫黄化合物の濃度が、生成物ストリームが仕様を満たさないようになる濃度である場合、フィードガスの適切な前処理によって硫黄化合物が除去される(図示せず)。さらに、通常は、フィードストリームを脱水して、低温条件下おいて水和物(氷)が形成されないようにする。典型的には、この目的のために、固形の乾燥剤が使用されてきた。
フィードストリーム31は、低温残留ガス(ストリーム41b)、華氏51度[摂氏11度]の脱メタン装置リボイラー液(ストリーム44)、華氏10度[摂氏−12度]の脱メタン装置の下側サイドリボイラー液(ストリーム43)、および華氏−65度[摂氏−54度]の脱メタン装置の上側サイドリボイラー液(ストリーム42)との熱交換により、熱交換器10中で冷却される。すべての場合において、交換器10は、複数の独立した熱交換器または単一のマルチパス熱交換器のいずれか、あるいは任意のそれらの組合せを表すことを留意されたい。(示された冷却作業のために2つ以上の熱交換器を使用するべきかどうかに関する決定は、入口ガスの流量、熱交換器のサイズ、ストリームの温度などを含むが、これらには限定されない、いくつかの要因に左右される。)冷却されたストリーム31aは、華氏−38度[摂氏−39度]、1015psia[6,998kPa(a)]でセパレータ11に入り、蒸気(ストリーム32)が、凝縮した液体(ストリーム33)から分離される。セパレータからの液体(ストリーム33)は、膨張弁17によって分留塔18の動作圧力(約465psia[3,208kPa(a)])まで膨張し、ストリーム33aは、華氏−67度[摂氏−55度]]まで冷却され、その後、それを分留塔18に下側中央カラムのフィードポイントで供給する。
セパレータ11からの蒸気(ストリーム32)は、2つのストリーム36とストリーム39に分割される。ストリーム36は、全蒸気の約23%を含有し、低温残留ガス(ストリーム41a)と熱交換関係にある熱交換器12を通過し、そこで冷却され、実質的な凝縮物となる。次いで、華氏−102度[摂氏−74度]の得られた実質的に凝縮したストリーム36aを、膨張弁14を通して分留塔18の動作圧力をわずかに上回るまでフラッシュ膨張させる。膨張中、ストリームの一部分が蒸発し、その結果、ストリーム全体が冷却される。図1に示されるプロセスでは、膨張弁14から出る膨張したストリーム36bの温度は、華氏−127度[摂氏−88度]に達し、分留塔18の吸収セクション18aに上側中央カラムフィードポイントで供給される。
セパレータ11からの蒸気の残り77%(ストリーム39)は、仕事膨張装置15に入り、この高圧フィード部分から機械的エネルギーが抽出される。装置15は、この蒸気を実質的に等エントロピーで分留塔の動作圧力まで膨張させ、その仕事膨張によって、膨張したストリーム39aの温度は、約華氏−101度[摂氏−74度]まで冷却される。一般的に市販されている膨張器は、理想的な等エントロピー膨張において論理的には達成可能な仕事の80〜85%のオーダーで回収することができる。回収された仕事を使用して、たとえば、残留ガス(ストリーム41c)を再圧縮するために使用できる遠心コンプレッサ(品目16など)を駆動させる場合が多い。その後、部分的に凝縮し膨張したストリーム39aは、中央カラムフィードポイントで、フィードとして分留塔18に供給される。
塔形態の脱メタン装置18は、垂直方向に離隔した複数のトレイ、1つまたは複数の充填床、またはトレイと充填材との何らかの組合せを含有する従来の蒸留カラムである。脱メタン塔は、2つのセクション、すなわち、C成分、C成分およびより重質の成分を凝縮し、吸収するために、上昇する膨張したストリーム36bおよび39aの蒸気部分と、下降する低温液体との必要な接触を実現するためのトレイおよび/または充填材を含有する上方の吸収(精留)セクション18bと、下降する液体と上昇する蒸気との必要な接触の実現するためのトレイおよび/または充填材を含有する下方のストリッピングセクション18bとから構成される。また、脱メタンセクション18bは、1つまたは複数のリボイラー(前述したリボイラー、およびサイドリボイラーなど)も含み、これにより蒸留カラムを下に向かって流れる液体の一部分を加熱し、蒸発させて、ストリッピング蒸気を提供する。このストリッピング蒸気は蒸留カラムを上に向かって流れて、メタンおよびより軽質の成分の液体生成物、すなわちストリーム45を取り除く。ストリーム39aは、脱メタン装置18の吸収セクション18aの下側領域に配置された中間フィード位置で脱メタン装置18に入る。膨張したストリーム39aの液体部分は、吸収セクション18aから下降する液体と合流し、合流した液体は下降し続け、脱メタン装置18のストリッピングセクション18bに入る。膨張したストリーム39aの蒸気部分は、吸収セクション18aを通って上昇し、下降している低温液体と接触して、C成分、C成分およびより重質の成分を凝縮させ、吸収する。
蒸留蒸気の一部分(ストリーム48)は、膨張したストリーム39aのフィード位置よりも上で、膨張したストリーム36bのフィード位置よりも下の分留カラム18中の吸収セクション18aの中間領域から抜き取られる。華氏−113度[摂氏−81度]の蒸留蒸気ストリーム48は、還流コンプレッサ21によって604psia[4,165kPa(a)]まで圧縮され(ストリーム48a)、次いで、華氏−84度[摂氏−65度]から華氏−124度[摂氏−87度]まで冷却され、低温残留ガスストリーム41との熱交換によって熱交換器22中で実質的に凝縮し(ストリーム48b)、オーバーヘッドストリームは脱メタン装置18の頂部から出る。次いで、実質的に凝縮したストリーム48bは、膨張弁23などの適当な膨張デバイスを通って、脱メタン装置の動作圧力まで膨張され、ストリーム全体が華氏−131度[摂氏−91度]まで冷却される。次いで、膨張したストリーム48cは、頂部カラムフィードとして分留塔18に供給される。ストリーム48cの蒸気部分は、カラムの頂部分留ステージから上昇する蒸気と合流して、華氏−128度[摂氏−89度]の脱メタン装置オーバーヘッドストリーム41を形成する。
液体生成物(ストリーム45)は、底部生成物のモルベースで、メタン対エタンの比が0.025:1である典型的な仕様に基づいて、華氏70度[摂氏21度]で分留塔18の底部から出る。低温残留ガスストリーム41は、熱交換器22において、圧縮された蒸留蒸気ストリームと向流して通過し、華氏−106度[摂氏−77度]まで加熱され(ストリーム41a)、熱交換器12中で入ってくるフィードガスと向流して通過して華氏−66度[摂氏−55度]まで加熱され(ストリーム41b)、熱交換器10において、華氏110度[摂氏43度]まで加熱される(ストリーム41c)。次いで、残留ガスを、2つのステージで再圧縮する。第1ステージは、膨張装置15によって駆動されるコンプレッサ16である。第2ステージは、補助動力源によって駆動されるコンプレッサ24であり、残留ガス(ストリーム41e)を販売ラインの圧力まで圧縮する。排出冷却器25中で華氏120度[摂氏49度]まで冷却した後、(通常は入口圧力のオーダーで)ラインの必要条件を満たすのに十分な1025psia[7,067kPa(a)]で、残留ガス生成物(ストリーム41f)を販売ガスパイプラインに送る。
図1に示したプロセスに関するストリーム流量とエネルギー消費量をまとめると、以下の表の通りである。
Figure 2013505422
本発明の説明
図2に、本発明によるプロセスのフロー図を示す。図2に提示されるプロセスで検討されるフィードガス組成および条件は、図1に提示されたものと同じである。したがって、図2のプロセスを図1のプロセスと比較して、本発明の利点を示すことができる。
図2のプロセスのシミュレーションでは、入口ガスは、ストリーム31として華氏120度[摂氏49度]、1025psia[7,067kPa(a)]でプラントに入り、低温残留ガス(ストリーム46b)、華氏50度[摂氏10度]の脱メタン装置リボイラー液(ストリーム44)、華氏8度[摂氏−13度]の脱メタン装置の下側リボイラー液(ストリーム43)、および華氏−67度[摂氏−55度]の脱メタン装置の上側リボイラー液(ストリーム42)との熱交換により、熱交換器10中で冷却される。冷却されたストリーム31aは、華氏−38度[摂氏−39度]、1015psia[6,998kPa(a)]でセパレータ11に入り、蒸気(ストリーム32)が、凝縮した液体(ストリーム33)から分離される。セパレータからの液体(ストリーム33/40)は、膨張弁17によって分留塔18の動作圧力(約469psia[3,234kPa(a)])まで膨張し、ストリーム40aを華氏−67度[摂氏−55度]まで冷却し、その後、それを(本願国際公報の段落[0031]、本明細書の段落0029に記載するストリーム39aのフィードポイントよりも下に配置された)下側中央カラムのフィードポイントで、分留塔18に供給する。
セパレータ11からの蒸気(ストリーム32)は、2つのストリーム34および39に分割される。ストリーム34は、全蒸気の約26%を含有し、低温残留ガス(ストリーム46a)と熱交換関係にある熱交換器12を通過して、そこで冷却され、実質的な凝縮物となる。次いで、華氏−106度[摂氏−76度]の得られた実質的に凝縮したストリーム36aは、2つの部分、すなわちストリーム37および38に分割される。実質的に凝縮したストリーム全体の約50.5%を含有するストリーム38は、膨張弁14を通して、分留塔18の動作圧力までフラッシュ膨張させる。膨張中、そのストリームの一部分が蒸発し、その結果、ストリーム全体が冷却される。図2に示されたプロセスでは、膨張弁14から出る膨張したストリーム38aの温度は、華氏−127度[摂氏−88度]に達し、その後、分留塔18の吸収セクション18aに上側中央カラムフィードポイントで供給される。実質的に凝縮したストリームの残り49.5%(ストリーム37)は、分留塔18の作業圧力をわずかに上回るまで、膨張弁13を通ってフラッシュ膨張させる。フラッシュ膨張したストリーム37aは、華氏−126度[摂氏−88度]から華氏−125度[摂氏−87度]まで熱交換器22中で僅かに温められ、次いで、得られたストリーム37bは、分留塔18の吸収セクション18aの別の上側中央カラムフィードポイントで供給される。
セパレータ11からの蒸気の残り74%(ストリーム39)は、仕事膨張装置15に入り、高圧フィードのこの部分から機械的エネルギーが抽出される。装置15は、この蒸気を実質的に等エントロピーで分留塔の動作圧力まで膨張させ、その仕事膨張によって、膨張したストリーム39aの温度を約華氏−100度[摂氏−73度]まで冷却する。その後、部分的に凝縮し膨張したストリーム39aは、(ストリーム38aおよび37bのフィードポイントよりも下に配置された)中央カラムフィードポイントで、フィードとして分留塔18に供給される。
塔形態の脱メタン装置18は、垂直方向に離隔した複数のトレイ、1つまたは複数の充填床、あるいはトレイと充填剤との何らかの組合せを含有する従来の蒸留カラムである。脱メタン塔は、2つのセクション、すなわち、上昇する膨張したストリーム38aおよび39aの蒸気部分および過熱され膨張したストリーム37bと、下降する低温液体との必要な接触を実現して、上昇する蒸気からC成分、C成分、およびより重質の成分を凝縮し吸収するためのトレイおよび/または充填材を含有する上方の吸収(精留)セクション18aと、下降する液体と上昇する蒸気との必要な接触を実現するためのトレイおよび/または充填材を含有する下方のストリッピングセクション18bとから構成される。また、脱メタンセクション18bは、1つまたは複数のリボイラー(前述したリボイラー、およびサイドリボイラーなど)を含み、これによりカラムを下に向かって流れる液体の一部分を加熱し、蒸発させて、ストリッピング蒸気を提供する。このストリッピング蒸気はカラムを上に向かって流れて、メタンおよびより軽質の成分の液体生成物、すなわちストリーム45を取り除く。ストリーム39aは、脱メタン装置18の吸収セクション18aの下側領域に配置された中間フィード位置で脱メタン装置18に入る。膨張したストリームの液体部分は、吸収セクション18aから下降する液体と合流し、合流した液体は下降し続け、脱メタン装置18のストリッピングセクション18bに入る。膨張したストリームの蒸気部分は、ストリッピングセクション18bから上昇した蒸気と合流し、合流した蒸気は、吸収セクション18aを通って上昇し、下降している低温液体と接触して、C成分、C成分、およびより重質の成分を凝縮させ、吸収する。
蒸留蒸気の一部分(ストリーム48)は、吸収セクション18aの下側領域にある膨張したストリーム39aのフィード位置よりも上で、膨張したストリーム38aおよび加熱され膨張したストリーム37bのフィード位置よりも下の分留カラム18中の吸収セクション18aの中間領域から抜き取られる。華氏−116度[摂氏−82度]の蒸留蒸気ストリーム48は、華氏−128度[摂氏−89度]のオーバーヘッド蒸気ストリーム41の一部分(ストリーム47)と合流して、華氏−118度[摂氏−83度]の合流蒸気ストリーム49を形成する。合流蒸気ストリーム49は、前述したように、還流コンプレッサ21によって592psia[4,080kPa(a)]まで圧縮され(ストリーム49a)、次いで、熱交換器22中で残留ガスストリーム46(脱メタン装置18の頂部から出る低温脱メタン装置オーバーヘッドストリーム41の残りの部分)との、およびフラッシュ膨張したストリーム37aとの熱交換によって、華氏−92度[摂氏−69度]から華氏−124度[摂氏−87度]まで冷却され、実質的に凝縮する(ストリーム49b)。低温残留ガスストリームは、圧縮された合流蒸気ストリーム49aが冷却されるにつれて、華氏−110度[摂氏−79度]まで温められる(ストリーム46a)。
実質的に凝縮したストリーム49bは、膨張弁23によって、脱メタン装置18の動作圧力までフラッシュ膨張される。このストリームの一部分は蒸発し、さらに華氏−132度[摂氏−91度]までストリーム49cを冷却し、その後、低温頂部カラムフィード(還流)として脱メタン装置18に供給される。この低温液体還流は、脱メタン装置18の吸収セクション18aの上側精留領域中で上昇するC成分、C成分およびより重質の成分を吸収し、凝縮させる。
脱メタン装置18のストリッピングセクション18bにおいて、フィードストリームから、それらのメタンおよびより軽質の成分を取り除く。得られた液体生成物(ストリーム45)は、(底部生成物のモルベースで、メタン対エタンの比が0.025:1である典型的な仕様に基づいて)華氏68度[摂氏20度]で、分留塔18の底部から出る。前述のように冷却が行われるので、部分的に温められた残留ガスストリーム46aは、熱交換器12において、入ってくるフィードガスと向流して通過して華氏−61度[摂氏−52度]まで加熱され(ストリーム46b)、熱交換器10において華氏112度[摂氏44度]まで加熱される(ストリーム46c)。次いで、残留ガスを、2つのステージ、すなわち、膨張装置15によって駆動されるコンプレッサ16と、補助動力源によって駆動されるコンプレッサ24とにおいて再圧縮する。ストリーム46eを排出冷却器25中で華氏120度[摂氏49度]まで冷却した後、(通常は入口圧力のオーダーで)ラインの必要条件を満たすのに十分な1025psia[7,067kPa(a)]で、残留ガス生成物(ストリーム46f)を販売ガスのパイプラインに送る。
図2に示したプロセスに関するストリーム流量とエネルギー消費量をまとめると、以下の表の通りである。
Figure 2013505422
表1と表2との比較とを比較すると、本発明により、従来技術に比較して、エタン回収率が83.06%から84.98%に、プロパン回収率が99.50%から99.67%に、ブタン+回収率が99.98%から99.99%に改善されることが分かる。表1と表2とを比較すると、さらに、基本的には従来技術と同じ動力を使用して、収率の改善が実現されたことが分かる。(単位出力ごとに回収されるエタンの量によって定義された)回収効率に関して、本発明は、図1のプロセスの従来技術よりも2%改善されることを示す。
従来技術のプロセスを上回る本発明の回収効率における改善は、本発明が吸収セクション18aの上側領域に提供する精留の改良を精査することによって理解することができる。図1のプロセスの従来技術に比較して、本発明は、より多くのメタンとより少ないC+成分を含有する頂部還流ストリームを良好にする。図1の従来技術のプロセスに関する表1の還流ストリーム48を本発明に関する表2の還流ストリーム49と比較すると、本発明は、量がより多く、(ほぼ8%)C+成分の濃度が著しく低い(図1の従来技術のプロセスの2.5%に対して本発明の1.9%)の還流ストリームを提供することが分かる。さらに、本発明は、残留ガス(ストリーム46)によって行われる冷却を補助するために実質的に凝縮したフィードストリーム36aの一部分(膨張したストリーム37a)を使用するので、圧縮された還流ストリーム49aを、より低い圧力で実質的に凝縮することができ、本発明に関する還流流量はより高いが、図1の従来技術のプロセスに比較して還流コンプレッサ21が必要とする動力が低減される。
譲受人の米国特許第4,889,545号の従来技術のプロセスとは異なり、本発明は、圧縮された還流ストリーム49aを冷却するために、実質的に凝縮したフィードストリーム36aの一部分(膨張したストリーム37a)しか使用しない。これにより、実質的に凝縮したフィードストリーム36aの残り(膨張したストリーム38a)は、膨張したフィード39aとストリッピングセクション18bから上昇する蒸気とに含有されるC成分、C成分およびより重質の炭化水素成分を大量に回収することができるようになる。本発明では、低温残留ガス(ストリーム46)を使用して、圧縮された還流ストリーム49aの冷却の大部分を行い、従来の技術に比較してストリーム37aの加熱を低減し、それにより、得られたストリーム37bが、膨張したストリーム38aによって行われる大量の回収を補助することができるようなる。次いで、還流ストリーム49cによって行われる補助的な精留は、残留ガスとなり失われる入口フィードガス中に含有されるC成分、C成分およびC+成分の量を低減することができる。
また、本発明は、吸収セクション18aへのカラムフィード(ストリーム37b、38aおよび39a)の加温を抑えつつ、還流ストリーム49cを凝縮することによって、従来技術の米国特許第4,889,545号のプロセスに比較して、吸収セクション18a中の還流ストリーム49cが必要とする精留を低減させる。実質的に凝縮したストリーム36aのすべてを、米国特許第4,889,545号に教示されているように凝縮するように、膨張させ、温める場合、吸収セクション18a中を上昇する蒸気を精留するために利用可能な得られたストリームには低温液体がほとんどないだけでなく、還流ストリームによって精留されなければならない吸収セクション18aの上側領域にははるかに多くの蒸気が存在する。最終的には、従来技術の米国特許第4,889,545号のプロセスの還流ストリームは、本発明が流出させるよりも、より多くのC成分を残留ガスストリームに流出させ、それにより、本発明に比較して、その回収効率が低くなる。従来技術の米国特許第4,889,545号のプロセスを上回る本発明の重要な改良は、低温残留ガスストリーム46を使用して、熱交換器22において、圧縮された還流ストリーム49aの冷却のほとんどを行うこと、および蒸留蒸気ストリーム48は、カラムオーバーヘッドストリーム41では見られないC成分の有意な部分を含有し、その結果、米国特許第4,889,545号の従来技術プロセスに教示されるように膨張させ、加熱するときに固有なストリーム36aの過剰な蒸発に起因して、吸収セクション18a中に著しい精留負荷を追加することなく、還流として使用するために十分なメタンを凝縮できるようになることである。
他の実施態様
本発明によれば、一般に、脱メタン装置の吸収(精留)セクションを、複数の理論分離ステージを含有するように設計することが有利である。しかしながら、本発明の利点は、わずか2つの理論ステージを用いて達成することができる。たとえば、膨張弁23から出る膨張した還流ストリーム(ストリーム49c)の全部または一部と、膨張弁14からの膨張し実質的に凝縮したストリーム38aの全部または一部と、熱交換器22から出る加熱され膨張したストリーム37bの全部または一部とを(膨張弁および熱交換機を脱メタン装置に連結する配管中などで)合流させることができ、十分に混合された場合には、その蒸気および液体は、1つに混合し、合流ストリーム全体の様々な成分の相対的な揮発性に従って分離する。3つのストリームをこのように合流させることを、膨張したストリーム39aの少なくとも一部分と接触させることと併せて、本発明の目的のために吸収セクションを構成することとみなす。
図3〜図6に、本発明の他の実施形態を表す。図2〜図4に、単一の容器に構築された分留塔を示す。図5および図6に、2つの容器に、すなわち吸収(精留)カラム18(接触および分離デバイス)およびストリッパー(蒸留)カラム20中に構築された複数の分留塔を示す。このような場合、ストリッパーカラム20からのオーバーヘッド蒸気ストリーム54は、(ストリーム55を介して)アブソーバカラム18の下側セクションに流れて、還流ストリーム49cと、膨張し実質的に凝縮したストリーム38aと、加熱され膨張したストリーム37bとに接触する。ポンプ19を使用して液体(ストリーム53)をアブソーバカラム18の底部からストリッパーカラム20の頂部へと導き、それにより、2つの塔は、1つの蒸留システムとして効果的に機能する。分留塔を(図2〜図4の脱メタン装置18のような)単一の容器として構築するか、あるいは複数の容器として構築するかにどうかに関する決定は、たとえば、プラントサイズ、製造施設への距離など、多数の要因に左右される。
ある状況では、膨張し実質的に凝縮したストリーム38aのフィードポイントよりも下の吸収セクション18a(ストリーム51)の中間領域からではなく、膨張し実質的に凝縮したストリーム38aのフィードポイントよりも上の吸収セクション18a(ストリーム50)の上側領域から、図3および図4の蒸留蒸気ストリーム48を抜き取ることが好ましいことがある。図5および図6において、同様に、膨張し実質的に凝縮したストリーム38a(ストリーム50)のフィードポイントよりも上で、または膨張し実質的に凝縮したストリーム38a(ストリーム51)のフィードポイントよりも下で、アブソーバカラム18から蒸気蒸留ストリーム48を抜き取ることができる。他の場合には、図3および図4の脱メタン装置18中のストリッピングセクション18bの上側領域から、蒸留蒸気ストリーム48を引き出す(ストリーム52)ことが有利であることがある。図5および図6において、同様に、ストリッパーカラム20からのオーバーヘッド蒸気ストリーム54の一部分(ストリーム52)は、ストリーム47と合流してストリーム49を形成し、残りの部分(ストリーム55)がある場合にはそれをアブソーバカラム18の下側セクションに流す。
前述したように、圧縮された合流蒸気ストリーム49aは、実質的に凝縮し、得られた凝縮物を使用して、脱メタン装置18の吸収セクション18aを通って、またはアブソーバカラム18を通って上昇する蒸気から、有用なC成分、C成分およびより重質の成分が吸収される。ただし、本発明は、この実施態様には限定されるものではない。たとえば、蒸気または凝縮物の一部分が、脱メタン装置18の吸収セクション18a、またはアブソーバカラム18を迂回すべきであることを他の設計検討事項が示す場合には、これらの蒸気の一部分だけを上述したようにして処理すること、または凝縮物の一部分のみを吸収剤として使用することが有利なことがある。ある状況では、熱交換器22において、圧縮された合流蒸気ストリーム49aを実質的に凝縮するのではなく、部分的に凝縮することが好ましいことがある。他の状況では、蒸留蒸気ストリーム48が、部分的な蒸気サイドドローではなく、分留カラム18またはアブソーバカラム18からの蒸気サイドドロー全体であることが好ましいことがある。また、フィードガスストリームの組成に応じて、熱交換器22中において、圧縮された合流蒸気ストリーム49aを部分的に冷却するために、外部冷却源を使用することが有利なこともあることを留意されたい。
フィードガス条件、プラントサイズ、利用可能な機器またはその他の要因は、仕事膨張装置15を除去する、または代替の膨張デバイス(膨張弁など)と交換することが可能であることを示すことがある。特定の膨張デバイスについて、個々のストリームの膨張を示しているが、必要に応じて代替的な膨張手段を採用してもよい。たとえば、フィードストリームの実質的に凝縮した部分(ストリーム37および38)、あるいは熱交換器22から出る実質的に凝縮した還流ストリーム(ストリーム49b)の仕事膨張を条件により必要とすることができる。
フィードガス中のより重い炭化水素の量とフィードガス圧とに応じて、図2〜図6の熱交換器10から出る冷却されたフィードストリーム31aは、(液体の露点を超えているので、または液体のクリコンデンバールを超えているので)液体をまったく含有しないことがある。そのような場合には、図2〜図6に示されたセパレータ11は必要でない。
本発明によれば、いくつかの方法で蒸気フィードの分割を達成することができる。図2、図3および図5のプロセスでは、蒸気の分割は、形成され得る任意の液体の冷却および分離される後に行われる。一方、高圧ガスは、図4および図6に示されるように、入口ガスの任意の冷却の前に分割され得る。いくつかの実施形態では、蒸気分割は、セパレータ中で行われることがある。
高圧の液体(図2から図6のストリーム33)は、膨張させて、蒸留カラムの中央カラムフィードポイントに供給しなくてもよい。その代わりに、その全部または一部分を、熱交換器12へと流れるセパレータ蒸気の一部分(図2、図3および図5のストリーム34)、あるいは冷却されたフィードガスの一部分(図4および図6のストリーム34a)と合流することができる。(これは、図2〜図6において破線のストリーム35により示される。)液体の残りの部分がある場合にはそれを、膨張弁または膨張装置などの適当な膨張デバイスを通して膨張させ、蒸留カラムの中央カラムフィードポイントに供給することができる(図2〜図6におけるストリーム40a)。また、ストリーム40は、脱メタン装置に流す前の膨張工程よりも前に、またはその後に、入口ガスの冷却またはその他の熱交換作業に使用することができる。
本発明によれば、入口ガスが豊富な場合には特に、他のプロセスストリームからの入口ガスに利用可能な冷却を補助するために、外部冷却源を採用することができる。プロセス熱交換のためのセパレータからの液体および脱メタン装置のサイドドロー液の使用および分配、ならびに入口ガスの冷却のための熱交換器の具体的な配列は、具体的な適用例ごとに、ならびに特定の熱交換作業のためのプロセスストリームの選択のために評価しなければならない。
また、分割された蒸気フィードの各分岐で見られるフィードの相対量は、ガス圧、フィードガスの組成、フィードから経済的に抽出することができる熱量、および利用可能な馬力量などを含むいくつかの要因に左右されることが認識されよう。カラムの頂部へのフィードが多いと、膨張器から回収される動力を減少させつつ、回収率を増大させることができ、それにより、再圧縮馬力必要量が増大する。カラム内の下方のフィードが増加すると、馬力消費量が低減するが、生成物の回収率も低減され得る。入口の組成、あるいは所望の回収レベルおよび入口ガスの冷却中に形成される液体の量などの他の要因に応じて、中央カラムフィードの相対位置を変えることができる。さらに、個別のストリームの相対温度および量に応じて、2つ以上のフィードストリーム、またはそれらの一部分を合流させることができ、次いで、合流ストリームは、中央カラムフィード位置に供給される。たとえば、状況によっては、膨張し実質的に凝縮したストリーム38aと加熱され膨張したストリーム37bとを合流させ、分留塔18(図2〜図4)またはアブソーバカラム18(図5および図6)上の単一の上側中央カラムフィードポイントに合流ストリームを供給することが好ましいことがある。
本発明は、プロセスを動作させるために必要なユーティリティー消費量あたりのC成分、C成分およびより重質の炭化水素成分の回収率、あるいはC成分およびより重質の炭化水素成分の回収率を改良する。脱メタン装置または脱エタン装置のプロセスを動作させるために必要なユーティリティー消費量の改善は、圧縮または再圧縮のための動力必要量を低減させる、外部冷却のための動力必要量を低減させる、塔リボイラーのためのエネルギー必要量を低減させる、またはそれらを組み合わせた形態で実現することができる。
本発明の好ましい実施態様であると考えられるものについて説明してきたが、当業者には、以下の特許請求の範囲によって定義されているような本発明の精神から逸脱することなく、他の変更およびさらなる変更を成し得、たとえば、本発明を様々な条件、フィードのタイプまたは他の必要条件に適合し得ることが認識されよう。

Claims (41)

  1. メタン、C成分、C成分およびより重質の炭化水素成分を含有するガスストリームを、揮発性の残留ガス画分と、前記C成分、前記C成分および前記より重質の炭化水素成分、あるいは前記C成分および前記より重質の炭化水素成分の大部分を含有する揮発性が比較的低い画分とに分離するためのプロセスにおいて、
    (a)前記ガスストリームを圧力下で冷却して、冷却されたストリームを提供し、
    (b)前記冷却されたストリームをより低い圧力まで膨張させて、それにより、さらに冷却し、
    (c)前記さらに冷却されたストリームを蒸留カラムに導き、前記より低い圧力で分留して、それにより、前記揮発性が比較的低い画分の前記成分を回収し、
    改良として、前記冷却されたストリームを、冷却後に第1ストリームと第2のストリームとに分割し、
    (1)前記第1のストリームを冷却して、前記第1のストリームの実質的にすべてを凝縮させ、
    (2)前記実質的に凝縮した第1のストリームを、少なくとも第1の凝縮部分と第2の凝縮部分とに分割し、
    (3)前記第1の凝縮部分を前記より低い圧力まで膨張させ、それにより、さらに冷却し、その後、上側中央カラムフィード位置において前記蒸留カラムに供給し、
    (4)前記第2の凝縮部分を前記より低い圧力まで膨張させ、それにより、さらに冷却し、加熱し、その後、前記上側中央カラムフィード位置において前記蒸留カラムに供給し、
    (5)前記第2のストリームを前記より低い圧力まで膨張させ、前記上側中央カラムフィード位置よりも下の中央カラムフィード位置において前記蒸留カラムに供給し、
    (6)前記蒸留カラムの上側領域からオーバーヘッド蒸気ストリームを抜き取り、少なくとも第1の蒸気部分と第2の蒸気部分とに分割し、
    (7)前記第2の蒸気部分を加熱し、その後、前記加熱された第2の蒸気部分の少なくとも一部分を前記揮発性残留ガス画分として排出し、
    (8)前記上側中央カラムフィード位置よりも下で、前記中央カラムフィード位置よりも上の前記蒸留カラムの領域から、蒸留蒸気ストリームを抜き取り、前記第1の蒸気部分と合流させて合流蒸気ストリームを形成し、
    (9)前記合流蒸気ストリームをより高い圧力まで圧縮し、
    (10)前記圧縮された合流蒸気ストリームを十分に冷却して、前記圧縮された合流蒸気ストリームの少なくとも一部を凝縮させ、それにより、ステップ(4)および(7)の前記加熱の少なくとも一部分を供給しながら、凝縮したストリームを形成し、
    (11)前記凝縮したストリームの少なくとも一部分を前記より低い圧力まで膨張させ、その後、頂部フィード位置において前記蒸留カラムに供給し、
    (12)前記蒸留カラムへの前記フィードストリームの量および温度は、前記蒸留カラムのオーバーヘッド温度を一定の温度に維持するために有効であり、それにより、前記揮発性が比較的低い画分中の前記成分の前記大部分を回収する、
    プロセス。
  2. メタン、C成分、C成分およびより重質の炭化水素成分を含有するガスストリームを、揮発性の残留ガス画分と、前記C成分、前記C成分および前記より重質の炭化水素成分、あるいは前記C成分および前記より重質の炭化水素成分の大部分を含有する揮発性が比較的低い画分とに分離するためのプロセスにおいて、
    (a)前記ガスストリームを圧力下で冷却して、冷却されたストリームを提供し、
    (b)前記冷却されたストリームをより低い圧力まで膨張させて、それにより、さらに冷却し、
    (c)前記さらに冷却されたストリームを蒸留カラムに導き、前記より低い圧力で分留して、それにより、前記揮発性が比較的低い画分の前記成分を回収し、
    改良として、前記ガスストリームを、冷却前に第1ストリームと第2のストリームとに分割し、
    (1)前記第1のストリームを冷却して、前記第1のストリームの実質的にすべてを凝縮させ、
    (2)前記実質的に凝縮した第1のストリームを、少なくとも第1の凝縮部分と第2の凝縮部分とに分割し、
    (3)前記第1の凝縮部分を前記より低い圧力まで膨張させ、それにより、さらに冷却し、その後、上側中央カラムフィード位置において前記蒸留カラムに供給し、
    (4)前記第2の凝縮部分を前記より低い圧力まで膨張させ、それにより、さらに冷却し、加熱し、その後、前記上側中央カラムフィード位置において前記蒸留カラムに供給し、
    (5)前記第2のストリームを冷却し、その後、前記より低い圧力まで膨張させ、前記上側中央カラムフィード位置よりも下の中央カラムフィード位置において前記蒸留カラムに供給し、
    (6)前記蒸留カラムの上側領域からオーバーヘッド蒸気ストリームを抜き取り、少なくとも第1の蒸気部分と第2の蒸気部分とに分割し、
    (7)前記第2の蒸気部分を加熱し、その後、前記加熱された第2の蒸気部分の少なくとも一部分を前記揮発性残留ガス画分として排出し、
    (8)前記上側中央カラムフィード位置よりも下で、前記中央カラムフィード位置よりも上の前記蒸留カラムの領域から、蒸留蒸気ストリームを抜き取り、前記第1の蒸気部分と合流させて合流蒸気ストリームを形成し、
    (9)前記合流蒸気ストリームをより高い圧力まで圧縮し、
    (10)前記圧縮された合流蒸気ストリームを十分に冷却して、前記圧縮された合流蒸気ストリームの少なくとも一部を凝縮させ、それにより、ステップ(4)および(7)の前記加熱の少なくとも一部分を供給しながら、凝縮したストリームを形成し、
    (11)前記凝縮したストリームの少なくとも一部分を前記より低い圧力まで膨張させ、その後、頂部フィード位置において前記蒸留カラムに供給し、
    (12)前記蒸留カラムへの前記フィードストリームの量および温度は、前記蒸留カラムのオーバーヘッド温度を一定の温度に維持するために有効であり、それにより、前記揮発性が比較的低い画分中の前記成分の前記大部分を回収する、
    プロセス。
  3. メタン、C成分、C成分およびより重質の炭化水素成分を含有するガスストリームを、揮発性の残留ガス画分と、前記C成分、前記C成分および前記より重質の炭化水素成分、あるいは前記C成分および前記より重質の炭化水素成分の大部分を含有する揮発性が比較的低い画分とに分離するためのプロセスにおいて、
    (a)前記ガスストリームを圧力下で冷却して、冷却されたストリームを提供し、
    (b)前記冷却されたストリームをより低い圧力まで膨張させて、それにより、さらに冷却し、
    (c)前記さらに冷却されたストリームを蒸留カラムに導き、前記より低い圧力で分留して、それにより、前記揮発性が比較的低い画分の前記成分を回収し、
    改良として、前記ガスストリームを十分に冷却して、前記ガスストリームを部分的に凝縮し、
    (1)前記部分的に凝縮したガスストリームを分離して、それにより、蒸気ストリームと、少なくとも1つの液体ストリームとを提供し、
    (2)その後、前記蒸気ストリームを第1のストリームと第2のストリームとに分割し、
    (3)前記第1のストリームを冷却して、前記第1のストリームのうち実質的にすべてを凝縮し、
    (4)前記実質的に凝縮した第1のストリームを、少なくとも第1の凝縮部分と第2の凝縮部分とに分割し、
    (5)前記第1の凝縮部分を前記より低い圧力まで膨張させ、それにより、さらに冷却し、その後、上側中央カラムフィード位置において前記蒸留カラムに供給し、
    (6)前記第2の凝縮部分を前記より低い圧力まで膨張させ、それにより、さらに冷却し、加熱し、その後、前記上側中央カラムフィード位置において前記蒸留カラムに供給し、
    (7)前記第2のストリームを前記より低い圧力まで膨張させ、前記上側中央カラムフィード位置よりも下の中央カラムフィード位置において前記蒸留カラムに供給し、
    (8)前記少なくとも1つの液体ストリームの少なくとも一部分を前記より低い圧力まで膨張させ、前記中央カラムフィード位置よりも下の下側中央カラムフィード位置において前記蒸留カラムに供給し、
    (9)オーバーヘッド蒸気ストリームを前記蒸留カラムの上側領域から抜き取り、少なくとも第1の蒸気部分と第2の蒸気部分とに分割し、
    (10)前記第2の蒸気部分を加熱し、その後、前記加熱された第2の蒸気部分の少なくとも一部分を前記揮発性残留ガス画分として排出し、
    (11)前記上側中央カラムフィード位置よりも下で、前記中央カラムフィード位置よりも上の前記蒸留カラムの領域から、蒸留蒸気ストリームを抜き取り、前記第1の蒸気部分と合流させて合流蒸気ストリームを形成し、
    (12)前記合流蒸気ストリームをより高い圧力まで圧縮し、
    (13)前記圧縮された合流蒸気ストリームを十分に冷却して、前記圧縮された合流蒸気ストリームの少なくとも一部を凝縮させ、それにより、ステップ(6)および(10)の前記加熱の少なくとも一部分を供給しながら、凝縮したストリームを形成し、
    (14)前記凝縮したストリームの少なくとも一部分を前記より低い圧力まで膨張させ、その後、頂部フィード位置において前記蒸留カラムに供給し、
    (15)前記蒸留カラムへの前記フィードストリームの量および温度は、前記蒸留カラムのオーバーヘッド温度を一定の温度に維持するために有効であり、それにより、前記揮発性が比較的低い画分中の前記成分の前記大部分を回収する、
    プロセス。
  4. メタン、C成分、C成分およびより重質の炭化水素成分を含有するガスストリームを、揮発性の残留ガス画分と、前記C成分、前記C成分および前記より重質の炭化水素成分、あるいは前記C成分および前記より重質の炭化水素成分の大部分を含有する揮発性が比較的低い画分とに分離するためのプロセスにおいて、
    (a)前記ガスストリームを圧力下で冷却して、冷却されたストリームを提供し、
    (b)前記冷却されたストリームをより低い圧力まで膨張させて、それにより、さらに冷却し、
    (c)前記さらに冷却されたストリームを蒸留カラムに導き、前記より低い圧力で分留して、それにより、前記揮発性が比較的低い画分の前記成分を回収し、
    改良として、前記ガスストリームを、冷却前に第1ストリームと第2のストリームとに分割し、
    (1)前記第1のストリームを冷却して、前記第1のストリームの実質的にすべてを凝縮させ、
    (2)前記実質的に凝縮した第1のストリームを、少なくとも第1の凝縮部分と第2の凝縮部分とに分割し、
    (3)前記第1の凝縮部分を前記より低い圧力まで膨張させ、それにより、さらに冷却し、その後、上側中央カラムフィード位置において前記蒸留カラムに供給し、
    (4)前記第2の凝縮部分を前記より低い圧力まで膨張させ、それにより、さらに冷却し、加熱し、その後、前記上側中央カラムフィード位置において前記蒸留カラムに供給し、
    (5)前記第2のストリームを圧力下で十分に冷却して、部分的に凝縮し、
    (6)前記部分的に凝縮した第2のストリームを分離し、それにより、蒸気ストリームと少なくとも1つの液体ストリームとを提供し、
    (7)前記蒸気ストリームを前記より低い圧力まで膨張させ、前記上側中央カラムフィード位置よりも下の中央カラムフィード位置において前記蒸留カラムに供給し、
    (8)前記少なくとも1つの液体ストリームの少なくとも一部分を前記より低い圧力まで膨張させ、前記中央カラムフィード位置よりも下の下側中央カラムフィード位置において前記蒸留カラムに供給し、
    (9)前記蒸留カラムの上側領域からオーバーヘッド蒸気ストリームを抜き取り、少なくとも第1の蒸気部分と第2の蒸気部分とに分割し、
    (10)前記第2の蒸気部分を加熱し、その後、前記加熱された第2の蒸気部分の少なくとも一部分を前記揮発性残留ガス画分として排出し、
    (11)前記上側中央カラムフィード位置よりも下で、前記中央カラムフィード位置よりも上の前記蒸留カラムの領域から、蒸留蒸気ストリームを抜き取り、前記第1の蒸気部分と合流させて合流蒸気ストリームを形成し、
    (12)前記合流蒸気ストリームをより高い圧力まで圧縮し、
    (13)前記圧縮された合流蒸気ストリームを十分に冷却して、前記圧縮された合流蒸気ストリームの少なくとも一部を凝縮させ、それにより、ステップ(4)および(10)の前記加熱の少なくとも一部分を供給しながら、凝縮したストリームを形成し、
    (14)前記凝縮したストリームの少なくとも一部分を前記より低い圧力まで膨張させ、その後、頂部フィード位置において前記蒸留カラムに供給し、
    (15)前記蒸留カラムへの前記フィードストリームの量および温度は、前記蒸留カラムのオーバーヘッド温度を一定の温度に維持するために有効であり、それにより、前記揮発性が比較的低い画分中の前記成分の前記大部分を回収する、
    プロセス。
  5. メタン、C成分、C成分およびより重質の炭化水素成分を含有するガスストリームを、揮発性の残留ガス画分と、前記C成分、前記C成分および前記より重質の炭化水素成分、あるいは前記C成分および前記より重質の炭化水素成分の大部分を含有する揮発性が比較的低い画分とに分離するためのプロセスにおいて、
    (a)前記ガスストリームを圧力下で冷却して、冷却されたストリームを提供し、
    (b)前記冷却されたストリームをより低い圧力まで膨張させて、それにより、さらに冷却し、
    (c)前記さらに冷却されたストリームを蒸留カラムに導き、前記より低い圧力で分留して、それにより、前記揮発性が比較的低い画分の前記成分を回収し、
    改良として、前記ガスストリームを十分に冷却して、前記ガスストリームを部分的に凝縮し、
    (1)前記部分的に凝縮したガスストリームを分離して、それにより、蒸気ストリームと少なくとも1つの液体ストリームとを提供し、
    (2)その後、前記蒸気ストリームを第1のストリームと第2のストリームとに分割し、
    (3)前記第1のストリームを前記少なくとも1つの液体ストリームの少なくとも一部分と合流させて合流ストリームを形成し、その後、前記合流ストリームを冷却して、前記合流ストリームのすべてを実質的に凝縮し、
    (4)前記実質的に凝縮した合流ストリームを少なくとも第1の凝縮部分と第2の凝縮部分とに分割し、
    (5)前記第1の凝縮部分を前記より低い圧力まで膨張させ、それにより、さらに冷却し、その後、上側中央カラムフィード位置において前記蒸留カラムに供給し、
    (6)前記第2の凝縮部分を前記より低い圧力まで膨張させ、それにより、さらに冷却し、加熱し、その後、前記上側中央カラムフィード位置において前記蒸留カラムに供給し、
    (7)前記第2のストリームを前記より低い圧力まで膨張させ、前記上側中央カラムフィード位置よりも下の中央カラムフィード位置において前記蒸留カラムに供給し、
    (8)前記少なくとも1つの液体ストリームの残りの部分がある場合にはそれを前記より低い圧力まで膨張させ、前記中央カラムフィード位置よりも下の下側中央カラムフィード位置において前記蒸留カラムに供給し、
    (9)前記蒸留カラムの上側領域からオーバーヘッド蒸気ストリームを抜き取り、少なくとも第1の蒸気部分と第2の蒸気部分とに分割し、
    (10)前記第2の蒸気部分を加熱し、その後、前記加熱された第2の蒸気部分の少なくとも一部分を前記揮発性残留ガス画分として排出し、
    (11)前記上側中央カラムフィード位置よりも下で、前記中央カラムフィード位置よりも上の前記蒸留カラムの領域から、蒸留蒸気ストリームを抜き取り、前記第1の蒸気部分と合流させて合流蒸気ストリームを形成し、
    (12)前記合流蒸気ストリームをより高い圧力まで圧縮し、
    (13)前記圧縮された合流蒸気ストリームを十分に冷却して、前記圧縮された合流蒸気ストリームの少なくとも一部を凝縮させ、それにより、ステップ(6)および(10)の前記加熱の少なくとも一部分を供給しながら、凝縮したストリームを形成し、
    (14)前記凝縮したストリームの少なくとも一部分を前記より低い圧力まで膨張させ、その後、頂部フィード位置において前記蒸留カラムに供給し、
    (15)前記蒸留カラムへの前記フィードストリームの量および温度は、前記蒸留カラムのオーバーヘッド温度を一定の温度に維持するために有効であり、それにより、前記揮発性が比較的低い画分中の前記成分の前記大部分を回収する、
    プロセス。
  6. メタン、C成分、C成分およびより重質の炭化水素成分を含有するガスストリームを、揮発性の残留ガス画分と、前記C成分、前記C成分および前記より重質の炭化水素成分、あるいは前記C成分および前記より重質の炭化水素成分の大部分を含有する揮発性が比較的低い画分とに分離するためのプロセスにおいて、
    (a)前記ガスストリームを圧力下で冷却して、冷却されたストリームを提供し、
    (b)前記冷却されたストリームをより低い圧力まで膨張させて、それにより、さらに冷却し、
    (c)前記さらに冷却されたストリームを蒸留カラムに導き、前記より低い圧力で分留して、それにより、前記揮発性が比較的低い画分の前記成分を回収し、
    改良として、前記冷却されたストリームを、冷却後に第1ストリームと第2のストリームとに分割し、
    (1)前記第1のストリームを冷却して、前記第1のストリームの実質的にすべてを凝縮させ、
    (2)前記実質的に凝縮した第1のストリームを、少なくとも第1の凝縮部分と第2の凝縮部分とに分割し、
    (3)前記第1の凝縮部分を前記より低い圧力まで膨張させ、それにより、さらに冷却し、その後、中央カラムフィード位置において、第1のオーバーヘッド蒸気ストリームおよび底部液体ストリームを生成する接触および分離デバイスに供給し、その後、前記底部液体ストリームを前記蒸留カラムに供給し、
    (4)前記第2の凝縮部分を前記より低い圧力まで膨張させ、それにより、さらに冷却し、加熱し、その後、前記中央カラムフィード位置において前記接触および分離デバイスに供給し、
    (5)前記第2のストリームを前記より低い圧力まで膨張させ、前記中央カラムフィード位置よりも下の第1の下側カラムフィード位置において前記接触および分離デバイスに供給し、
    (6)前記蒸留カラムの上側領域から第2のオーバーヘッド蒸気ストリームを抜き取り、前記中央カラムフィード位置よりも下の第2の下側カラムフィード位置において前記接触および分離デバイスに供給し、
    (7)前記第1のオーバーヘッド蒸気ストリームを、少なくとも第1の蒸気部分と第2の蒸気部分とに分割し、
    (8)前記第2の蒸気部分を加熱し、その後、前記加熱された第2の蒸気部分の少なくとも一部分を前記揮発性残留ガス画分として排出し、
    (9)前記中央カラムフィード位置よりも下で、前記第1の下側カラムフィード位置および第2の下側カラムフィード位置よりも上の前記接触および分離デバイスの領域から、蒸留蒸気ストリームを抜き取り、前記第1の蒸気部分と合流させて合流蒸気ストリームを形成し、
    (10)前記合流蒸気ストリームをより高い圧力まで圧縮し、
    (11)前記圧縮された合流蒸気ストリームを十分に冷却して、前記圧縮された合流蒸気ストリームの少なくとも一部を凝縮させ、それにより、ステップ(4)および(8)の前記加熱の少なくとも一部分を供給しながら、凝縮したストリームを形成し、
    (12)前記凝縮したストリームの少なくとも一部分を前記より低い圧力まで膨張させ、その後、頂部フィード位置において前記接触および分離デバイスに供給し、
    (13)前記接触および分離デバイスへの前記フィードストリームの量および温度は、前記接触および分離デバイスのオーバーヘッド温度を一定の温度に維持するために有効であり、それにより、前記揮発性が比較的低い画分中の前記成分の前記大部分を回収する、
    プロセス。
  7. メタン、C成分、C成分およびより重質の炭化水素成分を含有するガスストリームを、揮発性の残留ガス画分と、前記C成分、前記C成分および前記より重質の炭化水素成分、あるいは前記C成分および前記より重質の炭化水素成分の大部分を含有する揮発性が比較的低い画分とに分離するためのプロセスにおいて、
    (a)前記ガスストリームを圧力下で冷却して、冷却されたストリームを提供し、
    (b)前記冷却されたストリームをより低い圧力まで膨張させて、それにより、さらに冷却し、
    (c)前記さらに冷却されたストリームを蒸留カラムに導き、前記より低い圧力で分留して、それにより、前記揮発性が比較的低い画分の前記成分を回収し、
    改良として、前記ガスストリームを、冷却前に第1ストリームと第2のストリームとに分割し、
    (1)前記第1のストリームを冷却して、前記第1のストリームの実質的にすべてを凝縮させ、
    (2)前記実質的に凝縮した第1のストリームを、少なくとも第1の凝縮部分と第2の凝縮部分とに分割し、
    (3)前記第1の凝縮部分を前記より低い圧力まで膨張させ、それにより、さらに冷却し、その後、中央カラムフィード位置において、第1のオーバーヘッド蒸気ストリームおよび底部液体ストリームを生成する接触および分離デバイスに供給し、その後、前記底部液体ストリームを前記蒸留カラムに供給し、
    (4)前記第2の凝縮部分を前記より低い圧力まで膨張させ、それにより、さらに冷却し、加熱し、その後、前記中央カラムフィード位置において前記接触および分離デバイスに供給し、
    (5)前記第2のストリームを冷却し、その後、前記より低い圧力まで膨張させ、前記中央カラムフィード位置よりも下の第1の下側カラムフィード位置において前記接触および分離デバイスに供給し、
    (6)前記蒸留カラムの上側領域から第2のオーバーヘッド蒸気ストリームを抜き取り、前記中央カラムフィード位置よりも下の第2の下側カラムフィード位置において前記接触および分離デバイスに供給し、
    (7)前記第1のオーバーヘッド蒸気ストリームを、少なくとも第1の蒸気部分と第2の蒸気部分とに分割し、
    (8)前記第2の蒸気部分を加熱し、その後、前記加熱された第2の蒸気部分の少なくとも一部分を前記揮発性残留ガス画分として排出し、
    (9)前記中央カラムフィード位置よりも下で、前記第1の下側カラムフィード位置および第2の下側カラムフィード位置よりも上の前記接触および分離デバイスの領域から、蒸留蒸気ストリームを抜き取り、前記第1の蒸気部分と合流させて合流蒸気ストリームを形成し、
    (10)前記合流蒸気ストリームをより高い圧力まで圧縮し、
    (11)前記圧縮された合流蒸気ストリームを十分に冷却して、前記圧縮された合流蒸気ストリームの少なくとも一部を凝縮させ、それにより、ステップ(4)および(8)の前記加熱の少なくとも一部分を供給しながら、凝縮したストリームを形成し、
    (12)前記凝縮したストリームの少なくとも一部分を前記より低い圧力まで膨張させ、その後、頂部フィード位置において前記接触および分離デバイスに供給し、
    (13)前記接触および分離デバイスへの前記フィードストリームの量および温度は、前記接触および分離デバイスのオーバーヘッド温度を一定の温度に維持するために有効であり、それにより、前記揮発性が比較的低い画分中の前記成分の前記大部分を回収する、
    プロセス。
  8. メタン、C成分、C成分およびより重質の炭化水素成分を含有するガスストリームを、揮発性の残留ガス画分と、前記C成分、前記C成分および前記より重質の炭化水素成分、あるいは前記C成分および前記より重質の炭化水素成分の大部分を含有する揮発性が比較的低い画分とに分離するためのプロセスにおいて、
    (a)前記ガスストリームを圧力下で冷却して、冷却されたストリームを提供し、
    (b)前記冷却されたストリームをより低い圧力まで膨張させて、それにより、さらに冷却し、
    (c)前記さらに冷却されたストリームを蒸留カラムに導き、前記より低い圧力で分留して、それにより、前記揮発性が比較的低い画分の前記成分を回収し、
    改良として、前記ガスストリームを十分に冷却して、前記ガスストリームを部分的に凝縮し、
    (1)前記部分的に凝縮したガスストリームを分離して、それにより、蒸気ストリームと少なくとも1つの液体ストリームとを提供し、
    (2)その後、前記蒸気ストリームを第1のストリームと第2のストリームとに分割し、
    (3)前記第1のストリームを冷却して、前記第1のストリームの実質的にすべてを凝縮させ、
    (4)前記実質的に凝縮した第1のストリームを、少なくとも第1の凝縮部分と第2の凝縮部分とに分割し、
    (5)前記第1の凝縮部分を前記より低い圧力まで膨張させ、それにより、さらに冷却し、その後、中央カラムフィード位置において、第1のオーバーヘッド蒸気ストリームおよび底部液体ストリームを生成する接触および分離デバイスに供給し、その後、前記底部液体ストリームを前記蒸留カラムに供給し、
    (6)前記第2の凝縮部分を前記より低い圧力まで膨張させ、それにより、さらに冷却し、加熱し、その後、前記中央カラムフィード位置において前記接触および分離デバイスに供給し、
    (7)前記第2のストリームを前記より低い圧力まで膨張させ、前記中央カラムフィード位置よりも下の第1の下側カラムフィード位置において前記接触および分離デバイスに供給し、
    (8)前記少なくとも1つの液体ストリームの少なくとも一部分を前記より低い圧力まで膨張させ、前記中央カラムフィード位置において前記蒸留カラムに供給し、
    (9)前記蒸留カラムの上側領域から第2のオーバーヘッド蒸気ストリームを抜き取り、前記中央カラムフィード位置よりも下の第2の下側カラムフィード位置において前記接触および分離デバイスに供給し、
    (10)前記第1のオーバーヘッド蒸気ストリームを、少なくとも第1の蒸気部分と第2の蒸気部分とに分割し、
    (11)前記第2の蒸気部分を加熱し、その後、前記加熱された第2の蒸気部分の少なくとも一部分を前記揮発性残留ガス画分として排出し、
    (12)前記中央カラムフィード位置よりも下で、前記第1の下側カラムフィード位置および第2の下側カラムフィード位置よりも上の前記接触および分離デバイスの領域から、蒸留蒸気ストリームを抜き取り、前記第1の蒸気部分と合流させて合流蒸気ストリームを形成し、
    (13)前記合流蒸気ストリームをより高い圧力まで圧縮し、
    (14)前記圧縮された合流蒸気ストリームを十分に冷却して、前記圧縮された合流蒸気ストリームの少なくとも一部を凝縮させ、それにより、ステップ(6)および(11)の前記加熱の少なくとも一部分を供給しながら、凝縮したストリームを形成し、
    (15)前記凝縮したストリームの少なくとも一部分を前記より低い圧力まで膨張させ、その後、頂部フィード位置において前記接触および分離デバイスに供給し、
    (16)前記接触および分離デバイスへの前記フィードストリームの量および温度は、前記接触および分離デバイスのオーバーヘッド温度を一定の温度に維持するために有効であり、それにより、前記揮発性が比較的低い画分中の前記成分の前記大部分を回収する、
    プロセス。
  9. メタン、C成分、C成分およびより重質の炭化水素成分を含有するガスストリームを、揮発性の残留ガス画分と、前記C成分、前記C成分および前記より重質の炭化水素成分、あるいは前記C成分および前記より重質の炭化水素成分の大部分を含有する揮発性が比較的低い画分とに分離するためのプロセスにおいて、
    (a)前記ガスストリームを圧力下で冷却して、冷却されたストリームを提供し、
    (b)前記冷却されたストリームをより低い圧力まで膨張させて、それにより、さらに冷却し、
    (c)前記さらに冷却されたストリームを蒸留カラムに導き、前記より低い圧力で分留して、それにより、前記揮発性が比較的低い画分の前記成分を回収し、
    改良として、前記ガスストリームを、冷却前に第1ストリームと第2のストリームとに分割し、
    (1)前記第1のストリームを冷却して、前記第1のストリームの実質的にすべてを凝縮させ、
    (2)前記実質的に凝縮した第1のストリームを、少なくとも第1の凝縮部分と第2の凝縮部分とに分割し、
    (3)前記第1の凝縮部分を前記より低い圧力まで膨張させ、それにより、さらに冷却し、その後、中央カラムフィード位置において、第1のオーバーヘッド蒸気ストリームおよび底部液体ストリームを生成する接触および分離デバイスに供給し、その後、前記底部液体ストリームを前記蒸留カラムに供給し、
    (4)前記第2の凝縮部分を前記より低い圧力まで膨張させ、それにより、さらに冷却し、加熱し、その後、前記中央カラムフィード位置において前記接触および分離デバイスに供給し、
    (5)前記第2のストリームを圧力下で十分に冷却して、部分的に凝縮し、
    (6)前記部分的に凝縮した第2のストリームを分離し、それにより、蒸気ストリームと少なくとも1つの液体ストリームとを提供し、
    (7)前記蒸気ストリームを前記より低い圧力まで膨張させ、前記中央カラムフィード位置よりも下の第1の下側カラムフィード位置において前記接触および分離デバイスに供給し、
    (8)前記少なくとも1つの液体ストリームの少なくとも一部分を前記より低い圧力まで膨張させ、前記中央カラムフィード位置において前記蒸留カラムに供給し、
    (9)前記蒸留カラムの上側領域から第2のオーバーヘッド蒸気ストリームを抜き取り、前記中央カラムフィード位置よりも下の第2の下側カラムフィード位置において前記接触および分離デバイスに供給し、
    (10)前記第1のオーバーヘッド蒸気ストリームを、少なくとも第1の蒸気部分と第2の蒸気部分とに分割し、
    (11)前記第2の蒸気部分を加熱し、その後、前記加熱された第2の蒸気部分の少なくとも一部分を前記揮発性残留ガス画分として排出し、
    (12)前記中央カラムフィード位置よりも下で、前記第1の下側カラムフィード位置および第2の下側カラムフィード位置よりも上の前記接触および分離デバイスの領域から、蒸留蒸気ストリームを抜き取り、前記第1の蒸気部分と合流させて合流蒸気ストリームを形成し、
    (13)前記合流蒸気ストリームをより高い圧力まで圧縮し、
    (14)前記圧縮された合流蒸気ストリームを十分に冷却して、前記圧縮された合流蒸気ストリームの少なくとも一部を凝縮させ、それにより、ステップ(4)および(11)の前記加熱の少なくとも一部分を供給しながら、凝縮したストリームを形成し、
    (15)前記凝縮したストリームの少なくとも一部分を前記より低い圧力まで膨張させ、その後、頂部フィード位置において前記接触および分離デバイスに供給し、
    (16)前記接触および分離デバイスへの前記フィードストリームの量および温度は、前記接触および分離デバイスのオーバーヘッド温度を一定の温度に維持するために有効であり、それにより、前記揮発性が比較的低い画分中の前記成分の前記大部分を回収する、
    プロセス。
  10. メタン、C成分、C成分およびより重質の炭化水素成分を含有するガスストリームを、揮発性の残留ガス画分と、前記C成分、前記C成分および前記より重質の炭化水素成分、あるいは前記C成分および前記より重質の炭化水素成分の大部分を含有する揮発性が比較的低い画分とに分離するためのプロセスにおいて、
    (a)前記ガスストリームを圧力下で冷却して、冷却されたストリームを提供し、
    (b)前記冷却されたストリームをより低い圧力まで膨張させて、それにより、さらに冷却し、
    (c)前記さらに冷却されたストリームを蒸留カラムに導き、前記より低い圧力で分留して、それにより、前記揮発性が比較的低い画分の前記成分を回収し、
    改良として、前記ガスストリームを十分に冷却して、前記ガスストリームを部分的に凝縮し、
    (1)前記部分的に凝縮したガスストリームを分離して、それにより、蒸気ストリームと、少なくとも1つの液体ストリームとを提供し、
    (2)その後、前記蒸気ストリームを第1のストリームと第2のストリームとに分割し、
    (3)前記第1のストリームを前記少なくとも1つの液体ストリームの少なくとも一部分と合流させて合流ストリームを形成し、その後、前記合流ストリームを冷却して、前記合流ストリームのすべてを実質的に凝縮し、
    (4)前記実質的に凝縮した合流ストリームを少なくとも第1の凝縮部分と第2の凝縮部分とに分割し、
    (5)前記第1の凝縮部分を前記より低い圧力まで膨張させ、それにより、さらに冷却し、その後、中央カラムフィード位置において、第1のオーバーヘッド蒸気ストリームおよび底部液体ストリームを生成する接触および分離デバイスに供給し、その後、前記底部液体ストリームを前記蒸留カラムに供給し、
    (6)前記第2の凝縮部分を前記より低い圧力まで膨張させ、それにより、さらに冷却し、加熱し、その後、前記中央カラムフィード位置において前記接触および分離デバイスに供給し、
    (7)前記第2のストリームを前記より低い圧力まで膨張させ、前記中央カラムフィード位置よりも下の第1の下側カラムフィード位置において前記接触および分離デバイスに供給し、
    (8)前記少なくとも1つの液体ストリームの残りの部分がある場合にはそれを前記より低い圧力まで膨張させ、前記中央カラムフィード位置において前記蒸留カラムに供給し、
    (9)前記蒸留カラムの上側領域から第2のオーバーヘッド蒸気ストリームを抜き取り、前記中央カラムフィード位置よりも下の第2の下側カラムフィード位置において前記接触および分離デバイスに供給し、
    (10)前記第1のオーバーヘッド蒸気ストリームを、少なくとも第1の蒸気部分と第2の蒸気部分とに分割し、
    (11)前記第2の蒸気部分を加熱し、その後、前記加熱された第2の蒸気部分の少なくとも一部分を前記揮発性残留ガス画分として排出し、
    (12)前記中央カラムフィード位置よりも下で、前記第1の下側カラムフィード位置および第2の下側カラムフィード位置よりも上の前記接触および分離デバイスの領域から、蒸留蒸気ストリームを抜き取り、前記第1の蒸気部分と合流させて合流蒸気ストリームを形成し、
    (13)前記合流蒸気ストリームをより高い圧力まで圧縮し、
    (14)前記圧縮された合流蒸気ストリームを十分に冷却して、前記圧縮された合流蒸気ストリームの少なくとも一部を凝縮させ、それにより、ステップ(6)および(11)の前記加熱の少なくとも一部分を供給しながら、凝縮したストリームを形成し、
    (15)前記凝縮したストリームの少なくとも一部分を前記より低い圧力まで膨張させ、その後、頂部フィード位置において前記接触および分離デバイスに供給し、
    (16)前記接触および分離デバイスへの前記フィードストリームの量および温度は、前記接触および分離デバイスのオーバーヘッド温度を一定の温度に維持するために有効であり、それにより、前記揮発性が比較的低い画分中の前記成分の前記大部分を回収する、
    プロセス。
  11. 前記頂部フィード位置の下で、前記上側中央カラムフィード位置よりも上の前記蒸留カラムの領域から前記蒸留蒸気ストリームを抜き取る、請求項1、2、3、4または5に記載の改良。
  12. 前記中央カラムフィード位置の下の前記蒸留カラムの領域から前記蒸留蒸気ストリームを抜き取る、請求項1、2、3、4、または5に記載の改良。
  13. 前記頂部フィード位置よりも下で、前記中央カラムフィード位置よりも上の前記接触および分離デバイスの領域から前記蒸留蒸気ストリームを抜き取る、請求項6、7、8、9または10に記載の改良。
  14. 前記第2のオーバーヘッド蒸気ストリームを前記蒸留蒸気ストリームと第2の蒸留蒸気ストリームとに分割し、その後、前記第2の蒸留蒸気ストリームを、前記第2の下側カラムフィード位置において前記接触および分離デバイスに供給する、請求項6、7、8、9または10に記載の改良。
  15. 前記加熱され膨張した第2の凝縮部分を、第2の上側中央カラムフィード位置において前記蒸留カラムに供給する、請求項1、2、3、4または5に記載の改良。
  16. 前記加熱され膨張した第2の凝縮部分を、第2の上側中央カラムフィード位置において前記蒸留カラムに供給する、請求項11に記載の改良。
  17. 前記加熱され膨張した第2の凝縮部分を、第2の上側中央カラムフィード位置において前記蒸留カラムに供給する、請求項12に記載の改良。
  18. 前記加熱され膨張した第2の凝縮部分を、第2の中央カラムフィード位置において前記接触および分離デバイスに供給する、請求項6、7、8、9または10に記載の改良。
  19. 前記加熱され膨張した第2の凝縮部分を、第2の中央カラムフィード位置において前記接触および分離デバイスに供給する、請求項13に記載の改良。
  20. 前記加熱され膨張した第2の凝縮部分を、第2の中央カラムフィード位置において前記接触および分離デバイスに供給する、請求項14に記載の改良。
  21. メタン、C成分、C成分およびより重質の炭化水素成分を含有するガスストリームを、揮発性の残留ガス画分と、前記C成分、前記C成分および前記より重質の炭化水素成分、あるいは前記C成分および前記より重質の炭化水素成分の大部分を含有する揮発性が比較的低い画分とに分離するための装置において、前記装置中に、
    (a)圧力下で冷却されたストリームを提供するために接続された、前記ガスストリームを圧力下で冷却するための第1の冷却手段、
    (b)圧力下で前記冷却されたストリームの少なくとも一部分を受け、それをより低い圧力まで膨張させるために接続された第1の膨張手段であって、それにより、前記ストリームがさらに冷却される、第1の膨張手段、および
    (c)前記さらに冷却されたストリームを受けるために接続された蒸留カラムであって、前記蒸留カラムが、前記さらに冷却されたストリームを、オーバーヘッド蒸気ストリームと前記揮発性が比較的低い画分とに分離するように適合される、蒸留カラム
    が存在し、改良として、前記装置が、
    (1)前記冷却されたストリームを受け、それを第1のストリームと第2のストリームとに分割するために、前記第1の冷却手段に接続された第1の分割手段と、
    (2)前記第1のストリームを受け、それを十分に冷却して実質的に凝縮させるために、前記第1の分割手段に接続された第2の冷却手段と、
    (3)前記実質的に凝縮した第1のストリームを受け、それを少なくとも第1の凝縮部分と第2の凝縮部分とに分割するために、前記第2の冷却手段に接続された第2の分割手段と、
    (4)前記第1の凝縮部分を受け、それを前記より低い圧力に膨張させるために、前記第2の分割手段に接続された第2の膨張手段であって、前記第2の膨張手段が、前記膨張した第1の凝縮部分を、上側中央カラムフィード位置において前記蒸留カラムに供給するために、前記蒸留カラムにさらに接続される、第2の膨張手段と、
    (5)前記第2の凝縮部分を受け、それを前記より低い圧力まで膨張させるために、前記第2の分割手段に接続された第3の膨張手段と、
    (6)前記膨張した第2の凝縮部分を受け、それを加熱するために、前記第3の膨張手段に接続された熱交換手段であって、前記熱交換手段が、前記加熱され膨張した第2の凝縮部分を、前記上側中央カラムフィード位置において前記蒸留カラムに供給するために、前記蒸留カラムにさらに接続される、熱交換手段と、
    (7)前記第2のストリームを受け、それを前記より低い圧力まで膨張させるために、前記第1の分割手段に接続された前記第1の膨張手段であって、前記第1の膨張手段が、前記膨張した第2のストリームを、前記上側中央カラムフィード位置よりも下の中央カラムフィード位置において前記蒸留カラムに供給するために、前記蒸留カラムにさらに接続される、前記第1の膨張手段と、
    (8)前記蒸留カラムの中で分離された前記オーバーヘッド蒸気ストリームを受け、それを少なくとも第1の蒸気部分と第2の蒸気部分とに分割するために、前記蒸留カラムに接続された第3の分割手段と、
    (9)前記第2の蒸気部分の少なくとも一部分を受け、それを加熱し、その後、前記加熱された第2の蒸気部分の少なくとも一部分を、前記揮発性残留ガス画分として排出するために、前記第3の分割手段にさらに接続される、前記熱交換手段と、
    (10)前記上側中央カラムフィード位置よりも下で、前記中央カラムフィード位置よりも上の前記蒸留カラムの領域から、蒸留蒸気ストリームを受けるために、前記蒸留カラムに接続された蒸気抜取り手段と、
    (11)前記第1の蒸気部分および前記蒸留蒸気ストリームを受け、合流蒸気ストリームを形成するために、前記第3の分割手段および前記蒸気抜取り手段に接続された合流手段と、
    (12)前記合流蒸気ストリームを受け、それをより高い圧力まで圧縮するために、前記合流手段に接続された圧縮手段と、
    (13)前記圧縮された合流蒸気ストリームを受け、それを十分に冷却して、その少なくとも一部を凝縮させ、それにより、ステップ(6)および(9)の前記加熱の少なくとも一部分を供給しながら、凝縮したストリームを形成するために、前記圧縮手段にさらに接続される、前記熱交換手段と、
    (14)前記凝縮したストリームを受け、それを前記より低い圧力まで膨張させるために前記熱交換手段に接続された第4の膨張手段であって、前記第4の膨張手段が、前記膨張し凝縮したストリームの少なくとも一部分を、頂部フィード位置において前記蒸留カラムに供給するために、前記蒸留カラムにさらに接続される、第4の膨張手段と、
    (15)前記蒸留カラムのオーバーヘッド温度を一定の温度に維持するように、前記蒸留カラムへの前記フィードストリームの量および温度を調節し、それにより、前記揮発性が比較的低い画分中の前記成分の前記大部分を回収するように適合される、制御手段と
    を含む、装置。
  22. メタン、C成分、C成分およびより重質の炭化水素成分を含有するガスストリームを、揮発性の残留ガス画分と、前記C成分、前記C成分および前記より重質の炭化水素成分、あるいは前記C成分および前記より重質の炭化水素成分の大部分を含有する揮発性が比較的低い画分とに分離するための装置において、前記装置中に、
    (a)圧力下で冷却されたストリームを提供するために接続された、前記ガスストリームを圧力下で冷却するための第1の冷却手段、
    (b)圧力下で前記冷却されたストリームの少なくとも一部分を受け、それをより低い圧力まで膨張させるために接続された第1の膨張手段であって、それにより、前記ストリームがさらに冷却される、第1の膨張手段、および
    (c)前記さらに冷却されたストリームを受けるために接続された蒸留カラムであって、前記蒸留カラムが、前記さらに冷却されたストリームを、オーバーヘッド蒸気ストリームと前記揮発性が比較的低い画分とに分離するように適合される、蒸留カラム
    が存在し、改良として、前記装置が、
    (1)前記第1の冷却手段の前に、前記ガスストリームを第1のストリームと第2のストリームとに分割するための第1の分割手段と、
    (2)前記第1のストリームを受け、それを十分に冷却して実質的に凝縮させるために、前記第1の分割手段に接続された第2の冷却手段と、
    (3)前記実質的に凝縮した第1のストリームを受け、それを少なくとも第1の凝縮部分と第2の凝縮部分とに分割するために、前記第2の冷却手段に接続された第2の分割手段と、
    (4)前記第1の凝縮部分を受け、それを前記より低い圧力に膨張させるために、前記第2の分割手段に接続された第2の膨張手段であって、前記第2の膨張手段が、前記膨張した第1の凝縮部分を、上側中央カラムフィード位置において前記蒸留カラムに供給するために、前記蒸留カラムにさらに接続される、第2の膨張手段と、
    (5)前記第2の凝縮部分を受け、それを前記より低い圧力まで膨張させるために、前記第2の分割手段に接続された第3の膨張手段と、
    (6)前記膨張した第2の凝縮部分を受け、それを加熱するために、前記第3の膨張手段に接続された熱交換手段であって、前記熱交換手段が、前記加熱され膨張した第2の凝縮部分を、前記上側中央カラムフィード位置において前記蒸留カラムに供給するために、前記蒸留カラムにさらに接続される、熱交換手段と、
    (7)前記第2のストリームを受け、それを冷却するために、前記第1の分割手段に接続された前記第1の冷却手段と、
    (8)前記冷却された第2のストリームを受け、それを前記より低い圧力まで膨張させるために前記第1の冷却手段に接続された前記第1の膨張手段であって、前記第1の膨張手段が、前記膨張した冷却された第2のストリームを、前記上側中央カラムフィード位置よりも下の中央カラムフィード位置において前記蒸留カラムに供給するために、前記蒸留カラムにさらに接続される、前記第1の膨張手段と、
    (9)前記蒸留カラムの中で分離された前記オーバーヘッド蒸気ストリームを受け、それを少なくとも第1の蒸気部分と第2の蒸気部分とに分割するために、前記蒸留カラムに接続された第3の分割手段と、
    (10)前記第2の蒸気部分の少なくとも一部分を受け、それを加熱し、その後、前記加熱された第2の蒸気部分の少なくとも一部分を、前記揮発性残留ガス画分として排出するために、前記第3の分割手段にさらに接続される、前記熱交換手段と、
    (11)前記上側中央カラムフィード位置よりも下で、前記中央カラムフィード位置よりも上の前記蒸留カラムの領域から、蒸留蒸気ストリームを受けるために、前記蒸留カラムに接続された蒸気抜取り手段と、
    (12)前記第1の蒸気部分および前記蒸留蒸気ストリームを受け、合流蒸気ストリームを形成するために、前記第3の分割手段および前記蒸気抜取り手段に接続された合流手段と、
    (13)前記合流蒸気ストリームを受け、それをより高い圧力まで圧縮するために、前記合流手段に接続された圧縮手段と、
    (14)前記圧縮された合流蒸気ストリームを受け、それを十分に冷却して、その少なくとも一部を凝縮させ、それにより、ステップ(6)および(10)の前記加熱の少なくとも一部分を供給しながら、凝縮したストリームを形成するために、前記圧縮手段にさらに接続される、前記熱交換手段と、
    (15)前記凝縮したストリームを受け、それを前記より低い圧力まで膨張させるために前記熱交換手段に接続された第4の膨張手段であって、前記第4の膨張手段が、前記膨張し凝縮したストリームの少なくとも一部分を、頂部フィード位置において前記蒸留カラムに供給するために、前記蒸留カラムにさらに接続される、第4の膨張手段と、
    (16)前記蒸留カラムのオーバーヘッド温度を一定の温度に維持するように、前記蒸留カラムへの前記フィードストリームの量および温度を調節し、それにより、前記揮発性が比較的低い画分中の前記成分の前記大部分を回収するように適合される、制御手段と
    を含む、装置。
  23. メタン、C成分、C成分およびより重質の炭化水素成分を含有するガスストリームを、揮発性の残留ガス画分と、前記C成分、前記C成分および前記より重質の炭化水素成分、あるいは前記C成分および前記より重質の炭化水素成分の大部分を含有する揮発性が比較的低い画分とに分離するための装置において、前記装置中に、
    (a)圧力下で冷却されたストリームを提供するために接続された、前記ガスストリームを圧力下で冷却するための第1の冷却手段、
    (b)圧力下で前記冷却されたストリームの少なくとも一部分を受け、それをより低い圧力まで膨張させるために接続された第1の膨張手段であって、それにより、前記ストリームがさらに冷却される、第1の膨張手段、および
    (c)前記さらに冷却されたストリームを受けるために接続された蒸留カラムであって、前記蒸留カラムが、前記さらに冷却されたストリームを、オーバーヘッド蒸気ストリームと前記揮発性が比較的低い画分とに分離するように適合される、蒸留カラム
    が存在し、改良として、前記装置が、
    (1)前記ガスストリームを圧力下で十分に冷却して、それを部分的に凝縮するように適合される、前記第1の冷却手段と、
    (2)前記部分的に凝縮したガスストリームを受け、それを蒸気ストリームと少なくとも1つの液体ストリームとに分離するために、前記第1の冷却手段に接続された分離手段と、
    (3)前記蒸気ストリームを受け、それを第1のストリームと第2のストリームとに分割するために、前記分離手段に接続された第1の分割手段と、
    (4)前記第1のストリームを受け、それを十分に冷却して実質的に凝縮させるために、前記第1の分割手段に接続された第2の冷却手段と、
    (5)前記実質的に凝縮した第1のストリームを受け、それを少なくとも第1の凝縮部分と第2の凝縮部分とに分割するために、前記第2の冷却手段に接続された第2の分割手段と、
    (6)前記第1の凝縮部分を受け、それを前記より低い圧力まで膨張させるために、前記第2の分割手段に接続された第2の膨張手段であって、前記第2の膨張手段が、前記膨張した第1の凝縮部分を、上側中央カラムフィード位置において前記蒸留カラムに供給するために、前記蒸留カラムにさらに接続される、第2の膨張手段と、
    (7)前記第2の凝縮部分を受け、それを前記より低い圧力まで膨張させるために、前記第2の分割手段に接続された第3の膨張手段と、
    (8)前記膨張した第2の凝縮部分を受け、それを加熱するために、前記第3の膨張手段に接続された熱交換手段であって、前記熱交換手段が、前記加熱され膨張した第2の凝縮部分を、前記上側中央カラムフィード位置において前記蒸留カラムに供給するために、前記蒸留カラムにさらに接続される、熱交換手段と、
    (9)前記第2のストリームを受け、それを前記より低い圧力まで膨張させるために、前記第1の分割手段に接続された前記第1の膨張手段であって、前記第1の膨張手段が、前記膨張した第2のストリームを、前記上側中央カラムフィード位置よりも下の中央カラムフィード位置において前記蒸留カラムに供給するために、前記蒸留カラムにさらに接続される、前記第1の膨張手段と、
    (10)前記少なくとも1つの液体ストリームの少なくとも一部分を受け、それを前記より低い圧力まで膨張させるために、前記分離手段に接続された第4の膨張手段であって、前記第4の膨張手段が、前記膨張した液体ストリームを、前記中央カラムフィード位置よりも下の下側中央カラムフィード位置において前記蒸留カラムに供給するために、前記蒸留カラムにさらに接続される、第4の膨張手段と、
    (11)前記蒸留カラムで分離された前記オーバーヘッド蒸気ストリームを受け、それを少なくとも第1の蒸気部分と第2の蒸気部分とに分割するために、前記蒸留カラムに接続された第3の分割手段と、
    (12)前記第2の蒸気部分の少なくとも一部分を受け、それを加熱するために、前記第3の分割手段にさらに接続され、その後、前記加熱された第2の蒸気部分の少なくとも一部分を、前記揮発性残留ガス画分として排出する、前記熱交換手段と、
    (13)前記上側中央カラムフィード位置よりも下で、前記中央カラムフィード位置よりも上の前記蒸留カラムの領域から、蒸留蒸気ストリームを受けるために、前記蒸留カラムに接続された蒸気抜取り手段と、
    (14)前記第1の蒸気部分および前記蒸留蒸気ストリームを受け、合流蒸気ストリームを形成するために、前記第3の分割手段および前記蒸気抜取り手段に接続された合流手段と、
    (15)前記合流蒸気ストリームを受け、それをより高い圧力まで圧縮するために、前記合流手段に接続された圧縮手段と、
    (16)前記圧縮された合流蒸気ストリームを受け、それを十分に冷却して、その少なくとも一部を凝縮させ、それにより、ステップ(8)および(12)の前記加熱の少なくとも一部分を供給しながら、凝縮したストリームを形成するために、前記圧縮手段にさらに接続される、前記熱交換手段と、
    (17)前記凝縮したストリームを受け、それを前記より低い圧力まで膨張させるために、前記熱交換手段に接続された第5の膨張手段であって、前記第5の膨張手段が、前記膨張し凝縮したストリームの少なくとも一部分を、頂部フィード位置において前記蒸留カラムに供給するために、前記蒸留カラムにさらに接続される、第5の膨張手段と、
    (18)前記蒸留カラムのオーバーヘッド温度を一定の温度に維持するように、前記蒸留カラムへの前記フィードストリームの量および温度を調節し、それにより、前記揮発性が比較的低い画分中の前記成分の前記大部分を回収するように適合された制御手段と
    を含む、装置。
  24. メタン、C成分、C成分およびより重質の炭化水素成分を含有するガスストリームを、揮発性の残留ガス画分と、前記C成分、前記C成分および前記より重質の炭化水素成分、あるいは前記C成分および前記より重質の炭化水素成分の大部分を含有する揮発性が比較的低い画分とに分離するための装置において、前記装置中に、
    (a)圧力下で冷却されたストリームを提供するために接続された、前記ガスストリームを圧力下で冷却するための第1の冷却手段、
    (b)圧力下で前記冷却されたストリームの少なくとも一部分を受け、それをより低い圧力まで膨張させるために接続された第1の膨張手段であって、それにより、前記ストリームがさらに冷却される、第1の膨張手段、および
    (c)前記さらに冷却されたストリームを受けるために接続された蒸留カラムであって、前記蒸留カラムが、前記さらに冷却されたストリームを、オーバーヘッド蒸気ストリームと前記揮発性が比較的低い画分とに分離するように適合される、蒸留カラム
    が存在し、改良として、前記装置が、
    (1)前記第1の冷却手段の前に、前記ガスストリームを第1のストリームと第2のストリームとに分割するための第1の分割手段と、
    (2)前記第1のストリームを受け、それを十分に冷却して実質的に凝縮させるために、前記第1の分割手段に接続された第2の冷却手段と、
    (3)前記実質的に凝縮した第1のストリームを受け、それを少なくとも第1の凝縮部分と第2の凝縮部分とに分割するために、前記第2の冷却手段に接続された第2の分割手段と、
    (4)前記第1の凝縮部分を受け、それを前記より低い圧力に膨張させるために、前記第2の分割手段に接続された第2の膨張手段であって、前記第2の膨張手段が、前記膨張した第1の凝縮部分を、上側中央カラムフィード位置において前記蒸留カラムに供給するために、前記蒸留カラムにさらに接続される、第2の膨張手段と、
    (5)前記第2の凝縮部分を受け、それを前記より低い圧力まで膨張させるために、前記第2の分割手段に接続された第3の膨張手段と、
    (6)前記膨張した第2の凝縮部分を受け、それを加熱するために、前記第3の膨張手段に接続された熱交換手段であって、前記熱交換手段が、前記加熱され膨張した第2の凝縮部分を、前記上側中央カラムフィード位置において前記蒸留カラムに供給するために、前記蒸留カラムにさらに接続される、熱交換手段と、
    (7)前記第2のストリームを受けるために前記第1の分割手段に接続された前記第1の冷却手段であって、前記第1の冷却手段が、前記第2のストリームを圧力下で十分に冷却し、部分的に凝縮するように適合される、第1の冷却手段と、
    (8)前記部分的に凝縮した第2のストリームを受け、それを蒸気ストリームと少なくとも1つの液体ストリームとに分離するために、前記第1の冷却手段に接続された分離手段と、
    (9)前記蒸気ストリームを受け、それを前記より低い圧力まで膨張させるために、前記分離手段に接続された前記第1の膨張手段であって、前記第1の膨張手段が、前記膨張した蒸気ストリームを、前記上側中央カラムフィード位置よりも下の中央カラムフィード位置において前記蒸留カラムに供給するために、前記蒸留カラムにさらに接続される、前記第1の膨張手段と、
    (10)前記少なくとも1つの液体ストリームの少なくとも一部分を受け、それを前記より低い圧力まで膨張させるために、前記分離手段に接続された第4の膨張手段であって、前記第4の膨張手段が、前記膨張した液体ストリームを、前記中央カラムフィード位置よりも下の下側中央カラムフィード位置において前記蒸留カラムに供給するために、前記蒸留カラムにさらに接続される、第4の膨張手段と、
    (11)前記蒸留カラムで分離された前記オーバーヘッド蒸気ストリームを受け、それを少なくとも第1の蒸気部分と第2の蒸気部分とに分割するために、前記蒸留カラムに接続された第3の分割手段と、
    (12)前記第2の蒸気部分の少なくとも一部分を受け、それを加熱するために、前記第3の分割手段にさらに接続され、その後、前記加熱された第2の蒸気部分の少なくとも一部分を、前記揮発性残留ガス画分として排出する、前記熱交換手段と、
    (13)前記上側中央カラムフィード位置よりも下で、前記中央カラムフィード位置よりも上の前記蒸留カラムの領域から、蒸留蒸気ストリームを受けるために、前記蒸留カラムに接続された蒸気抜取り手段と、
    (14)前記第1の蒸気部分および前記蒸留蒸気ストリームを受け、合流蒸気ストリームを形成するために、前記第3の分割手段および前記蒸気抜取り手段に接続された合流手段と、
    (15)前記合流蒸気ストリームを受け、それをより高い圧力まで圧縮するために、前記合流手段に接続された圧縮手段と、
    (16)前記圧縮された合流蒸気ストリームを受け、それを十分に冷却して、その少なくとも一部を凝縮させ、それにより、ステップ(6)および(12)の前記加熱の少なくとも一部分を供給しながら、凝縮したストリームを形成するために、前記圧縮手段にさらに接続される、前記熱交換手段と、
    (17)前記凝縮したストリームを受け、それを前記より低い圧力まで膨張させるために、前記熱交換手段に接続された第5の膨張手段であって、前記第5の膨張手段が、前記膨張し凝縮したストリームの少なくとも一部分を、頂部フィード位置において前記蒸留カラムに供給するために、前記蒸留カラムにさらに接続される、第5の膨張手段と、
    (18)前記蒸留カラムのオーバーヘッド温度を一定の温度に維持するように、前記蒸留カラムへの前記フィードストリームの量および温度を調節し、それにより、前記揮発性が比較的低い画分中の前記成分の前記大部分を回収するように適合された制御手段と
    を含む、装置。
  25. メタン、C成分、C成分およびより重質の炭化水素成分を含有するガスストリームを、揮発性の残留ガス画分と、前記C成分、前記C成分および前記より重質の炭化水素成分、あるいは前記C成分および前記より重質の炭化水素成分の大部分を含有する揮発性が比較的低い画分とに分離するための装置において、前記装置中に、
    (a)圧力下で冷却されたストリームを提供するために接続された、前記ガスストリームを圧力下で冷却するための第1の冷却手段、
    (b)圧力下で前記冷却されたストリームの少なくとも一部分を受け、それをより低い圧力まで膨張させるために接続された第1の膨張手段であって、それにより、前記ストリームがさらに冷却される、第1の膨張手段、および
    (c)前記さらに冷却されたストリームを受けるために接続された蒸留カラムであって、前記蒸留カラムが、前記さらに冷却されたストリームを、オーバーヘッド蒸気ストリームと前記揮発性が比較的低い画分とに分離するように適合される、蒸留カラム
    が存在し、改良として、前記装置が、
    (1)前記ガスストリームを圧力下で充分に冷却して、部分的に凝縮させるように適合された前記第1の冷却手段と、
    (2)前記部分的に凝縮したガスストリームを受け、それを蒸気ストリームと少なくとも1つの液体ストリームとに分離するために、前記第1の冷却手段に接続された分離手段と、
    (3)前記蒸気ストリームを受け、それを第1のストリームと第2のストリームとに分割するために、前記分離手段に接続された第1の分割手段と、
    (4)前記第1のストリームおよび前記少なくとも1つの液体ストリームの少なくとも一部分を受け、合流ストリームを形成するために、前記第1の分割手段および前記分離手段に接続された第1の合流手段と、
    (5)前記合流ストリームを受け、それを十分に冷却して実質的に凝縮させるために、前記第1の合流手段に接続された第2の冷却手段と、
    (6)前記実質的に凝縮した合流ストリームを受け、それを少なくとも第1の凝縮部分と第2の凝縮部分とに分割するために、前記第2の冷却手段に接続された第2の分割手段と、
    (7)前記第1の凝縮部分を受け、それを前記より低い圧力まで膨張させるために、前記第2の分割手段に接続された第2の膨張手段であって、前記第2の膨張手段が、前記膨張した第1の凝縮部分を、上側中央カラムフィード位置において前記蒸留カラムに供給するために、前記蒸留カラムにさらに接続される、第2の膨張手段と、
    (8)前記第2の凝縮部分を受け、それを前記より低い圧力まで膨張させるために前記第2の分割手段に接続された第3の膨張手段と、
    (9)前記膨張した第2の凝縮部分を受け、それを加熱するために、前記第3の膨張手段に接続された熱交換手段であって、前記熱交換手段が、前記加熱され膨張した第2の凝縮部分を、前記上側中央カラムフィード位置において前記蒸留カラムに供給するために、前記蒸留カラムにさらに接続される、熱交換手段と、
    (10)前記第2のストリームを受け、それを前記より低い圧力まで膨張させるために、前記第1の分割手段に接続された前記第1の膨張手段であって、前記第1の膨張手段が、前記膨張した第2のストリームを、前記上側中央カラムフィード位置よりも下の中央カラムフィード位置において前記蒸留カラムに供給するために、前記蒸留カラムにさらに接続される、前記第1の膨張手段と、
    (11)前記少なくとも1つの液体ストリームの残りの部分がある場合にはそれを受け、それを前記より低い圧力まで膨張させるために、前記分離手段に接続された第4の膨張手段であって、前記第4の膨張手段が、前記膨張した液体ストリームを、前記中央カラムフィード位置よりも下の下側中央カラムフィード位置において前記蒸留カラムに供給するために、前記蒸留カラムにさらに接続される、第4の膨張手段と、
    (12)前記蒸留カラムで分離された前記オーバーヘッド蒸気ストリームを受け、それを少なくとも第1の蒸気部分と第2の蒸気部分とに分割するために、前記蒸留カラムに接続された第3の分割手段と、
    (13)前記第2の蒸気部分の少なくとも一部分を受け、それを加熱するために、前記第3の分割手段にさらに接続され、その後、前記加熱された第2の蒸気部分の少なくとも一部分を、前記揮発性残留ガス画分として排出する、前記熱交換手段と、
    (14)前記上側中央カラムフィード位置よりも下で、前記中央カラムフィード位置よりも上の前記蒸留カラムの領域から、蒸留蒸気ストリームを受けるために、前記蒸留カラムに接続された蒸気抜取り手段と、
    (15)前記第1の蒸気部分および前記蒸留蒸気ストリームを受け、合流蒸気ストリームを形成するために、前記第3の分割手段および前記蒸気抜取り手段に接続された第2の合流手段と、
    (16)前記合流蒸気ストリームを受け、それをより高い圧力まで圧縮するために、前記第2の合流手段に接続された圧縮手段と、
    (17)前記圧縮された合流蒸気ストリームを受け、それを十分に冷却して、その少なくとも一部を凝縮させ、それにより、ステップ(9)および(13)の前記加熱の少なくとも一部分を供給しながら、凝縮したストリームを形成するために、前記圧縮手段にさらに接続される、前記熱交換手段と、
    (18)前記凝縮したストリームを受け、それを前記より低い圧力まで膨張させるために、前記熱交換手段に接続された第5の膨張手段であって、前記第5の膨張手段が、前記膨張し凝縮したストリームの少なくとも一部分を、頂部フィード位置において前記蒸留カラムに供給するために、前記蒸留カラムにさらに接続される、第5の膨張手段と、
    (19)前記蒸留カラムのオーバーヘッド温度を一定の温度に維持するように、前記蒸留カラムへの前記フィードストリームの量および温度を調節し、それにより、前記揮発性が比較的低い画分中の前記成分の前記大部分を回収するように適合された制御手段と
    を含む、装置。
  26. メタン、C成分、C成分およびより重質の炭化水素成分を含有するガスストリームを、揮発性の残留ガス画分と、前記C成分、前記C成分および前記より重質の炭化水素成分、あるいは前記C成分および前記より重質の炭化水素成分の大部分を含有する揮発性が比較的低い画分とに分離するための装置において、前記装置中に、
    (a)圧力下で冷却されたストリームを提供するために接続された、前記ガスストリームを圧力下で冷却するための第1の冷却手段、
    (b)圧力下で前記冷却されたストリームの少なくとも一部分を受け、それをより低い圧力まで膨張させるために接続された第1の膨張手段であって、それにより、前記ストリームがさらに冷却される、第1の膨張手段、および
    (c)前記さらに冷却されたストリームを受けるために接続された蒸留カラムであって、前記蒸留カラムが、前記さらに冷却されたストリームを第1のオーバーヘッド蒸気ストリームと前記揮発性が比較的低い画分とに分離するように適合される、蒸留カラム
    が存在し、改良として、前記装置が、
    (1)前記冷却されたストリームを受け、それを第1のストリームと第2のストリームとに分割するために、前記第1の冷却手段に接続された第1の分割手段と、
    (2)前記第1のストリームを受け、それを十分に冷却して実質的に凝縮させるために、前記第1の分割手段に接続された第2の冷却手段と、
    (3)前記実質的に凝縮した第1のストリームを受け、それを少なくとも第1の凝縮部分と第2の凝縮部分とに分割するために、前記第2の冷却手段に接続された第2の分割手段と、
    (4)前記第1の凝縮部分を受け、それを前記より低い圧力に膨張させるために、前記第2の分割手段に接続された第2の膨張手段であって、前記第2の膨張手段が、前記膨張した第1の凝縮部分を、中央カラムフィード位置において接触および分離手段に供給するために前記接触および分離手段にさらに接続され、前記接触および分離手段が、第2のオーバーヘッド蒸気ストリームおよび底部液体ストリームを生成するように適合される、第2の膨張手段と、
    (5)前記第2の凝縮部分を受け、それを前記より低い圧力まで膨張させるために、前記第2の分割手段に接続された第3の膨張手段と、
    (6)前記膨張した第2の凝縮部分を受け、それを加熱するために、前記第3の膨張手段に接続された熱交換手段であって、前記熱交換手段が、前記加熱され膨張した第2の凝縮部分を、前記中央カラムフィード位置において前記接触および分離手段に供給するために、前記接触および分離手段にさらに接続される、熱交換手段と、
    (7)前記第2のストリームを受け、それを前記より低い圧力まで膨張させるために、前記第1の分割手段に接続された前記第1の膨張手段であって、前記第1の膨張手段が、前記膨張した第2のストリームを、前記中央カラムフィード位置よりも下の第1の下側カラムフィード位置において前記接触および分離手段に供給するために、前記接触および分離手段にさらに接続される、前記第1の膨張手段と、
    (8)前記底部液体ストリームの少なくとも一部分を受けるために、前記接触および分離手段に接続された前記蒸留カラムと、
    (9)前記第1のオーバーヘッド蒸気ストリームの少なくとも一部分を、前記中央カラムフィード位置よりも下の第2の下側カラムフィード位置において受けるために、前記蒸留カラムにさらに接続された前記接触および分離手段と、
    (10)前記接触および分離手段の中で分離された前記第2のオーバーヘッド蒸気ストリームを受け、それを少なくとも第1の蒸気部分と第2の蒸気部分とに分割するために、前記接触および分離手段に接続された第3の分割手段と、
    (11)前記第2の蒸気部分の少なくとも一部分を受け、それを加熱し、その後、前記加熱された第2の蒸気部分の少なくとも一部分を、前記揮発性残留ガス画分として排出するために、前記第3の分割手段にさらに接続される、前記熱交換手段と、
    (12)前記中央カラムフィード位置よりも下で、前記第1の下側カラムフィード位置および第2の下側カラムフィード位置よりも上の前記接触および分離デバイスの領域から、蒸留蒸気ストリームを受けるために、前記接触および分離手段に接続された蒸気抜取り手段と、
    (13)前記第1の蒸気部分および前記蒸留蒸気ストリームを受け、合流蒸気ストリームを形成するために、前記第3の分割手段および前記蒸気抜取り手段に接続された合流手段と、
    (14)前記合流蒸気ストリームを受け、それをより高い圧力まで圧縮するために、前記合流手段に接続された圧縮手段と、
    (15)前記圧縮された合流蒸気ストリームを受け、それを十分に冷却して、その少なくとも一部を凝縮させ、それにより、ステップ(6)および(11)の前記加熱の少なくとも一部分を供給しながら、凝縮したストリームを形成するために、前記圧縮手段にさらに接続される、前記熱交換手段と、
    (16)前記凝縮したストリームを受け、それを前記より低い圧力まで膨張させるために前記熱交換手段に接続された第4の膨張手段であって、前記第4の膨張手段が、前記膨張し凝縮したストリームの少なくとも一部分を、頂部フィード位置において前記接触および分離手段に供給するために、前記接触および分離手段にさらに接続される、第4の膨張手段と、
    (17)前記接触および分離手段のオーバーヘッド温度を一定の温度に維持するように、前記接触および分離手段への前記フィードストリームの量および温度を調節し、それにより、前記揮発性が比較的低い画分中の前記成分の前記大部分を回収するように適合された制御手段と
    を含む、装置。
  27. メタン、C成分、C成分およびより重質の炭化水素成分を含有するガスストリームを、揮発性の残留ガス画分と、前記C成分、前記C成分および前記より重質の炭化水素成分、あるいは前記C成分および前記より重質の炭化水素成分の大部分を含有する揮発性が比較的低い画分とに分離するための装置において、前記装置中に、
    (a)圧力下で冷却されたストリームを提供するために接続された、前記ガスストリームを圧力下で冷却するための第1の冷却手段、
    (b)圧力下で前記冷却されたストリームの少なくとも一部分を受け、それをより低い圧力まで膨張させるために接続された第1の膨張手段であって、それにより、前記ストリームがさらに冷却される、第1の膨張手段、および
    (c)前記さらに冷却されたストリームを受けるために接続された蒸留カラムであって、前記蒸留カラムが、前記さらに冷却されたストリームを第1のオーバーヘッド蒸気ストリームと前記揮発性が比較的低い画分とに分離するように適合される、蒸留カラム
    が存在し、改良として、前記装置が、
    (1)前記第1の冷却手段の前に、前記ガスストリームを第1のストリームと第2のストリームとに分割するための第1の分割手段と、
    (2)前記第1のストリームを受け、それを十分に冷却して実質的に凝縮させるために、前記第1の分割手段に接続された第2の冷却手段と、
    (3)前記実質的に凝縮した第1のストリームを受け、それを少なくとも第1の凝縮部分と第2の凝縮部分とに分割するために、前記第2の冷却手段に接続された第2の分割手段と、
    (4)前記第1の凝縮部分を受け、それを前記より低い圧力に膨張させるために、前記第2の分割手段に接続された第2の膨張手段であって、前記第2の膨張手段が、前記膨張した第1の凝縮部分を、中央カラムフィード位置において接触および分離手段に供給するために前記接触および分離手段にさらに接続され、前記接触および分離手段が、第2のオーバーヘッド蒸気ストリームおよび底部液体ストリームを生成するように適合される、第2の膨張手段と、
    (5)前記第2の凝縮部分を受け、それを前記より低い圧力まで膨張させるために、前記第2の分割手段に接続された第3の膨張手段と、
    (6)前記膨張した第2の凝縮部分を受け、それを加熱するために、前記第3の膨張手段に接続された熱交換手段であって、前記熱交換手段が、前記加熱され膨張した第2の凝縮部分を、前記中央カラムフィード位置において前記接触および分離手段に供給するために、前記接触および分離手段にさらに接続される、熱交換手段と、
    (7)前記第2のストリームを受け、それを冷却するために、前記第1の分割手段に接続された前記第1の冷却手段と、
    (8)前記冷却された第2のストリームを受け、それを前記より低い圧力まで膨張させるために前記第1の冷却手段に接続された前記第1の膨張手段であって、前記第1の膨張手段が、前記膨張した冷却された第2のストリームを、前記中央カラムフィード位置よりも下の第1の下側カラムフィード位置において前記接触および分離手段に供給するために、前記接触および分離手段にさらに接続される、前記第1の膨張手段と、
    (9)前記底部液体ストリームの少なくとも一部分を受けるために、前記接触および分離手段に接続された前記蒸留カラムと、
    (10)前記第1のオーバーヘッド蒸気ストリームの少なくとも一部分を、前記中央カラムフィード位置よりも下の第2の下側カラムフィード位置において受けるために、前記蒸留カラムにさらに接続された前記接触および分離手段と、
    (11)前記接触および分離手段の中で分離された前記第2のオーバーヘッド蒸気ストリームを受け、それを少なくとも第1の蒸気部分と第2の蒸気部分とに分割するために、前記接触および分離手段に接続された第3の分割手段と、
    (12)前記第2の蒸気部分の少なくとも一部分を受け、それを加熱し、その後、前記加熱された第2の蒸気部分の少なくとも一部分を、前記揮発性残留ガス画分として排出するために、前記第3の分割手段にさらに接続される、前記熱交換手段と、
    (13)前記中央カラムフィード位置よりも下で、前記第1の下側カラムフィード位置および第2の下側カラムフィード位置よりも上の前記接触および分離デバイスの領域から、蒸留蒸気ストリームを受けるために、前記接触および分離手段に接続された蒸気抜取り手段と、
    (14)前記第1の蒸気部分および前記蒸留蒸気ストリームを受け、合流蒸気ストリームを形成するために、前記第3の分割手段および前記蒸気抜取り手段に接続された合流手段と、
    (15)前記合流蒸気ストリームを受け、それをより高い圧力まで圧縮するために、前記合流手段に接続された圧縮手段と、
    (16)前記圧縮された合流蒸気ストリームを受け、それを十分に冷却して、その少なくとも一部を凝縮させ、それにより、ステップ(6)および(12)の前記加熱の少なくとも一部分を供給しながら、凝縮したストリームを形成するために、前記圧縮手段にさらに接続される、前記熱交換手段と、
    (17)前記凝縮したストリームを受け、それを前記より低い圧力まで膨張させるために前記熱交換手段に接続された第4の膨張手段であって、前記第4の膨張手段が、前記膨張し凝縮したストリームの少なくとも一部分を、頂部フィード位置において前記接触および分離手段に供給するために、前記接触および分離手段にさらに接続される、第4の膨張手段と、
    (18)前記接触および分離手段のオーバーヘッド温度を一定の温度に維持するように、前記接触および分離手段への前記フィードストリームの量および温度を調節し、それにより、前記揮発性が比較的低い画分中の前記成分の前記大部分を回収するように適合された制御手段と
    を含む、装置。
  28. メタン、C成分、C成分およびより重質の炭化水素成分を含有するガスストリームを、揮発性の残留ガス画分と、前記C成分、前記C成分および前記より重質の炭化水素成分、あるいは前記C成分および前記より重質の炭化水素成分の大部分を含有する揮発性が比較的低い画分とに分離するための装置において、前記装置中に、
    (a)圧力下で冷却されたストリームを提供するために接続された、前記ガスストリームを圧力下で冷却するための第1の冷却手段、
    (b)圧力下で前記冷却されたストリームの少なくとも一部分を受け、それをより低い圧力まで膨張させるために接続された第1の膨張手段であって、それにより、前記ストリームがさらに冷却される、第1の膨張手段、および
    (c)前記さらに冷却されたストリームを受けるために接続された蒸留カラムであって、前記蒸留カラムが、前記さらに冷却されたストリームを第1のオーバーヘッド蒸気ストリームと前記揮発性が比較的低い画分とに分離するように適合される、蒸留カラム
    が存在し、改良として、前記装置が、
    (1)前記ガスストリームを圧力下で充分に冷却して、部分的に凝縮させるように適合された前記第1の冷却手段と、
    (2)前記部分的に凝縮したガスストリームを受け、それを蒸気ストリームと少なくとも1つの液体ストリームとに分離するために、前記第1の冷却手段に接続された分離手段と、
    (3)前記蒸気ストリームを受け、それを第1のストリームと第2のストリームとに分割するために、前記分離手段に接続された第1の分割手段と、
    (4)前記第1のストリームを受け、それを十分に冷却して実質的に凝縮させるために、前記第1の分割手段に接続された第2の冷却手段と、
    (5)前記実質的に凝縮した第1のストリームを受け、それを少なくとも第1の凝縮部分と第2の凝縮部分とに分割するために、前記第2の冷却手段に接続された第2の分割手段と、
    (6)前記第1の凝縮部分を受け、それを前記より低い圧力に膨張させるために、前記第2の分割手段に接続された第2の膨張手段であって、前記第2の膨張手段が、前記膨張した第1の凝縮部分を、中央カラムフィード位置において接触および分離手段に供給するために前記接触および分離手段にさらに接続され、前記接触および分離手段が、第2のオーバーヘッド蒸気ストリームおよび底部液体ストリームを生成するように適合される、第2の膨張手段と、
    (7)前記第2の凝縮部分を受け、それを前記より低い圧力まで膨張させるために、前記第2の分割手段に接続された第3の膨張手段と、
    (8)前記膨張した第2の凝縮部分を受け、それを加熱するために、前記第3の膨張手段に接続された熱交換手段であって、前記熱交換手段が、前記加熱され膨張した第2の凝縮部分を、前記中央カラムフィード位置において前記接触および分離手段に供給するために、前記接触および分離手段にさらに接続される、熱交換手段と、
    (9)前記第2のストリームを受け、それを前記より低い圧力まで膨張させるために、前記第1の分割手段に接続された前記第1の膨張手段であって、前記第1の膨張手段が、前記膨張した第2のストリームを、前記中央カラムフィード位置よりも下の第1の下側カラムフィード位置において前記接触および分離手段に供給するために、前記接触および分離手段にさらに接続される、前記第1の膨張手段と、
    (10)前記少なくとも1つの液体ストリームの少なくとも一部分を受け、それを前記より低い圧力まで膨張させるために、前記分離手段に接続された第4の膨張手段であって、前記第4の膨張手段が、前記膨張した液体ストリームを、前記中央カラムフィード位置において前記蒸留カラムに供給するために、前記蒸留カラムにさらに接続される、第4の膨張手段と、
    (11)前記底部液体ストリームの少なくとも一部分を受けるために、前記接触および分離手段に接続された前記蒸留カラムと、
    (12)前記第1のオーバーヘッド蒸気ストリームの少なくとも一部分を、前記中央カラムフィード位置よりも下の第2の下側カラムフィード位置において受けるために、前記蒸留カラムにさらに接続された前記接触および分離手段と、
    (13)前記蒸留カラムの中で分離された前記第2のオーバーヘッド蒸気ストリームを受け、それを少なくとも第1の蒸気部分と第2の蒸気部分とに分割するために、前記接触および分離手段に接続された第3の分割手段と、
    (14)前記第2の蒸気部分の少なくとも一部分を受け、それを加熱し、その後、前記加熱された第2の蒸気部分の少なくとも一部分を、前記揮発性残留ガス画分として排出するために、前記第3の分割手段にさらに接続される、前記熱交換手段と、
    (15)前記中央カラムフィード位置よりも下で、前記第1の下側カラムフィード位置および第2の下側カラムフィード位置よりも上の前記接触および分離デバイスの領域から、蒸留蒸気ストリームを受けるために、前記接触および分離手段に接続された蒸気抜取り手段と、
    (16)前記第1の蒸気部分および前記蒸留蒸気ストリームを受け、合流蒸気ストリームを形成するために、前記第3の分割手段および前記蒸気抜取り手段に接続された合流手段と、
    (17)前記合流蒸気ストリームを受け、それをより高い圧力まで圧縮するために、前記合流手段に接続された圧縮手段と、
    (18)前記圧縮された合流蒸気ストリームを受け、それを十分に冷却して、その少なくとも一部を凝縮させ、それにより、ステップ(8)および(14)の前記加熱の少なくとも一部分を供給しながら、凝縮したストリームを形成するために、前記圧縮手段にさらに接続される、前記熱交換手段と、
    (19)前記凝縮したストリームを受け、それを前記より低い圧力まで膨張させるために、前記熱交換手段に接続された第5の膨張手段であって、前記第5の膨張手段が、前記膨張し凝縮したストリームの少なくとも一部分を、頂部フィード位置において前記接触および分離手段に供給するために前記接触および分離手段にさらに接続される、第5の膨張手段と、
    (20)前記接触および分離手段のオーバーヘッド温度を一定の温度に維持するように、前記接触および分離手段への前記フィードストリームの量および温度を調節し、それにより、前記揮発性が比較的低い画分中の前記成分の前記大部分を回収するように適合された制御手段と
    を含む、装置。
  29. メタン、C成分、C成分およびより重質の炭化水素成分を含有するガスストリームを、揮発性の残留ガス画分と、前記C成分、前記C成分および前記より重質の炭化水素成分、あるいは前記C成分および前記より重質の炭化水素成分の大部分を含有する揮発性が比較的低い画分とに分離するための装置において、前記装置中に、
    (a)圧力下で冷却されたストリームを提供するために接続された、前記ガスストリームを圧力下で冷却するための第1の冷却手段、
    (b)圧力下で前記冷却されたストリームの少なくとも一部分を受け、それをより低い圧力まで膨張させるために接続された第1の膨張手段であって、それにより、前記ストリームがさらに冷却される、第1の膨張手段、および
    (c)前記さらに冷却されたストリームを受けるために接続された蒸留カラムであって、前記蒸留カラムが、前記さらに冷却されたストリームを第1のオーバーヘッド蒸気ストリームと前記揮発性が比較的低い画分とに分離するように適合される、蒸留カラム
    が存在し、改良として、前記装置が、
    (1)前記第1の冷却手段の前に、前記ガスストリームを第1のストリームと第2のストリームとに分割するための第1の分割手段と、
    (2)前記第1のストリームを受け、それを十分に冷却して実質的に凝縮させるために、前記第1の分割手段に接続された第2の冷却手段と、
    (3)前記実質的に凝縮した第1のストリームを受け、それを少なくとも第1の凝縮部分と第2の凝縮部分とに分割するために、前記第2の冷却手段に接続された第2の分割手段と、
    (4)前記第1の凝縮部分を受け、それを前記より低い圧力に膨張させるために、前記第2の分割手段に接続された第2の膨張手段であって、前記第2の膨張手段が、前記膨張した第1の凝縮部分を、中央カラムフィード位置において接触および分離手段に供給するために前記接触および分離手段にさらに接続され、前記接触および分離手段が、第2のオーバーヘッド蒸気ストリームおよび底部液体ストリームを生成するように適合される、第2の膨張手段と、
    (5)前記第2の凝縮部分を受け、それを前記より低い圧力まで膨張させるために、前記第2の分割手段に接続された第3の膨張手段と、
    (6)前記膨張した第2の凝縮部分を受け、それを加熱するために、前記第3の膨張手段に接続された熱交換手段であって、前記熱交換手段が、前記加熱され膨張した第2の凝縮部分を、前記中央カラムフィード位置において前記接触および分離手段に供給するために、前記接触および分離手段にさらに接続される、熱交換手段と、
    (7)前記第2のストリームを受けるために前記第1の分割手段に接続された前記第1の冷却手段であって、前記第1の冷却手段が、前記第2のストリームを圧力下で十分に冷却し、部分的に凝縮するように適合される、第1の冷却手段と、
    (8)前記部分的に凝縮した第2のストリームを受け、それを蒸気ストリームと少なくとも1つの液体ストリームとに分離するために、前記第1の冷却手段に接続された分離手段と、
    (9)前記蒸気ストリームを受け、それを前記より低い圧力まで膨張させるために、前記分離手段に接続された前記第1の膨張手段であって、前記第1の膨張手段が、前記膨張した蒸気ストリームを、前記中央カラムフィード位置よりも下の第1の下側カラムフィード位置において前記接触および分離手段に供給するために、前記接触および分離手段にさらに接続される、前記第1の膨張手段と、
    (10)前記少なくとも1つの液体ストリームの少なくとも一部分を受け、それを前記より低い圧力まで膨張させるために、前記分離手段に接続された第4の膨張手段であって、前記第4の膨張手段が、前記膨張した液体ストリームを、前記中央カラムフィード位置において前記蒸留カラムに供給するために、前記蒸留カラムにさらに接続される、第4の膨張手段と、
    (11)前記底部液体ストリームの少なくとも一部分を受けるために、前記接触および分離手段に接続された前記蒸留カラムと、
    (12)前記第1のオーバーヘッド蒸気ストリームの少なくとも一部分を、前記中央カラムフィード位置よりも下の第2の下側カラムフィード位置において受けるために、前記蒸留カラムにさらに接続された前記接触および分離手段と、
    (13)前記蒸留カラムの中で分離された前記第2のオーバーヘッド蒸気ストリームを受け、それを少なくとも第1の蒸気部分と第2の蒸気部分とに分割するために、前記接触および分離手段に接続された第3の分割手段と、
    (14)前記第2の蒸気部分の少なくとも一部分を受け、それを加熱し、その後、前記加熱された第2の蒸気部分の少なくとも一部分を、前記揮発性残留ガス画分として排出するために、前記第3の分割手段にさらに接続される、前記熱交換手段と、
    (15)前記中央カラムフィード位置よりも下で、前記第1の下側カラムフィード位置および第2の下側カラムフィード位置よりも上の前記接触および分離デバイスの領域から、蒸留蒸気ストリームを受けるために、前記接触および分離手段に接続された蒸気抜取り手段と、
    (16)前記第1の蒸気部分および前記蒸留蒸気ストリームを受け、合流蒸気ストリームを形成するために、前記第3の分割手段および前記蒸気抜取り手段に接続された合流手段と、
    (17)前記合流蒸気ストリームを受け、それをより高い圧力まで圧縮するために、前記合流手段に接続された圧縮手段と、
    (18)前記圧縮された合流蒸気ストリームを受け、それを十分に冷却して、その少なくとも一部を凝縮させ、それにより、ステップ(6)および(14)の前記加熱の少なくとも一部分を供給しながら、凝縮したストリームを形成するために、前記圧縮手段にさらに接続される、前記熱交換手段と、
    (19)前記凝縮したストリームを受け、それを前記より低い圧力まで膨張させるために、前記熱交換手段に接続された第5の膨張手段であって、前記第5の膨張手段が、前記膨張し凝縮したストリームの少なくとも一部分を、頂部フィード位置において前記接触および分離手段に供給するために前記接触および分離手段にさらに接続される、第5の膨張手段と、
    (20)前記接触および分離手段のオーバーヘッド温度を一定の温度に維持するように、前記接触および分離手段への前記フィードストリームの量および温度を調節し、それにより、前記揮発性が比較的低い画分中の前記成分の前記大部分を回収するように適合された制御手段と
    を含む、装置。
  30. メタン、C成分、C成分およびより重質の炭化水素成分を含有するガスストリームを、揮発性の残留ガス画分と、前記C成分、前記C成分および前記より重質の炭化水素成分、あるいは前記C成分および前記より重質の炭化水素成分の大部分を含有する揮発性が比較的低い画分とに分離するための装置において、前記装置中に、
    (a)圧力下で冷却されたストリームを提供するために接続された、前記ガスストリームを圧力下で冷却するための第1の冷却手段、
    (b)圧力下で前記冷却されたストリームの少なくとも一部分を受け、それをより低い圧力まで膨張させるために接続された第1の膨張手段であって、それにより、前記ストリームがさらに冷却される、第1の膨張手段、および
    (c)前記さらに冷却されたストリームを受けるために接続された蒸留カラムであって、前記蒸留カラムが、前記さらに冷却されたストリームを第1のオーバーヘッド蒸気ストリームと前記揮発性が比較的低い画分とに分離するように適合される、蒸留カラム
    が存在し、改良として、前記装置が、
    (1)前記ガスストリームを圧力下で充分に冷却して、部分的に凝縮させるように適合された前記第1の冷却手段と、
    (2)前記部分的に凝縮したガスストリームを受け、それを蒸気ストリームと少なくとも1つの液体ストリームとに分離するために、前記第1の冷却手段に接続された分離手段と、
    (3)前記蒸気ストリームを受け、それを第1のストリームと第2のストリームとに分割するために、前記分離手段に接続された第1の分割手段と、
    (4)前記第1のストリームおよび前記少なくとも1つの液体ストリームの少なくとも一部分を受け、合流ストリームを形成するために、前記第1の分割手段および前記分離手段に接続された第1の合流手段と、
    (5)前記合流ストリームを受け、それを十分に冷却して実質的に凝縮させるために、前記第1の合流手段に接続された第2の冷却手段と、
    (6)前記実質的に凝縮した合流ストリームを受け、それを少なくとも第1の凝縮部分と第2の凝縮部分とに分割するために、前記第2の冷却手段に接続された第2の分割手段と、
    (7)前記第1の凝縮部分を受け、それを前記より低い圧力まで膨張させるために、前記第2の分割手段に接続された第2の膨張手段であって、前記第2の膨張手段が、前記膨張した第1の凝縮部分を、中央カラムフィード位置において接触および分離手段に供給するために、前記接触および分離手段にさらに接続され、前記接触および分離手段が、第2のオーバーヘッド蒸気ストリームおよび底部液体ストリームを生成するように適合される、第2の膨張手段と、
    (8)前記第2の凝縮部分を受け、それを前記より低い圧力まで膨張させるために前記第2の分割手段に接続された第3の膨張手段と、
    (9)前記膨張した第2の凝縮部分を受け、それを加熱するために、前記第3の膨張手段に接続された熱交換手段であって、前記熱交換手段が、前記加熱され膨張した第2の凝縮部分を、前記中央カラムフィード位置において前記接触および分離手段に供給するために、前記接触および分離手段にさらに接続される、熱交換手段と、
    (10)前記第2のストリームを受け、それを前記より低い圧力まで膨張させるために、前記第1の分割手段に接続された前記第1の膨張手段であって、前記第1の膨張手段が、前記膨張した第2のストリームを、前記中央カラムフィード位置よりも下の第1の下側カラムフィード位置において前記接触および分離手段に供給するために、前記接触および分離手段にさらに接続される、前記第1の膨張手段と、
    (11)前記少なくとも1つの液体ストリームの残りの部分がある場合にはそれを受け、それを前記より低い圧力まで膨張させるために、前記分離手段に接続された第4の膨張手段であって、前記第4の膨張手段が、前記膨張した液体ストリームを、前記中央カラムフィード位置において前記蒸留カラムに供給するために、前記蒸留カラムにさらに接続される、第4の膨張手段と、
    (12)前記底部液体ストリームの少なくとも一部分を受けるために、前記接触および分離手段に接続された前記蒸留カラムと、
    (13)前記第1のオーバーヘッド蒸気ストリームの少なくとも一部分を、前記中央カラムフィード位置よりも下の第2の下側カラムフィード位置において受けるために、前記蒸留カラムにさらに接続された前記接触および分離手段と、
    (14)前記蒸留カラムの中で分離された前記第2のオーバーヘッド蒸気ストリームを受け、それを少なくとも第1の蒸気部分と第2の蒸気部分とに分割するために、前記接触および分離手段に接続された第3の分割手段と、
    (15)前記第2の蒸気部分の少なくとも一部分を受け、それを加熱し、その後、前記加熱された第2の蒸気部分の少なくとも一部分を、前記揮発性残留ガス画分として排出するために、前記第3の分割手段にさらに接続される、前記熱交換手段と、
    (16)前記中央カラムフィード位置よりも下で、前記第1の下側カラムフィード位置および第2の下側カラムフィード位置よりも上の前記接触および分離デバイスの領域から、蒸留蒸気ストリームを受けるために、前記接触および分離手段に接続された蒸気抜取り手段と、
    (17)前記第1の蒸気部分および前記蒸留蒸気ストリームを受け、合流蒸気ストリームを形成するために、前記第3の分割手段および前記蒸気抜取り手段に接続された第2の合流手段と、
    (18)前記合流蒸気ストリームを受け、それをより高い圧力まで圧縮するために、前記第2の合流手段に接続された圧縮手段と、
    (19)前記圧縮された合流蒸気ストリームを受け、それを十分に冷却して、その少なくとも一部を凝縮させ、それにより、ステップ(9)および(15)の前記加熱の少なくとも一部分を供給しながら、凝縮したストリームを形成するために、前記圧縮手段にさらに接続される、前記熱交換手段と、
    (20)前記凝縮したストリームを受け、それを前記より低い圧力まで膨張させるために、前記熱交換手段に接続された第5の膨張手段であって、前記第5の膨張手段が、前記膨張し凝縮したストリームの少なくとも一部分を、頂部フィード位置において前記接触および分離手段に供給するために前記接触および分離手段にさらに接続される、第5の膨張手段と、
    (21)前記接触および分離手段のオーバーヘッド温度を一定の温度に維持するように、前記接触および分離手段への前記フィードストリームの量および温度を調節し、それにより、前記揮発性が比較的低い画分中の前記成分の前記大部分を回収するように適合された制御手段と
    を含む、装置。
  31. 前記蒸気抜取り手段が、前記頂部フィード位置よりも下で、前記上側中央カラムフィード位置よりも上の前記蒸留カラムの領域から前記蒸留蒸気ストリームを受けるために、前記蒸留カラムに接続される、請求項21、22、23、24または25に記載の改良。
  32. 前記蒸気抜取り手段が、前記中央カラムフィード位置よりも下の前記蒸留カラムの領域から前記蒸留蒸気ストリームを受けるために、前記蒸留カラムに接続される、請求項21、22、23、24または25に記載の改良。
  33. 前記蒸気抜取り手段が、前記頂部フィード位置よりも下で、前記中央カラムフィード位置よりも上の前記接触および分離手段の領域から前記蒸留蒸気ストリームを受けるために、前記接触および分離手段に接続される、請求項26、27、28、29または30に記載の改良。
  34. (1)前記第1のオーバーヘッド蒸気ストリームを受け、それを前記蒸留蒸気ストリームと第2の蒸留蒸気ストリームとに分割するために、前記蒸留カラムに第4の分割手段が接続され、
    (2)前記接触および分離デバイスが、前記第2の下側カラムフィード位置において前記第2の蒸留蒸気ストリームを受けるために、前記第4の分割手段に接続されるように適合され、
    (3)前記合流手段が、前記蒸留蒸気ストリームを受けるために、前記第4の分割手段に接続されるように適合される、
    請求項26、27、28、または29に記載の改良。
  35. (1)前記第1のオーバーヘッド蒸気ストリームを受け、それを前記蒸留蒸気ストリームと第2の蒸留蒸気ストリームとに分割するために、第4の分割手段が前記蒸留カラムに接続され、
    (2)前記接触および分離デバイスが、前記第2の下側カラムフィード位置において前記第2の蒸留蒸気ストリームを受けるために、前記第4の分割手段に接続されるように適合され、
    (3)前記第2の合流手段が、前記蒸留蒸気ストリームを受けるために、前記第4の分割手段に接続されるように適合される、
    請求項30に記載の改良。
  36. 前記加熱され膨張した第2の凝縮部分が、第2の上側中央カラムフィード位置において前記蒸留カラムに供給される、請求項21、22、23、24または25に記載の改良。
  37. 前記加熱され膨張した第2の凝縮部分が、第2の上側中央カラムフィード位置において前記蒸留カラムに供給される、請求項31に記載の改良。
  38. 前記加熱され膨張した第2の凝縮部分が、第2の上側中央カラムフィード位置において前記蒸留カラムに供給される、請求項32に記載の改良。
  39. 前記加熱され膨張した第2の凝縮部分が、第2の中央カラムフィード位置において前記接触および分離デバイスに供給される、請求項26、27、28、29、30、または35に記載の改良。
  40. 前記加熱され膨張した第2の凝縮部分が、第2の中央カラムフィード位置において、前記接触および分離デバイスに供給される、請求項33に記載の改良。
  41. 前記加熱され膨張した第2の凝縮部分が、第2の中央カラムフィード位置において前記接触および分離デバイスに供給される、請求項34に記載の改良。
JP2012529781A 2009-09-21 2010-08-27 炭化水素ガス処理 Expired - Fee Related JP5793145B2 (ja)

Applications Claiming Priority (13)

Application Number Priority Date Filing Date Title
US24418109P 2009-09-21 2009-09-21
US61/244,181 2009-09-21
US34615010P 2010-05-19 2010-05-19
US61/346,150 2010-05-19
US35104510P 2010-06-03 2010-06-03
US61/351,045 2010-06-03
US12/868,993 US20110067441A1 (en) 2009-09-21 2010-08-26 Hydrocarbon Gas Processing
US12/868,993 2010-08-26
US12/869,007 2010-08-26
US12/869,007 US9476639B2 (en) 2009-09-21 2010-08-26 Hydrocarbon gas processing featuring a compressed reflux stream formed by combining a portion of column residue gas with a distillation vapor stream withdrawn from the side of the column
US12/869,139 US20110067443A1 (en) 2009-09-21 2010-08-26 Hydrocarbon Gas Processing
US12/869,139 2010-08-26
PCT/US2010/046967 WO2011049672A1 (en) 2009-09-21 2010-08-27 Hydrocarbon gas processing

Publications (3)

Publication Number Publication Date
JP2013505422A true JP2013505422A (ja) 2013-02-14
JP2013505422A5 JP2013505422A5 (ja) 2013-09-26
JP5793145B2 JP5793145B2 (ja) 2015-10-14

Family

ID=43755438

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2012529781A Expired - Fee Related JP5793145B2 (ja) 2009-09-21 2010-08-27 炭化水素ガス処理
JP2012529779A Expired - Fee Related JP5793144B2 (ja) 2009-09-21 2010-08-27 炭化水素ガス処理
JP2012529780A Expired - Fee Related JP5850838B2 (ja) 2009-09-21 2010-08-27 炭化水素ガス処理

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2012529779A Expired - Fee Related JP5793144B2 (ja) 2009-09-21 2010-08-27 炭化水素ガス処理
JP2012529780A Expired - Fee Related JP5850838B2 (ja) 2009-09-21 2010-08-27 炭化水素ガス処理

Country Status (22)

Country Link
US (4) US20110067441A1 (ja)
EP (3) EP2480847A4 (ja)
JP (3) JP5793145B2 (ja)
KR (3) KR20120072373A (ja)
CN (3) CN102498359B (ja)
AR (2) AR078401A1 (ja)
AU (3) AU2010295870A1 (ja)
BR (3) BR112012006219A2 (ja)
CA (3) CA2773211C (ja)
CL (3) CL2012000687A1 (ja)
CO (3) CO6531455A2 (ja)
EA (3) EA028835B1 (ja)
EG (2) EG26970A (ja)
MX (3) MX348674B (ja)
MY (3) MY163891A (ja)
NZ (3) NZ599333A (ja)
PE (3) PE20121420A1 (ja)
SA (3) SA110310705B1 (ja)
SG (3) SG178603A1 (ja)
TW (3) TW201111725A (ja)
WO (3) WO2011049672A1 (ja)
ZA (2) ZA201202633B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013505239A (ja) * 2009-09-21 2013-02-14 オートロフ・エンジニアーズ・リミテッド 炭化水素ガス処理

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100565061C (zh) * 2003-10-30 2009-12-02 弗劳尔科技公司 柔性液态天然气工艺和方法
US7777088B2 (en) 2007-01-10 2010-08-17 Pilot Energy Solutions, Llc Carbon dioxide fractionalization process
US20090282865A1 (en) 2008-05-16 2009-11-19 Ortloff Engineers, Ltd. Liquefied Natural Gas and Hydrocarbon Gas Processing
US20100287982A1 (en) 2009-05-15 2010-11-18 Ortloff Engineers, Ltd. Liquefied Natural Gas and Hydrocarbon Gas Processing
US9021832B2 (en) * 2010-01-14 2015-05-05 Ortloff Engineers, Ltd. Hydrocarbon gas processing
MY160789A (en) 2010-06-03 2017-03-15 Ortloff Engineers Ltd Hydrocarbon gas processing
US10451344B2 (en) 2010-12-23 2019-10-22 Fluor Technologies Corporation Ethane recovery and ethane rejection methods and configurations
US9710766B2 (en) * 2011-10-26 2017-07-18 QRI Group, LLC Identifying field development opportunities for increasing recovery efficiency of petroleum reservoirs
US20130110474A1 (en) 2011-10-26 2013-05-02 Nansen G. Saleri Determining and considering a premium related to petroleum reserves and production characteristics when valuing petroleum production capital projects
US9946986B1 (en) 2011-10-26 2018-04-17 QRI Group, LLC Petroleum reservoir operation using geotechnical analysis
US10508520B2 (en) 2011-10-26 2019-12-17 QRI Group, LLC Systems and methods for increasing recovery efficiency of petroleum reservoirs
US9767421B2 (en) 2011-10-26 2017-09-19 QRI Group, LLC Determining and considering petroleum reservoir reserves and production characteristics when valuing petroleum production capital projects
KR101368797B1 (ko) * 2012-04-03 2014-03-03 삼성중공업 주식회사 천연가스 분별증류 장치
CA2790961C (en) * 2012-05-11 2019-09-03 Jose Lourenco A method to recover lpg and condensates from refineries fuel gas streams.
CA2813260C (en) * 2013-04-15 2021-07-06 Mackenzie Millar A method to produce lng
PE20160478A1 (es) 2013-09-11 2016-05-13 Sme Products Lp Procesamiento de hidrocarburos gaseosos
CA2923447C (en) 2013-09-11 2022-05-31 Ortloff Engineers, Ltd. Hydrocarbon processing
AU2014318270B2 (en) 2013-09-11 2018-04-19 Uop Llc Hydrocarbon gas processing
CA2935851C (en) * 2014-01-02 2022-05-03 Fluor Technologies Corporation Systems and methods for flexible propane recovery
US9945703B2 (en) 2014-05-30 2018-04-17 QRI Group, LLC Multi-tank material balance model
CA2958091C (en) 2014-08-15 2021-05-18 1304338 Alberta Ltd. A method of removing carbon dioxide during liquid natural gas production from natural gas at gas pressure letdown stations
US10508532B1 (en) 2014-08-27 2019-12-17 QRI Group, LLC Efficient recovery of petroleum from reservoir and optimized well design and operation through well-based production and automated decline curve analysis
CN104263402A (zh) * 2014-09-19 2015-01-07 华南理工大学 一种利用能量集成高效回收管输天然气中轻烃的方法
WO2016053668A1 (en) * 2014-09-30 2016-04-07 Dow Global Technologies Llc Process for increasing ethylene and propylene yield from a propylene plant
NO3029019T3 (ja) * 2014-12-05 2018-03-03
CA2881949C (en) * 2015-02-12 2023-08-01 Mackenzie Millar A method to produce plng and ccng at straddle plants
CN106278782A (zh) * 2015-05-29 2017-01-04 汪上晓 碳五产物分离装置
WO2017045055A1 (en) 2015-09-16 2017-03-23 1304342 Alberta Ltd. A method of preparing natural gas at a gas pressure reduction stations to produce liquid natural gas (lng)
FR3042984B1 (fr) * 2015-11-03 2019-07-19 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Optimisation d’un procede de deazotation d’un courant de gaz naturel
FR3042983B1 (fr) * 2015-11-03 2017-10-27 Air Liquide Reflux de colonnes de demethanisation
US10006701B2 (en) 2016-01-05 2018-06-26 Fluor Technologies Corporation Ethane recovery or ethane rejection operation
US10330382B2 (en) 2016-05-18 2019-06-25 Fluor Technologies Corporation Systems and methods for LNG production with propane and ethane recovery
US10458207B1 (en) 2016-06-09 2019-10-29 QRI Group, LLC Reduced-physics, data-driven secondary recovery optimization
US10551118B2 (en) 2016-08-26 2020-02-04 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US10533794B2 (en) 2016-08-26 2020-01-14 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US10551119B2 (en) 2016-08-26 2020-02-04 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US11402155B2 (en) * 2016-09-06 2022-08-02 Lummus Technology Inc. Pretreatment of natural gas prior to liquefaction
US11725879B2 (en) 2016-09-09 2023-08-15 Fluor Technologies Corporation Methods and configuration for retrofitting NGL plant for high ethane recovery
GB2556878A (en) * 2016-11-18 2018-06-13 Costain Oil Gas & Process Ltd Hydrocarbon separation process and apparatus
US11543180B2 (en) * 2017-06-01 2023-01-03 Uop Llc Hydrocarbon gas processing
US11428465B2 (en) 2017-06-01 2022-08-30 Uop Llc Hydrocarbon gas processing
CN108883343A (zh) * 2017-07-26 2018-11-23 深圳市宏事达能源科技有限公司 一种气体分馏装置
WO2019078892A1 (en) 2017-10-20 2019-04-25 Fluor Technologies Corporation IMPLEMENTATION BY PHASES OF RECOVERY PLANTS OF NATURAL GAS LIQUIDS
US11268756B2 (en) 2017-12-15 2022-03-08 Saudi Arabian Oil Company Process integration for natural gas liquid recovery
US11466554B2 (en) 2018-03-20 2022-10-11 QRI Group, LLC Data-driven methods and systems for improving oil and gas drilling and completion processes
US11506052B1 (en) 2018-06-26 2022-11-22 QRI Group, LLC Framework and interface for assessing reservoir management competency
US11015865B2 (en) * 2018-08-27 2021-05-25 Bcck Holding Company System and method for natural gas liquid production with flexible ethane recovery or rejection
RU2726329C1 (ru) * 2019-01-09 2020-07-13 Андрей Владиславович Курочкин Установка нтдр для деэтанизации природного газа (варианты)
RU2726328C1 (ru) * 2019-01-09 2020-07-13 Андрей Владиславович Курочкин Установка деэтанизации природного газа по технологии нтдр (варианты)
WO2020185649A1 (en) 2019-03-11 2020-09-17 Uop Llc Hydrocarbon gas processing
CN110746259B (zh) * 2019-08-24 2020-10-02 西南石油大学 一种带闪蒸分离器的富气乙烷回收方法
US11643604B2 (en) 2019-10-18 2023-05-09 Uop Llc Hydrocarbon gas processing
AR121085A1 (es) * 2020-01-24 2022-04-13 Lummus Technology Inc Proceso de recuperación de hidrocarburos a partir de corrientes de reflujo múltiples

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5890378A (en) * 1997-04-21 1999-04-06 Elcor Corporation Hydrocarbon gas processing
US20060032269A1 (en) * 2003-02-25 2006-02-16 Ortloff Engineers, Ltd. Hydrocarbon gas processing
JP2007534923A (ja) * 2004-04-26 2007-11-29 オートロフ・エンジニアーズ・リミテッド 天然ガスの液化
US20080078205A1 (en) * 2006-09-28 2008-04-03 Ortloff Engineers, Ltd. Hydrocarbon Gas Processing
US20090100862A1 (en) * 2007-10-18 2009-04-23 Ortloff Engineers, Ltd. Hydrocarbon Gas Processing

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US33408A (en) 1861-10-01 Improvement in machinery for washing wool
BE579774A (ja) 1958-06-23
US3292380A (en) 1964-04-28 1966-12-20 Coastal States Gas Producing C Method and equipment for treating hydrocarbon gases for pressure reduction and condensate recovery
US3837172A (en) * 1972-06-19 1974-09-24 Synergistic Services Inc Processing liquefied natural gas to deliver methane-enriched gas at high pressure
GB1475475A (en) 1974-10-22 1977-06-01 Ortloff Corp Process for removing condensable fractions from hydrocarbon- containing gases
US4171964A (en) * 1976-06-21 1979-10-23 The Ortloff Corporation Hydrocarbon gas processing
US4140504A (en) 1976-08-09 1979-02-20 The Ortloff Corporation Hydrocarbon gas processing
US4157904A (en) 1976-08-09 1979-06-12 The Ortloff Corporation Hydrocarbon gas processing
US4251249A (en) * 1977-01-19 1981-02-17 The Randall Corporation Low temperature process for separating propane and heavier hydrocarbons from a natural gas stream
US4185978A (en) 1977-03-01 1980-01-29 Standard Oil Company (Indiana) Method for cryogenic separation of carbon dioxide from hydrocarbons
US4278457A (en) * 1977-07-14 1981-07-14 Ortloff Corporation Hydrocarbon gas processing
US4519824A (en) 1983-11-07 1985-05-28 The Randall Corporation Hydrocarbon gas separation
FR2571129B1 (fr) * 1984-09-28 1988-01-29 Technip Cie Procede et installation de fractionnement cryogenique de charges gazeuses
US4617039A (en) * 1984-11-19 1986-10-14 Pro-Quip Corporation Separating hydrocarbon gases
FR2578637B1 (fr) * 1985-03-05 1987-06-26 Technip Cie Procede de fractionnement de charges gazeuses et installation pour l'execution de ce procede
US4687499A (en) 1986-04-01 1987-08-18 Mcdermott International Inc. Process for separating hydrocarbon gas constituents
US4854955A (en) 1988-05-17 1989-08-08 Elcor Corporation Hydrocarbon gas processing
US4869740A (en) 1988-05-17 1989-09-26 Elcor Corporation Hydrocarbon gas processing
US4889545A (en) 1988-11-21 1989-12-26 Elcor Corporation Hydrocarbon gas processing
US5114451A (en) 1990-03-12 1992-05-19 Elcor Corporation Liquefied natural gas processing
US5275005A (en) * 1992-12-01 1994-01-04 Elcor Corporation Gas processing
US5568737A (en) * 1994-11-10 1996-10-29 Elcor Corporation Hydrocarbon gas processing
US5566554A (en) * 1995-06-07 1996-10-22 Kti Fish, Inc. Hydrocarbon gas separation process
BR9609099A (pt) * 1995-06-07 1999-02-02 Elcor Corp Processo e dispositivo para a separação de um fluxo de gás
US5555748A (en) * 1995-06-07 1996-09-17 Elcor Corporation Hydrocarbon gas processing
US5634356A (en) * 1995-11-28 1997-06-03 Air Products And Chemicals, Inc. Process for introducing a multicomponent liquid feed stream at pressure P2 into a distillation column operating at lower pressure P1
US5799507A (en) * 1996-10-25 1998-09-01 Elcor Corporation Hydrocarbon gas processing
US5983664A (en) 1997-04-09 1999-11-16 Elcor Corporation Hydrocarbon gas processing
US5881569A (en) 1997-05-07 1999-03-16 Elcor Corporation Hydrocarbon gas processing
US6182469B1 (en) * 1998-12-01 2001-02-06 Elcor Corporation Hydrocarbon gas processing
EP1322897A2 (en) 2000-10-02 2003-07-02 Elkcorp Hydrocarbon gas processing
FR2817766B1 (fr) * 2000-12-13 2003-08-15 Technip Cie Procede et installation de separation d'un melange gazeux contenant du methane par distillation,et gaz obtenus par cette separation
US6712880B2 (en) 2001-03-01 2004-03-30 Abb Lummus Global, Inc. Cryogenic process utilizing high pressure absorber column
US6742358B2 (en) * 2001-06-08 2004-06-01 Elkcorp Natural gas liquefaction
UA76750C2 (uk) * 2001-06-08 2006-09-15 Елккорп Спосіб зрідження природного газу (варіанти)
US7069743B2 (en) 2002-02-20 2006-07-04 Eric Prim System and method for recovery of C2+ hydrocarbons contained in liquefied natural gas
US6941771B2 (en) 2002-04-03 2005-09-13 Howe-Baker Engineers, Ltd. Liquid natural gas processing
US6945075B2 (en) * 2002-10-23 2005-09-20 Elkcorp Natural gas liquefaction
US6907752B2 (en) * 2003-07-07 2005-06-21 Howe-Baker Engineers, Ltd. Cryogenic liquid natural gas recovery process
US7155931B2 (en) * 2003-09-30 2007-01-02 Ortloff Engineers, Ltd. Liquefied natural gas processing
NZ549467A (en) * 2004-07-01 2010-09-30 Ortloff Engineers Ltd Liquefied natural gas processing
US7219513B1 (en) * 2004-11-01 2007-05-22 Hussein Mohamed Ismail Mostafa Ethane plus and HHH process for NGL recovery
US9080810B2 (en) * 2005-06-20 2015-07-14 Ortloff Engineers, Ltd. Hydrocarbon gas processing
CN101460800B (zh) * 2006-06-02 2012-07-18 奥特洛夫工程有限公司 液化天然气的处理
US8590340B2 (en) 2007-02-09 2013-11-26 Ortoff Engineers, Ltd. Hydrocarbon gas processing
US9869510B2 (en) 2007-05-17 2018-01-16 Ortloff Engineers, Ltd. Liquefied natural gas processing
US8881549B2 (en) * 2009-02-17 2014-11-11 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US9933207B2 (en) 2009-02-17 2018-04-03 Ortloff Engineers, Ltd. Hydrocarbon gas processing
MX341798B (es) 2009-02-17 2016-09-02 Ortloff Engineers Ltd Procesamiento de gases de hidrocarburos.
US9939195B2 (en) 2009-02-17 2018-04-10 Ortloff Engineers, Ltd. Hydrocarbon gas processing including a single equipment item processing assembly
US9080811B2 (en) * 2009-02-17 2015-07-14 Ortloff Engineers, Ltd Hydrocarbon gas processing
US20100287982A1 (en) 2009-05-15 2010-11-18 Ortloff Engineers, Ltd. Liquefied Natural Gas and Hydrocarbon Gas Processing
US20110067441A1 (en) * 2009-09-21 2011-03-24 Ortloff Engineers, Ltd. Hydrocarbon Gas Processing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5890378A (en) * 1997-04-21 1999-04-06 Elcor Corporation Hydrocarbon gas processing
US20060032269A1 (en) * 2003-02-25 2006-02-16 Ortloff Engineers, Ltd. Hydrocarbon gas processing
JP2007524578A (ja) * 2003-02-25 2007-08-30 オートロフ・エンジニアーズ・リミテッド 炭化水素ガス処理
JP2007534923A (ja) * 2004-04-26 2007-11-29 オートロフ・エンジニアーズ・リミテッド 天然ガスの液化
US20080078205A1 (en) * 2006-09-28 2008-04-03 Ortloff Engineers, Ltd. Hydrocarbon Gas Processing
US20090100862A1 (en) * 2007-10-18 2009-04-23 Ortloff Engineers, Ltd. Hydrocarbon Gas Processing
JP2011500923A (ja) * 2007-10-18 2011-01-06 オートロフ・エンジニアーズ・リミテッド 炭化水素ガスの処理

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013505239A (ja) * 2009-09-21 2013-02-14 オートロフ・エンジニアーズ・リミテッド 炭化水素ガス処理

Also Published As

Publication number Publication date
CL2012000687A1 (es) 2012-08-24
AR078402A1 (es) 2011-11-02
JP5793145B2 (ja) 2015-10-14
ZA201202696B (en) 2012-12-27
SG178933A1 (en) 2012-04-27
CO6531461A2 (es) 2012-09-28
EA028835B1 (ru) 2018-01-31
CO6531456A2 (es) 2012-09-28
WO2011049672A1 (en) 2011-04-28
EP2480847A1 (en) 2012-08-01
PE20121421A1 (es) 2012-10-26
MY163891A (en) 2017-11-15
KR20120072373A (ko) 2012-07-03
CN102498359A (zh) 2012-06-13
US20160377341A1 (en) 2016-12-29
AU2010308519A1 (en) 2012-05-17
CL2012000700A1 (es) 2012-08-24
BR112012006219A2 (pt) 2017-06-06
MY163645A (en) 2017-10-13
US20110067441A1 (en) 2011-03-24
CA2773157A1 (en) 2011-04-28
WO2011034710A1 (en) 2011-03-24
PE20121422A1 (es) 2012-10-26
EP2480845A1 (en) 2012-08-01
JP2013505239A (ja) 2013-02-14
CA2772972A1 (en) 2011-03-24
MX2012002969A (es) 2012-08-08
EG27017A (en) 2015-04-01
SA110310705B1 (ar) 2014-10-16
SG178989A1 (en) 2012-04-27
TW201111725A (en) 2011-04-01
CN102575898B (zh) 2015-01-07
CA2773211C (en) 2018-10-30
EP2480846A1 (en) 2012-08-01
KR20120069729A (ko) 2012-06-28
BR112012006279A2 (pt) 2017-05-23
TW201127945A (en) 2011-08-16
CA2773157C (en) 2016-06-14
EA201200520A1 (ru) 2012-09-28
EA201200524A1 (ru) 2012-09-28
EP2480847A4 (en) 2018-07-18
KR20120069732A (ko) 2012-06-28
AU2010308519B2 (en) 2015-05-07
CA2772972C (en) 2016-03-15
CL2012000706A1 (es) 2012-08-24
NZ599331A (en) 2014-05-30
JP5850838B2 (ja) 2016-02-03
PE20121420A1 (es) 2012-10-26
US9476639B2 (en) 2016-10-25
CN102498360B (zh) 2015-02-18
CN102498359B (zh) 2014-09-17
EG26970A (en) 2015-02-23
AU2010295869B2 (en) 2015-07-09
US20110067443A1 (en) 2011-03-24
SA110310706B1 (ar) 2014-10-16
EA201200521A1 (ru) 2012-09-28
MY161462A (en) 2017-04-14
CN102498360A (zh) 2012-06-13
CO6531455A2 (es) 2012-09-28
SG178603A1 (en) 2012-04-27
EA021947B1 (ru) 2015-10-30
TWI477595B (zh) 2015-03-21
ZA201202633B (en) 2012-12-27
TW201127471A (en) 2011-08-16
KR101619568B1 (ko) 2016-05-10
JP5793144B2 (ja) 2015-10-14
MX351303B (es) 2017-10-10
NZ599333A (en) 2014-05-30
CN102575898A (zh) 2012-07-11
NZ599335A (en) 2014-05-30
MX2012002970A (es) 2012-09-12
MX348674B (es) 2017-06-23
US20110067442A1 (en) 2011-03-24
CA2773211A1 (en) 2011-03-24
EA024075B1 (ru) 2016-08-31
AU2010295870A1 (en) 2012-05-17
JP2013505421A (ja) 2013-02-14
WO2011034709A1 (en) 2011-03-24
AR078401A1 (es) 2011-11-02
AU2010295869A1 (en) 2012-05-17
MX2012002971A (es) 2012-09-12
SA110310707B1 (ar) 2014-10-21
BR112012006277A2 (pt) 2017-05-23

Similar Documents

Publication Publication Date Title
JP5793145B2 (ja) 炭化水素ガス処理
JP5667445B2 (ja) 炭化水素ガスの処理
JP4571934B2 (ja) 炭化水素ガス処理
JP5798127B2 (ja) 炭化水素ガスの処理
US20190170435A1 (en) Hydrocarbon Gas Processing
WO2011123278A1 (en) Hydrocarbon gas processing
KR20120027488A (ko) 탄화수소 가스 처리 방법
CA2901741C (en) Hydrocarbon gas processing

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130812

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140731

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140925

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20141002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150807

R150 Certificate of patent or registration of utility model

Ref document number: 5793145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees