JP6368892B1 - Buildings with evacuation rooms for tsunami, flood and storm surge countermeasures - Google Patents

Buildings with evacuation rooms for tsunami, flood and storm surge countermeasures Download PDF

Info

Publication number
JP6368892B1
JP6368892B1 JP2017220790A JP2017220790A JP6368892B1 JP 6368892 B1 JP6368892 B1 JP 6368892B1 JP 2017220790 A JP2017220790 A JP 2017220790A JP 2017220790 A JP2017220790 A JP 2017220790A JP 6368892 B1 JP6368892 B1 JP 6368892B1
Authority
JP
Japan
Prior art keywords
building
evacuation
tsunami
room
door
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017220790A
Other languages
Japanese (ja)
Other versions
JP2019090273A (en
Inventor
穣 冨田
穣 冨田
Original Assignee
冨田 盟子
冨田 盟子
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 冨田 盟子, 冨田 盟子 filed Critical 冨田 盟子
Priority to JP2017220790A priority Critical patent/JP6368892B1/en
Application granted granted Critical
Publication of JP6368892B1 publication Critical patent/JP6368892B1/en
Publication of JP2019090273A publication Critical patent/JP2019090273A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/30Flood prevention; Flood or storm water management, e.g. using flood barriers

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Special Wing (AREA)
  • Specific Sealing Or Ventilating Devices For Doors And Windows (AREA)

Abstract

【課題】南海トラフ巨大地震による津波は、5分で到達し10mの高さである。避難所まで逃げる時間猶予がない。【解決手段】津波に呑み込まれても助かる方法は、嵐の中の転覆船の生存者にヒントがある。水中でも生存できる上に凸の避難構造体を造ることである。急襲する津波には一刻の猶予もない。漂流物の激流に耐えなくてはならない。人は、1日のうち、半分を建物の中で過ごしている。最も速く、身近な避難場所は建物内である。そこで、堅固な建物の中に構造骨組みの柱、梁や壁、スラブを利用し、一体化した避難部屋を設けることで、水中でも浮き上がらず、流されず、漂流物の直接衝突を避け、転倒も免れることができ、津波の水没継続時間に対する必要空気量の容積分を確保することで、津波で水中となっても生存できる。【選択図】図16A tsunami caused by a Nankai Trough earthquake hits in 5 minutes and is 10 meters high. There is no time to escape to the shelter. A method of helping even if swallowed by a tsunami is inspired by survivors of a capsized ship in a storm. It is to build a convex evacuation structure that can survive in water. There is no grace in the tsunami that strikes. We must endure the torrent of drifting objects. People spend half of the day in the building. The fastest and closest evacuation site is in the building. Therefore, by using structural framework pillars, beams, walls, and slabs in a solid building and providing an integrated evacuation room, it will not float in the water and will not flow away, avoiding direct collision of drifting objects and falling By securing the volume of air necessary for the duration of submergence of the tsunami, it is possible to survive even if it becomes submerged in the tsunami. [Selection] Figure 16

Description

本発明は、急襲する津波、洪水、高潮対策として避難部屋を有する建築建造物に関する。 The present invention relates to a building having an evacuation room as a countermeasure against a sudden tsunami, flood, and storm surge.

一般に、津波対策として、高い防潮堤の構築、河川堤防の嵩上げ、高台移転、高い建物避難が有効であるといわれている。しかし、高い防潮堤の構築、河川堤防の嵩上げ、それに伴う横断道路橋、鉄道橋の数kmに及ぶ嵩上げや高台移転には莫大な予算と長い歳月、住民の合意を要する。沿岸部には高台、高い建物があるとは限らない。内閣府発表によると、30年以内の発生確率が70パーセントと高まっている南海トラフ巨大地震では、死者数
は最大で33万人、犠牲者も100万人に近いとされる。地域により5分後に高さ10mの津波が襲うと予測される。その5分のうち、建物の揺れが収まるのが2、3分後とされるので、実質の避難に残された時間はわずか2、3分しかない。一刻も早く身の安全を図らなければならないが外に逃げる時間的余裕はない。日本海大地震では、さらに厳しく2分で10mの高さの津波が襲うとされている。当然、遠くの公共避難所までたどり着けないことは明白である。そこで、地域的な津波対策として、津波避難ビルや津波避難タワーが考えられている。しかし、それらはただでさえ危険な海沿い、沿岸部に設置されており、いち早く来襲する津波にそこにたどり着く避難途中で命を落とす可能性が大である。大きな津波にどこまでの高さなら絶対安全という保証もない。その高さを超える津波に人は全滅することは明白である。それでも我が身は自身で守る意識、危機管理が大切である。東日本大震災では、3階、4階建ての高さ10mの建物屋上で、それ以上の高さに逃れられない恐怖の元、多くの方が亡くなったことは想像を絶するものがある。中途半端に高い建物の屋上は袋小路といえる。明日かもしれない巨大地震の発生確率が高まっている。このため、ともかく逃げる、しかも遠くへと提唱されている。しかし、津波警報のたびに避難するのは、車の運転はどうするのか、沿岸地域の住民は酒も飲めない、入浴中では着の身着のままである。本当に真に迫った避難の覚悟ができているのか。空振りでもいいから警報を出すという情報発信の方針では、オオカミ少年のたとえのとおり、警報の回数の多さに、いざ、大きな津波来襲までに精神的、肉体的に日本中の国民が疲弊する。自分だけは大丈夫という言い逃れになっていずれ麻痺するのではないか。どうせ無理とあきらめが先行する。夜中、大雨、大雪時や災害時要救護者は行動を伴わない。付き添い人の美談のもと一蓮托生となる精神負担も相当である。幸いにして、津波は地震の後にしか来ない。到達時間も予測され、その制約範囲で余裕もある。ただ時間的余裕がない大きな津波では、すぐに避難、退避ができるところが身近にあることが最も重要となる。究極の身近は、明らかに居る場所、家、学校、職場の建物の室内といえる。ところが、先の東日本大震災の津波では木造家屋の多くは破壊され流されたことを目の当たりにした。それでも、命をあきらめてはいけない、命を守らなければならない。安全に、簡易に安く、迅速に逃げられる家族用、学校教室用、職場用対策が望まれるところである。昼間は離れ離れとなるケースが多く身内、扶養家族とも双方が心配である。小学校の子供も不安で仕方ない。そこで、身近な設置場所から、浮力を利用して水上に浮上する密閉式の球体が提案されている。しかし、そのときに人は保管場所にいるのか、すぐ乗り込めるか不安だ。救済人数も絶対的に少ない。津波避難ビルや津波避難タワーも、想定外の津波高さに逃れようがなく不安だし、当然に水没した水中で人は生きられない。地震時にはエレベータが使用停止であるし高齢者は上れない。建設費もかなり高価である。
特許庁特許情報プラットホームで、津波対策のキーワードで検索した結果、50件あり、特許文献1の津波対策住宅では、中高層住宅の1階を吹き抜けの構造とするものであるが、建物への波圧を軽減でき転倒を免れるものの、2階以上の高さの津波には途中の階が水没するので住民の生存には役立たない。特許文献2の津波対策建造物では、1階部を吹き抜けとし、柱を流線形とするもので、住居としては3階以上となるが、特許文献1と同じくあくまで予側津波高さが低い地域に有効といえる。特許文献3のシェルター付建物では、既設の建物の中の一室をシェルターとするもので、溶接や補強で気密性を確保した部屋とするものであるが、大きな津波の波圧や漂流物の衝突で補強した窓が突破されたり、津波の前の大きな地震力で溶接部が割れたり、ひび割れが入ったりする可能性があるので気密性が保持できず、水没した水中では空気が抜け溺死する恐れがある。例えば、10mの津波に水没すると2気圧がかかり、密閉構造体、気密部屋とするとボイルの法則で体積が1/2になるほどに圧縮、縮小する。20mの津波だと3気圧がかかり体積が1/3となり、気密とすれば巨大な外圧に耐えるのは容易でなく、潜水艦並みの耐圧鉄板壁厚、出入口耐圧ハッチが必要になり実現性に欠けているといえる。特許文献4の津波対策建築物及び構造物は、建物を菱形にして波圧を軽減したり、1階に水の流入、流出用の出入口を複数設けて波圧を軽減したりする工夫であり、建物の転倒には有効であるが、大きな津波に水没したときの住民の生存には役に立たない。建物には、窓が破れないとしても、換気扇口、クーラー取付口、台所の排水口、浴室の排水口、換気扇口、床や天井部の電気配線孔があり、かつ玄関ドアの下や横には隙間があるので、外水位で建物が水没すると室内はたちまちに水で満たされ溺死する。
In general, it is said that construction of a high seawall, raising a river bank, moving up a hill, and building evacuation are effective as tsunami countermeasures. However, the construction of a high seawall, the rise of a river dike, the accompanying cross road bridge, the rise of a railway bridge up to several kilometers, and the relocation of a high ground require enormous budgets, long years, and the consent of residents. The coastal area does not always have high ground and high buildings. According to an announcement by the Cabinet Office, the Nankai Trough earthquake, whose probability of occurrence within 30 years has increased to 70 percent, is said to have killed up to 330,000 people and killed nearly 1 million people. It is predicted that a tsunami with a height of 10m will hit in 5 minutes depending on the area. Of those 5 minutes, the building will settle after a few minutes, so there is only a few minutes left for real evacuation. You must try to be safe as soon as possible, but you have no time to escape. In the Great East Japan Earthquake, it is said that a tsunami of 10m will hit in 2 minutes. Of course, it's obvious that you can't get to a distant public shelter. Therefore, tsunami evacuation buildings and tsunami evacuation towers are considered as regional tsunami countermeasures. However, they are installed on the coastal areas along the dangerous seas, and there is a high possibility of dying on the way to evacuation to reach the tsunami that strikes early. There is no guarantee that it will be safe at any height in a large tsunami. It is clear that people will be annihilated by a tsunami that exceeds that height. Nevertheless, it is important for me to protect myself and crisis management. In the Great East Japan Earthquake, it is unimaginable that many people died on the rooftop of a three-story, four-story building with a height of 10 meters, with fear that they could not escape beyond that height. It can be said that the rooftop of a half-high building is a dead end. The probability of a huge earthquake that may be tomorrow is increasing. For this reason, it has been advocated to run away and far away. However, the evacuation at each tsunami warning is what to do about driving the car, residents in the coastal area cannot drink, and they remain dressed while bathing. Are you really ready for evacuation? According to the policy of disseminating information because it is okay to fly in the sky, as the wolf boys are, the number of alarms is high, and the people throughout Japan are exhausted mentally and physically before the big tsunami strikes. Isn't it just that I'm all right? Anyway, giving up and giving up are preceded. In the middle of the night, heavy rain, heavy snow, and disasters, rescuers need no action. There is a considerable mental burden to become a student under the escort of his attendant. Fortunately, the tsunami comes only after the earthquake. The arrival time is also predicted, and there is a margin in the limited range. However, in the case of a large tsunami that does not have time, it is most important that there is a place where people can evacuate and evacuate immediately. The ultimate familiarity is clearly the location of the house, the house, the school, and the office building. However, I saw that many wooden houses were destroyed and washed away by the tsunami of the Great East Japan Earthquake. Still, don't give up life, you must protect life. There is a need for safe, simple, inexpensive and quick escapes for families, classrooms, and workplaces. There are many cases where people are separated during the day, and both relatives and dependents are worried. Elementary school children are worried and anxious. Therefore, a sealed sphere that floats on the water using buoyancy from a familiar installation location has been proposed. However, at that time, people are worried whether they are in the storage area or can get in immediately. The number of rescuers is absolutely small. Tsunami evacuation buildings and tsunami evacuation towers are uneasy because they cannot escape to the unexpected tsunami height, and naturally people cannot live in submerged water. Elevators are suspended during the earthquake and older people cannot go up. Construction costs are also quite expensive.
As a result of searching for a tsunami countermeasure keyword on the Patent Information Platform of the JPO, there are 50 cases. In the tsunami countermeasure house of Patent Document 1, the first floor of a medium- to high-rise house has a structure with a colonnade, but the wave pressure on the building However, it is not useful for the residents to survive because the floor on the way is submerged in a tsunami that is two or more floors high. In the tsunami countermeasure building of Patent Document 2, the first floor is a colony and the pillars are streamlined, and the residence is at least the third floor, but as with Patent Document 1, the area of the pre-side tsunami height is low It can be said that it is effective. In the building with a shelter in Patent Document 3, one room in the existing building is used as a shelter, and the room is secured by welding and reinforcement, but the tsunami wave pressure and drifting material The window reinforced by the collision may break through, or the weld may be cracked or cracked by a large seismic force before the tsunami, so the airtightness cannot be maintained, and the air will fall out and drown in submerged water. There is a fear. For example, when submerged in a 10-meter tsunami, 2 atmospheres are applied, and when it is a sealed structure and an airtight room, it compresses and shrinks so that the volume is halved according to Boyle's law. If the tsunami is 20m, 3 atmospheres will be applied and the volume will be reduced to 1/3. If airtight, it will not be easy to withstand enormous external pressure. It can be said that. The tsunami countermeasure building and structure of Patent Document 4 are devised to reduce the wave pressure by reducing the wave pressure by making the building a diamond shape, or by providing multiple inlets and outlets for water inflow and outflow on the first floor. Although it is effective for falling buildings, it is not useful for the survival of residents when submerged in a large tsunami. Even if the windows cannot be broken, the building has ventilation fans, cooler mounting holes, kitchen drains, bathroom drains, ventilation fans, floor and ceiling electrical wiring holes, and under and next to the entrance door Because there is a gap, when the building is submerged at the outside water level, the room is filled with water and drowned.

特開2016−108901公報JP, 2006-108901, A 特開2014−148860公報JP 2014-148860 A 特開2013−28907公報JP2013-28907A 特開2012−219606公報JP 2012-219606 A

中川工業所安全資料Nakagawa Industrial Safety Materials

大きな津波の来襲地域では、建物はたちまち呑み込まれてしまう。先の東日本大震災の時に4階の屋上まで逃れた多くの人が亡くなったのは記憶に新しい。4階まで逃げれば大丈夫と考えたと推察するがそれより高い津波が来るともう逃げ場がない。高さ限界のある場所への避難の恐怖、危険性、このことは人の水中での呼吸限界、生存限界が如実に露呈したといえる。そこで、想定外の大きな津波に水没したとしても生存に有効となる方法があれば課題を解決できる。当然に、人は水中では生きられない。空気が無ければ生きられない。そこで、嵐の中の沈没船の生存者がヒントとなる。アルキメデスの原理で浮力を受け、水中で空気泡は上昇する。上下が逆転した船底が上に凸の容器となり、船底を天井とする空間に空気が貯まり、鉄の容器から逃げ出さない。風呂場の浴槽で逆さに沈めた洗面器遊びでは沈めるのに力がいる。逆に言えば空気を逃がさぬよう抵抗しているといえる。どんなに深く沈めても、天地返しの底の部分が解放となっているので、水圧を受ける容器の中で上昇する水面が水平境界面をつくり、しっかりした容器の中の空気は、その境界面の上で閉じ込められ逃げない。圧力が伝達するパスカルの原理である。また、空気は、ボイルの法則で必ず容器の天井部に圧縮されながらも残る。このことは、想定外のどんなに大きな津波に水没しても上に凸の容器があれば生存空気を保つことができるといえる。空気を受け止める天井部の上に凸の構造体は下が開口で解放されているので、いわゆる非密閉構造である。非密閉構造体には密閉構造体のような大きな圧力がかからない。水中では外水圧と上に凸の中の空気圧とは等しいため、容器となる壁には圧力差による曲げモーメントがかからない。すなわち、漂流物の衝突を考慮するとしても、圧力差のために壁厚を厚くする必要がないといえる。建物に、天井スラブとそれを囲む鉛直壁で、生存必要空気量の容量を有する小部屋を構成し、壁の下方に開放口、出入口を設け、上に凸の非密閉構造体の避難部屋とすることで、想定外の高さ、どんなに大きな津波に建物が水没しても、建物の高さに関わらずその水没した避難部屋の中で生存することができるという課題が解決できる。あわせて、出入口には高価な密閉扉は必要なく、それほどの壁厚も必要でなく、特別な耐圧設計をする必要もないので、設計の難解さ、特殊材料費などの課題を解決できる。
次に、水中でも生存できる方法があるとしてもそこに避難する必要がある。南海トラフ巨大地震では、5分で10メートルの津波の来襲となれば避難所まで到底、逃げる猶予などない。沿岸の津波急襲地域では、避難に一刻の猶予もない。大きな揺れに津波情報を待って避難できるほどの時間余裕はない。揺れを感じた時点の感性、自己判断で、瞬時に、迅速に避難しなければならない。若ければ走ることもできるが人はいつまでも若くない。しかも避難所があらゆる民家の真直にあるとは限らない。赤子、乳児、高齢者、妊婦、病床、骨折時など、その生きた時代、年代、生活状況でも避難不可能となる。家の中、部屋で何とかならないか。家族単位、教室単位、職場単位で助かる方法を考える必要がある。いつ襲うか分からない津波、将来の津波来襲時に人はどこにいるか不詳であるが、住居内、建物内にいる可能性は1日の半分程度ある。建物内に設置する避難部屋であれば5分以内に避難できる。助かるという現実味がある。堅固な建物自体に避難部屋を設けること、そういう建物を建設することで避難時間の短縮を図ることができ避難困難の課題を解決できる。あわせて、建物の堅固さを利用できるので、漂流物の衝突からも身が守れ、弱い人体の漂流物からの衝突回避という課題を解決できる。
南海トラフ巨大地震での予測最高津波高さは34.4mである。多くの建物は、水没するし、波圧を受けて破壊される。建物が水没すると、巨大タンカーのように浮く力が働く。実際は、杭があるので簡単には浮かないが相当の浮力が働き、浮き上がりや転倒の要因となる。しかし、先の東日本大震災の時には鉄筋コンクリート造の建物は残った。これは、弱いガラス窓が漂流物や波力で先に破壊され、直接の波力を受ける建物の受圧面積が減り、その波力が反対側の窓をも突き抜けたことで、建物の転倒を免れたといえる。さらに、ガラスが破れ、建物内の空気が抜け、水と入れ替わり、水重量が床にかかり、建物全体の浮力が相当に軽減された。この場合でも、避難部屋は破壊されない壁で上に凸の形状に構成するので生存必要空気は逃げずに保持される。窓ガラスの多い堅固な建物とすることで建物の浮く、建物の転倒の課題が解決できる。とはいっても、壁面には波圧がかかるので転倒に対する抵抗モーメントの計算は必要である。窓ガラスが破壊しないとする計算の場合は柱断面がより大きくなる。さらには、建物の一部となる避難部屋が漂流物の衝突で破壊され、流されては元も子もない。壁設計には衝突、激流の流れに対する配慮が必要である。建築構造物の設計では、建物の柱、梁や壁、スラブの構造骨組みの解析、構造設計が実施される。そこで、避難部屋の壁を構造骨組みの柱、梁や壁、スラブと一体化することで、建物本来の持つ頑強さ、流され難さ、転倒のし難さを利用でき、そこへの定着力、アンカー、変形抵抗が有効に取れるので合理的である。避難部屋は、主に壁構造形式となるが、建物の構造骨組みとなる柱、梁や壁、スラブを利用し一体化すること、その避難部屋の残りの壁も堅固な壁とすることで、避難部屋自体が浮き上がり、転倒し、流され、あるいは破壊されるという課題が解決できる。あわせて、建物の中の避難部屋の配置の向きは、ガラス窓が破れたときの室内突破の激流、その流線を阻害しないよう平行方向に配置する。避難部屋の配置は、建物に対してバランスよく配置する必要がある。頑強さのため、避難部屋は、建物または構造骨組みの柱、梁や壁、スラブに対して左右対称構造、上下2階以上の貫通形構造、平面一致形が望ましい。結果、巨大地震に建物の耐震性向上という課題を解決できる。堅固な建物でも何階以上は津波が来ないとは断言できない。3階、4階、5階さらには想定外もあり得るため、階の高さに絶対安全はない。屋上に逃げるといってもエレベータは地震時に使用禁止、停止状態である。屋上には垂直梯子のため容易には上れない。その開口部には通常、管理用の鍵がかかっていざという時に入れない。現状10階建てマンションの場合、1階の高さが3mとして20mの津波想定地域では、1階から7階まで、想定外に安全を見て10階までの住民は下に下りて地区の避難所に向かわなければならない。そうはいっても高い階から下に下りることに抵抗、躊躇がある。現実離れしている。結果、10mの小さい津波の場合もあるからである。この場合、避難のため、下に、そして建物外に、逃げ出した多くの人が途中で犠牲になる悲惨な結果が待っていることは容易に想像できる。4階から10階の人は逃げなくてよかったのに。せっかく訓練通りに避難したのに、あくまで結果でしか分からない危うさ、運、不運がある。各階の一室に避難部屋を備えていれば、避難のため外に逃げ出した多くの人が途中で犠牲になる課題を解決できる。
一方、ボイルの法則で圧縮された空気圧については、潜函病の課題が残る。人体実験ではないが、2013年11月23日のナイジェリア沖の海底30mに沈没した貨物船の船底から、60時間後に救出された映像ニュースは記憶に新しい。また人の素潜りの世界記録は122mである。そこで、ナイジェリア沖の例から30mを限界としてもよいといえる。南海トラフ地震による津波の予測最大高さは高知県黒潮町の34.4mである。この地域では海抜4.4m以上の地盤高のところに避難部屋を有する建物を建てれば、一階の人の負荷が一応クリアできるといえる。とはいえ圧力負担は少ない方が望ましい。一般に10m程度までは特に潜函病とかの心配はないとされ、このことは階高さが3mとすると4階建までの建物が望ましいといえる。公民館などがその代表といえる。とはいっても、建物の民間住宅需要や、それでも見た目に高い方が安心という考え方もある。コスト的には大きな建物の方が割安という面もある。高い建物では、上層階の避難部屋ほど、津波で水をかぶる水没深は浅いので、水圧は低く、水没の継続時間も少ないので人体への負担の影響も少ない。大きな津波の予想地域では、避難部屋を建物のできるだけ上階、上方に設けることで圧力軽減の課題を解決できる。下階の避難部屋も有効であるが、建物の外側の屋外階段部、非常階段部や建物の内側の屋内階段部の外壁沿いの各階に避難部屋を設けることで、出入り自由で、下階の人が押し寄せる津波の高さの増加具合、到達様子を見ながら階段伝いに順次、階を上がり、上階に垂直移動することも可能で、下層階の人の圧力負担軽減の課題を解決できる。建物のうちでも最上階は、圧力負担が最も少なく、水没時間による必要空気量も少ないので設計空間に余裕があり、かつ広い空間を取りやすいので非常用品備蓄庫ともなる。近隣の人も利用可能で避難所として提供できる。
一方、酸素必要量は、中川工業所安全資料から、空気中の酸素は21%あり、酸欠は16%に減った時とされ、一人、1m3の空気で半分を呼吸する50分が限界とされることから、1時間では1.2m3の空気空間が必要となる。南海トラフ地震での津波の継続時間は1波で10分程度であるため、水中となる避難部屋の必要空間量は、0.2m3となるが、設計上は1m3/一人を目安とし避難人数分を確保する。一酸化炭素については問題となるレベルには至らない。地域により第6波までが予測されているが、1波毎に引き潮となるので、1波毎に自動的に新鮮な空気に入れ替わる。すなわち、設計の生存必要空気量は単純に、最大波、その継続時間に対して確保すればよいといえる。そこで、個別要件として、大きな津波でたとえ水没しても、破壊されず引き潮までの生存必要空気量を確保すること、地域により、第6波までで最大波高となるところもあるので、その波の引き潮までの数分間の最大空気容量を確保することで津波災害のもと、継続生存する課題を解決できる。
地震時にはエレベータが使えないこと、上に向かうのが困難な場合では避難時間の短縮からも水平移動が有効である。共用の渡り廊下、ベランダ伝いの横移動やホテルなどの内廊下からの水平移動が速く、建物の非常階段部に避難部屋を設けることで、避難時間の短縮の課題が解決できる。また、予測といえども津波の最高高さ34.4mの地域では、想定外含みの40m程度までは建物の避難部屋が適応と考えられ、それ以上の高層階では状況を見ながら階段で垂直移動することになる。さらに、個々人の人生、日常生活の中では室外に出ないで、避難のしやすさ、避難時間を最短とすることも優先される。もちろん津波急襲地域では室外に出て避難する時間もない。むやみに室外に出ると津波に流される危険性が高い。この場合は、居住の多少の床面積の減少はやむを得ないところである。ベランダの避難部屋、屋内の避難部屋とすることで個々人の迅速な避難、最短避難、安全避難の課題を解決できる。
建物の構造上から、堅固な建物の天井部に上に凸の空間を囲う容器となる壁を構成すると、水没中の空気は上昇してそこに留まる。それは天井の水平スラブと、建物の外壁、隣戸との戸境壁、構成する避難部屋の残りの面の壁などでなる4面の鉛直壁、垂壁、側面壁に囲まれた上に凸の空間である。大きな津波の水中でも、この空間を囲い下に開口のある壁から空気が逃げ出さず、空気は圧縮され保持される。ただし、壁と考えていても天井化粧板、間仕切り板壁程度では強度が弱いので要注意である。構造骨組みの柱、梁と共に利用する壁、スラブは、建物の外壁、天井スラブ、床スラブ、戸境壁で、避難部屋を構成する残りの壁と一体化する。建物に避難部屋を設置する場合の具体的な位置は、規模、階層の違いなどから様々考えられる。すなわち、建物の最上階の全部または一部を避難部屋とする場合、建物のうちの一戸から数戸の部屋全体を避難部屋とする場合、建物の屋外階段部、非常階段部の外壁を利用する場合、建物の屋内階段部の外壁を利用する場合、各戸間の戸境壁を利用する場合、各戸の天井スラブ、床スラブを利用する場合、各戸のベランダを利用する場合があり、これらのうちから選択することで、建物に設ける避難部屋を避難に最適となるよう設置するという課題を解決できる。建物には当然耐震性が求められる。外壁や戸境壁を2重壁とすれば耐震性も高まり、そこの空間を避難部屋とすれば一石二鳥といえる。また、上層階ほど必要空気量は少なくなるので、床面積の実質的減少は少ない。
ボイルの法則から、避難部屋の空気体積は外水圧に応じて内部水位の上昇が始まり縮小すること、壁に穴があれば空気は容易に水中へと抜けること、開口からの浸水で体が濡れることは承知していなければならない。共通の注意事項として、空気が漏れるということに関しては、致命的なので2重、3重の安全策を講じる。津波の前の巨大地震で建物にひび割れが入る可能性もある。避難部屋の内部に、壁の内側沿いに、壁とは構造的に分離して上に凸の袋状の形状体、構造体を設けるとよい。地震時の変形力が伝わらないように壁と離隔すればプラスチック板、薄鋼板程度で良い。スーパーのレジ袋のようなもので1m角の寸法イメージの上に凸の袋を折りたたんで備えておき、各自が頭からかぶることとしても十分効果的である。出入口高さを1mとすればそこまではすぐ浸水するので、踏み台、高い脚立を用意しておく。そうすることで、漂流物が入ってきても当たらないし、浮力で足元をすくわれることもなく、背が届かない天井部の空気を吸える。一般に、建物の壁には窓、クーラーの取付口、台所の換気扇口さらには電気配線の取付部、コンセント口など空気が逃げる孔があるので、避難部屋に保持できる空気体積はそれより高い位置もしくは平面的に避けた区画で確保しなければならない。避難部屋内部の壁間の寸法、離れ幅も最小1m幅あれば我慢できる。戸部屋の面積は避難部屋の面積より当然広いので、人数分を想定して、壁の有効縦高さ、横幅、長さの掛け算で空気体積を計算する。水中での避難部屋の空気保持の有効縦高さは、ボイルの法則で圧縮が始まる出入口の頂点高さ点から天井までの高さである。出入口の高さが低いほど、水中となる避難部屋に確保できる空気量が大となる。高さ1mから1.2mとすれば低く、身をかがめなければならないが急場なので不自由ではない。出入口高さを高く取れば出入りが楽だが、体積計算なので、その分、居住面積を縮小しなくてはならない。そこで、戸内のいずれかの部屋との利用の兼用を考える。特にウォークインクローゼットや納戸、物入を兼ねる場合には、2mほどの高い出入口が必要だが、占有面積を広げずに空気体積を確保する必要がある。そこで、出入口を住居用扉で漂流物突入防止とし、内部には上に凸の、出入口高さから上を蛇腹状の折りたたみとした袋状形体で遮水性、気密性材の幕を天井から吊るし、津波時には幕を床近辺まで垂らすことで大きな空気体積が確保できる。袋の天井部に穴を設けないために、洋服掛けは袋の天井より下で、洋服移動はキャスター付などの工夫をする。出入口の横幅は、漂流物の突入の心配がなければ、狭いながらも比較的自由に取れる。避難部屋の出入口部は、開け放していてもよいが、住宅用の仕切りドア扉、玄関ドア扉用の縮小版で閉めておけば特に不自由でなく、それは空気が通じる非密閉であり、漂流物の避難部屋内への直接突入も回避できる。押入と兼ねる場合は、その上部に避難部屋を設け、床を兼ねた押入の天井部から出入りすることになる。全般的に、設計空気量に比較的余裕をとれるので、地震到来までの数年、数十年の間に家族が増えても定員オーバー、避難人数増は問題にならない。避難部屋の必要空気量体積は、居住空間に対して比較的少ない体積であり、ウォークインクローゼットや納戸、物入、押入などと兼ねるとすれば、狭い住宅事情の部屋でも、室内占有、配置の課題を解決できる。出入口高さを2m程度確保したい場合は、扉の裏側と、受け側の壁との間にパッキン防水を施す方法もある。1戸部屋を避難部屋とする玄関扉やウォークインクローゼットの出入口扉に、さらには避難部屋の出入口を高い扉とする場合に、2m高さ程度のパッキン防水扉を施すと出入口の窮屈さに対する課題を解消できる。この場合も、避難部屋は大水圧を受けないようあくまで非密閉構造体であるべきで、扉高さのおよそ半分、1mから下はパッキン防水なしで隙間ありの半防水扉とするべきである。また、水圧で、パッキンなしの扉の下部が押し込まれると、扉の上部に開く力がかかりパッキンの気密性能が失われるので、扉の下部には硬質ゴムで変位を抑制する。
In a large tsunami attack area, the building is quickly swallowed. It is a new memory that many people who escaped to the 4th floor rooftop during the Great East Japan Earthquake died. I guess I thought it would be okay if I escaped to the 4th floor, but if there is a higher tsunami, there is no longer a place to escape. The fear and danger of evacuation to a place with a height limit can be said to reveal the human breathing limit and survival limit in water. Therefore, even if a large unexpected tsunami submerges, there is a problem that can be solved if there is a method that is effective for survival. Naturally, people cannot live underwater. You can't live without air. The survivor of the sunken ship in the storm is a hint. Air bubbles rise in the water under the buoyancy of Archimedes' principle. The ship's bottom, which is upside down, becomes a convex container. Air accumulates in the space with the ship's bottom as the ceiling, and does not escape from the iron container. In a basin game that is sunk upside down in a bath tub, it is powerful to sink. Conversely, it can be said that it resists not to let air escape. No matter how deep it sinks, the bottom of the top and bottom is open, so the rising water surface in the container receiving water pressure creates a horizontal boundary surface, and the air in the solid container I'm trapped above and won't run away. This is the principle of Pascal where pressure is transmitted. In addition, the air always remains compressed while being compressed on the ceiling of the container according to Boyle's law. This means that even if a submerged tsunami unexpectedly submerges, a living container can be maintained if there is a convex container. The structure protruding above the ceiling that receives air is a so-called non-hermetic structure because the bottom is opened with an opening. The non-sealed structure is not subjected to such a large pressure as the sealed structure. In water, the external water pressure is equal to the air pressure in the upward convex, so that the bending wall moment due to the pressure difference is not applied to the wall that becomes the container. In other words, it is not necessary to increase the wall thickness due to the pressure difference even if the impact of drifting objects is taken into account. The building is composed of a ceiling slab and a vertical wall that surrounds it. By doing so, the problem of being able to survive in a submerged evacuation room, regardless of the height of the building, can be solved no matter how high the building is submerged in an unexpected height or tsunami. In addition, an expensive sealed door is not required at the entrance and exit, so that the wall thickness is not so much required, and there is no need for a special pressure-resistant design, so problems such as difficult design and special material costs can be solved.
Next, if there is a way to survive in the water, you need to evacuate there. In the Nankai Trough earthquake, if a 10-meter tsunami strikes in 5 minutes, you will reach the evacuation center and have no time to escape. In coastal tsunami attack areas, there is no time to evacuate. There is not enough time to evacuate after waiting for the tsunami information for a big shake. You must evacuate instantly and promptly based on your sensibility and self-judgment when you feel the shaking. You can run if you are young, but people are not young forever. Moreover, evacuation centers are not always in every house. Evacuation is impossible even in the age, age, and living conditions of the baby, infants, the elderly, pregnant women, sickbeds, broken bones, etc. What can you do in the room in the house? It is necessary to think about how to save at the family level, classroom level, and workplace level. It is unclear where people will be when a tsunami or future tsunami strikes, but the possibility of being in a house or building is about half a day. An evacuation room installed in a building can be evacuated within 5 minutes. There is a reality of being saved. Establishing an evacuation room in a solid building itself, and constructing such a building can reduce the evacuation time and solve the problem of difficult evacuation. At the same time, the firmness of the building can be used, so that you can protect yourself from the collision of drifting objects and solve the problem of avoiding collisions from weak human drifting objects.
The predicted maximum tsunami height of the Nankai Trough earthquake is 34.4m. Many buildings are submerged and destroyed by wave pressure. When a building is submerged, the floating force works like a huge tanker. In fact, because there is a pile, it does not float easily, but considerable buoyancy works, which may cause lifting and falling. However, reinforced concrete buildings remained during the Great East Japan Earthquake. This is because the weak glass window was first destroyed by drifting objects and wave power, the pressure receiving area of the building receiving direct wave power decreased, and the wave force penetrated the other window, which caused the building to overturn. It can be said that it was avoided. In addition, the glass was broken, the air in the building was evacuated, replaced with water, the water weight was applied to the floor, and the buoyancy of the entire building was significantly reduced. Even in this case, the evacuation room is configured to have a convex shape with a wall that is not destroyed, so that the air necessary for survival is retained without escaping. By making a solid building with a lot of window glass, the problem of the building falling and overturning the building can be solved. However, since wave pressure is applied to the wall surface, it is necessary to calculate the moment of resistance to overturning. In the calculation that the window glass does not break, the column cross section becomes larger. Furthermore, the evacuation room that is part of the building is destroyed by the collision of drifting objects, and if it is washed away, there is no origin or child. Wall design requires consideration for collision and torrent flow. In the design of building structures, analysis of the structural framework of pillars, beams, walls, and slabs of buildings, and structural design are performed. Therefore, by integrating the walls of the evacuation room with the structural framework pillars, beams, walls, and slabs, you can use the robustness, difficulty of being swept away, and the difficulty of falling down, and the ability to anchor there. It is reasonable because anchor, deformation resistance can be taken effectively. The evacuation room is mainly in the form of a wall structure, but it is integrated by using pillars, beams, walls, and slabs that are the structural framework of the building, and the remaining walls of the evacuation room are also made solid walls, The problem of the evacuation room itself rising, falling over, washed away or destroyed can be solved. At the same time, the direction of the evacuation room in the building is arranged in parallel so as not to obstruct the turbulent flow and streamline of breaking through the room when the glass window is broken. It is necessary to arrange the evacuation rooms in a balanced manner with respect to the building. For sturdiness, it is desirable that the evacuation room has a symmetrical structure with respect to a pillar of a building or a structural frame, a beam, a wall, or a slab, a through structure with two or more floors above and below, and a plane coincidence. As a result, it is possible to solve the problem of improving the earthquake resistance of a building in a huge earthquake. Even in a solid building, you cannot be sure that the tsunami will not go over how many floors. 3rd, 4th, 5th and even unexpected, so there is no absolute safety in the height of the floor. Even if you escape to the rooftop, the elevator is forbidden and stopped during an earthquake. The rooftop is not easy to climb because of the vertical ladder. The opening is usually locked out for emergency use. In the case of an existing 10-story condominium, in the tsunami-assumed area where the height of the first floor is 3m and 20m, residents from the 1st floor to the 7th floor look down to safety unexpectedly and descend to the 10th floor to evacuate the district I have to go to the place. That said, there is resistance and traps to descend from higher floors. Reality away. This is because there may be a small tsunami of 10m as a result. In this case, it can easily be imagined that there will be disastrous consequences that many people who escaped will be sacrificed along the way down and out of the building for evacuation. I'm glad that people on the 4th to 10th floors didn't run away. Despite evacuation according to training, there are dangers, luck, and bad luck that can only be understood from the results. If one room on each floor is equipped with an evacuation room, it can solve the problem that many people who escape to the outside for evacuation are sacrificed on the way.
On the other hand, the problem of latent disease remains for air pressure compressed by Boyle's law. Although it is not a human experiment, the video news rescued 60 hours later from the bottom of a cargo ship sank 30 meters off Nigeria on November 23, 2013 is new in memory. The world record of human dive is 122m. Therefore, it can be said that the limit of 30 m may be used from the example off Nigeria. The predicted maximum height of the tsunami caused by the Nankai Trough earthquake is 34.4m in Kuroshio-cho, Kochi Prefecture. In this area, it can be said that if the building with an evacuation room is built at a ground height of 4.4m or more above sea level, the load on the first floor can be cleared. However, it is desirable that the pressure burden is low. In general, it is said that there is no particular concern about latent sickness up to about 10 m. This means that if the floor height is 3 m, a building up to 4 stories is desirable. A public hall can be said to be the representative. That said, there is a view that the demand for private housing in the building and that the higher the appearance is, the safer it is. In terms of cost, large buildings are also cheaper. In taller buildings, the higher floor evacuation rooms have less depth of submergence flooded with tsunamis, so the water pressure is lower and the duration of submergence is less, so there is less impact on the human body. In areas where large tsunamis are expected, the problem of pressure reduction can be solved by providing evacuation rooms on the upper floor and above the building as much as possible. Evacuation rooms on the lower floor are also effective, but by providing evacuation rooms on each floor along the outer walls of the outdoor staircase outside the building, the emergency staircase and the indoor staircase inside the building, you can enter and exit freely, It is possible to move up the floor sequentially along the stairs and move vertically to the upper floor while observing how the height of the tsunami that people push in, and how it reaches, solving the problem of reducing the pressure burden on the lower floor people. Among the buildings, the top floor has the least pressure load and the amount of air required for submergence time is small, so there is room in the design space and it is easy to take up a large space, so it becomes an emergency supplies storage. Neighbors can also use it and provide it as a shelter.
On the other hand, the required amount of oxygen is based on the Nakagawa Industrial Safety Data, when oxygen in the air is 21%, oxygen deficiency is reduced to 16%, and the limit of 50 minutes for one person breathing half with 1m3 of air is the limit. As a result, an air space of 1.2 m3 is required in one hour. Since the duration of the tsunami in the Nankai Trough Earthquake is about 10 minutes per wave, the required space for the underwater evacuation room is 0.2 m3. Secure. Carbon monoxide is not at a problematic level. Up to the 6th wave is predicted by the area, but since each wave is a tide, it is automatically replaced with fresh air every wave. In other words, it can be said that the amount of air required for the design simply needs to be secured for the maximum wave and its duration. Therefore, as an individual requirement, even if it is submerged in a large tsunami, there is a place where the maximum wave height is reached up to the 6th wave, depending on the region, ensuring the amount of air necessary to survive without being destroyed, By securing the maximum air capacity for several minutes until the ebb tide, the problem of continuous survival under the tsunami disaster can be solved.
In the event of an earthquake, the elevator cannot be used, and when it is difficult to move up, horizontal movement is effective for shortening the evacuation time. Horizontal movement from common corridors, verandas, and horizontal corridors such as hotels are fast, and the provision of an evacuation room in the emergency staircase of a building can solve the problem of shortening the evacuation time. In addition, even in the area where the maximum height of the tsunami is 34.4m, the evacuation room of the building is considered to be adapted up to an unexpected 40m, and on higher floors, the stairs move vertically by stairs while watching the situation. Will do. Furthermore, priority is given to the ease of evacuation and the shortest evacuation time without going out of the room in the lives of individuals and daily life. Of course, there is no time to evacuate outside the tsunami attack area. There is a high risk of being swept away by the tsunami if you go outside. In this case, it is unavoidable to reduce the floor area of the residence. The problem of quick evacuation, shortest evacuation, and safe evacuation of individuals can be solved by using an evacuation room on the veranda and an indoor evacuation room.
If a wall that forms a container surrounding an upwardly convex space is constructed on the ceiling of a solid building from the structure of the building, the submerged air rises and stays there. It protrudes from the horizontal slab of the ceiling, the outer wall of the building, the boundary wall with the adjacent door, the four walls of the vertical wall, the vertical wall, and the side wall that consist of the remaining walls of the evacuation room. Space. Even in the water of a large tsunami, air does not escape from the wall that surrounds this space and has an opening, and the air is compressed and retained. However, it should be noted that even if it is considered as a wall, the ceiling decorative board and the partition board wall are not strong enough. Walls and slabs used together with structural framework columns and beams are the outer walls of the building, ceiling slabs, floor slabs, and door walls, and are integrated with the remaining walls that make up the evacuation room. There are various possible specific positions when installing an evacuation room in a building due to differences in scale and hierarchy. In other words, when all or part of the top floor of the building is used as an evacuation room, or when one to several rooms in the building are used as an evacuation room, the outside walls of the outdoor staircase and emergency staircase are used. If you use the outer wall of the indoor staircase of the building, if you use the boundary wall between each door, if you use the ceiling slab and floor slab of each door, you may use the veranda of each door, By selecting from the above, it is possible to solve the problem of installing an evacuation room provided in a building so as to be optimal for evacuation. Of course, earthquake resistance is required for buildings. If the outer wall and doorway wall are double walls, the earthquake resistance will be improved, and if the space is used as an evacuation room, it can be said that there are two birds with one stone. In addition, since the required air amount is lower in the upper floors, the floor area is not substantially reduced.
According to Boyle's law, the air volume in the evacuation room starts to increase and shrinks according to the external water pressure. If there is a hole in the wall, the air can easily escape into the water. You must be aware of this. As a common precaution, air leaks are fatal, so double and triple safety measures are taken. The building may be cracked by a huge earthquake in front of the tsunami. Inside the evacuation room, it is preferable to provide a bag-like shape body or structure that is convex upward and separated from the wall along the inside of the wall. If it is separated from the wall so that the deformation force at the time of the earthquake is not transmitted, a plastic plate or a thin steel plate may be used. It is like a supermarket shopping bag, and it is also effective to fold a convex bag over a 1m square size image and wear it from the head. If the entrance / exit height is 1 m, it will be flooded immediately, so prepare a step ladder and a high stepladder. By doing so, even if drifting objects come in, they will not hit, and they will not scoop their feet with buoyancy, and will be able to breathe the air in the ceiling that cannot be reached. In general, there are holes in the building walls that allow air to escape, such as windows, cooler mounting holes, kitchen ventilation fans, electrical wiring mounting holes, and outlets. It must be secured in a section that is avoided on a plane. If the dimension between the walls inside the evacuation room and the separation width are at least 1 m, they can be put up. Since the area of the door room is naturally larger than the area of the evacuation room, the air volume is calculated by multiplying the effective vertical height, width, and length of the wall, assuming the number of people. The effective vertical height of the air retention in the evacuation room underwater is the height from the apex height point of the doorway where the compression starts according to Boyle's law to the ceiling. The lower the doorway height, the greater the amount of air that can be secured in the underwater evacuation room. If it is 1m to 1.2m in height, it will be low and you will have to bow down, but it is not inconvenient because it is a sudden place. It is easy to get in and out if you take a high entrance / exit height, but because it is a volume calculation, you have to reduce the living area accordingly. Therefore, consider sharing the use with any room in the door. In particular, when it also serves as a walk-in closet, storage room, and storage, a high entrance / exit of about 2 m is required, but it is necessary to secure an air volume without increasing the occupied area. Therefore, the entrance / exit is a residential door to prevent intrusion of drifting objects, and the interior of the bag is shaped like a bellows that folds upward from the entrance / exit height and has a bellows-like fold from the entrance / exit height. In the case of a tsunami, a large air volume can be secured by hanging the curtain to the floor. In order not to make a hole in the ceiling of the bag, the clothes hook should be under the ceiling of the bag, and the clothes should be moved with casters. The width of the entrance / exit can be narrow but relatively free if there is no concern about the entry of drifting objects. The entrance / exit part of the evacuation room may be left open, but it is not particularly inconvenient if it is closed with a residential partition door door, a reduced version for the entrance door, which is unsealed and airborne Direct entry into the evacuation room can also be avoided. When it also serves as an intrusion, an evacuation room is provided at the top, and the entrance and exit from the indentation ceiling that also serves as the floor. Overall, the design air volume is relatively generous, so even if the number of families increases during the years or decades before the earthquake arrives, there will be no problem with increasing capacity or evacuation. The required volume of air in the evacuation room is relatively small compared to the living space, and if it also serves as a walk-in closet, storage room, storage, and close-in, even in a room with a narrow housing situation, The problem can be solved. If it is desired to secure an entrance / exit height of about 2 m, there is a method of waterproofing the packing between the back side of the door and the wall on the receiving side. If the entrance door of the single room is an evacuation room or the entrance door of the walk-in closet, and if the entrance of the evacuation room is a high door, applying a waterproof waterproof door of about 2m high will cause problems with the tightness of the entrance. Can be eliminated. In this case as well, the evacuation room should be a non-sealed structure so as not to receive a large water pressure, and should be a semi-waterproof door with a gap between about 1 m and below, without packing waterproofing. Further, when the lower part of the door without packing is pushed in by water pressure, an opening force is applied to the upper part of the door and the sealing performance of the packing is lost. Therefore, the lower part of the door is restrained from being displaced by hard rubber.

このような課題を解決するために、本発明の津波、洪水、高潮対策用の避難部屋付き建築構造物は、津波、洪水、高潮時に建物が水没しても生存できる避難部屋を堅固な建物に有し、避難部屋の天井スラブおよび側面壁上部を、空気が抜ける窓や空気穴のない壁面とし、避難部屋の床スラブや側面壁下部あるいは外壁下部、柱部袖壁下部に、開放した出入口を設けることで、上に凸の空間を囲う非密閉構造体とし、水没中の生存必要空気量を保持する容積を有し、建物の構造骨組みとなる柱、梁や壁、スラブを利用し、避難部屋の壁を建物と一体構造とすることを特徴とする。 In order to solve such problems, the building structure with an evacuation room for tsunami, flood, and storm surge prevention of the present invention has a solid evacuation room that can survive even if the building is submerged during a tsunami, flood, or storm surge. The ceiling slab and the side wall upper part of the evacuation room are the walls without air vents and air holes, and the open doorway is opened on the floor slab, the side wall lower part or the outer wall lower part, and the column part sleeve wall lower part of the evacuation room. By providing it, it is an unsealed structure that surrounds the convex space above, has a volume to hold the necessary air volume during submergence, evacuates by using pillars, beams, walls, slabs that will be the structural framework of the building The room wall is integrated with the building.

また、前記避難部屋を建物の最上階の全部または一部、あるいは建物のうちの一戸、一部屋、一室または数戸、数部屋、数室を避難部屋とすることを特徴とする。 The evacuation room may be an evacuation room, all or part of the top floor of the building, or one, one, one or several rooms, several rooms, or several rooms of the building.

また、前記避難部屋を建物の柱、梁や外壁を利用し屋外階段部、非常階段部に、または建物の屋内階段部の外壁を利用し屋内階段部あるいは室内側に設ける上下2階以上を避難部屋とすることを特徴とする Evacuate the upper and lower floors of the evacuation room on the outdoor staircase and emergency staircase using pillars, beams and outer walls of the building, or on the indoor staircase or indoor side using the outer wall of the indoor staircase of the building. It is characterized as a room

また、前記避難部屋を建物の内部に設けることとし、建物の柱間をつなぐ戸境壁を2重壁構造とし、その中間に仕切り壁を設け、隣間を区切った避難部屋とすることを特徴とする。 In addition, the evacuation room is provided inside the building, the door boundary wall connecting between the pillars of the building has a double wall structure, a partition wall is provided in the middle, and the evacuation room is divided between adjacent areas. And

また、前記避難部屋を建物の各戸、各部屋、各室の内部に設けることとし、避難部屋の壁は、建物の柱、梁または外壁、戸境壁さらに天井スラブ、床スラブを共用することとし、残りの側面壁は天井スラブ、さらには外壁、戸境壁、変形に問題のない場合は床スラブの一部に定着し、上下2階以上または隣接2戸、2部屋、2室以上で概ね対にすることを特徴とする。 In addition, the evacuation room shall be provided inside each door, room, and room of the building, and the walls of the evacuation room shall share the pillar, beam or outer wall of the building, the door wall, ceiling slab, and floor slab. The remaining side walls are ceiling slabs, and the outer walls, door walls, and if there is no problem with deformation, they are fixed to a part of the floor slab, and are generally located on the upper and lower floors or two adjacent rooms, two rooms, two rooms or more. It is characterized by being paired.

また、前記避難部屋を建物の各戸、各部屋、各室の内部の天井部に設けることとし、避難部屋の底床スラブは、建物の窓枠より上の壁から天井までの位置、もしくは換気口を避けた空間位置とし、側面壁は天井スラブ、さらには戸境壁、窓枠上の外壁を利用して定着し、上下2階以上または隣接2戸、2部屋、2室以上で概ね対にすることを特徴とする。 The evacuation room is provided in each building, each room, and the ceiling of each room, and the bottom floor slab of the evacuation room is positioned from the wall above the building window frame to the ceiling, or a ventilation opening. The side walls are fixed using ceiling slabs, door walls, and outer walls on the window frame. It is characterized by doing.

また、前記避難部屋を建物の各戸、各部屋、各室の外側のベランダ部に設けることとし、柱、柱部袖壁、外壁を共用することとし、残りの側面壁はベランダ天井スラブ、ベランダ床スラブ、外壁の一部を定着に利用し、上下2階以上または隣接2戸、2部屋、2室以上で概ね対にすることを特徴とする。 In addition, the evacuation room shall be provided on each door, each room, and the outside veranda of the building, and the pillar, the columnar sleeve wall and the outer wall shall be shared, and the remaining side walls shall be the veranda ceiling slab and the veranda floor. A part of the slab and the outer wall is used for fixing, and is generally paired with two or more floors above and below or two adjacent rooms, two rooms, and two or more rooms.

また、前記避難部屋の高い出入口用の半防水扉は、避難部屋の出入口を2m程度と高くする場合に、扉と受け側のおよそ上半分にパッキン防水を施し、下半分はパッキン防水なしとしたことを特徴とする。
堅固な建物とは、RC造、S造、SRC造、CFT造をいう。
上に凸とは、お椀を伏せた様子で、上部が密実材で囲まれ、水中では空気貯まりとなり、下部が解放された状態をいう。直方体の避難部屋形状では天井とその側面で囲まれた空気貯まりとなり、下部に出入口が解放された形態をいう。
非密閉構造体とは、密閉構造体に対比する表現で、構造体に穴を有し、空気を遮断せず、水中では、浸水を許す構造体をいう。
一部屋、一室、一戸とは、前2者は住居用でない場合の教室、事務所、会議用途等の柱間を壁で区切られた区画部屋で、後者は住居用の家族単位、世帯単位で、戸境壁で区切られた部屋をいう。
The semi-waterproof door for the high entrance / exit of the evacuation room is provided with packing waterproof on the upper half of the door and the receiving side when the entrance / exit of the evacuation room is about 2 m high, and the bottom half is not waterproof. It is characterized by that.
Solid buildings are RC, S, SRC, and CFT structures.
Convex upward refers to a state in which the bowl is turned down, the upper part is surrounded by solid material, the air is stored in water, and the lower part is released. In the shape of a rectangular parallelepiped evacuation room, the air is enclosed by the ceiling and its side, and the entrance is opened at the bottom.
The non-sealing structure is an expression in contrast to the sealing structure, and means a structure that has holes in the structure, does not block air, and allows water to be submerged in water.
One room, one room, one house is a partitioned room with walls separated by pillars for classrooms, offices, conferences, etc. when the former two are not for residential use, and the latter is a family unit for households and a household unit A room separated by a border wall.

一見、沿岸部は過疎で、マンションとかの建築物、住宅需要がなさそうであるが、津波避難部屋付きマンションとなれば資産価値も評価される。低層建物でも津波に有効である。津波に呑みこまれるとまず助からないという恐怖、先入観、固定観念を一掃できる。そんな対策などあり得ないというあきらめが一変、助かるという望みがあるならば、生き抜くという意欲が湧いてくる。いつ襲われるか分からない津波への恐怖が取り除かれる。反射的に、自主避難ができる。希望的展開として、一つの小避難建築物ができると、そこに少なからずの住民が転居する。その跡地をまとめて集約し、そこに中規模の避難建築物を建設する。そこへ中人数の住民が移転する。その跡地をまとめるとさらに大きい土地が確保でき、さらに大きな建物が建つ。この繰り返し効果で、安全避難建築物が林立し、次々と活用に有効な広場が確保されていく。建物の最上階を避難部屋とし、1階を店舗とする混成建物とすれば、店舗従業員も安心して働くことができ、地域の活性化に役立つ。初項を高める意味で、数棟の建設を先行すれば、明日かもしれない津波対策のスピードは加速する。こうなれば、観光客、ホテルとかの誘致につながるのも夢でない。並行して、避難建物の計画的誘導、建設の誘導も効果的といえる。
構造的には、避難部屋の構造体を下部に開口とする非密閉構造とすることで、想定外の大津波で水没しても避難部屋の内外水圧差がなく、構造壁には水圧差による曲げモーメントの負荷がかからず、高価な密閉扉は必要なく、それほどの壁厚も必要でなく、特別な耐圧設計、設計の難度、特殊材料費などの問題も少ない。
堅固な建物でも何階以上は津波が来ないとは断言できない。低層でもいいから避難部屋を有する堅固な建築構造物を身近に増やすことで多くの人命を救うことができる。マンションの1階の高さが3mとして、20mの津波予報で、1階から7階まで、想定外に安全を見て10階建までの住民は下に下りて避難する必要がある。杓子定規の避難マニュアルの考え方では、かえって途中で遭難する可能性が大で、無駄骨というにも悲しい結末が当然のごとく予想される。だが、身近に安全な自分の避難部屋があると、日々の不安がなく腰を据えた平穏、安泰な日常生活を送ることができる。避難困難地域に指定された人々の日々不安な状況を解消できる。最大33万人とされる死者数のうちの、絶望的、避難をあきらめた多くの人の命を救うことができる。小学校では幼い命が集団で絶たれるという悲劇的ニュースが全世界を駆け巡ることもない。集団で助かる意義がここにある。学校には子供たちを安全に守る義務があるがゆえに、教員は誘導責任で裁判にかけられるという精神的負担から解放される。親も安心して日常を送ることができる。工場建物、事業所などの職場では、経営者は家族を支えている従業員の命を守る責務がある。全従業員が助かり、サプライチェーンの社会的役割を果たすことができる。家族は将来不安もなく安心して日常を暮すことができる。経営者も備えあれば憂いなしである。通勤自動車で工場敷地からいっせいに逃げると地域に大渋滞、混乱、迷惑がかかるが、敷地内で避難を完了してくれるので地域社会が助かる。昼間バラバラで生活している家族もこれなら安心して任せられる。
漁港では、防潮堤の嵩上げが難しく、避難部屋があれば魚市場、魚セリ場の関係者がすぐ逃げ込むことができる。病院でも対応ができる。日常的に立ち寄り、利用度の高いスーパーに避難部屋ができれば、買い物に出かけることの不安がない。ホテルでも避難が身近でできるので安心、津波避難部屋付きホテルはプライオリティが高くなるといえる。観光客の減少の心配はない。不特定多数の利用する図書館、公民館、役場の公共施設でも有効で、まさしく地域住民の安全基地となる。防潮堤の嵩上げ、高い津波避難ビルや津波避難タワーをつくる費用で、避難部屋を有する低層建物を身近に多く配置することができ、より多くの人の命を救うことができる。低層建物は廉価で、数多く設置できる。数が増えるということは、身近にある確率が上がるということである。通勤通学途上の生徒、サラリーマンもすぐ飛び込むことができる。さらに外出中の多くの人命が助かる。人口の少ない沿岸部、漁港部では随所に設置でき効率的、効果的といえる。あらゆる場所、場面で助かる希望が見えてくると避難訓練、防災意識も高まるといえる。自分の身は自分で守る自助意識が高まるといえる。堅固な建物の生活空間、活動空間に密着した避難部屋が多く設置されると、24時間の多くの時間帯で最直近にあり、5分で避難でき、1日中で避難安全時間数が多くを占めることができる。
居室の中の避難部屋には、平時はその中に雑物を収納できるので意外と役に立つ。有事には当然、命が大事、考えずに放り出す。収納ができ日常の占有スペースも少なく、日本の狭い住宅事情には大切なポイントとなる。水没、水中でも安心ということが理解できればパニックにならず、落ち着いて行動でき平穏な心の支えになる。マンションでは津波避難部屋付きということで資産価値が上がるといえる。
地震のたびの避難警報、日頃の訓練や夜間の避難訓練の精神的、肉体的負担が少ないのは妊婦、高齢者、小学生には助かる。いざ地震で避難するとき、大雪や大雨など天気が荒れていれば津波が来ないことを祈り、外に出ることを躊躇する。逆に外に出たために多くの人が命を落としかねない。我が家に避難部屋があるということはなんと安心なことか。車を運転する必要もないのでゆっくり晩酌を楽しめる。入浴を楽しめる。じっくり睡眠できる。津波到達時間が数分という予測地域では、地域防災計画は高台移転案でしか立案できないが、本発明の対策を取り入れることで選択肢が広がるといえる。防災の固定概念を変えることをためらってはならない。家族単位、教室単位、職場単位でその場で集合体が避難できるので、バラバラで逃げて行方不明、その捜索に莫大な費用がかかることも少なくなる。
高い建物の所有者から屋上避難の協力を得るとしても、従来の防潮堤の嵩上げや高台移転、津波避難ビル、津波避難タワーでは、巨額の予算のみならず、日本の長い海岸線での設置に長い歳月を要し、想定外の津波高さに対して安全の保証がない。すなわち、日々を安心して暮らせないということである。自然に生かされている人間、美しい海が見えなくなる悲しい弊害もない。災害は、時と場所を選ばない。明日かも知れず待ってくれない。本考案で、来る南海トラフ巨大地震の津波、さらに津波以外にも、高潮や大雨時の洪水、堤防決壊による河川氾濫時、海抜以下や天井川沿い地域の防災対策の一助としても有効である。いずれにしても、予測津波高さを超える想定外の大津波で水没しても生存必要空気量を保つことができる身近の対策を、計画配置する公共避難所と組み合わせ、補完すれば、早急な地域防災総合計画の立案に役立つ。順次、個別に対応することができるので、防災予算計画の追いつかない地域などでは特に有効といえる。避難警報、指示その空振りに関わらず、自主的に判断して避難できるので警報に振り回されて疲労困憊することはない。明日かもしれない津波には当然に、我が身は自分で守ることをためらってはならない。自分の命である、全て行政頼みをしている場合ではない。身近、安価、迅速に適用できるので、とても避難できないと諦めていた人にも光明といえる。日々の晩酌など当たり前の平穏な日々を安心して楽しく暮らせる。天井部設置とすれば建築、登記の床面積を減少することもない。危険とされた低層のマンションも安全施設として資産価値が認められ、建設が進む。そうなれば助かる人が増え、人が集まる相乗効果が期待できる。やはり、命の危険を感じて日々暮らす生活から解放されること、身近にある安心感は何事にも代えがたい。
At first glance, the coastal area is sparse, and there seems to be no demand for buildings such as condominiums and housing, but if it is a condominium with a tsunami evacuation room, its asset value is also evaluated. Even low-rise buildings are effective against tsunami. If you are swallowed by a tsunami, you can wipe out the fear, preconceptions, and stereotypes that you cannot help. If there is a desire to save the give-up that there is no such measure, you will be motivated to survive. The fear of a tsunami that is unknown when it is attacked is removed. Reflective, you can evacuate voluntarily. As a hopeful development, when one small evacuation building is made, not a few residents move there. The ruins are gathered together and a medium-scale evacuation building is constructed there. A medium number of residents move there. If the ruins are put together, a larger land can be secured and a larger building will be built. With this repeated effect, safe evacuation buildings will be established and effective plazas will be secured one after another. If the building is a hybrid building with the top floor as an evacuation room and the first floor as a store, store employees can work with peace of mind, and this will help revitalize the region. If the construction of several buildings is preceded in the sense of raising the first term, the speed of measures against tsunami that may be tomorrow will accelerate. If this happens, it is not a dream to attract tourists and hotels. At the same time, it can be said that planned guidance and construction guidance for evacuated buildings are also effective.
Structurally, the structure of the evacuation room is an unsealed structure with an opening at the bottom, so that there is no difference in internal and external water pressure in the evacuation room even if it is submerged in an unexpected large tsunami, and the structural wall is due to the water pressure difference. There is no bending moment load, no expensive sealed door is required, so much wall thickness is not required, and there are few problems such as special pressure-resistant design, design difficulty, and special material costs.
Even in a solid building, you cannot be sure that the tsunami will not go over how many floors. It is possible to save many lives by increasing the number of solid building structures with evacuation rooms. Assuming that the height of the first floor of the apartment is 3m and the 20m tsunami forecast, residents from the 1st floor to the 7th floor, looking at safety unexpectedly, need to evacuate down to the 10th floor. According to the ruler's evacuation manual, the chances of getting lost on the way are high, and a sad ending is expected as a matter of course. However, if you have your own safe evacuation room, you can live a peaceful and secure daily life without worrying about your daily life. Eliminate the anxious situation of people designated as difficult to evacuate every day. Of the maximum of 330,000 deaths, it can save the lives of many who are desperate and give up evacuation. The tragic news that young lives will be killed in groups at elementary schools will not run around the world. This is the significance of helping the group. Schools are obliged to keep their children safe, so teachers are freed from the mental burden of being held on trial for guidance. Parents can also spend their daily lives with peace of mind. In workplaces such as factory buildings and offices, managers are responsible for protecting the lives of employees who support their families. All employees can help and play a social role in the supply chain. Families can live their daily lives without worrying about the future. There is no sorrow if you have a manager. If you run away from the factory premises with a commuter car at once, it will cause heavy traffic jams, confusion, and inconveniences in the area. A family living in the daytime can also be entrusted with peace of mind.
At the fishing port, it is difficult to raise the seawall, and if there is an evacuation room, the people involved in the fish market and fish slaughterhouse can escape immediately. It can also be handled at a hospital. If you have a evacuation room in a supermarket that you stop by on a daily basis and have high usage, there is no worry about going out for shopping. You can evacuate at your hotel, so you can rest assured that hotels with tsunami evacuation rooms have higher priority. There is no worry of a decrease in tourists. It is effective even in public facilities such as libraries, public halls, and government offices that are used by an unspecified number of people, and is a safe base for local residents. Many low-rise buildings with evacuation rooms can be arranged in close proximity at the expense of raising the seawall and building high tsunami evacuation buildings and tsunami evacuation towers, which can save more people's lives. Many low-rise buildings are inexpensive and can be installed. Increasing the number means increasing the probability of being close. Students on the way to work or office workers can also jump in immediately. In addition, many lives on the go are saved. It can be installed anywhere in coastal areas and fishing port areas where the population is small. It can be said that evacuation drills and awareness of disaster prevention are heightened when hopes are saved in every place and scene. It can be said that the self-help awareness that protects oneself increases. If there are many evacuation rooms in close contact with the living space and activity space of a solid building, it will be the closest in many time zones of 24 hours, and evacuation will be possible in 5 minutes. Can occupy.
The evacuation room in the room is surprisingly useful because it can store miscellaneous items during normal times. Naturally, in an emergency, life is important, and it is thrown out without thinking. It can be stored and occupies little daily space, which is an important point for the small housing situation in Japan. If you understand that you can be submerged and safe in the water, you will not panic, you can act calmly and support a peaceful mind. It can be said that the value of assets increases in apartments with tsunami evacuation rooms.
Pregnant women, senior citizens, and elementary school students can save the mental and physical burdens of evacuation warnings, daily training, and night evacuation drills. When she evacuates due to an earthquake, she prays that a tsunami will not come if the weather is bad, such as heavy snow and heavy rain, and hesitates to go outside. On the other hand, many people could lose their lives because they went outside. How safe it is to have an evacuation room in my home. You don't need to drive a car so you can enjoy your dinner slowly. Enjoy bathing. I can sleep well. In the predicted area where the tsunami arrival time is a few minutes, the regional disaster prevention plan can only be formulated with the hill relocation plan, but it can be said that the choices will expand by incorporating the measures of the present invention. Don't hesitate to change the concept of disaster prevention. Since the collectives can be evacuated on the spot in units of families, classrooms, and workplaces, it is less likely that they will run away and be lost, and the search will be very expensive.
Even with the help of rooftop evacuation from the owners of tall buildings, conventional seawall embankment and hill relocation, tsunami evacuation buildings, and tsunami evacuation towers are not only for huge budgets, but also for installation on long coastlines in Japan It takes years and there is no guarantee of safety against unexpected tsunami heights. In other words, you can't live with peace of mind. There is no sad evil that humans who are alive in nature and the beautiful sea cannot be seen. A disaster does not choose time and place. It may be tomorrow and will not wait. In addition to the tsunami of the coming Nankai Trough earthquake, and the tsunami, the present invention is also effective as an aid for disaster prevention measures in areas below the sea level and in areas along the ceiling river when floods occur during storm surges and heavy rains, rivers are flooded due to bank breaks. In any case, if you combine and complement the planned measures for public evacuation shelters that can maintain the necessary air volume even if submerged in an unexpected large tsunami that exceeds the predicted tsunami height, Useful for planning regional disaster prevention comprehensive plans. It can be said that it is particularly effective in areas where disaster prevention budget plans cannot catch up because it can be dealt with individually. Regardless of the evacuation warning and instructions, you can evacuate by voluntary judgment, so you will not be exhausted by the warning. Naturally, I must not hesitate to protect myself for the tsunami that may be tomorrow. This is not the case when you are asking for all the administration that is your life. It is also enlightening for those who have given up that they cannot evacuate because they are close, inexpensive, and can be applied quickly. Enjoy peaceful and enjoyable daily life such as daily supper. If the ceiling is installed, the floor area of architecture and registration will not be reduced. Low-rise condominiums that are considered dangerous are recognized as safe facilities and are being built. If that happens, more people will be saved and a synergistic effect will be expected. After all, it's hard to replace the feeling of life and being free from daily life and the sense of security around you.

最上階の全部を共用避難部屋とする建物正面図。Front view of the building with the entire top floor as a shared evacuation room. 最上階の全部を共用避難部屋とする建物平面図。Building top view with the entire top floor as a shared evacuation room. 最上階の全部を共用避難部屋とする建物側面図。Side view of the building with the entire top floor as a shared evacuation room. 最上階の一部を共用避難部屋とする建物正面図。The building front view which makes a part of the top floor a common refuge room. 建物のうちの2戸を共用避難部屋とする建物正面図。The building front view which uses two of the buildings as shared evacuation rooms. 屋外階段部、非常階段部の外壁外側に一体化した共用避難部屋付き建物正面図。The front view of a building with a shared evacuation room integrated on the outside of the outer wall of the outdoor staircase and emergency staircase. 屋外階段部、非常階段部の外壁外側に一体化した共用避難部屋付き建物平面図。The top view of a building with a shared evacuation room integrated on the outside of the outer wall of the outdoor staircase and emergency staircase. 屋内階段部の外壁外側を2重壁として一体化し、出入口を階段部側に設けた共用避難部屋付き建物平面図。The top view of a building with a shared evacuation room in which the outer wall outside of the indoor staircase is integrated as a double wall and the entrance is provided on the staircase side. 建物の柱、梁さらに天井スラブ、床スラブを利用し、柱間の戸境壁を2重壁として一体化した戸別避難部屋付き建物平面図。A plan view of a building with a door-to-door evacuation room that uses pillars, beams, ceiling slabs, and floor slabs of the building to integrate the boundary walls between the pillars into a double wall. 屋内階段部の外壁内側を2重壁として一体化し、出入口を戸内側に設け、さらに建物の外壁内側部、戸境壁を2重壁とした戸別避難部屋付き建物平面図。A plan view of a building with a door-to-door evacuation room, in which the inner wall of the indoor staircase is integrated as a double wall, the entrance is provided in the door, and the inner wall of the building and the door wall are double walls. 柱、梁さらに戸境壁の一部および天井スラブ、床スラブを利用し、隣戸と対称とした戸内側の壁で囲み一体化した戸別避難部屋付き建物平面図。A plan view of a building with a door-to-door evacuation room that uses a pillar, a beam, a part of the boundary wall, a ceiling slab, and a floor slab, and is integrated with a wall inside the door that is symmetrical to the neighboring door. 柱、梁さらに戸境壁の一部および天井スラブ、床スラブを利用し、さらに屋内階段部の外壁内側を2重壁として一体化した戸別避難部屋付き建物平面図。A plan view of a building with a door-to-door evacuation room that uses pillars, beams, part of the door wall, ceiling slab, and floor slab, and further integrates the inner wall of the indoor staircase as a double wall. 柱、袖壁、外壁、戸境壁および天井スラブ、床スラブを利用し、戸内の壁で囲み一体化し、ウォークインクローゼットを兼用するとした戸別避難部屋付き建物平面図Floor plan of a building with a separate evacuation room that uses pillars, sleeve walls, outer walls, doorside walls, ceiling slabs, and floor slabs, and is enclosed and integrated with the interior walls of the doors. 天井部において、窓枠より上の外壁、天井スラブを利用し、上空間に垂壁と底床スラブを設け一体化した戸別避難部屋付き建物正面図。The front view of a building with a door-to-door evacuation room that integrates a vertical wall and a bottom floor slab in the upper space using an outer wall and a ceiling slab above the window frame in the ceiling. 天井部において、窓枠より上の外壁、天井スラブを利用し、上空間に垂壁と底床スラブを設け一体化した戸別避難部屋付き建物平面図。The top view of a building with a door-to-door evacuation room that integrates a vertical wall and a bottom floor slab in the upper space using an outer wall and a ceiling slab above the window frame in the ceiling. ベランダ部において、柱および袖壁、外壁さらに窓枠上の外壁、ベランダ天井スラブ、床スラブを利用して戸外側に壁で囲み一体化し、建物の外壁をくり抜き戸内側からの出入口とした例とベランダ戸外側の出入口とした例の戸別避難部屋付き建物正面図。In the veranda part, the pillar and sleeve walls, the outer wall, the outer wall on the window frame, the veranda ceiling slab, and the floor slab are enclosed and integrated with the wall outside the door, and the outer wall of the building is made into a doorway from the inside of the door The building front view with the door-to-door evacuation room of the example used as the entrance / exit of the veranda door outside. ベランダ部において、柱および袖壁、外壁さらに窓枠上の外壁、ベランダ天井スラブ、床スラブを利用して戸外側に壁で囲み一体化し、建物の外壁をくり抜き戸内側からの出入口とした例とベランダ戸外側の出入口とした例の戸別避難部屋付き建物平面図。In the veranda part, the pillar and sleeve walls, the outer wall, the outer wall on the window frame, the veranda ceiling slab, and the floor slab are enclosed and integrated with the wall outside the door, and the outer wall of the building is made into a doorway from the inside of the door The building top view with the door-to-door evacuation room of the example used as the entrance / exit of the veranda door outside. 避難部屋の出入口の高さを2m程度に高く取りたいとする場合の扉で、上半分をパッキン防水あり、下半分をパッキン防水なしとし、下部に変位抑制、ストッパーの硬質ゴムを施した半防水扉の正面図This door is used when the height of the entrance / exit of the evacuation room is as high as 2m. The upper half has packing waterproofing, the lower half has no packing waterproofing, the lower part has displacement suppression, and the stopper is made of hard rubber. Front view of the door ゴムチューブのパッキンで防水するとした扉の裏側と、受け側の段違いとした壁の断面図Cross section of the back wall of the door that is supposed to be waterproofed with rubber tube packing and the wall on the receiving side

先の東日本大震災の津波では激しい濁流、漂流物があった。それらは、最初、建物の間や道路、路地を這うようにして抜けていった。木造家屋は建物自体破壊され根こそぎ流されたが、鉄筋コンクリート造の堅固な建物の多くは窓が破壊されるものの残っていた。逆にいえば窓が破壊されたから水流は筒抜けとなり、建物本体には影響が及ばなかったといえる。そのことは、避難部屋の配置に生かすことができる。避難部屋を、鉄筋コンクリート外壁の窓際に隠れた隅角部や戸境壁に平行方向に設けることで、さほどの激流とはならず回遊流程度、漂流物も手ではね除けることができ、方向を変えることができるかも知れない程度ともなる。本流の激流は海側の破れた窓から反対側の窓へと抜けていく。同様に、堅固な建物の窓より上、天井までの高さの壁に隠れた天井部では漂流物の直撃を回避できる。直接衝突を避けることができるとなれば、破損の心配が少ないといえる。
大きな津波に、弱い建物は木端微塵となる。堅固な建物の、その堅固さを利用するのが最も賢明といえる。すなわち、構造骨組みの柱、梁や壁、スラブを利用し、一体化することで堅固さを活かすことができる。数分で10m高さの津波が急襲する地域では、避難の猶予がない。津波に浮き上がらない、流されない、転倒しない、壊れない、加えて津波で水没しても生存できる空気空間が確保できることが肝要である。堅固な建物自体は浮力、流出、転倒、破壊の抵抗性を満足しているので、その構造骨組みとなる柱、梁や壁、スラブを利用して一体化した避難部屋は、しがみつくような様相でもあり、流出等の津波への抵抗力は大きい。
沿岸部では高層建物の需要は少ないと見込まれ、まずは、低層建物が水没することを前提とした避難部屋、水没時間*避難人数分の必要空気量を保持できる避難部屋を有する建物とすれば安心である。水中で空気が逃げない、空気を保持できるということは、避難部屋の形状は、天井スラブと周囲を囲む4面の鉛直壁で上に凸の形状を形成するということである。床スラブと一体化すれば剛性が増す。3面とか多面とかは可能であるが、単純化のため主には4面の側面壁といえる。避難部屋の側面壁の下方には出入口を設ける必要がある。できればその出入口高さは、1m〜1.2m程度でできるだけ低い方がよい。出入口の頂点高さから天井までの高さが空気保持の有効高さであるので、体積計算では、出入りが身をかがめ窮屈であるものの床面積の減少を少なくできる。天井までの空気保有量を多く確保できるとともに大きな漂流物の侵入を抑制できる。
避難部屋の中の水圧は、津波高さの外水圧であり、開口としているので中の空気圧は外水圧と等しい。すなわち、建物の外が10mの津波であれば2気圧であり、10mの深さに素潜りした状態といえ、建物の中の避難部屋の空気体積は1/2=0.5と半分になる。内部空気は圧縮され浸水水位はその分まで上昇するが、空気は圧縮されながらも必ず保存されているため安心である。仮に、避難部屋が密閉構造体であれば、半分の0.5≒0.8*0.8*0.8、すなわち、単純には密閉構造体の寸法が0.8に縮小する外からの大圧力がかかる計算だが、開口しているので水の侵入を許すため内外の圧力差がなく、避難部屋自体は縮小せず、ボイルの法則で空気体積の圧縮相当で水位がその分上昇するのみである。さらなる想定外の圧力に対しても内外の圧力がバランスしているので密閉構造体のような特殊な構造設計は要さない。津波高さが想定外でも空気は水中で水面と共に上昇し避難部屋内に保持できる。ところが空気容量は計算できるとしても、漂流物の衝突、その鋭さには不測の事態が心配される。したがって、なるべく衝突を避けること、すなわち設置位置の選定、もし破れても2重3重の安全を図ることが懸命といえる。
密閉構造体では衝撃を直接受け、破損した場合一挙に空気が抜ける。構造体にも水圧に耐える強度、厚い壁厚、さらに出入口には耐圧ハッチなど特殊な装置が必要となり費用は相当に大きい。一方、非密閉構造体の開口式でも上に凸の空間に空気を溜める必要があり、水中で、空気が抜けると致命傷であることは明らかで、ひび割れに十分予見しなくてはならない。上に凸状の袋体を内部に設けるなど2重、3重の安全を講じるべきである。空気が抜ける危険性は、換気口、換気扇の他に最近の建築では、化粧ボード、天井配線、防音材空間、照明器具、煙感知器、配線管、コンセント口など支障物件が多いので配置換えなどの設計が必要である。当然に肝心な上に凸の部分に、取り付けのための穴を安易に設けてはならない。パテで補強したとしても水圧下では致命的欠陥となる。以下の実施例では、マンションを例として挙げる。
避難部屋の配置は、建物の構造骨組みとなる柱、梁や壁、スラブの剛性を活かすこととし、建物の構造上のバランスから、建物に対して左右対称配置、上下2戸以上の貫通、壁平面一致性、または隣接2戸以上の対称配置とすることを基本とする。バランス配置、一体化により、構造骨組みが強化され、地震時の変形にも抵抗が増すといえる。壁を主体とする避難部屋の構造的不安定さも解消される。ただし、拘束すぎると地震時の変位からひび割れが入る恐れもある。天井スラブと避難部屋の側壁、垂壁の隅角部のひび割れは致命的になる可能性もあるため、その直上の上階の床スラブと避難部屋の側壁、垂壁を剛結しないで変形吸収の隙間を設けるのも、階下の天井部の応力集中を緩和する一つの対策、工夫となる可能性がある。避難部屋には、踏台、脚立、非常食、非常用水、衣類などの入った防災リュック、浮輪、懐中電灯、ラジオ、ロープ、スコップ、個人用として上に凸状の1m3程度の折りたたんだビニール袋など必要に応じて中に用意していれば何かと備えとなる。
建築構造物の避難部屋の配置は、各戸の個別のために設ける場合、全戸のための共用として設ける場合、地域のためにも設ける場合などの以下の各種実施例を、地域、近隣の事情や家族の状況、職場の状況、通勤通学、買物等の日常社会生活の移動経路にも配慮し、複合的に組み合わせると活用、貢献の幅がさらに広がる。
また、津波避難ビルは、津波想定高さ以上の高さに対応する建物であるが、地震時はエレベータが使用禁止なので、上階に到着するまでに時間が足らない場合、力尽きる場合も想定される。そこで、地域の住民のためにも階段の途中階に本件の避難部屋を設けると上階への避難途中で逃げ込むことができるので、安心ができ、心強い。すなわち、津波避難ビルと本発明の避難部屋付の建築構造物との併合体とすることもさらなる効果的利用形態といえる。
In the tsunami of the Great East Japan Earthquake, there was intense muddy flow and drifting objects. At first, they slipped through buildings, roads and alleys. The wooden houses were destroyed and uprooted, but many of the rigid reinforced concrete buildings were left with windows destroyed. Conversely, it can be said that since the windows were destroyed, the water flowed through the cylinder, and the building itself was not affected. This can be used for the arrangement of evacuation rooms. By providing an evacuation room in a parallel direction to the corners and door walls hidden behind the windows of the reinforced concrete outer wall, it is not so much torrent, and it is possible to remove drifting objects by hand, It may be possible to change. The mainstream torrent flows from the torn window on the sea side to the window on the other side. Similarly, it is possible to avoid the direct hit of drifting objects at the ceiling part, which is hidden above the walls of the solid building and above the ceiling. If direct collision can be avoided, it can be said that there is less concern about damage.
Buildings that are vulnerable to large tsunamis become fine dust on the edge of the tree. It is wise to use the firmness of a solid building. In other words, it is possible to make full use of the solidity by utilizing structural framework columns, beams, walls and slabs. There is no refuge in an area where a 10m high tsunami strikes in a few minutes. It is important to secure an air space that does not float on the tsunami, does not flow, does not tip over, does not break, and can survive even if submerged in the tsunami. The solid building itself satisfies the resistance to buoyancy, outflow, toppling, and destruction, so the evacuation room integrated using columns, beams, walls, and slabs, which are the structural framework, can be clinging. There is a great resistance to tsunamis such as spills.
In coastal areas, demand for high-rise buildings is expected to be low. First of all, it is safe to assume that evacuation rooms are designed to submerge low-rise buildings, and have evacuation rooms that can hold the required air volume for the submergence time * number of people evacuated. It is. The fact that the air does not escape in the water and can hold the air means that the shape of the evacuation room forms a convex shape on the ceiling slab and the four vertical walls surrounding the periphery. If it is integrated with the floor slab, the rigidity increases. Three or many sides are possible, but for simplicity, it can be said to be mainly four side walls. It is necessary to provide an entrance under the side wall of the evacuation room. If possible, the height of the entrance / exit should be as low as possible, about 1 m to 1.2 m. Since the height from the apex height of the doorway to the ceiling is the effective height of air retention, the volume calculation can reduce the floor area decrease even though the doorway is bent and cramped. A large amount of air can be secured up to the ceiling, and the entry of large drifting objects can be suppressed.
The water pressure in the evacuation room is the external water pressure at the height of the tsunami, and since it is an opening, the air pressure inside is equal to the external water pressure. That is, if the outside of the building is a tsunami of 10 m, it is 2 atmospheres, and it can be said that the air volume of the evacuation room in the building is halved to 1/2 = 0.5. The internal air is compressed and the flooded water level rises to that extent, but it is safe because the air is always stored while being compressed. If the evacuation room is a sealed structure, it is half 0.5 ≒ 0.8 * 0.8 * 0.8, that is, the dimension of the sealed structure is simply reduced to 0.8. Although it is a calculation that requires a large pressure, since it is open, there is no pressure difference inside and outside to allow water intrusion, the evacuation room itself does not shrink, and the water level only rises by the equivalent of air volume compression according to Boyle's law It is. Since the internal and external pressures are balanced against further unexpected pressures, a special structural design such as a sealed structure is not required. Even if the tsunami height is unexpected, the air rises with the surface of the water and can be held in the evacuation room. However, even if the air volume can be calculated, there is concern about unexpected situations in the impact and sharpness of drifting objects. Therefore, it can be said that it is hard to avoid collision as much as possible, that is, to select the installation position, and to achieve double and triple safety even if it is broken.
The sealed structure is directly impacted, and if it is damaged, the air escapes all at once. The structure is strong enough to withstand water pressure, has a thick wall thickness, and requires special equipment such as a pressure-resistant hatch at the entrance and exit. On the other hand, even in the open type of the non-sealing structure, it is necessary to store air in a space protruding upward, and it is obvious that if the air escapes in water, it is a fatal wound, and cracks must be sufficiently foreseen. Double and triple safety should be taken, such as providing a convex bag inside. In addition to ventilation openings and ventilation fans, there are many obstacles such as decorative boards, ceiling wiring, soundproof material spaces, lighting fixtures, smoke detectors, wiring pipes, outlet outlets, etc. Design is necessary. Naturally, the mounting holes should not be easily provided on the top convex part. Even if reinforced with putty, it becomes a fatal defect under water pressure. In the following examples, an apartment is taken as an example.
Arrangement of evacuation rooms takes advantage of the rigidity of the pillars, beams, walls and slabs that will be the structural framework of the building. Due to the structural balance of the building, it is symmetrically arranged with respect to the building, with two or more penetrating walls and walls. Basically, it should be plane coincidence or a symmetrical arrangement of two or more adjacent houses. It can be said that structural arrangement is strengthened by balance arrangement and integration, and resistance to deformation at the time of earthquake increases. The structural instability of evacuation rooms mainly composed of walls is also eliminated. However, if it is too constrained, there is a risk of cracking from the displacement during the earthquake. Cracks in the corners of the ceiling slab, evacuation room, and vertical wall may be fatal, so the upper floor slab directly above it and the side wall and vertical wall of the evacuation room are not rigidly connected to absorb deformation. Providing this gap may also be a measure or contrivance to relieve stress concentration in the ceiling of the downstairs. In the evacuation room, there is a step back, a stepladder, emergency food, emergency water, clothes and other disaster prevention rucksacks, floats, flashlights, radios, ropes, scoops, and an upwardly convex 1m3 folded plastic bag for personal use. If you need it, you will be prepared for it.
The arrangement of evacuation rooms for building structures can be provided for individual households, shared for all households, or for local communities. Considering the situation of the family, workplace, commuting, shopping, and other daily social life routes, combining them together will further expand the range of use and contribution.
The tsunami evacuation building is a building corresponding to a height higher than the expected height of the tsunami, but since elevators are prohibited from use during an earthquake, it may be possible to run out of power if there is not enough time to arrive at the upper floor. The Therefore, for the local residents, if the evacuation room is installed on the middle floor of the stairs, you can escape during the evacuation to the upper floor, so you can feel safe and encouraging. That is, it can be said that the combined use of the tsunami evacuation building and the building structure with an evacuation room of the present invention is a further effective form of use.

建物の最上階の全部または一部を避難部屋とする場合は、建物の構造骨組みの柱、梁や壁、スラブを最上階上部に延長した一体構造解析、構造設計となる。最上階の天井を含む外壁を窓なしの全面壁の避難部屋として設計する。そのため最上階部の直壁に波圧がかかる。最上階にかかる波圧は建物の転倒モーメントとして大きな影響がある。波圧の影響を極力少なくしなければならない。まず、建物自体の配置方向を考える。敷地の形状によるが階下の窓を多くして海に直面する方向とするか、長手方向を海に直角方向とすることで受圧面積を小さくし、転倒抵抗を高める方法が考えられる。壁に窓を設ける場合は、床近辺の低い位置で小さなのぞき窓程度とする。換気用の穴も同様である。いずれも水中での生存必要空気量との関係から判断することが肝要である。出入口は、避難部屋の床部分をくり抜き、すなわち階下の天井部からとし、そこに昇る階段を階下から延長して設ける。その階段部の側面部を含めて囲い、階段の下段ステップ部に玄関用のドア扉を設け避難出入口部とする。そうすることで、漂流物の侵入を防ぐことができる。避難部屋床スラブに直接、出入り穴、扉を設け、鉛直はしごで上がるより開閉、出入りが容易で簡単に逃げ込める。空気保持量は避難部屋床上の小窓や換気穴から上の天井までの空間高さが有効なため、避難部屋床下の階下に出入口を設けるとドア扉の高さは階高の中で十分に取れ、住居用の2m程度の玄関ドア扉とすれば出入りがしやすい。最上階の避難部屋は、スペースも大きく取りやすいので非常備品の備蓄庫、近隣住民のための避難所として解放することができる。外壁は、直壁が基本だが、波圧を軽減するため斜め壁、台形壁、三角形屋根、かまぼこ形、アーチ形、ドーム形とすることもできる。さらには、住民数の必要空気量の空間に余裕があるので、天井高さも2mから2.5m程度と低くすることもできる。あるいは、最上階の全部を避難部屋とする必要もなく最上階の一部分を避難部屋としてもよい。戸境壁は設置した方が構造的に強く、安定する。戸境壁で避難部屋を独立させた方が、1つの避難部屋の壁が破壊されたときでも残りの上に凸の避難部屋の空気は逃げないので、2重の安全が確保できる。戸境壁の下方に1.0mから1.2m程度の高さの出入口、連絡口を設ける。破壊された避難部屋は水中となるが、潜って、空気に満たされた隣室にスムーズに移動できる。この連絡口高さ以上の天井までの空気量が、水中では有効で、生存するのに確保すべき必要空気量となる。
6階建てのマンションで、階の高さを3mとして、高さ20mの津波が襲ったときはマンション全体が水没するが、最上階の避難部屋は水没しても水面までの水深が浅いので水圧負担は少ない。また、引き潮ですぐ水が無くなるので必要空気量も少なくて済む。広い空間余裕が取れる。結果10mの小さな津波であれば濡れなくて済む。すなわち、人にやさしく効果的に最上階の避難部屋を設けることができる。
When all or a part of the top floor of the building is used as an evacuation room, the structural frame pillar, beam, wall, and slab of the building are extended to the top of the top floor and integrated structure analysis and structural design are performed. The outer wall including the ceiling on the top floor is designed as an evacuation room with a full wall without windows. Therefore, wave pressure is applied to the straight wall on the top floor. The wave pressure applied to the top floor has a significant effect as the falling moment of the building. The effect of wave pressure must be minimized. First, consider the layout direction of the building itself. Depending on the shape of the site, it is possible to reduce the pressure receiving area by increasing the number of downstairs windows to face the sea, or by making the longitudinal direction perpendicular to the sea to increase the fall resistance. When providing a window on the wall, use a small observation window at a low position near the floor. The same applies to the ventilation holes. In any case, it is important to judge from the relationship with the amount of air required for survival in water. The entrance / exit is formed by hollowing out the floor portion of the evacuation room, that is, from the ceiling part of the downstairs, and provided with a stairway extending from the downstairs. The side of the staircase is enclosed and the entrance door is provided at the lower step of the staircase. By doing so, it is possible to prevent the invasion of drifting objects. Evacuation room floor slabs are directly provided with access holes and doors, which can be opened and closed easily and easily escaped from a vertical ladder. Since the space height from the small window on the floor of the evacuation room and the ventilation hole to the upper ceiling is effective for the air retention amount, if the doorway is provided below the floor of the evacuation room, the door door height will be sufficient within the floor height It is easy to get in and out if it is a 2m entrance door. The evacuation room on the top floor is large and easy to occupy, so it can be opened as a storage for emergency supplies and a refuge for neighboring residents. The outer wall is basically a straight wall, but in order to reduce the wave pressure, it can be slanted, trapezoidal, triangular roof, kamaboko, arch, or dome. Furthermore, since the space for the required air volume for the number of inhabitants has room, the ceiling height can be lowered to about 2 to 2.5 m. Alternatively, there is no need to use the entire top floor as an evacuation room, and a part of the top floor may be used as an evacuation room. The door wall is structurally stronger and more stable. If the evacuation room is made independent by the boundary wall, even if the wall of one evacuation room is destroyed, the air in the convex evacuation room will not escape, so double safety can be secured. An entrance / exit with a height of about 1.0m to 1.2m will be provided below the boundary wall. The destroyed evacuation room becomes underwater, but it can dive and move smoothly to the next room filled with air. The amount of air up to the ceiling that is higher than the connection port height is effective in water and is the amount of air that must be secured to survive.
In a 6-story condominium, if the floor height is 3m and a 20m high tsunami hits, the entire apartment will be submerged, but the top floor evacuation room will be submerged even if submerged, the water depth is shallow, so the water pressure There is little burden. In addition, since the water disappears immediately at the low tide, the amount of air required is small. A wide space can be taken. As a result, a small tsunami of 10m will not get wet. That is, the top floor evacuation room can be provided effectively and easily for people.

建物のうちの一戸から数戸の部屋全体を避難部屋とする場合は、建物の柱、梁や壁、スラブはそのまま利用し、避難部屋の窓部は窓なしの全面壁とする。戸部屋には出入り口が必要で、空気保持量は出入口の高さから天井までが水中の空気保持に有効なので、玄関ドア扉は、いわゆる住居用の玄関ドア扉高さでは高すぎるので低くした方が、蓄えられる空気量は大となる。あるいは、高さ2程度で下半分を通気性、通水性とした半防水扉とする選択もある。最上階の避難部屋と同じく非常用品の備蓄庫、近隣住民のための避難所としても活用可能である。用途が許せば、集会所、喫茶店、室、娯楽室、保育所、倉庫など利用、活用範囲は広い。避難部屋の配置は、いずれも建物の構造上のバランス、波圧を考慮して、住民数に応じて極力少なくする。住民が少なければ費用分担にも配慮する。 When evacuating the entire room from one to several of the buildings, the pillars, beams, walls, and slabs of the building are used as they are, and the windows of the evacuation rooms are full walls without windows. A doorway is required in the room, and the amount of air retention is effective from the height of the doorway to the ceiling to keep the water underwater, so the entrance door is too high for the so-called residential entrance door, so it should be low However, the amount of air stored is large. Alternatively, there is also a choice of a semi-waterproof door with a height of about 2 and a lower half that is breathable and water permeable. Like the evacuation room on the top floor, it can be used as a storage for emergency supplies and as a refuge for neighboring residents. If the use permits, there are a wide range of uses, such as meetinghouses, coffee shops, rooms, entertainment rooms, nurseries, and warehouses. The number of evacuation rooms will be reduced as much as possible according to the number of residents, considering the structural balance and wave pressure of the building. If there are few residents, pay attention to cost sharing.

建物の屋外階段部、非常階段部の外壁を利用して一体化する場合は、建物構造的にはより安定する方向である。内廊下、渡り廊下を延長し連絡すれば水平移動となり、鉛直移動より速く避難できる。あるいは、各戸のベランダ仕切りパネルを突き破って水平移動するとしてもよい。避難部屋の外に非常階段を設ければ、非常階段は火災時の避難ともなるし、近隣住民の外からの避難受け入れにも役立つので地域にとってはありがたい。特に、ホテルでは火災非常時の非常階段への誘導と同じで方向であり、土地勘のない観光客でも即避難できることから、安全安心の観光PRもでき水平避難の必要度は高い。もちろん、外の津波高さの増加具合を見ながら、安全の範囲で順次、非常階段伝いで上階に逃げることができるメリットがある。上階ほど圧力負担が少ないので平素の訓練で周知、誘導する価値がある。 In the case where the building is integrated using the outer walls of the outdoor staircase and emergency staircase, the building structure is more stable. If the inner corridor and the transit corridor are extended and communicated, the movement will be horizontal, and evacuation will be faster than vertical movement. Alternatively, it may be moved horizontally through the veranda partition panel of each door. If an emergency staircase is provided outside the evacuation room, the emergency staircase can be used for evacuation in the event of a fire, and it is also useful for accepting evacuation from outside by neighboring residents. In particular, the direction of the hotel is the same as the guidance to the emergency staircase in the event of a fire emergency, and even tourists who are not familiar with the land can evacuate immediately, so safety PR can be promoted and the need for horizontal evacuation is high. Of course, there is a merit that you can escape to the upper floor along the emergency stairs one after another while watching the increasing tsunami height outside. The upper floor has less pressure burden, so it is well known and guided by plain training.

建物の屋内階段部の外壁を利用して一体化する場合は、階段をどちらかの方に寄せ、反対側の回り通路側の住戸の外壁を利用する方が広く使える。階段が階高の途中で折り返しとなる場合はいずれかの側の外壁利用となる。住戸の玄関を出てすぐ避難でき、居室面積が減らないメリットがある。ただし、寒中や、入浴中ではやや困る面もあるので、外壁を各住戸の内側の壁で囲い一体化して住戸内側の避難部屋としてもよい。 When using the outer wall of the indoor staircase of the building to integrate, the stairs can be moved to either direction and the outer wall of the dwelling unit on the opposite side of the passageway can be used more widely. If the staircase turns back in the middle of the floor, the outer wall on either side will be used. There is a merit that you can evacuate immediately after exiting the entrance of the dwelling unit, and the room area does not decrease. However, since there are some problems in the cold or during bathing, the outer wall may be integrated with the inner wall of each dwelling unit to form an evacuation room inside the dwelling unit.

避難部屋を各戸に一体化して設置する場合は、個別の工夫が必要となる。すなわち、各戸間の戸境壁を利用して一体化する場合は、2重壁とすることができる。この場合、建物の耐震性向上を兼ねることもできる。中間に仕切り壁を設けることで、強度補強となり、隣接2戸間の相互利用、避難部屋の独立性、プライバシーが保たれる。さらに、外壁側にも2重壁とすることも可能である。 When the evacuation room is installed in each house in an integrated manner, it is necessary to devise individual measures. That is, when integrating using the doorway wall between each door, it can be set as a double wall. In this case, it can also improve the earthquake resistance of the building. By providing a partition wall in the middle, strength is strengthened, and mutual use between two adjacent units, independence of the evacuation room, and privacy are maintained. Furthermore, a double wall can also be provided on the outer wall side.

戸境壁の一部を利用して一体化する場合は、隣戸と対称の壁を設け、居室の一部床面積を減少させるか、押入の上部利用とする。前者は、日常は納戸、物入、ウォークインクローゼットとして利用できる。後者の開口部は押入から上に入れるようにする。変形吸収のため、床スラブと避難部屋の側壁、垂壁間に隙間を設けた方が良い場合もある。 When using a part of the boundary wall, a wall symmetrical to the neighboring door is provided to reduce the floor area of a part of the living room or use the upper part of the indentation. The former can be used as a storage room, a container, or a walk-in closet on a daily basis. The latter opening should be placed above the indentation. In order to absorb deformation, it may be better to provide a gap between the floor slab and the side wall and vertical wall of the evacuation room.

各戸の天井空間を利用して天井スラブと一体化する場合は、建物の窓枠より上の壁のある広い空間を使うことができる。この場合は、居室の天井が低くなる欠点があるが居住面積は減らない。避難中は、しばらく横寝状態で仰向けとなることができるので、楽で1mの空間高さがあれば十分である。大きな津波で空気が圧縮されて避難部屋内水位が上がってきても、頭頂が天井に当たらないので、口元を天井に近接でき、わずかな空気量となっても必ず残る天井部の空気を100%有効に吸うことができあわてなくて済む。
6人家族分で2m*3mの天井部空中床広さで、6m3程度の空体積が確保できる。直接に床面積が減らないので、比較的許容できそうである。出入口は、上空、空中の床部分となり、押入の上段や建物の鉛直壁沿いに用意した脚立を利用する。居室部屋の片隅に寄せて設けると、天井が低いことによる圧迫感、閉塞感が緩和される。災害時要救護者は上に持ち上げてもらう補助者が必要だ。場合によって開口部にリフト、滑車を設けて吊り上げてもらうことも備えとして必要といえる。天井部は日常生活の邪魔にならず面積が広く貯蔵空気量としても十分である。物入とする場合は、広い空間ならそのままで良いが、狭ければ中の荷を考えずに放り出す。更なる安心のためには、底部に開閉式の面材を設けると漂流物がすべり抜ける。体重60kgの人の比重が1.0とすれば、人がその中に避難すると空気量は1−0.06=0.94m3に減るが、この程度は、天井避難部屋の底部までの浸水直前までの嵩上げ時間で、部屋の床上での津波到達による実際嵩上げ時間より遅れがあり、引き潮で新鮮な空気を確保できるので問題とならない。
When using the ceiling space of each house and integrating it with the ceiling slab, a wide space with a wall above the window frame of the building can be used. In this case, there is a drawback that the ceiling of the living room is lowered, but the living area is not reduced. During evacuation, you can lie on your back for a while, so it is enough if you have a comfortable space of 1m. Even if air is compressed by a large tsunami and the water level in the evacuation room rises, the top does not hit the ceiling, so the mouth can be close to the ceiling, and even if there is a small amount of air, 100% of the remaining ceiling air remains. It is not necessary to be able to smoke effectively.
An empty space of about 6m3 can be secured with an aerial floor space of 2m * 3m for a family of six. Since the floor area does not decrease directly, it seems to be relatively acceptable. The doorway will be the floor in the sky and in the air, and use the stepladder prepared along the top of the entrance and along the vertical wall of the building. If it is provided close to one corner of the living room, the feeling of pressure and blockage due to the low ceiling is alleviated. A disaster rescuer needs an assistant to lift. In some cases, it may be necessary to provide a lift and pulley at the opening and lift it up. The ceiling part does not interfere with daily life and is large in area and sufficient for the amount of stored air. If you want to keep things in a large space, you can leave it as it is. For added peace of mind, drifting objects will slip out if an openable face is provided at the bottom. If the specific gravity of a person with a weight of 60 kg is 1.0, the amount of air is reduced to 1-0.06 = 0.94m3 when a person evacuates into it, but this level is just before the flooding to the bottom of the ceiling evacuation room There is a delay in the raising time until the actual raising time due to the arrival of the tsunami on the floor of the room, and it is not a problem because fresh air can be secured at low tide.

各戸のベランダを利用して一体化する場合は、建物の構造骨組みの柱、梁や外壁、スラブを利用して居室の外側に設けることとする。できれば海側とは反対側のベランダが望ましい。出入口は建物外のベランダ部の壁に横方向から設けることもできるが、建物の外壁に貫通穴とすれば居室の内側に居ながら避難できるので冬でも楽で容易に避難できる。もちろん、居室面積は減らない。避難部屋の上部を窓枠上の外壁伝いに取れば大きな空気量を確保できる。避難部屋の中間に仕切り壁を設けると、津波の直撃に対する補強になり、隣家とのプライバシーも保たれる。 When integrating using the veranda of each house, it shall be provided outside the living room using columns, beams, outer walls, and slabs of the structural framework of the building. If possible, a veranda on the opposite side of the sea is desirable. The entrance / exit can be provided laterally on the wall of the veranda outside the building, but if you make a through hole in the outer wall of the building, you can evacuate while staying inside the room, so you can evacuate easily and easily even in winter. Of course, the room area does not decrease. A large amount of air can be secured by taking the upper part of the evacuation room over the outer wall on the window frame. Providing a partition wall in the middle of the evacuation room reinforces the direct impact of the tsunami and maintains privacy with the neighbors.

1戸部屋を避難部屋とする玄関扉やウォークインクローゼットの出入口扉に、さらには室内の避難部屋の出入口を高い扉としたい場合に、2m高さ程度のパッキン防水扉とすると出入口の窮屈さに対する課題を解消できる。この場合も、避難部屋は大水圧を受けないようあくまで非密閉構造体であるべきで、扉高さのおよそ半分の1mから下は、パッキンなし防水なしで隙間ありの半防水扉とするべきである。また、水圧で、パッキンなしの扉の下部が押し込まれると、扉の上部に開く力がかりパッキンの気密性能が失われるので、扉の下部にはストッパーとなる硬質ゴムで変位を抑制する。扉の裏側、受け側の段違いとした壁に施すパッキンには、軟質ゴム、ゴムチューブなどの変形性、密着性に優れた材料が望まれる。パッキンは、材質により2重、3重の2段構えとする。 If you want to use the entrance door of a single room as an evacuation room or the entrance door of a walk-in closet, and if you want the entrance of an indoor evacuation room to be a high door, a packing waterproof door with a height of about 2 meters will prevent the entrance from being cramped. The problem can be solved. In this case as well, the evacuation room should be an unsealed structure so as not to be subjected to high water pressure. The space below 1m, which is about half the height of the door, should be a semi-waterproof door with no gap and no waterproofing. is there. Further, when the lower part of the door without packing is pushed in by water pressure, a force that opens to the upper part of the door is applied and the sealing performance of the packing is lost. Therefore, the lower part of the door is restrained from being displaced by a hard rubber serving as a stopper. For the packing applied to the uneven wall on the back side and receiving side of the door, a material excellent in deformability and adhesion such as soft rubber and rubber tube is desired. The packing is a double or triple double stage depending on the material.

連動地震による大津波が数分で来襲すると想定される南海トラフ地震沿岸地域においては、防潮堤など長期対策を待っている猶予はない。明日かもしれない来襲で、個人で我が身を守る危機感が必要だ。室内に設置でき、迅速に避難できる本考案では家族単位、学校教室単位、職場の集団で助かる。沿岸部の新築需要も高まる。津波のほかに、高潮、洪水、竜巻、爆風など幅広い対策、非常事態シェルターとなり国土強靱化、地域防災対策との重ね合わせで、自然災害の多い日本、不安な生活から一変、より安全、安心な日常生活が可能となる。津波避難部屋付きのマンションは資産価値が高く、予測される100万人の犠牲者を救う需要の可能性がある。日本海巨大地震、津波の地域でも需要の可能性が大きい。 In the coastal area of the Nankai Trough earthquake, where a large tsunami due to a linked earthquake is expected to strike in a few minutes, there is no time to wait for long-term countermeasures such as seawalls. We need a sense of crisis to protect me personally in the coming invasion tomorrow. It can be installed indoors and can be evacuated quickly. With this device, it can be saved by family, school classroom, or workplace group. Demand for new construction in coastal areas will also increase. In addition to tsunami, a wide range of measures such as storm surge, flood, tornado, blast, etc., becoming an emergency shelter, strengthening the national land, and overlapping with regional disaster prevention measures, Japan has a lot of natural disasters, it has changed from anxious life, safer and more secure Daily life is possible. Condominiums with tsunami evacuation rooms have high asset value and may be in demand to save the estimated 1 million victims. There is great potential for demand even in areas of the Great Sea of Japan earthquake and tsunami.

1 避難部屋
2 避難部屋の出入口
3 柱
4 梁
5 壁
6 外壁
7 戸境壁
8 天井スラブ
9 床スラブ
10 2重壁
11 窓
12 ベランダ
13 共用廊下
14 屋外階段部、非常階段部
15 屋内階段部
16 エレベータ
17 仕切り壁
18 ウォークインクローゼット
19 柱の袖壁、外壁
20 予測津波高さ、水没高さ、水位
21 避難部屋、階下からの出入口部屋の側壁、鉛直壁、垂壁
22 ベランダ天井床スラブ
30 2m高さの半防水扉
31 受け側の、段違いコンクリート壁
32 防水パッキン、ゴムチューブの例
33 変位抑制材、硬質ゴムの例
34 ドアノブ
35 蝶つがい
36 隙間風防止リブ
1 Evacuation room 2 Escape room entrance 3 Pillar 4 Beam 5 Wall
6 outer wall
7 Boundary Wall
8 Ceiling slab
9 Floor slab
10 Double wall
11 Window 12 Veranda 13 Shared corridor 14 Outdoor staircase section, emergency staircase section 15 Indoor staircase section 16 Elevator 17 Partition wall 18 Walk-in closet 19 Pillar sleeve wall, outer wall 20 Predicted tsunami height, submerged height, water level 21 Evacuation room, Side walls, vertical walls, vertical walls 22 from the lower floors Veranda ceiling floor slab 30 Semi-waterproof door 31 2 m high, concrete wall 32 on the receiving side Waterproof packing, rubber tube example 33 Displacement suppression material, hard rubber Example 34 Door knob 35 Butterfly 36 Gap air prevention rib

Claims (2)

津波、洪水、高潮時に建物が水没しても生存できる避難部屋を堅固な建物に有し、上に凸の空間を囲う非密閉構造体とし、水没中の生存必要空気量を保持する容積を有し、建物の構造骨組みとなる柱、梁や壁、スラブを利用し、避難部屋の壁を建物と一体構造とし、扉を設けた出入口とし、扉と受け側のドアノブ、レバーハンドル等より上の、扉のおよそ上半分にパッキン防水を施し下半分はパッキン防水なしとした避難部屋の約2mの高い出入口用の半防水扉を設けた出入口構造を有することを特徴とする津波、洪水、高潮対策用の避難部屋付き建築構造物 The solid building has an evacuation room that can survive even if the building is submerged in the event of a tsunami, flood, or storm surge, and has an unsealed structure that surrounds the convex space above it. Using the pillars, beams, walls, and slabs that are the structural framework of the building, the evacuation room wall is integrated with the building, the door is provided as an entrance, and above the door knob and lever handle on the receiving side Tsunami, flood, storm surge characterized by having a doorway structure with semi-waterproof doors for high entrances of about 2m in an evacuation room with packing waterproofing on the upper half of the door and no packing waterproofing on the lower half Building structure with evacuation room for countermeasures . 避難部屋の出入口に設ける扉であって、扉と受け側のドアノブ、レバーハンドル等より上の、扉のおよそ上半分にパッキン防水を施し下半分はパッキン防水なしとしたことを特徴とする避難部屋の約2mの高い出入口用の半防水扉 A door provided at the entrance / exit of an evacuation room, characterized in that the upper half of the door above the door and the receiving side door knob, lever handle, etc. is sealed with packing waterproof, and the lower half has no packing waterproof. Semi-waterproof door for a high entrance of about 2m in the room .
JP2017220790A 2017-11-16 2017-11-16 Buildings with evacuation rooms for tsunami, flood and storm surge countermeasures Active JP6368892B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017220790A JP6368892B1 (en) 2017-11-16 2017-11-16 Buildings with evacuation rooms for tsunami, flood and storm surge countermeasures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017220790A JP6368892B1 (en) 2017-11-16 2017-11-16 Buildings with evacuation rooms for tsunami, flood and storm surge countermeasures

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018051904A Division JP6402296B1 (en) 2018-03-20 2018-03-20 Buildings with evacuation rooms for tsunami, flood and storm surge countermeasures

Publications (2)

Publication Number Publication Date
JP6368892B1 true JP6368892B1 (en) 2018-08-01
JP2019090273A JP2019090273A (en) 2019-06-13

Family

ID=63036835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017220790A Active JP6368892B1 (en) 2017-11-16 2017-11-16 Buildings with evacuation rooms for tsunami, flood and storm surge countermeasures

Country Status (1)

Country Link
JP (1) JP6368892B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109522594A (en) * 2018-10-15 2019-03-26 南昌大学 A kind of beam body unilateral side jacking modulus type expansion joint anchorage zone concrete force analysis method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012246750A (en) * 2012-04-05 2012-12-13 Meiko Tomita Shelter room for countermeasure against tsunami, flood tide, and flooding
JP2013241820A (en) * 2012-05-17 2013-12-05 Meiko Tomita Tsunami retreat chamber, and driftage/fire intrusion prevention door used for the same
JP2015169054A (en) * 2014-03-11 2015-09-28 盟子 冨田 Ceiling-evacuation room for tsunami

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012246750A (en) * 2012-04-05 2012-12-13 Meiko Tomita Shelter room for countermeasure against tsunami, flood tide, and flooding
JP2013241820A (en) * 2012-05-17 2013-12-05 Meiko Tomita Tsunami retreat chamber, and driftage/fire intrusion prevention door used for the same
JP2015169054A (en) * 2014-03-11 2015-09-28 盟子 冨田 Ceiling-evacuation room for tsunami

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109522594A (en) * 2018-10-15 2019-03-26 南昌大学 A kind of beam body unilateral side jacking modulus type expansion joint anchorage zone concrete force analysis method
CN109522594B (en) * 2018-10-15 2023-04-18 南昌大学 Method for analyzing concrete stress of beam body single-side jacking modulus type expansion joint anchoring area

Also Published As

Publication number Publication date
JP2019090273A (en) 2019-06-13

Similar Documents

Publication Publication Date Title
JP6762464B1 (en) Evacuation shelter for tsunami etc.
JP2007277998A (en) Tsunami evacuation shelter annexed to house
JP6368892B1 (en) Buildings with evacuation rooms for tsunami, flood and storm surge countermeasures
JP6402296B1 (en) Buildings with evacuation rooms for tsunami, flood and storm surge countermeasures
KR101380202B1 (en) Calamity safety building with safety room function
JP5624237B1 (en) Tsunami ceiling shelter
JP6547094B2 (en) Building with evacuation room for tsunami, flood and storm surge
JP5624234B1 (en) Tsunami evacuation floats and air retention formations
JP4979040B1 (en) Retreat room for measures against tsunami, storm surge and flood
WO2016143733A1 (en) Shelter
JP5637414B1 (en) Tsunami disaster shelter
JP5209140B1 (en) Flood evacuation room
JP2013076257A (en) Evacuation shelter
JP5462309B2 (en) Tsunami evacuation room and air holding independent body used therefor
JP6569034B1 (en) Evacuation shelters such as tsunami
JP5462319B2 (en) Tsunami evacuation room, drifting material used in it, fire prevention door
JP2014201913A (en) Tsunami evacuation facility
JP5624235B1 (en) Tsunami evacuation floats and air retention formations
JP6918277B2 (en) Regional tsunami disaster prevention structure
JP6256964B1 (en) Floating tilt evacuation capsule
JP3197367U (en) Evacuation shelter for buildings
JP2015214299A (en) Disaster evacuation facility
JP7212818B1 (en) High-floor tsunami evacuation shelters to be installed in home gardens, schools, factories, fish markets, etc.
JP5600135B2 (en) Retreat room for measures against tsunami, storm surge and flood
JP7376004B1 (en) Tsunami, missile blast, etc. disaster evacuation shelter installed inside the building

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20171128

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180626

R150 Certificate of patent or registration of utility model

Ref document number: 6368892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250