US3837172A - Processing liquefied natural gas to deliver methane-enriched gas at high pressure - Google Patents

Processing liquefied natural gas to deliver methane-enriched gas at high pressure Download PDF

Info

Publication number
US3837172A
US3837172A US00263983A US26398372A US3837172A US 3837172 A US3837172 A US 3837172A US 00263983 A US00263983 A US 00263983A US 26398372 A US26398372 A US 26398372A US 3837172 A US3837172 A US 3837172A
Authority
US
United States
Prior art keywords
rectifying column
liquefied natural
pressure
column
high pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00263983A
Inventor
S Markbreiter
I Weiss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SYNERGISTIC SERVICES Inc
SYNERGISTIC SERVICES INC US
Original Assignee
SYNERGISTIC SERVICES Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SYNERGISTIC SERVICES Inc filed Critical SYNERGISTIC SERVICES Inc
Priority to US00263983A priority Critical patent/US3837172A/en
Application granted granted Critical
Publication of US3837172A publication Critical patent/US3837172A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • F25J3/0214Liquefied natural gas
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/04Purification; Separation; Use of additives by distillation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0238Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/70Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/60Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being hydrocarbons or a mixture of hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream

Definitions

  • ABSTRACT Liquefied natural gas is pumped to high pressure and divided into a major portion which is heated and introduced into a rectifying column and a minor portion which enters the column as subcooled reflux. Methane-enriched gas leaves the top of the column at 1 high pressure while liquid ethane and heavier hydro- 10 Claims, 2 Drawing Figures [73] Assignee: Synergistic Services Inc., New York,
  • This invention relates to a process for separating ethane and heavier hydrocarbons from liquefied natural gas, hereinafter called LNG, to yield methane-enriched gas of predetermined heating value.
  • the invention relates to such process in which the desired separation is effected by pumping LNG to high pressure, vaporizing a major portion of the pressurized LNG and introducing it into the middle section of a rectification zone maintained at high pressure, while introducing a minor portion of the pressurized LNG into the top of the rectification zone as subcooled reflux liquid; methane-enriched gas is delivered at high pressure.
  • a further object is to provide a high-pressure system for delivering methane-enriched gas at a pressure above that in the rectifying column without using compression energy from an external source.
  • LNG containing ethane, propane and heavier hydrocarbons is pressurized, a major portion of the pressurized LNG is vaporized by heating and is introduced into the middle section of a rectifying column maintained at high pressure, a minor portion of the pressurized LNG is discharged into the top of the column as subcooled reflux liquid, and the desired separation of ethane and heavier hydrocarbons from the LNG to yield a vapor overhead product of methane-enriched gas is achieved by controlling the reboil heat supplied to the bottom of the column in relation to the quantity of subcooled reflux liquid entering the top of the column. Liquid enriched .in ethane and heavier hydrocarbons is withdrawn from the bottom of the column.
  • a feature of the invention is that LNG at substantially atmospheric pressure is rectified at an elevated pressure permitting the delivery of methane-enriched gas of desired heating value to a pressurized transmission or distribution pipeline system with a minimum consumption of power from an external source.
  • the pressure maintained in the rectifying column is in each particular case determined in relation to the required delivery pressure of the methane-enriched gas supplied to the distribution system.
  • the pressure in the column must be maintained slightly below the critical pressure in the gas in the column. For example, it is advisable to keep the maximum pressure in the column about 20 psi (pounds per square inch) or somewhat more below the critical pressure of the gas therein.
  • the critical pressure is a function of the LNG composition and the desired composition of each of the two rectification product streams.
  • the methane-enriched gas leaving the rectifying column is compressed with work performed by the expansion of the vaporized major portion of the pressurized LNG prior to its introduction into the column.
  • the maximum pressure in the rectifying column will fall in the range of about 500 to 550 psi gauge.
  • composition of LNG can vary appreciably from one source to another but usually will contain at least percent of methane on a molar or gas volume basis. More frequently, the methane content of LNG is at least percent. Nitrogen and other gases with boiling points lower than that of methane are generally present in small proportions less than about 5 percent in total. Often, the total content of lower-boiling gases is less than 2 percent.
  • the total content of ethane, propane, butane and other hydrocarbons found admixed with methane in LNG will generally be at least 5 percent and may be as high as 25 percent. Of these hydrocarbons, ethane is usually the predominant one.
  • the minor portion of the pressurized LNG which, without being heated except for incidental heat leaks and heat caused by pumping LNG, is fed to the top of the rectifying column as subcooled reflux liquid is generally in the range of about 10 to 35 percent of the total LNG undergoing rectification. In most cases, the minor portion of LNG used as subcooled reflux liquid is in the range of about 15 to 25 percent of the LNG supplied to the rectifying column.
  • Simplification of apparatus is achieved by supplying a minor portion of the pressurized LNG directly to the top of the rectifying column as reflux liquid in that the usual condenser, vaporliquid separator and pump for returning liquid as reflux to the rectifying column are thereby eliminated.
  • the minor portion of the pressurized LNG entering the top of the rectifying column as reflux liquid is appreciably subcooled relative to the vapor leaving the top of the column.
  • this reflux liquid is subcooled at least about 50F. and preferably at least F. below the temperature of the vapor leaving the top of the rectifying column.
  • the remaining major portion of the pressurized LNG is heated to a temperature corresponding to the temperature in the middle section of the rectifying column where the major portion is introduced.
  • the major portion of the pressurized LNG is heated to a sufficiently high temperature that it can be both vaporized, and expanded in an engine or turbine with the performance of work and then be substantially at the temperature in the middle section of the rectifying column where the expanded gas is introduced.
  • the 'work derived from the expansion of the vaporized major portion of the LNG is utilized to compress the methaneenriched gas that then is delivered to the pipeline system operating at a pressure higher than that in the rectifying column.
  • the LNG must be pressurized at least to a pressure sufficiently high to overcome the pressure drops encountered in its flow through the heater and piping and into the rectifying column which is usually maintained at a pressure above 100 psi gauge and more frequently above 300 psi gauge.
  • the LNG is pumped to a higher pressure that not only overcomes the pressure drops already mentioned but also permits expansion of the vaporized LNG in an engine or turbine to produce the desired quantity of work for compressing the methane-enriched gas and introduction of the expanded vapor into the rectifying column maintained at a pressure slightly below the critical pressure of the gas therein.
  • the LNG when the methane-enriched gas must be delivered to a distribution system operating at a pressure above the high pressure in the rectifying column, the LNG must be pumped to a sufficiently high pressure that the work performed in the expansion of the vaporized major portion of the LNG from pumping pressure to rectification pressure will equal the work required to compress the methane-enriched gas at rectification pressure to the higher pressure of the distribution system.
  • the total pressure drop encountered by the LNG flowing through the heater and piping and into the rectifying column is generally in the range of about to 60 psi.
  • the pressure is decreased by at least 200 psi but more often by at least 400 psi.
  • FIG. 1 is a process diagram wherein LNG is subjected to rectification to yield methane-enriched gas and that gas is delivered at a pressure above that in the rectifying column;
  • FIG. 2 is a process diagram wherein LNG is rectified to deliver methane-enriched gas to a distribution system operating at a pressure below that of the rectification.
  • LNG at a temperature of 255F. is pressurized to 1,050 psi gauge and then divided so that 76% of the LNG flows through vaporizing coil 2 in heater 3 provided with burner 4.
  • the heated vapor at a temperature of 10F. and a pressure of 1000 psi gauge discharges through pipe 5 into turbo-expander 6 wherein the vapor is expanded to a pressure of 500 psi gauge and a temperature of F.
  • the expanded vapor leaves expander 6 containing a slight amount of liquid and flows through pipe 7 into the middle of rectifying column 8.
  • Methane-enriched gas leaves the top of column 8 through pipe 14 at a temperature of l20F. and a pressure of 500 psi gauge and flows through coil 15 in the top. of heater 3.
  • the gas at a temperature of 20F. and a pressure of 475 psi gauge passes through.
  • pipe 16 to turbo-compressor 17 which is coupled to and driven by turbo-expander 6.
  • Compressor I7 delivers the methane-enriched gas to pipe 18 at a pressure of 600 psi gauge and a temperature of 20F.
  • the bottom liquid amounts to only 7 percent of the LNG on a molar basis and the methane-enriched gas constitutes the remainder of the LNG supplied to the rectifying column.
  • the heating value of the LNG is 1,093 BTU/SCF (British Thermal Units per standard cubic foot), while that of the methane-enriched gas is 1,025 BTU/SCF.
  • the LNG is pumped to a pressure of 550 psi gauge and a temperature of 240F.
  • the pressurized LNG is divided so that 76 percent flows through coil 22 in heater 23 provided with burner 24.
  • the resulting vapor issuing from coil 22 at a temperature of 80F. flows through pipe 25 into the middle section of rectifying column 28 in which a pressure of 500 psi gauge is maintained.
  • the remaining 24% of the pressurized LNG flows through pipe 29 and expansion valve 30 and discharges through nozzle 31 in the top of column 28. Heating fluid is passed through coil 32 in the bottom of column 28. A valuable bottom liquid is withdrawn from column 28 through pipe 33.
  • Methane-enriched gas leaves the top of column 28 through pipe 34 at a temperature of l20F. After passing through coil 35 in heater 23, the gas at ambient temperature flows into pipeline 36 operating at a pressure of 475 psi gauge.
  • FIG. 2 The separation achieved in FIG. 2 is the same as that already described in connection with FIG. 1.
  • the essential differences between the processes just described are the delivery of gas at a pressure of 600 psi gauge in FIG. 1 and at a pressure of 475 psi gauge in FIG. 2, while the horsepower consumed by the pump of FIG. 1 is approximately double that consumed by the pump of FIG. 2.
  • a process for producing methane-enriched gas at high pressure by rectification of liquefied natural gas supplied at substantially atmospheric pressure and containing a minor portion of C and higher hydrocarbons which comprises pressurizing said liquefied natural gas, heating a major portion of the pressurized liquefied natural gas to effect vaporization and introducing the vaporized natural gas into the middle section of a rectifying column at high pressure, introducing an unheated minor portion of at least 10 percent of said pressurized liquefied natural gas into the top of said rectifying column as subcooled reflux liquid, and withdrawing said methane-enriched gas at high pressure from the top of said rectifying column.
  • Apparatus for processing liquefied natural gas supplied at substantially atmospheric pressure by rectification at high pressure and for delivering methaneenriched gas resulting from said rectification at an increased pressure comprising pumping means for pressurizing said liquefied natural gas, a vaporizing coil connected to the discharge of said pumping means and to the inlet of a turbo-expander coupled to a turbocompressor, a rectifying column, a pipe connected to the discharge of said turbo-expander and to the middle section of said column, a valved pipe connected to the discharge of said pumping means and to the top of said column forming a by-pass of said vaporizing coil and said turbo-expander, and a warming coil connected to the top of said column and to the inlet of said turbocompressor.

Abstract

Liquefied natural gas is pumped to high pressure and divided into a major portion which is heated and introduced into a rectifying column and a minor portion which enters the column as subcooled reflux. Methane-enriched gas leaves the top of the column at high pressure while liquid ethane and heavier hydrocarbons are withdrawn from the bottom thereof. When the methane-enriched gas is to be delivered at a pressure above the critical pressure of the gas in the column, the heated major portion is expanded with the performance of work before being introduced into the column; the work thus performed is utilized to compress the methane-enriched gas to a pressure above that in the column.

Description

United States Patent [191 Markbreiter et al.
[ Sept. 24, 1974 1 PROCESSING LIQUEFIED NATURAL GAS TO DELIVER METIIANE-ENRICIIED GAS AT HIGH PRESSURE [75] Inventors: Stephen J. Markbreiter, Edison; Irving Weiss, Brooklyn, both of 3,261,169 7/1966 3,362,175 1/1968 3,383,873 5/1968 3,524,897 3/1970 3,570,261 3/1971 Schwartzman 60/36 Primary ExaminerNorman Yudkoff Assistant Examiner-F. Sever Attorney, Agent, or Firm-Pau1 W. Garbo [57] ABSTRACT Liquefied natural gas is pumped to high pressure and divided into a major portion which is heated and introduced into a rectifying column and a minor portion which enters the column as subcooled reflux. Methane-enriched gas leaves the top of the column at 1 high pressure while liquid ethane and heavier hydro- 10 Claims, 2 Drawing Figures [73] Assignee: Synergistic Services Inc., New York,
[22] Filed: June 19, 1972 [21] Appl. No.: 263,983
[52] US. Cl 62/24, 62/28, 62/38, 60/36 [51] Int. Cl F25j 3/02 [58] Field of Search 62/23, 24, 27, 28, 29, 62/41, 43, 50, 51, 52, 53, 40, 32, 34, 38, 44; 60/36, 59 T [56] References Cited I UNITED STATES PATENTS 2,666,303 1/1954 Schuftan- 62/43 2,763,138 /1956 2,823,523 2/1958 Eakin et a1 2,952,984 9/1960 Marshall 62/27 2 v\ /\/\/\r E V v V v,
llllll PAIENTED 3E? 24 1974 3; 8 37. 1 7 2 IIIIHIIHIWHI mm H PROCESSING LIQUEFIED NATURAL GAS TO DELIVER METIIANE-ENRICIIED GAS AT HIGH PRESSURE BACKGROUND OF THE INVENTION This invention relates to a process for separating ethane and heavier hydrocarbons from liquefied natural gas, hereinafter called LNG, to yield methane-enriched gas of predetermined heating value. More particularly, the invention relates to such process in which the desired separation is effected by pumping LNG to high pressure, vaporizing a major portion of the pressurized LNG and introducing it into the middle section of a rectification zone maintained at high pressure, while introducing a minor portion of the pressurized LNG into the top of the rectification zone as subcooled reflux liquid; methane-enriched gas is delivered at high pressure.
Numerous processes have been proposed for removing C and higher hydrocarbons from LNG by rectification. However, with the growing trend of storing and transporting natural gas as a liquid that can be readily vaporized and injected into a pipeline system for distributing fuel gas of specified heating value, there has been increasing need to reduce the capital investment and operating cost of plants designed to revaporize LNG and deliver a methane-enriched gas of controlled heating value. The demand for such plants has grown with the increasing importation of LNG which must be made interchangeable with the domestic fuel gas in any given distribution system.
US. Pat. No. 2,952,984 granted to Marshall in 1960 discloses a process which appears to be simpler and more economical than the many other processes that have been previously proposed. Marshall pumps LNG into the middle of a high-pressure rectifying column and provides reflux liquid by condensing some of the vapors leaving the column by indirect heat exchange with the LNG flowing to the column. The Marshall process involves appreciable heat exchange equipment and piping, a vapor-liquid separator and a rectifying column of large diameter.
It is an object of this invention to simplify further the plant for separating C and higher hydrocarbons from LNG and to make the operation more economical.
A further object is to provide a high-pressure system for delivering methane-enriched gas at a pressure above that in the rectifying column without using compression energy from an external source.
SUMMARY OF THE INVENTION In accordance with this invention, LNG containing ethane, propane and heavier hydrocarbons is pressurized, a major portion of the pressurized LNG is vaporized by heating and is introduced into the middle section of a rectifying column maintained at high pressure, a minor portion of the pressurized LNG is discharged into the top of the column as subcooled reflux liquid, and the desired separation of ethane and heavier hydrocarbons from the LNG to yield a vapor overhead product of methane-enriched gas is achieved by controlling the reboil heat supplied to the bottom of the column in relation to the quantity of subcooled reflux liquid entering the top of the column. Liquid enriched .in ethane and heavier hydrocarbons is withdrawn from the bottom of the column.
A feature of the invention is that LNG at substantially atmospheric pressure is rectified at an elevated pressure permitting the delivery of methane-enriched gas of desired heating value to a pressurized transmission or distribution pipeline system with a minimum consumption of power from an external source. Accordingly, the pressure maintained in the rectifying column is in each particular case determined in relation to the required delivery pressure of the methane-enriched gas supplied to the distribution system. In general, the higher the required delivery pressure of the gas is, the higher the pressure in the rectifying column is. However, the pressure in the column must be maintained slightly below the critical pressure in the gas in the column. For example, it is advisable to keep the maximum pressure in the column about 20 psi (pounds per square inch) or somewhat more below the critical pressure of the gas therein. The critical pressure is a function of the LNG composition and the desired composition of each of the two rectification product streams.
When the desired delivery pressure of the methaneenriched gas is close to or above the pressure in the rectifying column, the methane-enriched gas leaving the rectifying column is compressed with work performed by the expansion of the vaporized major portion of the pressurized LNG prior to its introduction into the column. As a'practical matter, the maximum pressure in the rectifying column will fall in the range of about 500 to 550 psi gauge.
The composition of LNG can vary appreciably from one source to another but usually will contain at least percent of methane on a molar or gas volume basis. More frequently, the methane content of LNG is at least percent. Nitrogen and other gases with boiling points lower than that of methane are generally present in small proportions less than about 5 percent in total. Often, the total content of lower-boiling gases is less than 2 percent.
The total content of ethane, propane, butane and other hydrocarbons found admixed with methane in LNG will generally be at least 5 percent and may be as high as 25 percent. Of these hydrocarbons, ethane is usually the predominant one.
The minor portion of the pressurized LNG which, without being heated except for incidental heat leaks and heat caused by pumping LNG, is fed to the top of the rectifying column as subcooled reflux liquid is generally in the range of about 10 to 35 percent of the total LNG undergoing rectification. In most cases, the minor portion of LNG used as subcooled reflux liquid is in the range of about 15 to 25 percent of the LNG supplied to the rectifying column. Simplification of apparatus is achieved by supplying a minor portion of the pressurized LNG directly to the top of the rectifying column as reflux liquid in that the usual condenser, vaporliquid separator and pump for returning liquid as reflux to the rectifying column are thereby eliminated. It is a further feature of the invention that the minor portion of the pressurized LNG entering the top of the rectifying column as reflux liquid is appreciably subcooled relative to the vapor leaving the top of the column. Generally, this reflux liquid is subcooled at least about 50F. and preferably at least F. below the temperature of the vapor leaving the top of the rectifying column. The larger the degree of subcooling of the reflux liquid is, the smaller is the minor portion or quantity of reflux liquid required to achieve the desired rectification. This is clearly advantageous because the thus increased major portion of the pressurized LNG can be expanded to develop more work utilized in compressing the methane-enriched gas to a high pressure above rectification pressure.
The remaining major portion of the pressurized LNG is heated to a temperature corresponding to the temperature in the middle section of the rectifying column where the major portion is introduced. However, when the methane-enriched gas leaving the top of the column is to be supplied to a pipeline system operating at a pressure higher than that in the rectifying column, the major portion of the pressurized LNG is heated to a sufficiently high temperature that it can be both vaporized, and expanded in an engine or turbine with the performance of work and then be substantially at the temperature in the middle section of the rectifying column where the expanded gas is introduced. The 'work derived from the expansion of the vaporized major portion of the LNG is utilized to compress the methaneenriched gas that then is delivered to the pipeline system operating at a pressure higher than that in the rectifying column.
The LNG must be pressurized at least to a pressure sufficiently high to overcome the pressure drops encountered in its flow through the heater and piping and into the rectifying column which is usually maintained at a pressure above 100 psi gauge and more frequently above 300 psi gauge. Where the major portion of the pressurized LNG is to be expanded with the perform.- ance of work prior to being discharged into the column, the LNG is pumped to a higher pressure that not only overcomes the pressure drops already mentioned but also permits expansion of the vaporized LNG in an engine or turbine to produce the desired quantity of work for compressing the methane-enriched gas and introduction of the expanded vapor into the rectifying column maintained at a pressure slightly below the critical pressure of the gas therein. In other words, when the methane-enriched gas must be delivered to a distribution system operating at a pressure above the high pressure in the rectifying column, the LNG must be pumped to a sufficiently high pressure that the work performed in the expansion of the vaporized major portion of the LNG from pumping pressure to rectification pressure will equal the work required to compress the methane-enriched gas at rectification pressure to the higher pressure of the distribution system. The total pressure drop encountered by the LNG flowing through the heater and piping and into the rectifying column is generally in the range of about to 60 psi. When vaporized LNG is expanded in an engine or turbine, the pressure is decreased by at least 200 psi but more often by at least 400 psi.
BRIEF DESCRIPTION OF THE DRAWlNGS 1n the further description which follows, reference is made to the accompanying drawings, of which:
FIG. 1 is a process diagram wherein LNG is subjected to rectification to yield methane-enriched gas and that gas is delivered at a pressure above that in the rectifying column; and
FIG. 2 is a process diagram wherein LNG is rectified to deliver methane-enriched gas to a distribution system operating at a pressure below that of the rectification.
DESCRIPTION OF PREFERRED EMBODIMENTS:
In FIG. 1, LNG at a temperature of 255F. is pressurized to 1,050 psi gauge and then divided so that 76% of the LNG flows through vaporizing coil 2 in heater 3 provided with burner 4. The heated vapor at a temperature of 10F. and a pressure of 1000 psi gauge discharges through pipe 5 into turbo-expander 6 wherein the vapor is expanded to a pressure of 500 psi gauge and a temperature of F. The expanded vapor leaves expander 6 containing a slight amount of liquid and flows through pipe 7 into the middle of rectifying column 8. g
The remaining 24 percent of the pressurized LNG at a temperature of -240F. and a pressure of 1,050 psi gauge passes through pipe 9 and expansion valve 10 and discharges as subcooled reflux liquid through nozzle 11 in the top of column 8. A heating medium, such as steam, is passed through heating coil 12 in the bottom of column 8 to reboil the liquid collecting in the bottom at a temperature of 80F. This liquid which is principally ethane with a minor proportion of propane and heavier hydrocarbons is withdrawn from column 8 through pipe 13 as a valuable feed for a conventional separation plant recovering ethane and propane in high purities.
Methane-enriched gas leaves the top of column 8 through pipe 14 at a temperature of l20F. and a pressure of 500 psi gauge and flows through coil 15 in the top. of heater 3. The gas at a temperature of 20F. and a pressure of 475 psi gauge passes through. pipe 16 to turbo-compressor 17 which is coupled to and driven by turbo-expander 6. Compressor I7 delivers the methane-enriched gas to pipe 18 at a pressure of 600 psi gauge and a temperature of 20F.
The separation which is achieved by the foregoing rectification is shown by the following tabulated percentage compositions on a molar or gas volume basis:
The bottom liquid amounts to only 7 percent of the LNG on a molar basis and the methane-enriched gas constitutes the remainder of the LNG supplied to the rectifying column. The heating value of the LNG is 1,093 BTU/SCF (British Thermal Units per standard cubic foot), while that of the methane-enriched gas is 1,025 BTU/SCF.
Using the same LNG described in connection with FIG. 1 as the feed to pump 21 of FIG. 2, the LNG is pumped to a pressure of 550 psi gauge and a temperature of 240F. The pressurized LNG is divided so that 76 percent flows through coil 22 in heater 23 provided with burner 24. The resulting vapor issuing from coil 22 at a temperature of 80F. flows through pipe 25 into the middle section of rectifying column 28 in which a pressure of 500 psi gauge is maintained. The remaining 24% of the pressurized LNG flows through pipe 29 and expansion valve 30 and discharges through nozzle 31 in the top of column 28. Heating fluid is passed through coil 32 in the bottom of column 28. A valuable bottom liquid is withdrawn from column 28 through pipe 33.
Methane-enriched gas leaves the top of column 28 through pipe 34 at a temperature of l20F. After passing through coil 35 in heater 23, the gas at ambient temperature flows into pipeline 36 operating at a pressure of 475 psi gauge.
The separation achieved in FIG. 2 is the same as that already described in connection with FIG. 1. The essential differences between the processes just described are the delivery of gas at a pressure of 600 psi gauge in FIG. 1 and at a pressure of 475 psi gauge in FIG. 2, while the horsepower consumed by the pump of FIG. 1 is approximately double that consumed by the pump of FIG. 2.
Many variations and modifications of the invention will be apparent to those skilled in the art without departing from the spirit or scope of the invention. For example, two pumps might be used in FIG. 1; one pump could pressurize all of the LNG just sufficiently to permit the minor portion thereof to flow into the top of the column while a second smaller pump could further raise the pressure of only the major portion to 1050 psi gauge required for passage of the major portion through coil 2 and turbo-expander 6 into column 8. Accordingly, only such limitations should be imposed on the invention as are set forth in the appended claims.
What is claimed is:
l. A process for producing methane-enriched gas at high pressure by rectification of liquefied natural gas supplied at substantially atmospheric pressure and containing a minor portion of C and higher hydrocarbons which comprises pressurizing said liquefied natural gas, heating a major portion of the pressurized liquefied natural gas to effect vaporization and introducing the vaporized natural gas into the middle section of a rectifying column at high pressure, introducing an unheated minor portion of at least 10 percent of said pressurized liquefied natural gas into the top of said rectifying column as subcooled reflux liquid, and withdrawing said methane-enriched gas at high pressure from the top of said rectifying column.
2. The process of claim 1 wherein the unheated minor portion is not more than about 35 percent of the pressurized liquefied natural gas and is introduced into the top of the rectifying column as reflux liquid subcooled at least 50F. below the temperature of the methane-enriched gas withdrawn from the top of said rectifying column.
3. The process of claim 1 wherein the high pressure in the rectifying column is in the range of about 500 to 550 psi gauge.
4. The process of claim 3 wherein the liquefied natural gas is pressurized so that at least the major portion thereof attains a pressure at least 200 psi higher than the high pressure in the rectifying column. said major portion, after being heated to effect vaporization and before being introduced into said rectifying column, is expanded with the performance of work. and said performance of work is utilized to compress the methaneenriched gas withdrawn from the top of said rectifying column to a pressure higher than the high pressure in said rectifying column.
5. The process of claim 4 wherein the unheated minor portion is in the range of about 15 to 25 percent of the pressurized liquefied natural gas and is introduced into the top of the rectifying column as reflux liquid subcooled at least F. below the temperature of the methane-enriched gas withdrawn from the top of said rectifying column.
6. In the process of separating C and higher hydrocarbons from methane in liquefied natural gas wherein said liquefied natural gas is pumped to a high pressure, heated and introduced into the middle section of a rectifying column at high pressure, the improvement which comprises passing an unheated minor portion of at least 10 percent of said liquefied natural gas pumped to a high pressure into the top of said rectifying column as reflux liquid subcooled at least about 50F. below the temperature of the vapor leaving the top of said rectifying column.
7. The process of claim 6 wherein the unheated minor portion is in the range of about 15 to 25% of the liquefied natural gas pumped to a high pressure.
8. The process of claim 6 wherein the unheated minor portion is not more than about 35 percent of the liquefied natural gas pumped to a high pressure and passes into the top of the rectifying column at a pressure above 300 psi gauge.
9. Apparatus for processing liquefied natural gas supplied at substantially atmospheric pressure by rectification at high pressure and for delivering methaneenriched gas resulting from said rectification at an increased pressure, comprising pumping means for pressurizing said liquefied natural gas, a vaporizing coil connected to the discharge of said pumping means and to the inlet of a turbo-expander coupled to a turbocompressor, a rectifying column, a pipe connected to the discharge of said turbo-expander and to the middle section of said column, a valved pipe connected to the discharge of said pumping means and to the top of said column forming a by-pass of said vaporizing coil and said turbo-expander, and a warming coil connected to the top of said column and to the inlet of said turbocompressor.
10. The apparatus of claim 9 wherein the vaporizing coil and the warming coil are disposed in the same heating chamber.

Claims (9)

  1. 2. The process of claim 1 wherein the unheated minor portion is not more than about 35 percent of the pressurized liquefied natural gas and is introduced into the top of the rectifying column as reflux liquid sub-cooled at least 50*F. below the temperature of the methane-enriched gas withdrawn from the top of said rectifying column.
  2. 3. The process of claim 1 wherein the high pressure in the rectifying column is in the range of about 500 to 550 psi gauge.
  3. 4. The process of claim 3 wherein the liquefied natural gas is pressurized so that at least the major portion thereof attains a pressure at least 200 psi higher than the high pressure in the rectifying column, said major portion, after being heated to effect vaporization and before being introduced into said rectifying column, is expanded with the performance of work, and said performance of work is utilized to compress the methane-enriched gas withdrawn from the top of said rectifying column to a pressure higher than the high pressure in said rectifying column.
  4. 5. The process of claim 4 wherein the unheated minor portion is in the range of about 15 to 25 percent of the pressurized liquefied natural gas and is introduced into the top of the rectifying column as reflux liquid subcooled at least 100*F. below the temperature of the methane-enriched gas withdrawn from the top of said rectifying column.
  5. 6. In the process of separating C2 and higher hydrocarbons from methane in liquefied natural gas wherein said liquefied natural gas is pumped to a high pressure, heated and introduced into the middle section of a rectifying column at high pressure, the improvement which comprises passing an unheated minor portion of at least 10 percent of said liquefied natural gas pumped to a high pressure into the top of said rectifying column as reflux liquid subcooled at least about 50*F. below the temperature of the vapor leaving the top of said rectifying column.
  6. 7. The process of claim 6 wherein the unheated minor portion is in the range of about 15 to 25% of the liquefied natural gas pumped to a high pressure.
  7. 8. The process of claim 6 wherein the unheated minor portion is not more than about 35 percent of the liquefied natural gas pumped to a high pressure and passes into the top of the rectifying column at a pressure above 300 psi gauge.
  8. 9. Apparatus for processing liquefied natural gas supplied at substantially atmospheric pressure by rectification at high pressure and for delivering methane-enriched gas resulting from said rectification at an increased pressure, comprising pumping means for pressurizing said liquefied natural gas, a vaporizing coil connected to the discharge of said pumping means and to the inlet of a turbo-expander coupled to a turbo-compressor, a rectifying column, a pipe connecTed to the discharge of said turbo-expander and to the middle section of said column, a valved pipe connected to the discharge of said pumping means and to the top of said column forming a by-pass of said vaporizing coil and said turbo-expander, and a warming coil connected to the top of said column and to the inlet of said turbo-compressor.
  9. 10. The apparatus of claim 9 wherein the vaporizing coil and the warming coil are disposed in the same heating chamber.
US00263983A 1972-06-19 1972-06-19 Processing liquefied natural gas to deliver methane-enriched gas at high pressure Expired - Lifetime US3837172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00263983A US3837172A (en) 1972-06-19 1972-06-19 Processing liquefied natural gas to deliver methane-enriched gas at high pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00263983A US3837172A (en) 1972-06-19 1972-06-19 Processing liquefied natural gas to deliver methane-enriched gas at high pressure

Publications (1)

Publication Number Publication Date
US3837172A true US3837172A (en) 1974-09-24

Family

ID=23004070

Family Applications (1)

Application Number Title Priority Date Filing Date
US00263983A Expired - Lifetime US3837172A (en) 1972-06-19 1972-06-19 Processing liquefied natural gas to deliver methane-enriched gas at high pressure

Country Status (1)

Country Link
US (1) US3837172A (en)

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4004430A (en) * 1974-09-30 1977-01-25 The Lummus Company Process and apparatus for treating natural gas
US4023946A (en) * 1973-11-09 1977-05-17 Schwartzman Everett H Rectification system for the separation of fluids
US4278457A (en) * 1977-07-14 1981-07-14 Ortloff Corporation Hydrocarbon gas processing
US5114451A (en) * 1990-03-12 1992-05-19 Elcor Corporation Liquefied natural gas processing
US5442924A (en) * 1994-02-16 1995-08-22 The Dow Chemical Company Liquid removal from natural gas
US5983665A (en) * 1998-03-03 1999-11-16 Air Products And Chemicals, Inc. Production of refrigerated liquid methane
US6014869A (en) * 1996-02-29 2000-01-18 Shell Research Limited Reducing the amount of components having low boiling points in liquefied natural gas
US6085546A (en) * 1998-09-18 2000-07-11 Johnston; Richard P. Method and apparatus for the partial conversion of natural gas to liquid natural gas
US6085545A (en) * 1998-09-18 2000-07-11 Johnston; Richard P. Liquid natural gas system with an integrated engine, compressor and expander assembly
US6085547A (en) * 1998-09-18 2000-07-11 Johnston; Richard P. Simple method and apparatus for the partial conversion of natural gas to liquid natural gas
US6269656B1 (en) 1998-09-18 2001-08-07 Richard P. Johnston Method and apparatus for producing liquified natural gas
US6510706B2 (en) * 2000-05-31 2003-01-28 Exxonmobil Upstream Research Company Process for NGL recovery from pressurized liquid natural gas
US20030158458A1 (en) * 2002-02-20 2003-08-21 Eric Prim System and method for recovery of C2+ hydrocarbons contained in liquefied natural gas
US20030188996A1 (en) * 2002-04-03 2003-10-09 Kenneth Reddick Liquid natural gas processing
US20040079107A1 (en) * 2002-10-23 2004-04-29 Wilkinson John D. Natural gas liquefaction
US20040187520A1 (en) * 2001-06-08 2004-09-30 Wilkinson John D. Natural gas liquefaction
WO2004109206A1 (en) * 2003-06-05 2004-12-16 Fluor Corporation Liquefied natural gas regasification configuration and method
US20040250871A1 (en) * 2003-05-09 2004-12-16 Bingham Dennis A. Method and apparatus for dispensing compressed natural gas and liquified natural gas to natural gas powered vehicles
US20050061029A1 (en) * 2003-09-22 2005-03-24 Narinsky George B. Process and apparatus for LNG enriching in methane
US20050066686A1 (en) * 2003-09-30 2005-03-31 Elkcorp Liquefied natural gas processing
US6889523B2 (en) 2003-03-07 2005-05-10 Elkcorp LNG production in cryogenic natural gas processing plants
US20050218041A1 (en) * 2004-04-05 2005-10-06 Toyo Engineering Corporation Process and apparatus for separation of hydrocarbons from liquefied natural gas
US20050247078A1 (en) * 2004-05-04 2005-11-10 Elkcorp Natural gas liquefaction
US6964181B1 (en) 2002-08-28 2005-11-15 Abb Lummus Global Inc. Optimized heating value in natural gas liquids recovery scheme
US20060000234A1 (en) * 2004-07-01 2006-01-05 Ortloff Engineers, Ltd. Liquefied natural gas processing
US20060032269A1 (en) * 2003-02-25 2006-02-16 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US20060260356A1 (en) * 2002-04-03 2006-11-23 Howe-Baker International Liquid natural gas processing
US20070062216A1 (en) * 2003-08-13 2007-03-22 John Mak Liquefied natural gas regasification configuration and method
US20080000265A1 (en) * 2006-06-02 2008-01-03 Ortloff Engineers, Ltd. Liquefied Natural Gas Processing
US20080060380A1 (en) * 2006-09-11 2008-03-13 Cryogenic Group, Inc. Process and system to produce multiple distributable products from source, or imported LNG
US20080087041A1 (en) * 2004-09-14 2008-04-17 Denton Robert D Method of Extracting Ethane from Liquefied Natural Gas
US20080190136A1 (en) * 2007-02-09 2008-08-14 Ortloff Engineers, Ltd. Hydrocarbon Gas Processing
US20080190117A1 (en) * 2007-02-12 2008-08-14 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Lng tank and operation of the same
US20080190135A1 (en) * 2004-09-22 2008-08-14 Fluor Technologies Corporation Configurations and Methods For Lpg Production and Power Cogeneration
US20080295527A1 (en) * 2007-05-31 2008-12-04 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Lng tank ship with nitrogen generator and method of operating the same
US20090100862A1 (en) * 2007-10-18 2009-04-23 Ortloff Engineers, Ltd. Hydrocarbon Gas Processing
US20090199591A1 (en) * 2008-02-11 2009-08-13 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Liquefied natural gas with butane and method of storing and processing the same
US20090259081A1 (en) * 2008-04-10 2009-10-15 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Method and system for reducing heating value of natural gas
US20090266086A1 (en) * 2007-04-30 2009-10-29 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Floating marine structure having lng circulating device
US20100011663A1 (en) * 2008-07-18 2010-01-21 Kellogg Brown & Root Llc Method for Liquefaction of Natural Gas
US20100031700A1 (en) * 2008-08-06 2010-02-11 Ortloff Engineers, Ltd. Liquefied natural gas and hydrocarbon gas processing
US20100050688A1 (en) * 2008-09-03 2010-03-04 Ameringer Greg E NGL Extraction from Liquefied Natural Gas
US20100122542A1 (en) * 2008-11-17 2010-05-20 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Method and apparatus for adjusting heating value of natural gas
US20100182113A1 (en) * 2007-07-02 2010-07-22 Hitachi Metals, Ltd. R-Fe-B TYPE RARE EARTH SINTERED MAGNET AND PROCESS FOR PRODUCTION OF THE SAME
US20100287982A1 (en) * 2009-05-15 2010-11-18 Ortloff Engineers, Ltd. Liquefied Natural Gas and Hydrocarbon Gas Processing
US20110067442A1 (en) * 2009-09-21 2011-03-24 Ortloff Engineers, Ltd. Hydrocarbon Gas Processing
US20110167868A1 (en) * 2010-01-14 2011-07-14 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US8434325B2 (en) 2009-05-15 2013-05-07 Ortloff Engineers, Ltd. Liquefied natural gas and hydrocarbon gas processing
US20130160486A1 (en) * 2011-12-22 2013-06-27 Ormat Technologies Inc. Power and regasification system for lng
US8667812B2 (en) 2010-06-03 2014-03-11 Ordoff Engineers, Ltd. Hydrocabon gas processing
US8850849B2 (en) 2008-05-16 2014-10-07 Ortloff Engineers, Ltd. Liquefied natural gas and hydrocarbon gas processing
US8973398B2 (en) 2008-02-27 2015-03-10 Kellogg Brown & Root Llc Apparatus and method for regasification of liquefied natural gas
US9360249B2 (en) 2004-01-16 2016-06-07 Ihi E&C International Corporation Gas conditioning process for the recovery of LPG/NGL (C2+) from LNG
US9470452B2 (en) 2006-07-27 2016-10-18 Cosmodyne, LLC Imported LNG treatment
WO2017095255A1 (en) * 2015-12-02 2017-06-08 ГАЙЗЕР, Эдуард Петрович Engine with external heat supply and operating method
US9869510B2 (en) 2007-05-17 2018-01-16 Ortloff Engineers, Ltd. Liquefied natural gas processing
US10533794B2 (en) 2016-08-26 2020-01-14 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US10551118B2 (en) 2016-08-26 2020-02-04 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US10551119B2 (en) 2016-08-26 2020-02-04 Ortloff Engineers, Ltd. Hydrocarbon gas processing
KR20200135201A (en) 2019-05-24 2020-12-02 레르 리키드 쏘시에떼 아노님 뿌르 레뜌드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 Extracting system extracting natural gas liquid(ngl) from liquefied natural gas(lng)
US11428465B2 (en) 2017-06-01 2022-08-30 Uop Llc Hydrocarbon gas processing
US11543180B2 (en) 2017-06-01 2023-01-03 Uop Llc Hydrocarbon gas processing

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2666303A (en) * 1950-06-08 1954-01-19 British Oxygen Co Ltd Apparatus for the separation of gas mixtures by liquefaction and rectification
US2763138A (en) * 1954-02-16 1956-09-18 American Messer Corp Process and apparatus for separating gases
US2823523A (en) * 1956-03-26 1958-02-18 Inst Gas Technology Separation of nitrogen from methane
US2952984A (en) * 1958-06-23 1960-09-20 Conch Int Methane Ltd Processing liquefied natural gas
US3261169A (en) * 1963-01-02 1966-07-19 Conch Int Methane Ltd Method of processing a mixture of liquefied gases
US3362175A (en) * 1964-08-10 1968-01-09 Conch Int Methane Ltd Method of fractionating natural gas feed by preheating feed with fractionator overhead
US3383873A (en) * 1964-11-03 1968-05-21 Linde Ag Engine expansion of liquefied gas at below critical temperature and above critical pressure
US3524897A (en) * 1963-10-14 1970-08-18 Lummus Co Lng refrigerant for fractionator overhead
US3570261A (en) * 1969-04-14 1971-03-16 Everett H Schwartzman Cryogenic pumping system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2666303A (en) * 1950-06-08 1954-01-19 British Oxygen Co Ltd Apparatus for the separation of gas mixtures by liquefaction and rectification
US2763138A (en) * 1954-02-16 1956-09-18 American Messer Corp Process and apparatus for separating gases
US2823523A (en) * 1956-03-26 1958-02-18 Inst Gas Technology Separation of nitrogen from methane
US2952984A (en) * 1958-06-23 1960-09-20 Conch Int Methane Ltd Processing liquefied natural gas
US3261169A (en) * 1963-01-02 1966-07-19 Conch Int Methane Ltd Method of processing a mixture of liquefied gases
US3524897A (en) * 1963-10-14 1970-08-18 Lummus Co Lng refrigerant for fractionator overhead
US3362175A (en) * 1964-08-10 1968-01-09 Conch Int Methane Ltd Method of fractionating natural gas feed by preheating feed with fractionator overhead
US3383873A (en) * 1964-11-03 1968-05-21 Linde Ag Engine expansion of liquefied gas at below critical temperature and above critical pressure
US3570261A (en) * 1969-04-14 1971-03-16 Everett H Schwartzman Cryogenic pumping system

Cited By (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4023946A (en) * 1973-11-09 1977-05-17 Schwartzman Everett H Rectification system for the separation of fluids
US4004430A (en) * 1974-09-30 1977-01-25 The Lummus Company Process and apparatus for treating natural gas
US4278457A (en) * 1977-07-14 1981-07-14 Ortloff Corporation Hydrocarbon gas processing
US5114451A (en) * 1990-03-12 1992-05-19 Elcor Corporation Liquefied natural gas processing
US5442924A (en) * 1994-02-16 1995-08-22 The Dow Chemical Company Liquid removal from natural gas
US6014869A (en) * 1996-02-29 2000-01-18 Shell Research Limited Reducing the amount of components having low boiling points in liquefied natural gas
US5983665A (en) * 1998-03-03 1999-11-16 Air Products And Chemicals, Inc. Production of refrigerated liquid methane
US6085546A (en) * 1998-09-18 2000-07-11 Johnston; Richard P. Method and apparatus for the partial conversion of natural gas to liquid natural gas
US6085545A (en) * 1998-09-18 2000-07-11 Johnston; Richard P. Liquid natural gas system with an integrated engine, compressor and expander assembly
US6085547A (en) * 1998-09-18 2000-07-11 Johnston; Richard P. Simple method and apparatus for the partial conversion of natural gas to liquid natural gas
US6269656B1 (en) 1998-09-18 2001-08-07 Richard P. Johnston Method and apparatus for producing liquified natural gas
US6510706B2 (en) * 2000-05-31 2003-01-28 Exxonmobil Upstream Research Company Process for NGL recovery from pressurized liquid natural gas
US20040187520A1 (en) * 2001-06-08 2004-09-30 Wilkinson John D. Natural gas liquefaction
US7010937B2 (en) 2001-06-08 2006-03-14 Elkcorp Natural gas liquefaction
US7210311B2 (en) 2001-06-08 2007-05-01 Ortloff Engineers, Ltd. Natural gas liquefaction
US20090293538A1 (en) * 2001-06-08 2009-12-03 Ortloff Engineers, Ltd. Natural gas liquefaction
US20050268649A1 (en) * 2001-06-08 2005-12-08 Ortloff Engineers, Ltd. Natural gas liquefaction
US20030158458A1 (en) * 2002-02-20 2003-08-21 Eric Prim System and method for recovery of C2+ hydrocarbons contained in liquefied natural gas
US7069743B2 (en) 2002-02-20 2006-07-04 Eric Prim System and method for recovery of C2+ hydrocarbons contained in liquefied natural gas
US6941771B2 (en) 2002-04-03 2005-09-13 Howe-Baker Engineers, Ltd. Liquid natural gas processing
US20060260356A1 (en) * 2002-04-03 2006-11-23 Howe-Baker International Liquid natural gas processing
WO2003085341A1 (en) * 2002-04-03 2003-10-16 Howe-Baker Engeneers, Ltd. Liquid natural gas processing
US7475566B2 (en) 2002-04-03 2009-01-13 Howe-Barker Engineers, Ltd. Liquid natural gas processing
US20030188996A1 (en) * 2002-04-03 2003-10-09 Kenneth Reddick Liquid natural gas processing
AU2003230778B2 (en) * 2002-04-03 2007-06-21 Howe-Baker Engineers, Ltd. Liquid natural gas processing
US6964181B1 (en) 2002-08-28 2005-11-15 Abb Lummus Global Inc. Optimized heating value in natural gas liquids recovery scheme
US6945075B2 (en) 2002-10-23 2005-09-20 Elkcorp Natural gas liquefaction
US20040079107A1 (en) * 2002-10-23 2004-04-29 Wilkinson John D. Natural gas liquefaction
US7191617B2 (en) 2003-02-25 2007-03-20 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US20060032269A1 (en) * 2003-02-25 2006-02-16 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US6889523B2 (en) 2003-03-07 2005-05-10 Elkcorp LNG production in cryogenic natural gas processing plants
US7222647B2 (en) 2003-05-09 2007-05-29 Battelle Energy Alliance, Llc Apparatus for dispensing compressed natural gas and liquified natural gas to natural gas powered vehicles
US20040250871A1 (en) * 2003-05-09 2004-12-16 Bingham Dennis A. Method and apparatus for dispensing compressed natural gas and liquified natural gas to natural gas powered vehicles
US6899146B2 (en) 2003-05-09 2005-05-31 Battelle Energy Alliance, Llc Method and apparatus for dispensing compressed natural gas and liquified natural gas to natural gas powered vehicles
US20060169352A1 (en) * 2003-05-09 2006-08-03 Bingham Dennis A Apparatus for dispensing compressed natural gas and liquified natural gas to natural gas powered vehicles
AU2003258212B2 (en) * 2003-06-05 2009-03-19 Fluor Technologies Corporation Liquefied natural gas regasification configuration and method
EA008337B1 (en) * 2003-06-05 2007-04-27 Флуор Корпорейшн Liquefied natural gas regasification plant
WO2004109206A1 (en) * 2003-06-05 2004-12-16 Fluor Corporation Liquefied natural gas regasification configuration and method
US20070062216A1 (en) * 2003-08-13 2007-03-22 John Mak Liquefied natural gas regasification configuration and method
US6986266B2 (en) * 2003-09-22 2006-01-17 Cryogenic Group, Inc. Process and apparatus for LNG enriching in methane
US20050061029A1 (en) * 2003-09-22 2005-03-24 Narinsky George B. Process and apparatus for LNG enriching in methane
US20050066686A1 (en) * 2003-09-30 2005-03-31 Elkcorp Liquefied natural gas processing
US7155931B2 (en) 2003-09-30 2007-01-02 Ortloff Engineers, Ltd. Liquefied natural gas processing
US9360249B2 (en) 2004-01-16 2016-06-07 Ihi E&C International Corporation Gas conditioning process for the recovery of LPG/NGL (C2+) from LNG
US20050218041A1 (en) * 2004-04-05 2005-10-06 Toyo Engineering Corporation Process and apparatus for separation of hydrocarbons from liquefied natural gas
US7310972B2 (en) 2004-04-05 2007-12-25 Toyo Engineering Corporation Process and apparatus for separation of hydrocarbons from liquefied natural gas
US20080022717A1 (en) * 2004-04-05 2008-01-31 Toyo Engineering Corporation Process and apparatus for separation of hydrocarbons from liquefied natural gas
US20050247078A1 (en) * 2004-05-04 2005-11-10 Elkcorp Natural gas liquefaction
US7204100B2 (en) 2004-05-04 2007-04-17 Ortloff Engineers, Ltd. Natural gas liquefaction
US7216507B2 (en) 2004-07-01 2007-05-15 Ortloff Engineers, Ltd. Liquefied natural gas processing
US20060000234A1 (en) * 2004-07-01 2006-01-05 Ortloff Engineers, Ltd. Liquefied natural gas processing
US8156758B2 (en) 2004-09-14 2012-04-17 Exxonmobil Upstream Research Company Method of extracting ethane from liquefied natural gas
US20080087041A1 (en) * 2004-09-14 2008-04-17 Denton Robert D Method of Extracting Ethane from Liquefied Natural Gas
US8065890B2 (en) * 2004-09-22 2011-11-29 Fluor Technologies Corporation Configurations and methods for LPG production and power cogeneration
US20080190135A1 (en) * 2004-09-22 2008-08-14 Fluor Technologies Corporation Configurations and Methods For Lpg Production and Power Cogeneration
US20080000265A1 (en) * 2006-06-02 2008-01-03 Ortloff Engineers, Ltd. Liquefied Natural Gas Processing
US7631516B2 (en) 2006-06-02 2009-12-15 Ortloff Engineers, Ltd. Liquefied natural gas processing
US9470452B2 (en) 2006-07-27 2016-10-18 Cosmodyne, LLC Imported LNG treatment
US7603867B2 (en) 2006-09-11 2009-10-20 Cryogenic Group, Inc. Process and system to produce multiple distributable products from source, or imported LNG
US20080060380A1 (en) * 2006-09-11 2008-03-13 Cryogenic Group, Inc. Process and system to produce multiple distributable products from source, or imported LNG
US8590340B2 (en) 2007-02-09 2013-11-26 Ortoff Engineers, Ltd. Hydrocarbon gas processing
US20080190136A1 (en) * 2007-02-09 2008-08-14 Ortloff Engineers, Ltd. Hydrocarbon Gas Processing
US20090211262A1 (en) * 2007-02-12 2009-08-27 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Lng tank ship having lng circulating device
US11168837B2 (en) 2007-02-12 2021-11-09 Daewoo Shipbuilding & Marine Engineering Co., Ltd. LNG tank and operation of the same
US8028724B2 (en) 2007-02-12 2011-10-04 Daewoo Shipbuilding & Marine Engineering Co., Ltd. LNG tank and unloading of LNG from the tank
US20080190352A1 (en) * 2007-02-12 2008-08-14 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Lng tank ship and operation thereof
US20080190118A1 (en) * 2007-02-12 2008-08-14 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Lng tank and unloading of lng from the tank
US10352499B2 (en) 2007-02-12 2019-07-16 Daewoo Shipbuilding & Marine Engineering Co., Ltd. LNG tank and operation of the same
US20080190117A1 (en) * 2007-02-12 2008-08-14 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Lng tank and operation of the same
US8943841B2 (en) 2007-02-12 2015-02-03 Daewoo Shipbuilding & Marine Engineering Co., Ltd. LNG tank ship having LNG circulating device
US10508769B2 (en) 2007-02-12 2019-12-17 Daewoo Shipbuilding & Marine Engineering Co., Ltd. LNG tank and operation of the same
US8820096B2 (en) 2007-02-12 2014-09-02 Daewoo Shipbuilding & Marine Engineering Co., Ltd. LNG tank and operation of the same
US20090266086A1 (en) * 2007-04-30 2009-10-29 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Floating marine structure having lng circulating device
US9869510B2 (en) 2007-05-17 2018-01-16 Ortloff Engineers, Ltd. Liquefied natural gas processing
US20080295527A1 (en) * 2007-05-31 2008-12-04 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Lng tank ship with nitrogen generator and method of operating the same
US20100182113A1 (en) * 2007-07-02 2010-07-22 Hitachi Metals, Ltd. R-Fe-B TYPE RARE EARTH SINTERED MAGNET AND PROCESS FOR PRODUCTION OF THE SAME
US8919148B2 (en) 2007-10-18 2014-12-30 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US20090100862A1 (en) * 2007-10-18 2009-04-23 Ortloff Engineers, Ltd. Hydrocarbon Gas Processing
US20100012015A1 (en) * 2008-02-11 2010-01-21 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Storage tank containing liquefied natural gas with butane
US20090199591A1 (en) * 2008-02-11 2009-08-13 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Liquefied natural gas with butane and method of storing and processing the same
US20090199759A1 (en) * 2008-02-11 2009-08-13 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Storage tank containing liquefied natural gas with butane
US7841288B2 (en) 2008-02-11 2010-11-30 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Storage tank containing liquefied natural gas with butane
US7644676B2 (en) 2008-02-11 2010-01-12 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Storage tank containing liquefied natural gas with butane
US8973398B2 (en) 2008-02-27 2015-03-10 Kellogg Brown & Root Llc Apparatus and method for regasification of liquefied natural gas
US20090259081A1 (en) * 2008-04-10 2009-10-15 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Method and system for reducing heating value of natural gas
US9086188B2 (en) 2008-04-10 2015-07-21 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Method and system for reducing heating value of natural gas
US8850849B2 (en) 2008-05-16 2014-10-07 Ortloff Engineers, Ltd. Liquefied natural gas and hydrocarbon gas processing
US8381544B2 (en) 2008-07-18 2013-02-26 Kellogg Brown & Root Llc Method for liquefaction of natural gas
US20100011663A1 (en) * 2008-07-18 2010-01-21 Kellogg Brown & Root Llc Method for Liquefaction of Natural Gas
US20110120183A9 (en) * 2008-08-06 2011-05-26 Ortloff Engineers, Ltd. Liquefied natural gas and hydrocarbon gas processing
US8584488B2 (en) 2008-08-06 2013-11-19 Ortloff Engineers, Ltd. Liquefied natural gas production
US20100031700A1 (en) * 2008-08-06 2010-02-11 Ortloff Engineers, Ltd. Liquefied natural gas and hydrocarbon gas processing
US20100050688A1 (en) * 2008-09-03 2010-03-04 Ameringer Greg E NGL Extraction from Liquefied Natural Gas
US20130104598A1 (en) * 2008-09-03 2013-05-02 Greg E. Ameringer Ngl extraction from liquefied natural gas
US20100122542A1 (en) * 2008-11-17 2010-05-20 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Method and apparatus for adjusting heating value of natural gas
US8794030B2 (en) 2009-05-15 2014-08-05 Ortloff Engineers, Ltd. Liquefied natural gas and hydrocarbon gas processing
US20100287982A1 (en) * 2009-05-15 2010-11-18 Ortloff Engineers, Ltd. Liquefied Natural Gas and Hydrocarbon Gas Processing
US8434325B2 (en) 2009-05-15 2013-05-07 Ortloff Engineers, Ltd. Liquefied natural gas and hydrocarbon gas processing
US20110067442A1 (en) * 2009-09-21 2011-03-24 Ortloff Engineers, Ltd. Hydrocarbon Gas Processing
US20110067443A1 (en) * 2009-09-21 2011-03-24 Ortloff Engineers, Ltd. Hydrocarbon Gas Processing
US9476639B2 (en) 2009-09-21 2016-10-25 Ortloff Engineers, Ltd. Hydrocarbon gas processing featuring a compressed reflux stream formed by combining a portion of column residue gas with a distillation vapor stream withdrawn from the side of the column
US9021832B2 (en) 2010-01-14 2015-05-05 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US20110167868A1 (en) * 2010-01-14 2011-07-14 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US8667812B2 (en) 2010-06-03 2014-03-11 Ordoff Engineers, Ltd. Hydrocabon gas processing
US9903232B2 (en) * 2011-12-22 2018-02-27 Ormat Technologies Inc. Power and regasification system for LNG
US20130160486A1 (en) * 2011-12-22 2013-06-27 Ormat Technologies Inc. Power and regasification system for lng
WO2017095255A1 (en) * 2015-12-02 2017-06-08 ГАЙЗЕР, Эдуард Петрович Engine with external heat supply and operating method
US10533794B2 (en) 2016-08-26 2020-01-14 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US10551118B2 (en) 2016-08-26 2020-02-04 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US10551119B2 (en) 2016-08-26 2020-02-04 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US11428465B2 (en) 2017-06-01 2022-08-30 Uop Llc Hydrocarbon gas processing
US11543180B2 (en) 2017-06-01 2023-01-03 Uop Llc Hydrocarbon gas processing
KR20200135201A (en) 2019-05-24 2020-12-02 레르 리키드 쏘시에떼 아노님 뿌르 레뜌드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 Extracting system extracting natural gas liquid(ngl) from liquefied natural gas(lng)

Similar Documents

Publication Publication Date Title
US3837172A (en) Processing liquefied natural gas to deliver methane-enriched gas at high pressure
JP4559420B2 (en) Cryogenic recovery method of natural gas liquid from liquid natural gas
US5114451A (en) Liquefied natural gas processing
US4690702A (en) Method and apparatus for cryogenic fractionation of a gaseous feed
US10113127B2 (en) Process for separating nitrogen from a natural gas stream with nitrogen stripping in the production of liquefied natural gas
JP3947220B2 (en) Cooling fluid flow
US4617039A (en) Separating hydrocarbon gases
US7299655B2 (en) Systems and methods for vaporization of liquefied natural gas
US3656312A (en) Process for separating a liquid gas mixture containing methane
US9869510B2 (en) Liquefied natural gas processing
US4718927A (en) Process for the separation of C2+ hydrocarbons from natural gas
US6964181B1 (en) Optimized heating value in natural gas liquids recovery scheme
EP1668096A2 (en) Liquefied natural gas processing
US20120000245A1 (en) Methods and Systems for Recovering Liquified Petroleum Gas from Natural Gas
US2812646A (en) Manipulation of nitrogen-contaminated natural gases
US3702541A (en) Low temperature method for removing condensable components from hydrocarbon gas
JP2009538962A (en) Treatment of liquefied natural gas
US6986266B2 (en) Process and apparatus for LNG enriching in methane
CA1245546A (en) Separation of hydrocarbon mixtures
JP2009538962A5 (en)
KR20070032003A (en) Treating liquefied natural gas
US3595782A (en) Method for separating crabon dioxide from hydrocarbons
US7096688B2 (en) Liquefaction method comprising at least a coolant mixture using both ethane and ethylene
US2541569A (en) Liquefying and regasifying natural gases
GB2297825A (en) Process to remove nitrogen from natural gas