JP2013256833A - Refuge room against tsunami and siphon device used for the same - Google Patents

Refuge room against tsunami and siphon device used for the same Download PDF

Info

Publication number
JP2013256833A
JP2013256833A JP2012134436A JP2012134436A JP2013256833A JP 2013256833 A JP2013256833 A JP 2013256833A JP 2012134436 A JP2012134436 A JP 2012134436A JP 2012134436 A JP2012134436 A JP 2012134436A JP 2013256833 A JP2013256833 A JP 2013256833A
Authority
JP
Japan
Prior art keywords
partition wall
water
tsunami
air
entrance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012134436A
Other languages
Japanese (ja)
Other versions
JP5462322B2 (en
Inventor
Meiko Tomita
盟子 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012134436A priority Critical patent/JP5462322B2/en
Publication of JP2013256833A publication Critical patent/JP2013256833A/en
Application granted granted Critical
Publication of JP5462322B2 publication Critical patent/JP5462322B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

PROBLEM TO BE SOLVED: To utilize a principle of siphon to enable drainage to be automatically carried out and solve the problem that: drainage of water dammed and accumulated on the inside of a partition is required to be promoted in order to prevent a required volume of air from being lost in a refuge room against tsunami having an entrance release structure with a partition wall in its inside when the tsunami retreats, with the result that a volume of air required for survival is ensured while preventing it from escaping from the entrance.SOLUTION: In a refuge room against tsunami having an entrance release structure with a partition wall in its inside, water accumulated inside the room is not drained by reversely overflowing the partition wall when a tsunami retreats and the water does not undergo a change in volume. Therefore, the inside air expanded along with decompression tends to escape from an entrance. Accordingly, in order to lower the water level of the inside stored water, a siphon device astride the partition wall, or a siphon device penetrating through the partition wall, a valve, or a plug is provided to promote drainage of the dammed water.

Description

本発明は、入口解放構造で内部に仕切り壁を設けた津波退避部屋における引き潮時の必要空気量保持、排水対策としてのサイフォン装置の設置に関する。 The present invention relates to the installation of a siphon device as a measure for maintaining the required air amount during tide and in drainage measures in a tsunami evacuation room having a partition wall provided therein with an entrance opening structure.

津波退避部屋として、入口解放構造の場合では津波の水の出入りが自由であるため内外の圧力が均衡して、入口閉鎖構造の気密構造体のように特別の構造壁厚を要しない。ただし、当然に生身に受けるであろう漂流物対策が必要で、漂流物衝撃防止の仕切り壁が設置される。仕切り壁が退避部屋内部に設置されると、津波が押し寄せて水位が上昇するときは有効である。ところが引き潮になって周辺の水位が下がってくると、仕切り壁が貯水タンクの壁のようになり内部の水は抜けないで残ってしまう。すなわち、周辺の水位は低下するが内部の水位は満タンのまま低下しない。そのため本来は、圧縮された内部の空気圧は、水圧低下に伴い減少するはずで、すなわち、空気体積は元に戻るために増えるはずだが、仕切り壁の奥内部に体積が減らない満タン水があるため、圧縮空気は逃げ道がなく入口から抜けていくという現象の可能性がある。このことは、生存必要空気量を減ずることにつながるため、大切な空気が抜けることを阻止する必要がある。そもそも津波対策として、従来技術である防潮堤の嵩上げ、高台移転では巨費と長い歳月を要する。想定外の津波高さにも限界がある。そこで、想定外の津波にも対応できる入口解放構造の津波退避部屋、その内部に仕切り壁を設ける技術が背景技術として生まれた。(特許文献1)の入口解放構造の仕切り壁設置の技術では、漂流物衝撃防止、内部が濡れるのが遅くなる、内部の生存必要空気量が多く確保できるなどのメリットがあり、想定外の津波高さでも内部の穏やか水位上昇、空気圧縮との関係で時間的余裕ができる仕切り壁の設置意義は大きい。また、(特許文献2)は津波来襲の前の巨大地震で退避部屋にひびが入ったとしても空気保持独立体を設置することで空気が抜けず2重の安全を提供するとしている。しかし、引き潮時には仕切り壁で貯まった水は排水されず、生存必要空気量が減圧とともに膨張するため、逃げ場を失った空気は出入り自由な入口から逃げ出す可能性がある。この場合でも水位は仕切り壁高さまであり、水は排水されないままである。空気保持独立体の場合は減圧、空気膨張で仕切り壁との間の水を押し出すとしても依然としてそこに水が満たされているため、水中脱出、浮上に苦労する。いずれも引き潮時の現象について対策を講ずる余地を残している。第2波の到来にも水を抜いて、準備万端といきたいところ。 As the tsunami evacuation room, in the case of the entrance opening structure, the tsunami water can freely enter and exit, so the pressure inside and outside is balanced, and no special structural wall thickness is required unlike the airtight structure of the entrance closing structure. However, it is necessary to take measures against drifting objects that would naturally be received, and a partition wall will be installed to prevent drifting object impacts. When the partition wall is installed inside the evacuation room, it is effective when the water level rises due to the tsunami. However, when the water level in the surrounding area drops due to the ebb tide, the partition wall becomes like the wall of the water storage tank and the water inside remains without draining. That is, the surrounding water level falls, but the internal water level remains full. Therefore, the compressed internal air pressure should decrease with decreasing water pressure, that is, the air volume should increase to return to the original, but there is a full tank water that does not decrease the volume inside the partition wall. Therefore, there is a possibility of a phenomenon in which compressed air escapes from the entrance without an escape route. This leads to a reduction in the amount of air necessary for survival, so it is necessary to prevent important air from being released. In the first place, as a countermeasure against tsunami, raising the seawall, which is the conventional technology, and moving up the hills, require a lot of money and a long time. Unexpected tsunami heights are also limited. Therefore, the background technology was born of a tsunami evacuation room with an entrance opening structure that can cope with unexpected tsunamis and a partition wall inside. The technology of the partition wall installation of the entrance opening structure of (Patent Document 1) has advantages such as prevention of drifting object impact, slowing of getting wet inside, securing a large amount of air required for survival inside, and unexpected tsunami The installation significance of the partition wall which can afford time in relation to the rise of the calm water level inside and the air compression even at height is great. In addition, (Patent Document 2) states that even if a evacuation room is cracked by a huge earthquake before the tsunami attack, an air holding independent body is installed so that air does not escape and double safety is provided. However, at the time of tide, the water stored in the partition wall is not drained, and the amount of air necessary for survival expands as the pressure decreases, so that air that has lost its escape may escape from the free entrance and exit. Even in this case, the water level is up to the height of the partition wall, and the water remains undrained. In the case of an air holding independent body, even if the water between the partition walls is pushed out by depressurization and air expansion, the water is still filled therewith, so it is difficult to escape and float. Both leave room for measures to be taken against the phenomenon during the ebb tide. I want to get ready for the second wave.

特許第4979040号Japanese Patent No. 4997040 特願2012−96149Japanese Patent Application No. 2012-96149

平成5年版土木学会構造力学公式集、p341、p4051993 edition of Japan Society of Civil Engineers Structural Mechanics Official Collection, p341, p405

津波退避部屋は、想定外の津波で水没しても生存必要空気量を保持する必要がある。また、入口が自由である構造とした場合では、漂流物衝撃防止の仕切り壁を内部に設ける。退避部屋内部の空気は、津波の引き潮時において外周の水位が入口高さになるまで体積、すなわち必要空気量を保たなければならない。ところが津波到来時には仕切り壁を越えて奥に貯まった水ではあるが、引き潮の減圧時には仕切り壁を越えてまで、すなわち逆戻りして流出しない。水は圧力で体積変化しない性質があり、気圧が下がっても仕切り壁に貯水されたままである。ところが、圧縮された空気は減圧とともに体積膨張するため逃げ場を求めて、自由な入口から空気泡となって外の水中に逃げ出す。すなわち、内部の気圧に押されて空気は入口から逃げていくことになるが、急な減圧にもつながり、十分な空気量があれば問題はないが余裕がないと厳しいことになる。幸いにして引き潮時間は比較的短いと思われるので必要空気量の問題はないかもしれないが、この仕切り壁より奥の内部の水が抜けてくれると、その分、圧縮空気が圧力を減じて体積が増える空間域が拡張するので生存空気必要体積が保持される。そこで、サイフォンの原理を利用すれば、津波の引き潮により生じる外水圧の急激な減少とそれに伴う内部の圧縮空気圧との微差の圧力差により、仕切り壁奥の内部の水を抜くことができるので解決できる。 The tsunami evacuation room must maintain the necessary air volume even if it is submerged in an unexpected tsunami. In addition, in the case of a structure where the entrance is free, a partition wall for preventing drifting object impact is provided inside. The air inside the evacuation room must maintain the volume, that is, the required air amount, until the water level on the outer periphery reaches the entrance height at the time of the tsunami. However, when the tsunami arrives, it is the water that has accumulated behind the partition wall, but when the tide is reduced, it does not flow out beyond the partition wall, that is, reverse. Water has the property that the volume does not change with pressure, and it remains stored in the partition wall even when the atmospheric pressure drops. However, since the compressed air expands in volume as the pressure is reduced, it seeks a escape place and escapes from the free entrance to the outside water as air bubbles. In other words, the air is pushed by the internal pressure and escapes from the inlet, but it also leads to a sudden pressure reduction, and there is no problem if there is a sufficient amount of air, but it is severe if there is no room. Fortunately, the tide time seems to be relatively short, so there may not be a problem with the required air volume, but if the water behind the partition wall escapes, the compressed air will reduce the pressure accordingly. Since the space area where the volume increases is expanded, the necessary volume of living air is maintained. Therefore, if the siphon principle is used, the water behind the partition wall can be drained by the pressure difference between the sudden decrease in the external water pressure caused by the tsunami tide and the accompanying compression air pressure. Solvable.

このような課題を解決するために、本発明の津波退避部屋は、内部に仕切り壁を設けた入口解放構造の津波退避部屋であって、津波の引き潮時に生存必要空気量を逃がさず確保するために、仕切り壁で堰き止められた水の排水を、部屋内部の圧縮空気圧と外水圧の差を利用して促すサイフォン装置、もしくは、仕切り壁にバルブ弁、または栓を設置したこと特徴とする。 In order to solve such a problem, the tsunami evacuation room of the present invention is a tsunami evacuation room with an entrance opening structure provided with a partition wall inside, in order to ensure the necessary amount of air without escaping at the time of tsunami tide In addition, a siphon device that promotes drainage of water blocked by the partition wall by utilizing the difference between the compressed air pressure inside the room and the external water pressure, or a valve valve or a plug is installed on the partition wall.

また、本発明の津波退避部屋は、前記サイフォン装置は、形状保持管とし、仕切り壁を跨いで設置する場合は頂部に空気抜き装置を設け、仕切り壁を貫通して設置する場合は入口頂点高さより高い位置に設けたことを特徴とする。 Further, in the tsunami evacuation room of the present invention, the siphon device is a shape-maintaining tube, and when installed across the partition wall, an air vent device is provided at the top, and when installed through the partition wall, from the entrance vertex height It is provided at a high position.

また、本発明の津波退避部屋は、前記仕切り壁に設置したバルブ弁、または栓は、仕切り壁の入口頂点高さより低い位置に貫通穴をあけてそこに設けたことを特徴とする。 In the tsunami evacuation chamber of the present invention, the valve valve or plug installed in the partition wall is provided with a through hole formed at a position lower than the entrance vertex height of the partition wall.

想定外の津波を想定して、その水没中でも生存必要空気を確保する上昇水面を含む密閉構造の避難部屋ではあるが、引き潮時に空気を持って行かれる可能性がある。すなわち、仕切り壁があるとそこに満水となった水は、壁を超えてまで減少しない。当然、体積減少もしない。したがって、減圧で膨張しようとする空気は体積を減少するしかない。すなわち、入口から空気が泡となって水中に抜けて、そのロス分の空気圧は外の水位が低下する水圧とバランスするまで低下する。しかし、生存必要空気量がわずかならまだしも、外水圧とバランスするまで内部気圧が減少するため、大きく空気を放出してしまう。そうなっては元も子もない。引き潮時間は短いためそれでも生存には大丈夫なときもあるが、設計空気量に余裕があるといえども考慮の余地がある。そこで、サイフォンの原理により、仕切り壁を跨ぐサイフォン装置で、引き潮時の津波高さの低下に伴う外周水圧の低下とともに、仕切り壁奥の満タンの水が部屋内部の空気圧力に押されてサイフォン装置を通じて外に導き出される。そうなると当然、空気は減圧で膨らみ生存必要空気量が確保されたままで元の平気圧、元の体積に戻ろうとする。当然に、内部空間は大きく確保され、水が貯まったままの天井までの制限された状況に比べて行動範囲も大幅に広がる。このサイフォン装置により、必要空気量が常にバランスよく確保され、パニックにならず、安全・安心が提供される。より身近で安心できるため家族もバラバラで遠方に逃げる必要もない。夜中や介護高齢者の避難訓練の負担も相当に軽減される。水没時間に対応して大きな空気量が必要であるが、鉄筋コンクリート造りの退避部屋では容量も大きく、百人単位の収容も可能で、大勢の人命が助かる。防潮堤の嵩上げや高台移転では想定外の津波に対して安全に限がなく、巨費と長い歳月を要する。災害は、時と場所を選ばない。本発明で、来る東南海地震等に対しても早期に対応でき、例えば1kmごとの配置とかで防災計画立案にも役立つ。さらに、津波以外にも、高潮や台風、大雨時の洪水、堤防決壊による河川氾濫時、海抜以下や天井川沿い地域の防災対策としても有効である。 Assuming an unexpected tsunami, it is a sealed evacuation room with a rising water surface that secures the necessary air even during submergence, but there is a possibility that it will be carried with air at the time of tide. That is, if there is a partition wall, the water that is filled there will not decrease until it exceeds the wall. Of course, the volume does not decrease. Therefore, the air that is going to expand under reduced pressure can only be reduced in volume. That is, air is bubbled from the inlet and escapes into the water, and the air pressure corresponding to the loss decreases until it balances with the water pressure at which the outside water level decreases. However, even if the amount of air required for survival is small, the internal pressure decreases until it balances with the external water pressure, so that the air is greatly released. If so, there is no original or child. Although the tide time is short, it may still be okay to survive, but there is room for consideration even if there is a margin in the design air volume. Therefore, in the siphon device that straddles the partition wall according to the principle of siphon, the full water in the back of the partition wall is pushed by the air pressure inside the room along with the decrease of the outer peripheral water pressure accompanying the decrease of the tsunami height at the time of tide. It is led out through the device. As a matter of course, the air expands due to the reduced pressure and tries to return to the original normal pressure and the original volume while the necessary amount of air is secured. Naturally, a large internal space is ensured, and the range of action is greatly expanded compared to the situation where the ceiling is limited to where water is stored. With this siphon device, the required amount of air is always secured in a balanced manner, and panic does not occur and safety and security are provided. Because it is closer and safer, the family does not have to run away. The burden of evacuation drills for midnight and elderly caregivers is significantly reduced. A large amount of air is needed to accommodate the submergence time, but the reinforced concrete evacuation room has a large capacity and can accommodate hundreds of people, saving many lives. The rise of the seawall and the relocation of the hills are not safe for unexpected tsunamis, and require huge expenses and long years. A disaster does not choose time and place. With the present invention, it is possible to quickly respond to the coming Tonankai earthquake and the like, and for example, it is useful for disaster prevention planning with the arrangement of every 1 km. In addition to tsunamis, it is also effective as a disaster prevention measure for elevations below the sea level and in areas along the ceiling river, during storm surges, typhoons, floods during heavy rains, river inundation due to bank breaks.

入口解放構造の津波退避部屋の津波高さと内部の圧縮空気による穏やかな水位上昇の関係で、津波高さ1m、10m、20m、30m、40m、50mとした場合の密閉空間の水位上昇との関係図。図中にh−1、h―10、h−20、h−30、h−40、h−50で表す。Relationship between the tsunami height of the tsunami evacuation room with the entrance opening structure and the gentle rise of the water level due to the compressed air inside, and the rise of the water level in the sealed space when the tsunami height is 1 m, 10 m, 20 m, 30 m, 40 m, 50 m Figure. In the figure, h-1, h-10, h-20, h-30, h-40, and h-50 are represented. 入口解放構造の津波退避部屋に入口頂点高さより高い仕切り壁を設けた場合の津波高さと内部の圧縮空気による穏やかな水位上昇の関係で、津波高さ1m、10m、20m、30m、40m、50mとした場合の密閉空間の水位上昇との関係図。図中にh−1、h―10、h−20、h−30、h−40、h−50で表す。階段や内部の高床が設置されるが図中は省略している。The tsunami height is 1m, 10m, 20m, 30m, 40m, 50m due to the relationship between the tsunami height when the partition wall higher than the entrance vertex height is provided in the tsunami evacuation room with the entrance opening structure and the gentle water level rise by the compressed air inside. The relation figure with the water level rise of sealed space in the case of. In the figure, h-1, h-10, h-20, h-30, h-40, and h-50 are represented. Stairs and internal high floors are installed, but are not shown in the figure. 津波の引き潮時に、仕切り壁奥が満水状態で排水されない場合に、入口から圧縮空気の抜ける様子を表した想定図。An assumption diagram showing how compressed air escapes from the entrance when the back of a partition wall is not fully drained during a tsunami tide. 仕切り壁を跨ぐサイフォン装置の頂部に空気抜き弁を設置したサイフォン装置とした場合、津波引き潮時に仕切り壁奥の水が排出され、水位が均等に低下する説明図。When it is set as the siphon apparatus which installed the air vent valve in the top part of the siphon apparatus straddling a partition wall, the water behind a partition wall will be discharged | emitted at the time of tsunami tide, and a water level will fall equally. 入口頂点高さより高い位置の仕切り壁を貫通して設けたサイフォン装置で、津波到来時の水位上昇に押されて仕切り壁奥に水が導入される状況図。やがて、奥内部の水位がサイフォン装置の出口高さに達すると、サイフォン装置の管の中が満水となり、サイフォンの原理が働く。FIG. 5 is a situation diagram in which water is introduced into the back of a partition wall by a siphon device provided through a partition wall at a position higher than the entrance apex height and pushed by a rise in water level when a tsunami arrives. Eventually, when the water level in the back reaches the outlet height of the siphon device, the pipe of the siphon device becomes full and the principle of siphon works. 入口頂点高さより高い位置の仕切り壁を貫通して設けたサイフォン装置で、津波の引き潮時にサイフォンの原理により奥内部の水が排出され、水位が均等になる状況図。A situation diagram in which water inside the back is discharged according to the principle of the siphon when a tsunami tides, and the water level is equalized in a siphon device provided through a partition wall at a position higher than the entrance apex height. 仕切り壁の下方に穴をあけ、そこにバルブ弁を設け、高床の上から弁を開くための浮き輪のついたロープで操作する状況図。A situation diagram in which a hole is made below the partition wall, a valve valve is provided there, and a rope with a floating ring is used to open the valve from above the elevated floor. 外水位が入口頂点高さを超えた時点以降に、下方の穴の栓を押し抜いて仕切り壁奥に水を導き水位バランスを図った状況図。この場合、引き潮時にはスムーズに内部の水が抜けてくれる。After the point when the outside water level exceeds the entrance apex height, a situation diagram in which the water level is balanced by pushing the stopper of the lower hole and guiding water to the back of the partition wall. In this case, the water in the inside will come out smoothly during the tide. 仕切り壁奥に空気保持独立体を設けた場合の、仕切り壁の下方に設けた穴の栓を接続していた棒で押し抜く状況図。The situation figure which pushes out with the stick | rod which connected the stopper of the hole provided in the downward direction of a partition wall at the time of providing an air holding independent body in the partition wall back.

発明を実施するための形態について述べる。津波退避部屋の入口解放構造の場合、仕切り壁がないと内部水位は外部の津波水位に連動してすぐ上昇する。そして、引き潮時も今までたどってきたのと同じ連動を逆に繰り返して元に戻る。仕切り壁がある場合、漂流物の直撃を受けない、しばらくは水に濡れない、空気量確保の空間が大きくとれその分余裕がとれる、反面、引き潮時には仕切り壁で満たされた水は貯まったままとなり、圧縮された空気は逃げ場を求めて入口から抜けていく。引き潮時には減圧となるので、空気体積は膨張するが満水で貯まったままだと、減圧解放され膨張する空気は入口から抜けてしまうし、満杯の水で内部での行動が不自由である。そこで、仕切り壁を跨ぐ形状保持の排水管(ホースのような平らになるのは不適当)のようなサイフォン構造とし、津波の減圧につられてまだそれよりは大きい内部圧力とタイムラグを生じた時にサイフォン作用が働き、内部の水は外部へと導き出される通水状態となる。このことにより、津波の引き潮に伴い仕切り壁奥内部の水位も下がり、空間体積も増えるので生存必要空気量を失わず保つことができる。外の水嵩が増すときにその勢いでサイフォン装置を通して奥の内部に水が入るので、その頂点は仕切り壁高さより低い方が、外水位が増すときに頂点の空気が一緒に抜けやすく、その逆転の外水位が引くときに、サイフォン装置内には空気がなくなって水で満たされているのでサイフォンの原理で自動的に連続排水する。サイフォン装置は水で満たされたときに連続的に流れるのが特徴であるが、頂点付近に空気が残ったままだと流れない。頂点を跨ぐ場合は安全のために空気抜き弁を設けた方がいい。そのための地元防災スタッフの訓練も必要だ。仕切り壁に穴を設けてサイフォンを通す場合は入口頂点高さと仕切り壁頂点との間に設ける。穴以外にU字の溝や隙間があってはそこから内部に水が入るので仕切り壁の高さを高くした意味がない。仕切り壁の下方に穴を開けバブル弁、栓を設置する方法も考えられる。この場合、水が満水であることを忘れてはならない。上から引っ張って抜ける工夫が必要だ。内外の水圧はバランスするので栓に外に傾斜を付けるか、バブル弁は外開きとすれば、くさび作用が働き内部に飛び出してくる心配はない。 A mode for carrying out the invention will be described. In the case of the tsunami evacuation room entrance opening structure, if there is no partition wall, the internal water level rises immediately in conjunction with the external tsunami water level. And at the time of ebb tide, the same linkage that has been followed up to now is repeated in reverse. If there is a partition wall, it will not be directly hit by drifting objects, it will not get wet with water for a while, a large space for securing air volume can be taken, and on the other hand, the water filled with the partition wall remains at the time of tide Then, the compressed air escapes from the entrance in search of a refuge. Since the pressure is reduced at the time of tide, the air volume expands, but if it is stored with full water, the air that is released under reduced pressure and expands escapes from the entrance, and the internal action is inconvenient with full water. Therefore, when a siphon structure such as a drainage pipe that holds the shape across the partition wall (unsuitable to be flat like a hose) is used, and when the internal pressure and time lag are still larger than that due to the tsunami pressure reduction The siphon action works, and the water inside becomes a water flow state that is led to the outside. As a result, the water level inside the partition wall decreases with the tide of the tsunami, and the space volume increases, so that it is possible to maintain the necessary air volume without losing it. When the outside water volume increases, water enters into the back through the siphon device at a momentum, so that the apex is lower than the partition wall height, the apex air is easy to escape together when the external water level increases, and the reverse When the outside water level is pulled, the siphon device is automatically filled with water because there is no air and it is filled with water. Siphon devices are characterized by continuous flow when filled with water, but do not flow when air remains in the vicinity of the apex. When crossing the top, it is better to install an air vent valve for safety. For this purpose, it is necessary to train local disaster prevention staff. When a hole is provided in the partition wall and siphon is passed, it is provided between the entrance apex height and the partition wall apex. If there is a U-shaped groove or gap other than the hole, there is no point in increasing the height of the partition wall because water enters the inside. A method of opening a hole below the partition wall and installing a bubble valve and a stopper is also conceivable. In this case, remember that the water is full. You need to be able to pull it out from above. Since the water pressure inside and outside is balanced, if the stopper is inclined to the outside or the bubble valve is opened to the outside, there is no concern that the wedge will work and jump out inside.

仕切り壁の上を跨いでサイフォン装置を設置した例である。サイフォン装置は固形の排水管などで、形状保持できないホースは不適当といえる。水は体積変化しないため、サイフォン装置がないと仕切り壁を逆流、すなわち越えることができない。仕切り壁より奥の水位が上がった状態で引き潮になったときに、入口付近の水圧が急激に下がり内部の空気圧との差が生じ、一瞬の圧力差に押されてサイフォン装置で逆流することで排水を促し内部の水位が下がる。ただし、途中の頂点付近に空気が残る可能性もあり、その場合はサイフォン作用が働かないおそれがあるので頂点部に空気抜き弁を設置する。 It is the example which installed the siphon apparatus straddling on the partition wall. The siphon device is a solid drain pipe or the like, and a hose that cannot keep its shape is inappropriate. Since water does not change in volume, the partition wall cannot be backflowed, that is, cannot be crossed without the siphon device. When the water level rises behind the partition wall, the water pressure near the inlet suddenly drops, creating a difference from the internal air pressure, which is pushed by the instantaneous pressure difference and backflowed by the siphon device. Promotes drainage and lowers the internal water level. However, there is a possibility that air may remain in the vicinity of the apex on the way. In that case, the siphon action may not work, so an air vent valve is installed at the apex.

サイフォン装置を仕切り壁の高さと入口頂点高さの中間に設けた例である。この場合は津波で水位が上がるときに奥の内部に水が入るため、サイフォン装置の頂点に空気はなくなっている。排水管の中が満水状態で継続する。したがって、引き潮の時も自動的にスムーズに逆転排水に移行する。ただし、排水管の設置時にコンクリートにU字カットや隙間を作るとそこから水が漏れるため高い仕切り壁にした意味がなくなる。頂点までや隙間へのコンクリートなど充填が大事だ。 This is an example in which the siphon device is provided between the height of the partition wall and the height of the entrance vertex. In this case, when the water level rises due to a tsunami, water enters the back, so there is no air at the top of the siphon device. The drain pipe continues to be full. Therefore, it automatically shifts to reverse drainage even at low tide. However, if a U-shaped cut or gap is made in the concrete when the drain pipe is installed, water will leak from it, making it meaningless to have a high partition wall. It is important to fill up the top and concrete into the gap.

仕切り壁の下方にバブル弁、栓を設けた例である。貫通穴は泥土の堆積が予想されるため床から30cm以上の高さが望ましい。津波の当初は外から奥方向に水が入るのを防ぎ、引き潮時は奥から外方向に排水できるよう貫通穴には外方向に広がった傾斜、テーパーを付けると自然の力の方向を利用できる。もし、栓が抜けてしまっても内部に水が入り多少空気量が減るがその分、空気圧で押さえるので心配する必要はない。水圧は内外でバランスしているので特殊な力を必要としないが、内部は仕切り壁高さまでの満水状態を想定すると、上から操作できることを考えなければいけない。押す動作より引っ張る動作が容易なため、バブル弁、栓を外側に引っ張るためのロープを入口側の仕切り壁頂点近くでとれるようにしておく必要がある。ロープだと丸めた輪にして壁にかけておくとか、落とした場合に備えて浮き輪を付けておくとかする。 This is an example in which a bubble valve and a stopper are provided below the partition wall. The through hole is preferably 30 cm or higher from the floor because mud is expected to accumulate. At the beginning of the tsunami, water can be prevented from entering from the outside to the outside, and at the time of tide, the direction of natural force can be used if the through-holes are inclined and tapered outward so that they can drain from the back to the outside. . If the plug comes off, water will enter the inside and the amount of air will be slightly reduced. Since the water pressure is balanced inside and outside, no special force is required, but the inside must be able to be operated from above, assuming a full water condition up to the partition wall height. Since the pulling operation is easier than the pushing operation, it is necessary to be able to take the bubble valve and the rope for pulling the stopper outward near the top of the partition wall on the inlet side. If it is a rope, it can be rolled up on a wall or attached to a wall in case it is dropped.

内部に空気保持独立体がある場合は、比較的下の方まで空気があるので、上で操作するより、仕切り壁の下に貫通穴があれば栓を抜きやすい。この場合は棒状のもので中から押し出すことになる。もちろんサイフォン装置としてもよいが空気抜き弁がいらないサイフォン装置の頂点高さ、すなわち入口高さと仕切り壁高さの中間位置を選ぶべきである。 When there is an air holding independent body inside, there is air to the lower side, so it is easier to unplug if there is a through hole under the partition wall, rather than operating above. In this case, it is pushed out from the inside with a rod-shaped object. Of course, a siphon device may be used, but the apex height of the siphon device that does not require an air vent valve, that is, an intermediate position between the inlet height and the partition wall height should be selected.

東南海地震の3連動で予想される津波の最高高さは34.4mであるが、入口解放構造であれば内外の水圧、空気圧がバランスしているためその想定外の高さの津波にも耐えることができる。参考として入口解放構造の津波退避部屋本体の設計例を示す。空地に設置した3m*4m*6m、厚み0.35mの鉄筋コンクリート造りの退避部屋とし、入口解放構造で内部に漂流物衝撃防止機能の仕切り壁を設け、危険な入口濁流ゾーンと安全な退避ゾーンとに分けた退避部屋の例を示す。人一人が生存に必要な空気量は1m3/時といわれている。大人40人の退避部屋とすると、一時間耐えるには40m3の空気体積が必要で、概略計算のために、部屋は単独の高さ3m、幅4m、奥行き6mの直方体の部屋とすると、内部体積は入口高さが1mとすると2*4*6=48m3で、引き潮までが1時間としても十分な空気がある。退避する平面スペースは、4人/m2とすると、40/4*6≒1.7人/m2 で退避用としては余裕がある。入口解放なしとして浮力は2*4*6=48tf、重量は、コンクリート壁厚を35cmとすると表面積*コンクリート壁厚*単位重量=2*(12+18+24)*0.35*2.5=94.5tfで、重量>浮力となり浮き上がらない。港湾空港技術研究所の射流実験を参考に水平掃力15tf/m2を海側面の3m*4mが受けると、その水平モーメントは15*(3*4)*3/2=270tf・m、抵抗モーメント=94.5*6/2=283.5tf・mで、水平力である掃力に抵抗して転倒しない。ただし、海辺近辺では同時の浮力も考慮して、退避部屋の高さを低くし海側面積を少なくした直方体にするか、流線形にするか、床底辺を厚くするか、下にせん断キーすなわち下駄の歯のような突起を設けるか、地中にアンカーをとるなどのさらなる対策が考えられる。入口頂点高さを1mとし、漂流物衝撃防止機能の仕切り壁の床からの高さを2.0mとし、高床高さを2m弱とする。入口頂点高さの1mまでは周辺の水位に連動して上昇するが、10mの津波で、周辺が10mの水位で、内部は2気圧となり中の残りの空気体積が半分となるまで水位が上がる。津波50mの水位では6気圧となり密閉空気体積は1/6になり、水位はそこまで上がる。高床には天井まで1mの空間高さがあるので十分に呼吸ができる。子供用には脚立を備えておく。退避用入口が解放開口部となっていて中の気圧と外の水圧が等しいため、構造的な外圧は特に考慮する必要はない。想定外としても極端な例であるが、90mの津波が来たとしても1/10の空気が残っている。密閉空間の気密性は大切で、通気孔は設けてはならない。通気孔を設けると水面上昇の圧力で空気が逃げていく。密閉空間に地震等によるコンクリーのひび割れができれば水位が上がるときに空気が抜けていく。3mの天井高さまでの水位による気圧上昇は、0.2から0.3気圧なのでそれに耐えられる2層防水シート、あるいは強化プラスチック、鋼板を敷設しておけば、ひび割れの伝達がなければ漏水に対応できる。入口には濁流と漂流物が押し寄せ危険なため、漂流物衝撃防止機能の有る仕切り壁を設けて退避ゾーンを分離することにより安心できる。人が仕切り壁を乗り越えるための階段等は当然に必要である。引き水後は泥が入口に堆積しているのでスコップを備えておく。あわせて、スクーバ・タンクを備えておけばより安心できる。 The maximum height of the tsunami that is expected in conjunction with the three Tonankai earthquakes is 34.4m. However, if the entrance is open, the water pressure and air pressure inside and outside are balanced, so that the tsunami with an unexpected height can be used. Can withstand. For reference, a design example of the tsunami evacuation room body with an entrance opening structure is shown. A 3m * 4m * 6m, 0.35m thick reinforced concrete evacuation room installed in an open space, with an entrance opening structure and a partition wall for preventing drifting object impact inside, a dangerous inlet turbidity zone and a safe evacuation zone Examples of evacuation rooms are shown below. The amount of air required for one person to survive is said to be 1 m3 / hour. For an evacuation room for 40 adults, an air volume of 40m3 is required to withstand one hour. For approximate calculation, if the room is a cuboid room with a height of 3m, a width of 4m, and a depth of 6m, the internal volume If the entrance height is 1m, it is 2 * 4 * 6 = 48m3, and there is enough air even for 1 hour to ebb. If the plane space to evacuate is 4 people / m2, 40/4 * 6 ≒ 1.7 people / m2 There is room for evacuation. The buoyancy is 2 * 4 * 6 = 48 tf without opening the entrance, and the weight is the surface area * concrete wall thickness * unit weight = 2 * (12 + 18 + 24) * 0.35 * 2.5 = 94.5 tf when the concrete wall thickness is 35 cm. And weight> buoyancy and does not lift. The horizontal moment is 15 * (3 * 4) * 3/2 = 270tf · m, the resistance moment when the horizontal sweep force of 15tf / m2 is received by 3m * 4m on the sea side with reference to the jet experiment at the Port and Airport Research Institute. = 94.5 * 6/2 = 283.5 tf · m, resists the sweeping force that is a horizontal force, and does not fall. However, in the vicinity of the seaside, considering the simultaneous buoyancy, it is a rectangular parallelepiped with the height of the evacuation room reduced and the area on the seaside reduced, or it is streamlined, the floor bottom is thickened, Further measures such as providing protrusions such as clogged teeth or taking anchors in the ground are conceivable. The entrance apex height is 1 m, the height of the partition wall of the drifting object impact prevention function from the floor is 2.0 m, and the high floor height is less than 2 m. Up to 1m at the top of the entrance, it rises in conjunction with the surrounding water level, but the water level rises by a 10m tsunami, the surrounding water level is 10m, the inside becomes 2 atm, and the remaining air volume is halved. . At the water level of the tsunami 50 m, the pressure becomes 6 atm and the sealed air volume becomes 1/6, and the water level rises to that level. The high floor has a space height of 1m to the ceiling, so you can breathe fully. Keep a stepladder for children. Since the retraction inlet is a release opening and the atmospheric pressure inside is equal to the outside water pressure, there is no need to consider the structural external pressure. Although it is an extreme example even if it is not expected, even if a tsunami of 90m comes, 1/10 air remains. The airtightness of the enclosed space is important and no vents should be provided. When vents are provided, air escapes due to the rising pressure of the water surface. If the concrete is cracked by an earthquake or the like in the sealed space, the air will escape when the water level rises. Pressure rise due to water level up to 3m ceiling height is 0.2 to 0.3 atm, so if you lay a two-layer waterproof sheet, reinforced plastic, or steel plate that can withstand it, it will cope with water leakage if there is no crack transmission it can. Since the muddy flow and the drifting material are inundated at the entrance, it can be relieved by separating the evacuation zone by providing a partition wall with the function of preventing the drifting material impact. Naturally, a stairway for people to get over the partition is necessary. Since the mud has accumulated at the entrance after drawing, prepare a scoop. In addition, if you have a scuba tank, you can rest assured.

地震による大津波が想定される東南海地域においては、早期かつ効果的、経済的対策が求められる。身近に設置でき、かつ想定外の津波にも安全安心な退避部屋は、大容量で大勢の退避が可能である。建物の骨組み構造を兼ねることも可能で、さらに耐震補強壁としても設計施工に対応可能である。また、その他地域でも、既設建物に退避部屋を設置する増築工事で、より効果的な耐震対策、津波、高潮、洪水など幅広い地域防災対策が可能となる。 In the Tonankai area where a large tsunami due to an earthquake is expected, early, effective and economical measures are required. The evacuation room that can be installed in the immediate vicinity and is safe and secure against unexpected tsunamis can be evacuated with a large capacity. It can also serve as the framework structure of a building, and can also be used for design and construction as a seismic reinforcement wall. In other areas, extension work that installs evacuation rooms in existing buildings will enable more effective disaster prevention measures such as earthquake resistance, tsunami, storm surge, and flooding.

1津波退避部屋のコンクリート壁
2入口解放構造の津波退避部屋の入口
3仕切り壁
4津波の引き潮時に仕切り壁奥内部に満水となって排水されないままの水
5津波の引き潮時に逃げ場を求めて入口から出た空気泡
6仕切り壁を跨いだサイフォン装置
7サイフォン装置の頂部に設けた空気抜き装置
8入口頂点高さより高い位置で仕切り壁を貫通して設けたサイフォン装置
9仕切り壁の奥内部に設置された高床
10貫通穴に取り付けたバブル弁
11バブル弁を上から開くためのロープ
12ロープや棒の先に取り付けた浮き輪
13貫通穴に設けた傾斜付きの栓
14栓を押し出すための棒
15仕切り壁屋内部に設けた空気保持独立体
16外水位
1 Concrete wall of the tsunami evacuation room 2 Entrance of the tsunami evacuation room with the entrance opening structure 3 Partition wall 4 Water that is fully drained inside the partition wall at the time of tsunami tide Air bubbles coming out 6 siphon device across the partition wall
7 Air venting device provided at the top of the siphon device 8 Siphon device provided through the partition wall at a position higher than the inlet apex height 9 Bubble valve 11 bubble valve attached to the raised floor 10 through-hole installed inside the partition wall A rope 12 for opening the rope from the top, a floating ring 13 attached to the tip of a rod, a sloped plug 14 provided in a through hole, a rod 15 for pushing out a plug, an air retaining independent body 16 provided in an indoor part of a partition wall, an outside water level

Claims (3)

内部に仕切り壁を設けた入口解放構造の津波退避部屋であって、津波の引き潮時に生存必要空気量を逃がさず確保するために、仕切り壁で堰き止められた水の排水を部屋内部の圧縮空気圧と外水圧の差を利用して促すサイフォン装置、もしくは、仕切り壁にバルブ弁、または栓を設置したこと特徴とする津波退避部屋。 This is a tsunami evacuation room with an entrance opening structure that has a partition wall inside, and in order to ensure that the necessary air volume does not escape during the tsunami tide, the compressed air pressure inside the room is drained from the water blocked by the partition wall. A tsunami evacuation room characterized by the installation of a valve or plug on the partition wall, or a siphon device that uses the difference between water pressure and external water pressure. 前記サイフォン装置は、形状保持管とし、仕切り壁を跨いで設置する場合は頂部に空気抜き装置を設け、仕切り壁を貫通して設置する場合は入口頂点高さより高い位置に設けたことを特徴とする請求項1に記載の津波退避部屋。 The siphon device is a shape-holding tube, and when installed across the partition wall, an air vent device is provided at the top, and when installed through the partition wall, the siphon device is provided at a position higher than the inlet apex height. The tsunami evacuation room according to claim 1. 前記仕切り壁に設置したバルブ弁、または栓は、仕切り壁の入口頂点高さより低い位置に貫通穴をあけてそこに設けたことを特徴とする請求項1に記載の津波退避部屋。 2. The tsunami evacuation room according to claim 1, wherein the valve valve or the plug installed in the partition wall is provided there through a through hole at a position lower than the entrance vertex height of the partition wall.
JP2012134436A 2012-06-14 2012-06-14 Tsunami evacuation room and siphon device used therefor Expired - Fee Related JP5462322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012134436A JP5462322B2 (en) 2012-06-14 2012-06-14 Tsunami evacuation room and siphon device used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012134436A JP5462322B2 (en) 2012-06-14 2012-06-14 Tsunami evacuation room and siphon device used therefor

Publications (2)

Publication Number Publication Date
JP2013256833A true JP2013256833A (en) 2013-12-26
JP5462322B2 JP5462322B2 (en) 2014-04-02

Family

ID=49953477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012134436A Expired - Fee Related JP5462322B2 (en) 2012-06-14 2012-06-14 Tsunami evacuation room and siphon device used therefor

Country Status (1)

Country Link
JP (1) JP5462322B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020101068A (en) * 2018-12-25 2020-07-02 株式会社ヒイラギ Water level difference adjustment structure
JP2020133341A (en) * 2019-02-25 2020-08-31 冨田 盟子 Evacuation shelter against tsunami
JP2021095731A (en) * 2019-12-17 2021-06-24 穣 冨田 Evacuation shelter for tsunami and the like

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10159388A (en) * 1996-12-03 1998-06-16 Yukio Kanazawa Tsunami shelter
JP4822087B1 (en) * 2011-04-30 2011-11-24 正仁 古郡 Tsunami shelter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10159388A (en) * 1996-12-03 1998-06-16 Yukio Kanazawa Tsunami shelter
JP4822087B1 (en) * 2011-04-30 2011-11-24 正仁 古郡 Tsunami shelter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020101068A (en) * 2018-12-25 2020-07-02 株式会社ヒイラギ Water level difference adjustment structure
JP7185917B2 (en) 2018-12-25 2022-12-08 株式会社ヒイラギ Water level adjustment structure
JP2020133341A (en) * 2019-02-25 2020-08-31 冨田 盟子 Evacuation shelter against tsunami
JP2021095731A (en) * 2019-12-17 2021-06-24 穣 冨田 Evacuation shelter for tsunami and the like

Also Published As

Publication number Publication date
JP5462322B2 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
JP3110611U (en) Floating building
JP4822087B1 (en) Tsunami shelter
JP2007077758A (en) Base isolation building coping with flood damage
JP5462322B2 (en) Tsunami evacuation room and siphon device used therefor
JP4838395B1 (en) Structure
JP5416292B1 (en) Float type water stop door
JP6762464B1 (en) Evacuation shelter for tsunami etc.
JP4979040B1 (en) Retreat room for measures against tsunami, storm surge and flood
JP5713863B2 (en) Evacuation shelter
JP5624237B1 (en) Tsunami ceiling shelter
JP2013234556A (en) Evacuation shelter for emergency situation such as tsunami and flood
JP5462320B2 (en) Tsunami evacuation room, air discharge hole used for it, and air discharge adjustment valve
JP5462309B2 (en) Tsunami evacuation room and air holding independent body used therefor
JP2012219606A (en) Building and structure for tsunami protection measure
TW201408543A (en) Apparatus for emergency evacuation
JP5600135B2 (en) Retreat room for measures against tsunami, storm surge and flood
JP6402296B1 (en) Buildings with evacuation rooms for tsunami, flood and storm surge countermeasures
JP2016053296A (en) Tsunami shelter
JP5462319B2 (en) Tsunami evacuation room, drifting material used in it, fire prevention door
JP6368892B1 (en) Buildings with evacuation rooms for tsunami, flood and storm surge countermeasures
JP6514917B2 (en) shelter
JP6569034B1 (en) Evacuation shelters such as tsunami
WO2018006185A1 (en) Device for controlling excess pore water pressure in rock and soil layer
JP2012233330A (en) Floatable building resistible to tsunami and construction method thereof
JP2007070982A (en) Multipurpose disaster refuge building

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

R150 Certificate of patent or registration of utility model

Ref document number: 5462322

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees