JP5462309B2 - Tsunami evacuation room and air holding independent body used therefor - Google Patents

Tsunami evacuation room and air holding independent body used therefor Download PDF

Info

Publication number
JP5462309B2
JP5462309B2 JP2012096149A JP2012096149A JP5462309B2 JP 5462309 B2 JP5462309 B2 JP 5462309B2 JP 2012096149 A JP2012096149 A JP 2012096149A JP 2012096149 A JP2012096149 A JP 2012096149A JP 5462309 B2 JP5462309 B2 JP 5462309B2
Authority
JP
Japan
Prior art keywords
air
room
tsunami
evacuation room
evacuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012096149A
Other languages
Japanese (ja)
Other versions
JP2013224519A (en
Inventor
盟子 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012096149A priority Critical patent/JP5462309B2/en
Publication of JP2013224519A publication Critical patent/JP2013224519A/en
Application granted granted Critical
Publication of JP5462309B2 publication Critical patent/JP5462309B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、津波来襲の前に巨大地震で退避部屋が損傷したとしても、事前に、内部に上に凸、下に開口の空気保持独立体を設置することで究極の安全を提供する津波退避部屋に関する。 Even if the evacuation room is damaged by a huge earthquake before the tsunami attack, the tsunami evacuation that provides ultimate safety by installing an air holding independent body with an upward convex and an open bottom in advance Regarding the room.

津波対策として高い防潮堤、高台、高い建物が有効であるといわれている。そこにいち早く逃げることである。しかし、高い防潮堤の構築や高台移転には巨額の予算と長い歳月を要する。沿岸部に高い建物があるとは限らない。しかも、いずれも想定外の津波にどこまでなら絶対安全という保証はない。災害は時と場所を選ばない。明日かもしれない巨大地震の発生確率が高まっている。日中の訓練があるにしても津波警報のたびに避難しているかというとそうでもなさそうだ。夜中や介護高齢者は行動を伴わない。津波がこない空振りもある。そういう時に、寺田寅彦先生の名言「天災は、忘れられたる頃来る」がある。幸いに、津波は地震のあとにしか来ない。到達時間も予想され、時間的余裕もある。しかし、予想と実際は異なることが多々ある。予想が大きすぎても現実味がない。オオカミ少年のたとえがある。想定外の津波では、すぐ逃げることができる退避部屋が、身近にあることが最も重要である。すなわち、日頃の避難訓練があるにしても遠いところに車で逃げる前提では集中渋滞は明らかで、晩酌後の飲酒運転はどうするのか。沿岸地域の住民は酒も飲めない。入浴中では着の身着のままである。そこで、津波で水没しても生存空気量を保つことができる身近の退避部屋を計画配置した地域防災総合計画の立案が急がれる。ところが、津波の前の巨大地震で退避部屋に変形、ひび割れを生じては、水密性の機能、すなわち密閉機能を喪失し、限られた生存必要空気量が失われる可能性がある。地震の後、津波到達までの間にひび割れを補修する時間がないし、瞬間ボンドでくっ付く程度ならいいが、近くに専門家もいないし、専門知識もないのが常である。そこで、事前に、退避部屋の内壁を鋼板や炭素繊維などの強化プラスチックで一体補強しておく方法と、内壁沿いに本体から隔離して敷設した2層以上の防水シートなどで防水性の補強、いわゆる壁防水をする方法がある。 It is said that high seawalls, hills, and tall buildings are effective as tsunami countermeasures. It is to escape quickly there. However, the construction of high seawalls and the relocation of hills require a huge budget and long years. There are not always tall buildings on the coast. In addition, there is no guarantee that absolute safety will be achieved in any case for unexpected tsunamis. A disaster does not choose time and place. The probability of a huge earthquake that may be tomorrow is increasing. Even if there is daytime training, it seems not to be evacuated at every tsunami warning. Midnight and elderly caregivers do not take action. There is also a swing that does not cause a tsunami. At that time, there is a quote from Dr. Akihiko Terada, “Natural disasters come when they are forgotten.” Fortunately, the tsunami comes only after the earthquake. The arrival time is also expected and there is a time margin. However, there are many differences between expectations and reality. Even if the prediction is too large, there is no reality. There is a parable of a wolf boy. In an unexpected tsunami, it is most important that there is an evacuation room that allows you to escape immediately. In other words, even if there is a daily evacuation drill, it is clear that there is a heavy traffic congestion on the premise of running away by car, and what about drunk driving after supper? Coastal residents cannot drink. During bathing, she remains dressed. Therefore, there is an urgent need for a comprehensive regional disaster prevention plan that plans and arranges a nearby evacuation room that can maintain the survival air volume even if it is submerged by a tsunami. However, if the evacuation room is deformed or cracked due to a huge earthquake before the tsunami, the watertight function, that is, the sealing function may be lost, and the limited amount of air required for survival may be lost. After the earthquake, there is no time to repair cracks before reaching the tsunami, and it should be enough to bond with an instant bond, but there is usually no expert nearby and no expert knowledge. Therefore, in advance, the inner wall of the evacuation room is integrally reinforced with a reinforced plastic such as a steel plate or carbon fiber, and waterproof reinforcement with two or more waterproof sheets laid and separated from the main body along the inner wall, There is a so-called wall waterproofing method.

特願2011−133703Japanese Patent Application No. 2011-133703 特願2012−86021Japanese Patent Application No. 2012-86021

平成5年版土木学会構造力学公式集、p341、p4051993 edition of Japan Society of Civil Engineers Structural Mechanics Official Collection, p341, p405

津波退避部屋は、水没しても生存必要空気量を保持する必要がある。しかしながら、その空気は、退避部屋にひび割れが入ると、津波の水中の圧力下においては気泡となって漏れ出す。すなわち、津波の前の巨大地震で、退避部屋に変形、ひび割れを生じては水密性の機能、密閉機能、生存必要空気量が失われる可能性がある。地震の後、津波到達までの間にひび割れを補修する時間がないのが常である。事前に、鋼板や炭素繊維などの強化プラスチックで本体内壁を補強しておく方法があるが、構造体と一体の補強になるものの、逆に巨大地震では本体とともに変形する可能性もある。本体内壁沿いに本体から隔離して敷設した本体壁のための防水性の補強、いわゆる壁防水でも本体の変形の影響、特にひび割れの影響を受けるといえる。いずれも本体壁と変形を共にするので、さらに大きな地震の揺れで変形からひび割れを生じないとも限らない。前者では鋼材などの溶接部、接合部のひび割れ、後者では内壁と防水材との間のプライマーや接着剤、シーリング材などのからの本体ひび割れの伝達によるシートなど防水材の破損の可能性がないとは言い切れない。本体の変形からのひび割れの影響を受けると密閉性の保持に影響を受ける。外からのひび割れが内部補強材に通じてしまうと、津波の水中ではそのひび割れから生存必要空気が逃げる。水中では空気は上に逃げる性質がある。幸いにして、袋小路の形状があれば天井にたまり、逃がさず捕捉することができる。そこで、本体の内部に、地震による構造本体の変形、変位の影響を受けないで形状が保持できる袋状の独立体を設置すれば、さらに安全といえ解決できる。 The tsunami evacuation room must maintain the necessary air volume even if it is submerged. However, when the evacuation room is cracked, the air leaks as bubbles under the pressure of tsunami water. In other words, if a large earthquake before the tsunami causes deformation or cracking in the evacuation room, there is a possibility that the watertight function, the sealing function, and the necessary air volume for survival will be lost. After the earthquake, there is usually no time to repair cracks before reaching the tsunami. There is a method of reinforcing the inner wall of the main body in advance with a reinforced plastic such as a steel plate or carbon fiber. However, although it is reinforced integrally with the structure, it may be deformed together with the main body in the event of a huge earthquake. It can be said that the waterproof reinforcement for the main body wall laid separately from the main body along the main body wall, that is, the so-called wall waterproofing is also affected by the deformation of the main body, particularly the crack. Since both of them are deformed together with the main body wall, there is no doubt that cracking will not occur from deformation due to a greater earthquake shake. In the former, there is no possibility of damage to waterproofing materials such as sheets due to transmission of cracks in the main part from the primer, adhesive, sealing material, etc. between the inner wall and the waterproofing material in the latter in the welded part of steel, etc. I can't say that. If it is affected by cracks from the deformation of the main body, it will be affected by the maintenance of hermeticity. When cracks from the outside lead to the internal reinforcement, the necessary air escapes from the cracks in tsunami water. Underwater, air has the property of escaping upwards. Fortunately, if there is a shape of the culvert path, it will accumulate on the ceiling and can be captured without escape. Therefore, if a bag-like independent body that can hold the shape without being affected by the deformation and displacement of the structural body due to an earthquake is installed inside the body, it can be said that the safety is further solved.

このような課題を解決するために、本発明の津波退避部屋は、想定外の津波の来襲の前の巨大地震で退避部屋が変形し、ひび割れが入ったとしても、事前に退避部屋内部に、変形、ひび割れの影響を受けないよう本体構造と分離、独立した別構造体で、津波来襲時の水没中でも生存必要の密閉空気が抜けないとした、上に凸、下に開口の空気保持独立体を設置することを特徴とする。本発明でいう本体構造と分離、独立したとは、クッション材、弾性材、免震材、チェーン、支えなどで連結されていても構造的に分離、独立としている。 In order to solve such a problem, the tsunami evacuation room of the present invention, even if the evacuation room is deformed and cracked by a huge earthquake before the unexpected tsunami attack, Separated from the main body structure so as not to be affected by deformation and cracking, it is an independent separate structure, and the air holding independent body that protrudes upwards and opens downwards is said to prevent escape of sealed air necessary for survival even during submergence during a tsunami. It is characterized by installing. The term “separated from and independent from the main body structure” as used in the present invention is structurally separated and independent even if connected by a cushion material, an elastic material, a seismic isolation material, a chain, a support or the like.

また、本発明の津波退避部屋は、前記空気保持独立体を鋼板、炭素繊維などの強化プラスチック、防水シート、それらの組み合わせによる単独室もしくは多区画割の室、あるいは小分けした室の集合体で構成したことを特徴とする。請求項1記載の津波退避部屋。 Further, the tsunami evacuation room of the present invention comprises the air holding independent body made of a steel plate, a reinforced plastic such as carbon fiber, a waterproof sheet, a single room or a multi-compartment room by a combination thereof, or an assembly of subdivided rooms. It is characterized by that. The tsunami evacuation room according to claim 1.

また、本発明の津波退避部屋用の空気保持独立体は、想定外の津波の来襲の前の巨大地震で退避部屋が変形し、ひび割れが入ったとしても、事前に退避部屋内部に、変形、ひび割れの影響を受けないよう本体構造と分離、独立し、津波による水没中に常に生存必要空気量を保持できるよう、鋼板、炭素繊維などの強化プラスチック、防水シート、それらの組み合わせによる単独室もしくは多区画割の室、あるいは小分けした室の集合体で、上に凸、下に開口を特徴とする。本発明でいう本体構造と分離、独立し、とはクッション材、弾性材、免震材、チェーン、支えなどで連結されても構造的に分離、独立としている。 In addition, the air holding independent body for the tsunami evacuation room of the present invention is deformed in advance inside the evacuation room, even if the evacuation room is deformed and cracked by a huge earthquake before the unexpected tsunami attack, Separated from the main body structure so as not to be affected by cracks, independent of the main body structure, so that the necessary air volume can always be maintained during submergence due to tsunami. It is a compartmentalized room or a collection of subdivided rooms, characterized by an upward convexity and a downward opening. The term “separated from and independent from the main body structure” as used in the present invention is structurally separated and independent even when connected by a cushion material, an elastic material, a seismic isolation material, a chain, a support or the like.

想定外の津波を想定して、その水没中でも生存必要空気を確保する上昇水面を含む密閉構造の避難部屋ではあるが、その来襲前の巨大地震で変形、ひび割れなどの損傷を受けていれば、いわゆる密閉機能を喪失したも同然、そのことで退避中の水中で空気量が抜けてしまっては元も子もない。空気保持独立体は、退避室内部に設置するものだが、本体とは構造的に分離、独立することで、地震力の本体からの影響を避けることができる。すなわち、本体のひび割れをもらわない、上に凸、下に開口の独立体の内で空気を保持できれば、水中では空気は上に上がるので、その囲いの中に生存必要空気量が守られたといえる。大勢の人命が退避部屋に避難するがその退避部屋が潰れたり、密閉空気を失ったりしては大惨事である。皮肉にも地震で避難前に崩壊していればまだしも、高台に逃げればよかったと遺族に責められる。数多くの人の命を預かる責任は重大である。万が一の安全対策を講じる必要がある。すなわち、例え構造体本体が損傷していようとも、この場合、入口ハッチの密閉構造体は入口解放の構造体と同じく上昇水面を含む密閉構造に移行するが、津波の水没中に密閉空気量が逃げださないことが肝要である。ひび割れの退避部屋の壁とは隔絶した、人数*時間相当の生存に必要な空気量を漏れ出さない、上に凸、下に開口の空気保持独立体により生存できる。身近の退避部屋の中に設置できるので、まさしく2重で、究極の安全・安心を提供する。より安心できるため家族もバラバラで逃げる必要もない。夜中や介護高齢者の避難訓練の負担も相当に軽減される。水没時間に対応して大きな空気量が必要であるが、鉄筋コンクリート造りの避難部屋では容量も大きく、百人単位の収容も可能で、大勢の人命が助かる。防潮堤の嵩上げや高台移転では想定外の津波に対して安全に限がなく、巨額の予算、長い歳月を要する。災害は、時と場所を選ばない。本発明で、来る東南海地震等に対しても早期に対応でき、例えば1kmごとの配置とかで防災計画立案にも役立つ。さらに、津波以外にも、高潮や台風、大雨時の洪水、堤防決壊による河川氾濫時、海抜以下や天井川沿い地域の防災対策としても有効である。 Assuming an unexpected tsunami, it is a sealed evacuation room with a rising water surface that secures the necessary air even during submergence, but if it was damaged by deformation, cracking, etc. due to a huge earthquake before the attack, Even if the so-called sealing function is lost, there is no source or child if the amount of air is lost in the evacuated water. The air holding independent body is installed inside the evacuation chamber, but it is possible to avoid the influence of the seismic force from the main body by structurally separating and independent from the main body. In other words, if the air can be held in an independent body that does not crack the main body, protrudes upward, and opens downward, the air rises up in the water, so it can be said that the amount of necessary air in the enclosure was protected. . Many lives are evacuated to the evacuation room, but it is a disaster if the evacuation room is crushed or the air is lost. Ironically, the bereaved family is accused of having escaped to the hill if it had collapsed before the evacuation due to the earthquake. The responsibility to save the lives of many people is crucial. It is necessary to take safety measures. That is, even if the structure body is damaged, the sealed structure of the inlet hatch will move to a sealed structure that includes the rising water surface as well as the structure of the inlet release, but the amount of sealed air will be reduced during the tsunami submergence. It is important not to escape. It can be survived by an air holding independent body that is isolated from the wall of the cracked evacuation room and does not leak out the amount of air necessary for survival equivalent to the number of people * time, and is convex upward and opened downward. Since it can be installed in a nearby evacuation room, it is double and provides the ultimate safety and security. The family doesn't have to run away because they can feel more secure. The burden of evacuation drills for midnight and elderly caregivers is significantly reduced. A large amount of air is required to accommodate the submergence time, but the reinforced concrete evacuation room has a large capacity and can accommodate hundreds of people, saving many lives. The rise of the seawall and the relocation of the hills are not safe for unexpected tsunamis, requiring a huge budget and long years. A disaster does not choose time and place. With the present invention, it is possible to quickly respond to the coming Tonankai earthquake and the like, and for example, it is useful for disaster prevention planning with the arrangement of every 1 km. In addition to tsunamis, it is also effective as a disaster prevention measure for elevations below the sea level and in areas along the ceiling river, during storm surges, typhoons, floods during heavy rains, river inundation due to bank breaks.

密閉構造の退避部屋に上に凸、下に開口の空気保持独立体を設置した断面イメージ図Cross-sectional image of an air holding independent body with an upward convexity in an enclosed retreat room and an opening underneath 入口解放の退避部屋に上に凸、下に開口の空気保持独立体を設置した断面イメージ図Cross-sectional image of an air holding independent body with an upward convexity and a downward opening in the retreat room of the entrance opening 壁のクッション材と4隅を補強した空気保持独立体の平面図Plan view of wall holding material and air holding independent body with 4 corners reinforced 内部を4区画割にした空気保持独立体の平面図Plan view of an air holding independent body with the interior divided into four sections 内部を16区画割にした空気保持独立体の平面図Plan view of air holding independent body with 16 compartments inside 小分けした8個の室と、残りをシート空間で余裕とした室の集合体の空気保持独立体の平面図Plan view of the air holding independent body of a group of 8 subdivided chambers and the remaining room in the seat space 内部にシートの空気保持独立体を設けた2重安全の空気保持独立体の平面図Plan view of a double safe air holding independent body with a seat air holding independent body inside 部材枠でシートの空気保持独立体を形成した透視図(シートが外の例)Perspective view in which the air holding independent body of the sheet is formed by the member frame (example in which the sheet is outside)

発明を実施するための形態について述べる。津波退避部屋の入口は、解放の場合と密閉ハッチの場合があるが、前者は天井、側壁と上昇水面との間に密閉空気が保持され、後者は部屋全体に密閉空気が保持される。いずれの場合も生存必要空気量が密閉により保持される。ところが、津波前の地震ですでに本体にひび割れが入っていると、津波の水中で空気が気泡となって抜け、致命傷になる。そこで、地震力の影響を遮断でき、かつ空気を保持できることが解決の条件となる。ひび割れが入ると空気が抜け、入れ替わりに水が浸入してくる。内部に、本体とは分離した別構造体を設ければ地震力からのひび割れを遮断できる。上に凸、下に開口で、例えば箱状の直方体のその形状を保持できる空気保持独立体を設置すると、津波の高さの上昇とともに箱状の直方体の下の開口から水面は上昇してくるが、その内部に生存空気が圧縮されながら保持される。内の空気圧と外の水圧とはバランスしているため形状保持材に特別な強度を要さない。上に凸、下に開口の空気保持独立体は、例えば空気を漏らさないパラシュートや気球のイメージである。退避部屋は地震によってひび割れるにしても外殻の大形状は保持されていると考えられるので、すなわち、外枠組みで囲まれているので上に凸、下に開口の独立体を設置するのは空間内で自在であり容易で、本体が水没すると空気保持独立体は空気をはらんだまま浮力で天井まで浮き上がってそのままそこに空気が保持できる。少々ずれても側壁にもたれかかる程度である。したがって、ひび割れとともに水中で空気は退避部屋から気泡となって漏れるが、まず、内壁と空気保持独立体との間の空気から壁沿いに漏れ出すことになる。次に、空気保持独立体からとなるが、そのときは、開口の下まで水面が来ているため、形状保持ができていれば空気は漏れずに空気保持体の中で水面上昇とともに圧縮されていく。したがって、空気の漏れない空気保持体には、なるべく大きな空気量を保有できる容量が望ましい。開口部を低くするのもやむを得ない。肥満の人には皆で持ち上げなくてはならないが。津波高さが10mとなれば空気保持独立体内の空気は1/2に圧縮され、空気保持独立体の内部の水位も1/2まで上昇する。津波高さが30mとなれば空気保持独立体の残り1/3まで上昇する。このようにどこまでも生存必要空気は空気保持独立体の天井近くに存在し続ける。そのため、天井までの呼吸足場が必要である。また、そこでは内外の水圧と気圧はバランスしているので空気保持独立体には大きな強度は必要としない。多区画割の室や小分けした室の集合体とした空気保持独立体としても良い。これらは、事前に設置しても、退避部屋の内部に備えておいてもよく、地震後に責任者が持ち込んでもよい。すなわち、重い鋼板では事前設置となるが、軽い炭素繊維など強化プラスチックは組み立て式、折りたたみ式も可能だし、防水シート、テントでは携帯式、空気補てん式でテント張りも可能といえる。鋼板は壁との間に維持管理用の空間を多く必要とするため、有効空気量に無駄を生じる。そのため腐食のない強化プラスチックや防水シートにメリットがある。ただしシートは漂流物の破片などの小物、木枠のとげなどが刺さると破れたりする。なるべくプラスチックの内側への併用が望ましいといえる。予備用に一式備え付けておくのも賢明である。折りたたみ用、携帯用、組み立て用には、鋼板は不向きである。シートの場合はテント張りとなる骨組みも用意しておいた方があわてなくて済む。ビティ足場を組み立てると天井までの足場となり、床に置いておく部材分割も自由自在で場所をとらない。シートの設置は、内部に枠組み、骨組みがあればかぶせることは容易である。鋼板の場合でも下に木板、ゴム板を敷いてその上に乗せる簡易な程度でよい。地震で横揺れした場合の側壁との間にクッション材、ゴム弾性材を設けておけば影響が遮断できる。形状保持の材料は組み合わせても良い。例えば強化プラスチィクの形状保持体が一枚もので施工できない場合には、それを枠組みとし中または外にシートを後付け挿入する組み合わせ方法も有力といえる(図8)。もちろん2重とすれば空気保持の安心度が高まる。鋼板は、内部で溶接してもいいし工場製作して搬入、挿入してもいい。後者は退避部屋の壁の一辺は挿入のため当然後施工になる。腐食には定期点検、送風機搬入による定期的換気など配慮が必要である。シートは一辺が(縦+2*高さ)と(横+2*高さ)の一枚ものを用意すれば4隅が折り返しで重複するものの上に凸、下に開口の空気保持独立体を形成できる。重複部を切ると大変なことになる。強化プラスチックや防水シートは点検のたびに劣化度をチェックするのが望ましい。内部は暗いため、明かりの電源には懐中電灯の活用など漏電、感電防止処理が必要である。いずれの場合も空気保持独立体は上に凸、下に開口で形成される水密性の一枚物である。シートの場合、下から人がまくって入れるため、進入空間50cmのロスが不要で大容量確保に有利である。形状も自由自在である。後付けも容易である。軽いし、折りたたんでおけば場所をとらない。2重の安全のための備え付けにもってこいだ。ただし、破損に弱く、特に、しっかりスカートの下まで留めておかないとめくれて生存空気の塊が持って行かれるので要注意だ。ひものロールを用意しておくと何かと役立つ。内部にスクーバ・タンクを設置しておくのも空気補充で安心につながる。引き潮後、入口に泥が堆積すると出られないので、内部にスコップを備えておく。日常の管理には、入口に簡易防犯程度で子供が入らないような囲いが必要である。 A mode for carrying out the invention will be described. The entrance of the tsunami evacuation room may be open or closed, but the former holds sealed air between the ceiling, side walls, and the rising water surface, and the latter holds sealed air throughout the room. In any case, the amount of air required for survival is maintained by sealing. However, if the main body has already been cracked by the earthquake before the tsunami, air will escape as bubbles in the water of the tsunami, resulting in a fatal injury. Therefore, the condition for the solution is that the influence of the seismic force can be cut off and the air can be retained. When cracks enter, the air escapes and water invades instead. If a separate structure separated from the main body is provided inside, cracks from seismic force can be blocked. If an air holding independent body that can hold the shape of a box-shaped rectangular parallelepiped, for example, with a convex upward and a downward opening, the water surface rises from the opening under the box-shaped rectangular parallelepiped as the height of the tsunami rises However, the living air is held inside while being compressed. Since the internal air pressure and the external water pressure are balanced, no special strength is required for the shape retaining material. An air holding independent body having a convex upward and a downward opening is, for example, an image of a parachute or a balloon that does not leak air. Even if the evacuation room is cracked by an earthquake, it is thought that the large shape of the outer shell is held, that is, it is space to install an independent body with an opening on the bottom, because it is surrounded by an outer frame When the main body is submerged, the air holding independent body floats up to the ceiling with buoyancy while holding air, and can hold the air as it is. Even if it is slightly deviated, it is about to lean against the side wall. Therefore, air leaks as bubbles from the retreat room together with cracks, but first leaks along the wall from the air between the inner wall and the air holding independent body. Next, it comes from an air holding independent body. At that time, since the water surface comes to the bottom of the opening, if the shape is maintained, air does not leak and is compressed as the water surface rises in the air holding body. To go. Therefore, it is desirable that the air holding body that does not leak air has a capacity capable of holding as much air as possible. It is unavoidable to lower the opening. Everyone who is obese must lift it up. If the tsunami height is 10 m, the air inside the air holding independent body is compressed to ½, and the water level inside the air holding independent body also rises to ½. If the tsunami height reaches 30m, it will rise to the remaining 1/3 of the air holding independent body. In this way, the air necessary for survival continues to exist near the ceiling of the air holding independent body. Therefore, a breathing scaffold up to the ceiling is necessary. Moreover, since the water pressure inside and outside and the atmospheric pressure are balanced there, the air holding independent body does not need a great strength. It is good also as an air maintenance independent body made into the aggregate | assembly of the chamber of a multi-compartment division, or a small division. These may be installed in advance or may be provided inside the evacuation room, or may be brought in by the responsible person after the earthquake. In other words, heavy steel plates are pre-installed, but reinforced plastics such as light carbon fiber can be assembled and folded, and tarpaulins and tents can be portable and air-filled. Since the steel sheet requires a large space for maintenance between the wall and the wall, the effective air amount is wasted. Therefore, there are advantages to reinforced plastics and waterproof sheets that do not corrode. However, the sheet may be torn when small items such as debris or wooden thorns are stabbed. It can be said that it is desirable to use the plastic inside as much as possible. It's also wise to have a complete set for the spare. Steel sheets are not suitable for folding, portable, and assembling. In the case of seats, there is no need for those who have prepared a tented framework. Assembling the Bitty Scaffold becomes a scaffold up to the ceiling, and you can freely divide the parts on the floor and save space. Installation of the seat is easy if it has a framework and a framework inside. Even in the case of a steel plate, a simple degree of placing a wooden board or rubber board underneath and placing it on the board is sufficient. If a cushioning material or rubber elastic material is provided between the side walls in the case of rolling due to an earthquake, the influence can be blocked. You may combine the material of shape maintenance. For example, when a single reinforced plastic shape holder cannot be constructed, it can be said that a combination method in which a sheet is inserted into or out of the frame as a framework is also effective (FIG. 8). Of course, if it is double, the degree of safety of air retention increases. Steel plates can be welded internally, or can be manufactured, loaded and inserted. In the latter case, one side of the wall of the evacuation room is of course post-installed for insertion. Corrosion requires consideration such as periodic inspections and periodic ventilation by carrying in blowers. If a sheet is prepared with one sheet of (vertical + 2 * height) and (horizontal + 2 * height), it is possible to form an air holding independent body with four corners projecting upward and overlapping and opening below. . Cutting the overlap will be a big deal. It is desirable to check the degree of deterioration of reinforced plastics and tarpaulins every time they are inspected. Since the interior is dark, it is necessary to prevent electric leakage and electric shock by using a flashlight for the light source. In either case, the air holding independent body is a single piece of watertightness formed with a convex upward and an opening downward. In the case of a seat, since a person rolls in from below, there is no need for a loss of 50 cm in the entry space, which is advantageous for securing a large capacity. The shape is also free. Retrofitting is easy. It ’s light, and you can fold it to save space. It is perfect for double safety equipment. However, it is vulnerable to breakage, especially if you do not fasten it under the skirt, it will turn over and bring a lump of living air. Having a roll of strings will help you. The installation of a scuba tank inside also leads to peace of mind with air replenishment. If mud accumulates at the entrance after ebb tide, a scoop will be provided inside. For daily management, it is necessary to have a fence that prevents children from entering the entrance at the level of simple crime prevention.

単独型の空気保持独立体の設置例を示す。図1に、入口ハッチの退避部屋の場合を、図2に入口解放の退避部屋の場合を示す。いずれの場合も空気保持独立体は構造本体の壁を最終的には形状崩れ防止、転倒防止の大枠として利用できる。ただし、地震力から完全分離の独立体とするため、また空気保持独立体自身の大きな揺れに対して、なるべく壁から離した余裕空間を設け、あわせて内壁との間に図3のようにクッション材を設置するなどの配慮が必要である。この場合は鋼板の角溶接部に亀裂を生じ破れないよう反力の分散が必要で、少々の変形は空気保持に支障がないが座屈防止の工夫、補強が必要である。鋼板の場合は上に凸、下に開口の空気保持体を溶接で容易に製作できる。腐食防止で塗装が必要といえる。点検が必要で50cm程度は壁から離すのが望ましい。設置は床からの木組等で支え、人の侵入のため床から50cm程度の高さを保つ必要がある。鋼板は形状保持がしっかりしているが重いため設置後は移動するのが容易でないので、事前に計画をしっかり立案しておく。天井近くまで空気が圧縮され、水面が上昇するので、呼吸足場として設置式、組み立て式の高床、階段、はしご、ビティ足場、子供用脚立、介護高齢者用いかだなど各種用意しておく。腐食防止のため退避部屋は定期的に空気の入れ換え、点検用送風機で換気をする。鋼板体の内空にシートを挿入すればさらなる安全安心となる(図7)。 An installation example of a single type air holding independent body is shown. FIG. 1 shows the case of the entrance hatch evacuation room, and FIG. 2 shows the case of the entrance release evacuation room. In either case, the air holding independent body can be used as a large frame for preventing the collapse of the shape and the fall of the wall of the structural body. However, in order to make it an independent body that is completely separated from the seismic force, and to allow large fluctuations of the air holding independent body itself, an extra space as far away from the wall as possible is provided, and a cushion as shown in FIG. Consideration such as setting materials is necessary. In this case, it is necessary to disperse the reaction force so that the corner welded portion of the steel plate is cracked and not broken, and a slight deformation does not hinder air retention, but it is necessary to devise and reinforce buckling. In the case of a steel plate, it is possible to easily produce an air holding body having a convex upward and an open downward. It can be said that painting is necessary to prevent corrosion. Inspection is necessary, and it is desirable to keep about 50cm away from the wall. Installation is supported by a wooden frame from the floor, and it is necessary to maintain a height of about 50 cm from the floor for the invasion of people. Although the shape of the steel plate is firm, it is not easy to move after installation because it is heavy, so make a plan in advance. Since the air is compressed to the vicinity of the ceiling and the water level rises, a variety of things such as a stand-up type, a built-up type high floor, a staircase, a ladder, a bittery scaffold, a stepladder for children, and a nursing care elderly can be prepared. In order to prevent corrosion, the evacuation room should be regularly replaced with air and ventilated with an inspection fan. If a sheet is inserted into the inner space of the steel plate body, further safety and security are obtained (FIG. 7).

多区画割りの空気保持独立体の4区画割の例を図4に、16区画割の例を図5に示す。大空間となるにしたがって形状保持のためにも内部区画割が必要となってくる。室が多いほど形状保持の安全性は高まるといえるが手間と費用は増える。最悪、一部空間が空気漏れとなっても隣に移動できるが、生存競争となるため深刻な争いになりかねない。設計空気容量は大目に余裕が必要だ。区画割りしても介護高齢者用とかは横長で用途別に区画分けできていることが望ましい。鋼板体の内空にシートを挿入すればさらなる安全安心となる(図7)。 FIG. 4 shows an example of a four-part division of a multi-part division air holding independent body, and FIG. 5 shows an example of a 16-part division. As the space becomes larger, internal partitioning becomes necessary to maintain the shape. It can be said that the more chambers, the higher the safety of shape retention, but the more labor and cost. Worst, even if some space leaks air, it can move to the next, but it will be a serious battle because it will be a survival competition. The design air capacity must be large enough. Even if it is divided into sections, it is desirable that the elderly for nursing care is horizontally long and can be divided according to use. If a sheet is inserted into the inner space of the steel plate body, further safety and security are obtained (FIG. 7).

9区画のうち1室を抜いて8室として、小分けした集合体の例を図6に示す。1室を抜くことで残り8室が自在に移動でき自由度が増す。抜いた1室の箇所は、最後に防水シートを上に凸に膨らませても良い。個々に独立しているため、個々の損傷は個々にとどまる。腐食で入れ替えが必要となった場合は小分けしていた方が交換できるメリットがあるといえる。空気保持独立体の内空にシートを挿入すればさらなる安全安心となる(図7)。 FIG. 6 shows an example of an assembly that is subdivided into eight rooms by removing one of the nine sections. By pulling out one room, the remaining 8 rooms can move freely, increasing the degree of freedom. Finally, you may bulge the waterproof sheet upward in the removed room. Individual damages remain individual because they are independent. If replacement is necessary due to corrosion, it can be said that there is a merit that it can be replaced by subdividing. If a sheet is inserted into the air holding independent body, it will be further safe and secure (FIG. 7).

参考として、ひび割れを前提としていない密閉構造の退避部屋本体の設計例を示す。鉄筋コンクリート造の退避部屋であって、退避入口にハッチを用いた場合の、空地に設置する退避部屋の例を示す。人一人が生存に必要な空気量は1m3/時といわれている。大人50人の退避部屋とすると、一時間耐えるには50m3の空気体積が必要で、概略計算のために、部屋は単独の高さ3m、幅4m、奥行き6mの直方体の部屋とすると、内部体積は3*4*6=72m3で、引き潮までが1時間としても十分な空気がある。退避する平面スペースは、4人/m2とすると、50/4*6≒2人/m2で退避用としては余裕がある。浮力は3*4*6=72tf、重量は、コンクリート壁厚を35cmとすると表面積*コンクリート壁厚*単位重量=2*(12+18;24)*0.35*2.5=94.5tfで、重量>浮力となり浮き上がらない。港湾空港技術研究所の射流実験を参考に水平掃力15t/m2を海側面の3m*4mが受けると、その水平モーメントは15*(3*4)*3/2=270t・m、抵抗モーメント=94.5*6/2=283.5t・mで、水平力である掃力に抵抗して転倒しない。ただし、海辺近辺では同時の浮力も考慮して、退避部屋の高さを低くし海側面積を少なくした直方体にするか、床底辺を厚くするか、下にせん断キーすなわち下駄の歯のような突起を設けるか、地中にアンカーをとるなどのさらなる対策が考えられる。東日本大震災の津波の最大は38.9mであるが50mの高さを想定する場合、設計で津波高さ50mとして、水深50mとすると50t/m2の荷重がかかる。ハッチもその設計条件にあわせた耐圧防水性のものを用いる。鉄筋コンクリート造等の建物には水圧が50t/m2の荷重としてかかる。平板の等分荷重を受ける4辺固定板の最大モーメントは、平成5年版土木学会構造力学公式集のp341から、a=4m,b=6mではb/a=1.5で、表より
M=-0.0757・p・a
ここに M:平板の等分荷重を受ける4辺固定板のモーメント
p:等分荷重(tf/m)
a:短辺(m)
したがって、p:奥行き幅1m当たりでは50tf/m、a:4mで、
M=-0.0757*50*4*4=60.56tf・mとなる。
簡易計算での終局時の必要鉄筋量は、
As=M/σs*(7/8)*d
ここに As:必要鉄筋量(cm2)
σs:降伏点又は0.2%耐力(N/mm2)
d :部材の有効高さ(cm)
したがって、σs: SD345の降伏点又は0.2%耐力=345N/mm2、部材厚35cm、かぶり10cmとすると、d=25cmとなり、As=6,056,000/3,520*(7/8)*25=78.64cm2、すなわち、鉄筋径D32を10本/mを配置すれば79.42 cm2となり、必要鉄筋量は満足できる。したがって、50mの津波でも鉄筋コンクリートの壁厚を35cmとすれば実現可能である。
構造体の中間に隔壁を設けると、モーメントはb=4m,a=6/2=3mではb/a=1.33で、表より補間して、M=-0.0699*50*3*3=31.455tf・mとなり約半減できる。建物の壁や屋上の床と一体構造とする場合、浮力は問題にならないので、建物の一般的な壁厚に合わせて薄い壁で設計できる。壁部材厚25cm、かぶり10cmとするとd=15cmで、As=M/σs*(7/8)*d=3,145,500/3,520*(7/8)*15=68.08cm2となり、鉄筋径D32を9本/mを配置すれば71.478cm2となり、必要鉄筋量は満足できる。ただし、ひび割れがあっては密閉性が保たれないので鋼板とかの強度補強で2重の安全を施すことでより安心につながる。さらに参考として、学校の教室の壁に退避部屋を設ける場合の例を記す。生徒40人、子供一人当たりの必要空気量は0.5m3/時として20m3、教室の横幅8m、高さ3mに1m幅の退避部屋を造れば、24m2>20m2で空気量は満足される。マンションの隣との壁に退避部屋を設ける場合の例を記す。大人2人、子供2人では1時間の必要空気量は3m3で、横幅8mの壁を隣どうしで半分にして、高さは3mに0.5m幅の退避部屋を造れば、(8/2)*3*0.5=6m3>3m3で空気量は満足できる。マンションの鉄筋コンクリート造の重くて堅固な建物の床、中壁、天井に筒状の退避部屋を固定すれば家族用、個人用に至近の最適となる。
As a reference, a design example of an evacuation chamber body with a sealed structure that does not assume cracks is shown. An example of a evacuation room made of reinforced concrete and installed in an open space when a hatch is used at the evacuation entrance is shown. The amount of air required for one person to survive is said to be 1 m3 / hour. A 50m3 air volume is required to withstand one hour for a 50-year-old retreat room. For approximate calculation, if the room is a cuboid room with a height of 3m, width of 4m, and depth of 6m, the internal volume Is 3 * 4 * 6 = 72m3, and there is enough air even for 1 hour to ebb. If the plane space to be evacuated is 4 people / m2, 50/4 * 6 ≒ 2 people / m2, and there is room for evacuation. Buoyancy is 3 * 4 * 6 = 72tf, weight is surface area * concrete wall thickness * unit weight = 2 * (12 + 18; 24) * 0.35 * 2.5 = 94.5tf, weight> buoyancy when concrete wall thickness is 35cm It does not rise up. The horizontal moment is 15 * (3 * 4) * 3/2 = 270t ・ m, the resistance moment when the horizontal sweep force of 15t / m2 is received by 3m * 4m on the sea side with reference to the jet experiment at the Port and Airport Research Institute. = 94.5 * 6/2 = 283.5t ・ m, resists horizontal sweeping force and does not fall. However, in the vicinity of the seaside, considering the simultaneous buoyancy, it is a rectangular parallelepiped with the height of the evacuation room reduced and the seaside area reduced, or the floor bottom is thickened, or the shear key or clog tooth Further measures such as providing protrusions or taking anchors in the ground can be considered. The maximum tsunami of the Great East Japan Earthquake is 38.9m, but if a 50m height is assumed, the design will assume a tsunami height of 50m and a water depth of 50m, and a load of 50t / m2 will be applied. Use a waterproof and waterproof hatch that matches the design conditions. Water pressure is applied to buildings such as reinforced concrete as a load of 50t / m2. The maximum moment of a four-sided fixed plate that receives an equal load on a flat plate is b / a = 1.5 for a = 4m and b = 6m from p341 of the 1993 edition of the Japan Society of Civil Engineers.
M = -0.0757 ・ p ・ a 2
Where M: Moment of the four-sided fixed plate that receives an equal load on the flat plate p: Equal load (tf / m)
a: Short side (m)
Therefore, p: 50 tf / m per depth width of 1 m, a: 4 m,
M = -0.0757 * 50 * 4 * 4 = 60.56tf ・ m
The required amount of reinforcing bars at the end of the simple calculation is
As = M / σs * (7/8) * d
Here As: Required amount of reinforcing bars (cm2)
s: Yield point or 0.2% proof stress (N / mm2)
d: Effective height of member (cm)
Therefore, σs: Yield point of SD345 or 0.2% proof stress = 345N / mm2, member thickness 35cm, cover 10cm, d = 25cm, As = 6,056,000 / 3,520 * (7/8) * 25 = 78.64cm2, If the rebar diameter D32 is 10 bars / m, it will be 79.42 cm2, and the required amount of rebar can be satisfied. Therefore, even a 50-meter tsunami can be realized if the wall thickness of the reinforced concrete is 35 cm.
If a partition is provided in the middle of the structure, the moment is b / a = 1.33 for b = 4m, a = 6/2 = 3m, and M = -0.0699 * 50 * 3 * 3 = 31.455tf・ It can be reduced to approximately half by m. Buoyancy is not a problem when it is integrated with the building wall or rooftop floor, so it can be designed with thin walls to match the typical wall thickness of the building. If the wall member thickness is 25cm and the cover is 10cm, then d = 15cm, As = M / σs * (7/8) * d = 3,145,500 / 3,520 * (7/8) * 15 = 68.08cm2, and 9 rebar diameters D32 If / m is arranged, it will be 71.478 cm2, and the required amount of reinforcing bars will be satisfactory. However, if cracks are present, the airtightness cannot be maintained, so a double level of safety can be secured by reinforcing the strength of the steel plate. For further reference, an example in which an evacuation room is provided on the wall of a school classroom will be described. The required amount of air per 40 students and children is 0.5m3 / hour, 20m3. If a classroom with a width of 8m and a height of 3m is constructed with a 1m wide evacuation room, 24m2> 20m2 will be satisfied. An example in which an evacuation room is provided on the wall next to the apartment will be described. For two adults and two children, the required amount of air per hour is 3m3, and if a wall with a width of 8m is halved next to each other and a evacuation room with a height of 0.5m is made 3m high, (8/2 ) * 3 * 0.5 = 6m3> 3m3, the air volume is satisfactory. Fixing a cylindrical evacuation room on the floor, inner wall, and ceiling of a reinforced concrete building made of reinforced concrete is ideal for families and individuals.

また、参考として入口解放の津波退避部屋本体の設計例を示す。空地に設置した3m*4m*6m、厚み0.35mの鉄筋コンクリート造りの退避部屋とし、入口にハッチを用いないで内部に漂流物衝撃防止機能の仕切り壁を設け、危険な入口濁流ゾーンと安全な退避ゾーンとに分けた退避部屋の例を示す。港湾空港技術研究所の射流実験から設計水平掃力を15tf/m2として、前記参考例と同じく転倒モーメントには十分抵抗して大丈夫である。入口頂点高さを1mとし、漂流物衝撃防止機能の仕切り壁の床からの高さを2.3mとし、高床高さを2mとする。入口頂点高さの1mまでは周辺の水位に連動して上昇するが、10mの津波で、周辺が10mの水位で、内部は2気圧となり中の残りの空気体積が半分となるまで水位が上がる。津波50mの水位では6気圧となり密閉空気体積は1/6になり、水位はそこまで上がる。高床には天井まで1mの空間高さがあるので十分に呼吸ができる。子供用には脚立を備えておく。避難用入口が解放開口部となっているので中の気圧と外の水圧が等しいため、構造的な外圧は特に考慮する必要はない。想定外としても極端な例であるが、90mの津波が来たとしても1/10の空気が残っている。密閉空間の気密性は大切で、通気孔は設けてはならない。通気孔を設けると水面上昇の圧力で空気が逃げていく。密閉空間に地震等によるコンクリートのひび割れができれば水位が上がるときに空気が抜けていく。3mの天井高さまでの水位による気圧上昇は、0.2から0.3気圧なのでそれに耐えられる2層防水シート、あるいは強化プラスチック、鋼板を敷設しておけば、ひび割れの伝達がなければ漏水に対応できる。入口には濁流と漂流物が押し寄せ危険なため、漂流物衝撃防止機能の有る仕切り壁を設けて退避ゾーンを分離することにより安心できる。人が仕切り壁を乗り越えるための階段等は当然に必要である。引き水後は泥が入口に堆積しているのでスコップを備えておく。あわせて、スクーバ・タンクを備えておけばより安心できる。 For reference, a design example of the main entrance tsunami evacuation room is shown. A 3m * 4m * 6m, 0.35m thick reinforced concrete evacuation room installed in the open space, without a hatch at the entrance, and a partition wall for preventing drifting object impact inside, a dangerous entrance turbidity zone and safe evacuation The example of the evacuation room divided into zones is shown. The design horizontal sweeping force is set to 15 tf / m2 from the jet experiment at the Port and Airport Research Institute, and it is safe to resist the tipping moment as in the above reference example. The height of the top of the entrance is 1 m, the height of the partition wall of the floating object impact prevention function is 2.3 m, and the height of the high floor is 2 m. Up to 1 m at the top of the entrance rises in conjunction with the surrounding water level, but with a 10 m tsunami, the surrounding water level is 10 m, the inside becomes 2 atm, and the water level rises until the remaining air volume is halved. . At the water level of the tsunami 50m, the pressure becomes 6 atm and the sealed air volume becomes 1/6, and the water level rises to that level. The high floor has a space height of 1m to the ceiling, so you can breathe fully. Keep a stepladder for children. Since the evacuation entrance is a release opening, the internal atmospheric pressure and the external water pressure are equal, so there is no need to consider the structural external pressure. Although it is an extreme example even if it is not expected, even if a tsunami of 90m comes, 1/10 air remains. The airtightness of the enclosed space is important and no vents should be provided. When vents are provided, air escapes due to the rising pressure of the water surface. If concrete can be cracked in an enclosed space due to an earthquake or the like, air will escape when the water level rises. The rise in air pressure due to the water level up to the ceiling height of 3m is 0.2 to 0.3 atm, so if you install a double-layered waterproof sheet, reinforced plastic, or steel plate that can withstand it, you can cope with water leakage if there is no transmission of cracks. Since the muddy flow and the drifting material are inundated at the entrance, it can be relieved by separating the evacuation zone by providing a partition wall with the function of preventing the drifting material impact. Naturally, a stairway for people to get over the partition is necessary. Since the mud has accumulated at the entrance after drawing, prepare a scoop. In addition, if you have a scuba tank, you can rest assured.

地震による大津波が想定される東南海地域においては、早期かつ効果的、経済的対策が求められる。身近に設置でき、かつ想定外の津波にも安全安心な退避部屋は、大容量で大勢の退避が可能である。建物の骨組み構造を兼ねることも可能で、さらに耐震補強壁としても設計施工に対応可能である。また、その他地域でも、既設建物に退避部屋を設置する増築工事で、より効果的な耐震対策、津波、高潮、洪水など幅広い地域防災対策が可能となる。 In the Tonankai area where a large tsunami due to an earthquake is expected, early, effective and economical measures are required. The evacuation room that can be installed in the immediate vicinity and is safe and secure against unexpected tsunamis can be evacuated with a large capacity. It can also serve as the framework structure of a building, and can also be used for design and construction as a seismic reinforcement wall. In other areas, extension work that installs evacuation rooms in existing buildings will enable more effective disaster prevention measures such as earthquake resistance, tsunami, storm surge, and flooding.

1密閉構造の退避部屋
2入口解放の退避部屋
3入口のハッチ
4解放の入口
5退避部屋構造本体の天井壁
6本体の側壁(内壁、外壁と部分表現するときもある)
7本体の床
8漂流物衝撃防止機能を有する仕切り壁
9本体の壁にひび割れが入った場合、津波の水没中に空気が気泡となって抜ける様子
10内部に設置された、上に凸、下に開口の箱状の空気保持独立体
11津波高さ10m、20m、30m、40m、50mの場合の空気保持独立体内の水位上昇の様子、ここでは、 11-10、-20、-30、-40、-50と表示している。
12壁に設けられたクッション材
13クッション材とその受け部材
14空気保持独立体を支える木組み
15昇降はしご、ビティ足場
16空気保持独立体の隅角部補強
17 4区画割された室
18 16区画割された室
19 9分割された筒状の小分け室のうちの8室
20 残る1室をシートで形成するとした室
21 空気保持独立体の内空に挿入されたシート室
22 空気保持独立体のシートと組み合わせる枠組み
23 枠組みと組み合わせるシート(シートは内、外とも可)


1. Retractable room with closed structure 2. Retreat room with open entrance 3. Hatch at entrance 4. Open entrance 5. Retreat room structure. Ceiling wall 6 of main body. Side wall of body (may be partially expressed as inner wall and outer wall).
7 floor
8 When the wall of the partition wall 9 that has a function to prevent the impact of debris is cracked, the air escapes as bubbles during submergence of the tsunami. Air holding independent body 11 State of water level rise in air holding independent body when tsunami height is 10m, 20m, 30m, 40m, 50m, here, 11-10, -20, -30, -40, -50 Is displayed.
12 Cushion material provided on the wall 13 Cushion material and its receiving member 14 Wooden frame 15 supporting the air holding independent body 15 Elevating ladder, bite scaffold 16 Reinforcing the corner of the air holding independent body 17 4 compartments 18 16 compartments Of the divided chamber 19 divided into nine divided chambers 20 a chamber 21 in which the remaining one chamber is formed by a sheet 21 a seat chamber 22 inserted into the air holding independent body 22 an air holding independent seat 23 to be combined with the frame The sheet to be combined with the frame (seat can be inside or outside)


Claims (3)

想定外の津波の来襲の前の巨大地震で退避部屋が変形し、ひび割れが入ったとしても、事前に退避部屋内部に、変形、ひび割れの影響を受けないよう本体構造と分離、独立した別構造体で、津波来襲時の水没中でも生存必要の密閉空気が抜けないとした、上に凸、下に開口の空気保持独立体を設置することを特徴とする津波退避部屋。 Even if the evacuation room is deformed and cracked due to a huge earthquake before the unexpected tsunami attack, the structure inside the evacuation room is separated and separated from the main body structure so that it will not be affected by the deformation or cracking in advance. A tsunami evacuation room characterized in that an air holding independent body with a convex upward and an open underneath that the sealed air necessary for survival does not escape even when submerged in the tsunami. 前記空気保持独立体を鋼板、炭素繊維などの強化プラスチック、防水シート、それらの組み合わせによる単独室もしくは多区画割の室、あるいは小分けした室の集合体で構成したことを特徴とする請求項1記載の津波退避部屋。 2. The air holding independent body is constituted by a single room or a multi-compartment room or a group of subdivided rooms by a steel plate, a reinforced plastic such as carbon fiber, a waterproof sheet, or a combination thereof. Tsunami evacuation room. 想定外の津波の来襲の前の巨大地震で退避部屋が変形し、ひび割れが入ったとしても、事前に退避部屋内部に、変形、ひび割れの影響を受けないよう本体構造と分離、独立し、津波による水没中に常に生存必要空気量を保持できるよう、鋼板、炭素繊維などの強化プラスチック、防水シート、それらの組み合わせによる単独室もしくは多区画割の室、あるいは小分けした室の集合体で、上に凸、下に開口を特徴とする津波退避部屋用の空気保持独立体。
Even if the evacuation room was deformed and cracked due to a huge earthquake before the unexpected tsunami attack, the evacuation room was separated from the main body structure in an independent manner so that it would not be affected by deformation or cracking. In order to maintain the necessary amount of air during submergence, the steel plate, reinforced plastic such as carbon fiber, tarpaulin, a combination of single room or multi-compartment room, or subdivided room Air holding independent body for tsunami evacuation room characterized by convexity and opening below.
JP2012096149A 2012-04-20 2012-04-20 Tsunami evacuation room and air holding independent body used therefor Expired - Fee Related JP5462309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012096149A JP5462309B2 (en) 2012-04-20 2012-04-20 Tsunami evacuation room and air holding independent body used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012096149A JP5462309B2 (en) 2012-04-20 2012-04-20 Tsunami evacuation room and air holding independent body used therefor

Publications (2)

Publication Number Publication Date
JP2013224519A JP2013224519A (en) 2013-10-31
JP5462309B2 true JP5462309B2 (en) 2014-04-02

Family

ID=49594749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012096149A Expired - Fee Related JP5462309B2 (en) 2012-04-20 2012-04-20 Tsunami evacuation room and air holding independent body used therefor

Country Status (1)

Country Link
JP (1) JP5462309B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5624235B1 (en) * 2014-02-18 2014-11-12 盟子 冨田 Tsunami evacuation floats and air retention formations
JP5624234B1 (en) * 2014-02-18 2014-11-12 盟子 冨田 Tsunami evacuation floats and air retention formations
JP5624237B1 (en) * 2014-03-11 2014-11-12 盟子 冨田 Tsunami ceiling shelter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10159388A (en) * 1996-12-03 1998-06-16 Yukio Kanazawa Tsunami shelter
JP4822087B1 (en) * 2011-04-30 2011-11-24 正仁 古郡 Tsunami shelter

Also Published As

Publication number Publication date
JP2013224519A (en) 2013-10-31

Similar Documents

Publication Publication Date Title
JP4822087B1 (en) Tsunami shelter
JP5462309B2 (en) Tsunami evacuation room and air holding independent body used therefor
JP6762464B1 (en) Evacuation shelter for tsunami etc.
KR101380202B1 (en) Calamity safety building with safety room function
JP5518822B2 (en) Tsunami countermeasure refuge hut
JP5637414B1 (en) Tsunami disaster shelter
JP4979040B1 (en) Retreat room for measures against tsunami, storm surge and flood
JP6126795B2 (en) Emergency evacuation facility using large steel pipes
JP5713863B2 (en) Evacuation shelter
JP5624237B1 (en) Tsunami ceiling shelter
JP2014218774A (en) Shelter for evacuation from flood damage
JP5462320B2 (en) Tsunami evacuation room, air discharge hole used for it, and air discharge adjustment valve
JP5462319B2 (en) Tsunami evacuation room, drifting material used in it, fire prevention door
WO2006074702A1 (en) A shelter building
JP6368892B1 (en) Buildings with evacuation rooms for tsunami, flood and storm surge countermeasures
JP5600135B2 (en) Retreat room for measures against tsunami, storm surge and flood
JP6547094B2 (en) Building with evacuation room for tsunami, flood and storm surge
JP5624235B1 (en) Tsunami evacuation floats and air retention formations
JP6085861B2 (en) Manhole push-up prevention method
JP5782655B2 (en) Protective housing
JP6569034B1 (en) Evacuation shelters such as tsunami
JP6514917B2 (en) shelter
JP6402296B1 (en) Buildings with evacuation rooms for tsunami, flood and storm surge countermeasures
JP2023173644A (en) High-floor type tsunami evacuation shelter installed on site such as private garden, school, plant, or fish market
JP2016050456A (en) Building structure with evacuation space

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

R150 Certificate of patent or registration of utility model

Ref document number: 5462309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees