JP2013242155A - 除染方法 - Google Patents

除染方法 Download PDF

Info

Publication number
JP2013242155A
JP2013242155A JP2012113639A JP2012113639A JP2013242155A JP 2013242155 A JP2013242155 A JP 2013242155A JP 2012113639 A JP2012113639 A JP 2012113639A JP 2012113639 A JP2012113639 A JP 2012113639A JP 2013242155 A JP2013242155 A JP 2013242155A
Authority
JP
Japan
Prior art keywords
dry ice
decontamination
powder
injection
dpe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012113639A
Other languages
English (en)
Inventor
Hiroshi Nakamura
弘 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO UNION KK
Toyo Union Inc
Original Assignee
TOYO UNION KK
Toyo Union Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO UNION KK, Toyo Union Inc filed Critical TOYO UNION KK
Priority to JP2012113639A priority Critical patent/JP2013242155A/ja
Publication of JP2013242155A publication Critical patent/JP2013242155A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】汚染面をあまり傷付けることなく汚染物質を剥離することができ、汚染層の状況等に応じて除染作業を効率的に実施でき、除染作業により放射性物質を捕獲した捕獲装置を安全に管理できる除染方法を提供する。
【解決手段】所定の形状及び大きさに成形されたドライアイスパウダーDPやドライアイスペレットDPEを汚染面PSに噴射し、その噴射により剥離された汚染物質RSを周りの空気とともに負圧吸引して搬送するとともに捕獲フィルタ72p,72a,72b,72cで捕獲して空気を排出し、汚染物質RSを捕獲したフィルタ72p,72a,72b,72cを除染液780に所定時間浸漬することにより不溶化し、その後、該フィルタを離隔・管理のために取り出す。
【選択図】図6A

Description

本発明は、放射性物質等の汚染物質を除去する除染方法に関する。
例えば原子力発電所や核燃料再処理工場等において地震、津波等の自然災害や事故によって放射能漏れが発生すると、それによって放射能汚染を生じる。例えば放射性物質が道路の舗装面に蓄積して除染が必要になる場合がある。
放射性物質の除染のために汚染面(例えばアスファルト舗装面)を薬剤で洗浄することが考えられるが、薬剤のみでは除染しきれない場合がある。他方、アスファルト層を物理的に取り除くとすれば大変な作業になる。また、装置や設備の除染において、特許文献1のように汚染された装置や設備を解体する場合があるが、完全な除染は困難なことから、解体したものを埋めたり長期にわたり隔離管理しなければならない。さらには、除染に用いた除染装置において、放射性物質を捕獲した捕獲装置についても、厳重な管理が必要となる。
特開2011−209157号公報
本発明の課題は、汚染面をあまり傷付けることなく汚染物質を剥離することができ、汚染層の状況等に応じて除染作業を効率的に実施でき、除染作業により放射性物質を捕獲した捕獲装置を安全に管理できる除染方法を提供することにある。
課題を解決するための手段及び発明の効果
上記課題を解決するために、本発明は、
除染する領域を負圧雰囲気にするとともに、所定の形状及び大きさに成形されたドライアイスを汚染面に噴射し、その噴射により剥離された汚染物質を周りの空気とともに負圧吸引して搬送するとともに捕獲フィルタで捕獲して空気を排出し、汚染物質を捕獲したフィルタを除染液に所定時間浸漬することにより不溶化し、その後、該フィルタを離隔・管理のために取り出すことを特徴とする。
ドライアイスの噴射時の衝撃エネルギーにより汚染物質を剥離するので、サンド噴射のような研磨材を吹き付ける場合に比べて、汚染面をあまり傷付けることなく汚染物質を剥離することができる。しかも、ドライアイス自体は昇華して気体となるので後処理がいらない。また、汚染物質を捕獲したフィルタを、除染液に浸漬するため、捕獲された汚染物質を不溶化(活性化せず)して、放射能を包み込むことができる。これにより、フィルタを除染液から取り出した後、安全に隔離管理できる。
本発明において「汚染物質」は、放射性物質、有毒物質、細菌等のように大気、水、土等の環境を汚染する有害物質一般であり、例えば原子力発電所及びその周辺地域においては、セシウム、プルトニウム等の放射性物質である。
本発明において「除染液」は、水、酸、無機塩、中性洗剤、界面活性剤等を含む。さらにいえば、本発明において「除染液」は、固体ないし粉体の除染剤を含有する液体でもよい。この場合、除染剤としては、1種類もしくは複数種類の多孔質材料からなる多孔質材料混合粉体(細孔の大きさによって、ミクロポーラス材料(活性炭やゼオライト等)、メソポーラス材料(MCMやFSM、メソポーラスシリカ等)、マクロポーラス材料(軽石や火山灰等)とに分けられるが、いずれであってもよい)を含み、他にも、アモルファス系フローレン、ゼオライト、焼成した貝殻といった粉体(固体)を含む。さらに本発明において「除染液」は、シリカ化合物、汚染物質との化学反応を速める界面活性剤、椰子油系の界面活性剤、磁気水系の浸透補助液、汚染物質(例えばセシウム等の放射性物質)を吸着する吸着剤といった浄化液(液体)等を含む。さらに本発明の「除染液」は、放射能除染を目的に開発され、複数種の多孔質材料の粉体と反応を促進させる界面活性剤とから組成する浄化液を含み、例えば液体の放射性除染剤TU−1や粉体の放射性除染剤TU−2等を含有する液体も含む。このような複数種類の除染液の中から、土質に合わせて1以上のものを選択して噴射できるように構成してもよい。また、これらの中から除染効率を高められるよう1以上のものを選択して噴射できるように構成してもよい。
本発明に係る汚染物質除去装置の第1実施例を示す概要図。 図1の具体例として、舗装面から放射性物質を除去する車載式汚染物質除去装置の概略説明図。 ドライアイスの噴射装置を示す説明図。 図3のペレットホッパの一例を示す説明図。 図3のペレットホッパの他の例を示す説明図。 捕獲装置の主要部を拡大して示す説明図。 フィルターの除染作業を説明する説明図。 除染されたフィルターの隔離管理を説明する説明図。 フィルターの除染作業の他の例を説明する説明図。 除染されたフィルターの隔離管理の他の例を説明する説明図。 図3の噴射ガンによるアスファルト除染作業を説明する概略図。 図7Aに用いるブースの一例を示す説明図。 図7Bの断面説明図。 図7Aに用いるブースの他の例を示す説明図。 図7Dの断面説明図。 図7Aに用いるブースのさらに他の例を示す説明図。 ドライアイスの噴射装置の第3実施例を示す説明図。 パウダー供給部の詳細を示す説明図。 切削刃及びパウダーホッパの近傍を示す斜視図。 図8の噴射ガンによるアスファルト除染作業を説明する概略図。 ドライアイスの噴射装置の第3実施例を示す説明図。 図12の噴射ガンによるアスファルト除染作業を説明する概略図。 ドライアイスの噴射装置の第4実施例を示す説明図。 図14の噴射ガンによるアスファルト除染作業を説明する概略図。 図14に示す第4実施例の電気的構成を示すブロック図。 噴射ガンを別々に設けた第一例を示す説明図。 図17で圧縮空気の供給系を共用する例を示す説明図。 第4実施例の第一変形例を示す説明図。 第4実施例の第二変形例を示す説明図。 ドライアイスの噴射装置の第5実施例を示す説明図。 図21の噴射ガンによるアスファルト除染作業を説明する概略図。 噴射ガンを別々に設けた第二例を示す説明図。 図23で圧縮空気の供給系を共用する例を示す説明図。 第5実施例の第一変形例を示す説明図。 第5実施例の第二変形例を示す説明図。 ドライアイスペレットの製造方法を示す説明図。 図27Aに続く説明図。 図27Bに続く説明図。 図27Cに続く説明図。 後にパウダー化されるドライアイスブロックの製造方法を示す説明図。 図28Aに続く説明図。 図28Bに続く説明図。
以下、本発明の実施例について図面を参照して説明する。
(第1実施例)
図1の概念図に示す汚染物質除去装置1は、除染する領域を負圧雰囲気にする負圧形成手段8と、所定の形状及び大きさに成形されたドライアイスを汚染面に噴射する噴射装置24と、その噴射により剥離された汚染物質を周りの空気とともに負圧吸引して搬送する搬送手段6と、その空気とともに搬送された汚染物質をろ過するろ過装置71,72と、ろ過後の空気を排出する排出手段70と、を備える除染装置であり、ろ過装置7において、汚染物質を捕獲した捕獲部(フィルタ)72は、除染液に所定時間浸漬されることにより捕獲した汚染物質を不溶化し、その後、該フィルタを取り出して、隔離・管理する。
具体的には、図1の汚染物質除去装置1は、汚染物質RMが付着した汚染面PSに噴射されるドライアイス(ここではドライアイスペレットDPEである)を供給するドライアイス供給部(ここではペレット供給部121)と、ドライアイスペレットDPEを汚染面PSに噴射する噴射装置24(ここでは噴射ガンとする)と、ドライアイスペレットDPEが噴射される汚染面PSの周辺の空間を被うブース3と、そのブース3内に位置して汚染面PSから剥離された汚染物質RMを吸引する負圧吸引部4(吸引口)と、その負圧吸引部4から搬送手段(連通手段)としてのホース6を介して接続され、負圧吸引部4で吸引されホース6を介して移送される汚染物質RMを捕獲部72(フィルタ装置)に集め、かつ空気とともに通過させる過程で汚染物質RMを捕獲する捕獲装置7(ろ過装置)と、を備える。
また、図1の汚染物質除去装置1は、負圧吸引部4に作用する負圧を生じさせる負圧発生装置(負圧形成手段)としての負圧ポンプ8(吸引ポンプ)と、除染剤DC入りのドライアイスペレットDPEが噴射されるブース3内の負圧が一定範囲内に保たれるように負圧ポンプ8を制御する負圧制御装置としての負圧コントローラ9と、を備える。これによって、ブース3内の除染領域が所定範囲内の負圧雰囲気になり、噴射装置24の噴射により剥離されかつ除染剤DCに捕獲され又はこれと化学反応した汚染物質RMが周りの空気とともに負圧吸引して搬送される。
図2は、図1の染物質除去装置1が、放射性の汚染物質RMで汚染された舗装面PS(原子力発電所の敷地や道路の表面を構成するアスファルト面やコンクリート面等)を除染する装置に適用されるもので、除染する舗装面PSがブース3で隔離され、例えば移動可能な車両100の荷台101には、ペレット供給部121、捕獲装置7,負圧ポンプ8,負圧コントローラ9等が搭載され、噴射ガン24(ノズル)から舗装面PS(汚染面)に除染剤DC入りのドライアイスペレットDPEが噴射される(図7A参照)。
ここでのドライアイスペレットDPEは、典型事例で言えば、例えば直径2〜3mm、長さ2〜4mmくらいの短軸円柱状とすることができる。他の形状及び大きさでもよい。ドライアイスパウダーや後述の重曹SH等の固形物よりも相対的に質量が大きいドライアイスペレットDPEは衝撃エネルギーが高いので、除染すべき汚染層が厚い場合や頑固に固着している場合の除染(剥離除去)に適している。
ドライアイスペレットDPEは、例えば図3に示すような直径2〜3mm、長さ2〜4mmくらいの短軸円柱状に形成されているので、これをそのままペレット供給部121のペレットホッパ121bに投入する。エアコンプレッサ22cから供給される圧縮空気のベンチュリ効果により、ペレットホッパ121b内のドライアイスペレットDPEが吸引され、ペレット供給ホース121aを介して噴射ガン24へ供給され、圧縮空気に混合された状態で噴射ガン24から噴射される。
ペレット供給部121においてドライアイスペレットDPEを供給する場合、例えば図5Aに示すように、ペレットホッパ121bの下部にシャッタ121cを設け、ドライアイスペレットDPEの供給時にシャッタ121cを手動で又はソレノイド121s等の駆動装置で開き、またペレットホッパ121bの外壁面に振動装置122を設けて、ペレットホッパ121b内でのドライアイスペレットDPEのブリッジ現象を抑制することができる。これにより、ドライアイスペレットDPEが円滑に噴射ガン24に供給される。
また、図5Bに示すように、ペレットホッパ121bの下部にスクリューコンベア123を設け、ドライアイスペレットDPEの供給時にモータ123mによりスクリューコンベア123を駆動して、ドライアイスペレットDPEをペレット供給ホース121a側へ送り出すこともできる。この場合、図5Aの振動装置122やシャッタ121cを必要に応じて付加してもよい。スクリューコンベア123によりペレットホッパ121bから強制的にドライアイスペレットDPEが送り出されるので、ドライアイスペレットDPEの供給における信頼性が高まる。
図3及び図7Aに示すように、噴射ガン24には、ペレット供給ホース121aとエア供給ホース22aが接続され、それらが合流して一つの噴出口24cを形成する。噴射ガン24は、作業者によって把持される噴射部であり、圧縮空気とドライアイスペレットDPEの噴射を開始及び停止するオンオフ操作部としてのオンオフレバー24aを備える。
オンオフレバー24aを引くことによって、エア供給ホース22aの途中に配置された電磁弁22b,121cが開かれ、圧縮空気が噴射ガン24に供給される。噴射ガン24においてエア供給ホース22aから圧縮空気が高速で流れると、ベンチュリ効果によってペレット供給ホース121a内の空気が吸引され、更にはペレット供給ホース121aに存在するドライアイスペレットDPEも吸引されて噴射ガン24へ供給される。これによって、ドライアイスペレットDPEが圧縮空気に混合した状態で噴射ガン24の先端(噴出口24c)から噴射され、舗装面PSの除染が行われる。ペレットホッパ121bを逆円錐状ろうと形態ないしラッパ状形態とすることにより、上記ベンチュリ効果に伴い、ペレットホッパ121bの全周面からドライアイスペレットDPEが均等かつスムーズにペレット供給ホース121aを経て噴射ガン24へ導かれる。
コントローラ25は、図3に示すように、CPU25a、タイマ25b、シーケンス回路25c及び制御プログラム25dを備える。コントローラ25は、噴射ガン24のオンオフレバー24aが引かれるとそのレバー24aからオンオフ信号を受けるとともに、受けた信号に基づいて、ドライアイスペレットDPEを噴射ガン24から噴射するための各種駆動部(ここでは、電磁弁22b,121cと、駆動部121sや123m)を駆動させる指令信号を出力する。
具体的には、コントローラ25は、オンオフレバー24aからオン信号を受けると、エアコンプレッサ22cと、駆動部121sや123mを駆動させるとともに、電磁弁22b,121cを開状態とする。これによって、図3のように、ペレット供給部121から除染剤DC含有のドライアイスペレットDPEが、コンプレッサ22cからの圧縮空気と共に噴射ガン24へ供給され、噴出口24cから噴射される。他方、コントローラ25は、オンオフレバー24aからオフ信号を受けると、駆動部121sや123mを駆動停止させ、かつ電磁弁22b,121cを閉状態とする。これによって、噴射ガン24の噴出口24cからの噴射が止まる。制御プログラム25dはこうした噴射ガン24の噴射制御を司るプログラムとしてメモリに書き込まれており、CPU25aによって実行される。
なお、コントローラ25は、オンオフレバー24aからオン信号を受けると、電磁弁22bを開いて圧縮空気をエアコンプレッサ22cから噴射ガン24へ導き、かつタイマ25bによる制限時間の計測の後、シーケンス回路25cを介して駆動部121sや123mを起動する。これによって、供給ホース21a内に残留物(噴射ガン24による噴射物であり、ここではドライアイスペレットDPEやその破片、粉体等)を排出できる。
図2に戻る。汚染物質除去装置1は、放射性物質RMが飛散しないように、ドライアイスペレットDPEが噴射される舗装面PSの周辺の空間を被うブース3と、ブース3内に天井から開口して(例えば傘状)舗装面PSから剥離された放射性物質RMを吸引する吸引口4(負圧吸引部)と、吸引口4から蛇腹式のホース6(連通手段)を介して接続され、吸引口4で吸引されホース6を介して移送される放射性物質RMを捕獲する捕獲装置7と、を備えている。さらに、汚染物質除去装置1は、吸引口4に作用する負圧を生じさせる負圧ポンプ8(負圧発生装置)と、ドライアイスペレットDPEが噴射されるブース3内の負圧が一定範囲内に安定するように、圧力センサ91によるブース3内の負圧測定値に基づいて負圧ポンプ8を制御する負圧コントローラ9(負圧制御装置)も備えている。
捕獲装置7には、ブース3から負圧ポンプ8で吸引され、放射性物質RM、ドライアイスペレットDPEが昇華した二酸化炭素等を含んだ空気から、アスファルト等の固体を気体との質量差によって分離する分離室71が設けられ、さらにその下流側に放射性物質RM等を吸着して捕獲するための捕獲部72(フィルタ装置)が接続されている。なお、実施例では分離室71と捕獲部72との間に負圧ポンプ8を設けているが、分離室71の前方又は捕獲部72の後方に負圧ポンプ8を設けてもよい。また、分離室71にはサイクロン等の分離装置を設けて固体や液体を分離してもよい。
図8に示すように、分離室71の下流の捕獲部72は、最上流に位置して下流のHEPAフィルタ72aよりもやや大きめの粒子を捕獲するプレフィルタ72p、その下流に面状の不織布系エアフィルタであるHEPAフィルタ72a、その下流に活性炭フィルタ72b、さらにその下流にゼオライトフィルタ72cが、上下方向に直列状に配置されたフィルタ装置である。HEPAフィルタ72aと活性炭フィルタ72bとの間、及び活性炭フィルタ72bとゼオライトフィルタ72cとの間は、所定長さの接続管73でそれぞれ接続されている。負圧ポンプ8で吸引され集塵室72に導入された空気は、HEPAフィルタ72a→活性炭フィルタ72b→ゼオライトフィルタ72cの各々を通過する間に放射性物質RM、二酸化炭素(除染剤DC含有のドライアイスペレットDPEが昇華したもの)等の所定成分が選択的に吸着・捕集されるので、これらを通過した後の空気を大気中に排出できるようになる。なお、HEPAフィルタ72a→ゼオライトフィルタ72c→活性炭フィルタ72bの順に通過するようにしてもよい。
上記したHEPAフィルタ(high efficiency particulate air filter)72aは繊維径1μm以下のろ紙状繊維層であり、粒径0.1μmの粒子でも99.99%以上の集塵率を有する。したがって、不織布系エアフィルタとしてHEPAフィルタ72aを用いることにより、微細な固形物(例えば、チリ、ホコリ、土粒子、昇華しなかったドライアイス、後述する重曹等)、場合によっては所定の放射性汚染物質等も捕獲できる可能性がある。上記したプレフィルタ72pも同様で、粒径0.2μmの粒子を集塵するエアフィルタである。また、活性炭フィルタ72bやゼオライトフィルタ72cにより放射性汚染物質である、例えばセシウム134,137等の吸着や捕獲が行われる。活性炭は高い吸着能を有する多孔質の炭素性物質であり、ゼオライト(沸石ともいう)は気体の選別的吸着性をもつ分子ふるいとなるので、ドライアイスが昇華した二酸化炭素の捕獲も一定範囲で可能である。
ゼオライトフィルタ72cの出口側には、ろ過後の空気を排出する排出手段70が設けられる。ここでの排出手段70は、残留する放射線量を測定するセンサ74と、センサ74の測定値に基づいて2つの切換弁を制御する切換コントローラ75と、切換弁76,77とを有し、センサ74による残留放射線量の測定値が許容範囲内であるとき、切換コントローラ75は出口側の第一切換弁76を開いて、通過後の空気を大気中に排出する(循環側の第二切換弁77は閉じる)。一方、測定値が許容範囲外であるとき、切換コントローラ75は出口側の第一切換弁76を閉じ、循環側の第二切換弁77を開いて、通過後の空気を活性炭フィルタ72b及びゼオライトフィルタ72cへ循環する。また、排出する空気の流れを形成する負圧ポンプ8及び負圧コントローラ9も排出手段70に含めてもよい。
図2に戻る。負圧コントローラ9は、圧力センサ91によるブース3内の負圧測定値が所定の負圧範囲(例えば−2〜−10Pa(−20×10−6〜−100×10−6kgf/cm2))になるように、負圧発生装置(具体的には、負圧ポンプ8による負圧吸引力)をコントロールする。例えば圧力センサ91の負圧測定値が負圧上限値(−10Pa)を上回ったときには負圧ポンプ8の回転数を減少させて真空度を低下させ、負圧下限値(−2Pa)を下回ったときには負圧ポンプ8の回転数を増加させて真空度を上昇させる。これによって、捕獲部72での放射性物質RM等の吸着(捕獲)を安定させることができる。
このように、負圧コントローラ9がブース3内の負圧を一定範囲内に維持しながら、ドライアイスペレットDPE噴射時の衝撃エネルギーによって放射性物質RMを舗装面PSから剥離する。ドライアイスペレットDPEの全部又はそのほとんどは昇華して気体となるので、効率的かつ安全に除染作業が行える。
なお、アスファルト102の舗装面PSの除染作業は、図7Aに示すように、車両100(図2参照)あるいは作業者によってブース3,噴射ガン24,吸引口4等を一定時間毎に、あるいは連続的に移動させ、噴射ガン24からドライアイスペレットDPEを圧縮空気とともに噴射する形で行われる。除染作業で舗装面PSから剥離された放射性物質RMは、吸引口4から吸引されホース6を介して捕獲装置7に収容され、前述のようにプレフィルタ72p,HEPAフィルタ72a、活性炭フィルタ72b及びゼオライトフィルタ72cを経て浄化された後、大気に放出される。その際、舗装面PSに対しブース3を移動させてドライアイスペレットDPE(さらには後述のドライアイスパウダーDPや重曹SH、除染剤DC,DCP)の噴射領域を変えることができる。また、ブース3に対してある程度噴射ガン24を移動可能ないし旋回可能として、ブース3を動かさなくても一定範囲を除染できるようにしてもよい。
具体的には、図7Bに示すブース3は、その少なくとも上面が透視性又は不透視性部材(例えば透明樹脂シート材等)で構成され、全体として所定の形状(図では直方体の蓋のような形状)に形成され、ブース3の上面部3bには長手方向に沿ってスリット3a(切れ目又は長孔)が開口している。このスリット3aから噴射ガン24、場合により吸引ホース6の端部をブース3の内部に挿入し、ブース3内でスリット3aに沿って長手方向に移動することができる。また、スリット3aにある噴射ガン24を揺動させることによって、ドライアイスペレットDPE(さらには後述のドライアイスパウダーDPや重曹SH、除染剤DC,DCP)の噴射方向(噴射領域)を変えることもできる。なお、ブース3の上面部3bに円形状等所定形状の開口3cを形成し、開口周縁に放射状のスリット3dを形成することにより、その開口周縁部を弾性的にあるいは柔軟に変形させて吸引ホース6の端部を挿入・保持することができる。また、図7Cに示すように、ゴム等の弾性材料又は柔軟材料でできた、スリット3aを有する蓋体3b1がブース3の上部開口を塞ぐ場合、蓋体3b1のスリット3aを押し開いて噴射ガン24、場合により吸引ホース6の端部をブース3に抜き差ししたりブース3を移動したりできるので、ブース3内部の密閉性を一定限度で保つことができる。
また、図7D,図7Eに示すように、透視性又は不透視性の樹脂シート材等の柔軟性部材3eの端部をオーバーラップさせて(重ね合わせて)ブース3の上面部を形成し、この重ね合わせ部分3e,3eの隙間を介して噴射ガン24、場合により吸引ホース6の端部をブース3に抜き差ししたりブース3を移動したりしてもよい。なお、図7Bの上面部3bと同様に、図7Dにおいても吸引ホース6の端部を挿入・保持する開口3cやスリット3dを設けてもよい。
なお、スリット3a(切れ目、長孔)は図7Fに示すように複数設けることができる。この図では複数(2つ)のスリット3aが所定の間隔で平行に形成されているが、スリット3aの個数や形成方向は任意に設定することができる。図7D,図7Eの重ね合わせ部分3e,3e(これもスリットの一種と見ることができる)についても同様である。ブース3の上面部(蓋体3b1)を透視性のある材料で構成すれば、ブース3内が外部から見えるから、作業性が向上する。
そして、除染作業が終了すると、フィルタ装置をなす捕獲部72を取り出される。汚染物質を捕獲している各フィルタ72p、72a,72b,72cは、図6Aや図6Bに示すように除染液780に所定時間浸漬する。これにより、捕獲した汚染物質が不溶化(活性化せず)して、その後、除染液780から取り出して、図6Cや図6Dのように隔離して管理する。図6Aは、複数のフィルタ72p、72a,72b,72cを備える捕獲部72のフィルタ群72f全体をそのまま、除染液780に浸漬する。捕獲部72ごと除染液780に浸漬してもよい。この場合、フィルタ群72f全体をそのまま、図6Cに示すように、隔離室79に隔離保管するとよい。一方で、図6Bは、フィルタ72p、72a,72b,72cの種類ごとに除染液780p、780a,780b,780cを用意して、同じ種類のフィルタ72p、72a,72b,72cの群を、それぞれに対応する除染液780p、780a,780b,780cへと浸漬する。この場合、図6Cに示すように、隔離室79にて一括して隔離保管してもよいが、図6Dに示すように、同じ種類のフィルタ72p、72a,72b,72cの群を、それぞれに対応する隔離室79p、79a,79b,79cにて隔離保管してもよい。
以上、本発明の第1実施例を説明したが、これはあくまでも例示にすぎず、本発明はこれに限定されるものではなく、除染する領域を負圧雰囲気にするとともに、所定の形状及び大きさに成形されたドライアイスを汚染面に噴射し、その噴射により剥離された汚染物質を周りの空気とともに負圧吸引して搬送するとともに捕獲フィルタで捕獲して空気を排出し、汚染物質を捕獲したフィルタを除染液に所定時間浸漬することにより不溶化し、その後、該フィルタを離隔・管理のために取り出すことを特徴とするものであればよい。例えば上記実施例において一部の構成要件を省略する、さらには他の構成要件を追加する等、当業者の知識に基づく種々の変更が可能である。
以下、上記第1実施例とは異なる実施例について説明する。なお、上記第1実施例と共通の機能を有する部位には、上記第1実施例と同一符号を付することで説明を省略する。
(第2実施例)
汚染面PSに噴射されるドライアイスは、第1実施例のドライアイスペレットDPEに限らず、ドライアイスパウダーDPとしてもよい。ドライアイスパウダーDPは、例えば0.5〜1mm角くらいの不規則なサイコロ状の粒子であり、比較的粒が小さいので、複雑な構造物の細部まで到達させて除染するときに適している。
図8に示す第2実施例の汚染物質除去装置1は、図3のペレット供給部121に代わって、ドライアイスパウダーDPを噴射ガン24に供給するパウダー供給部21を備え、他は図3で示した装置と同様の構造を備える。
パウダー供給部21は、ドライアイスブロックDBを切削刃21cで旋削してドライアイスパウダーDPを作成するパウダー作成部2と、そのドライアイスパウダーDPを集めるパウダーホッパ21dと、そのパウダーホッパ21dと噴射ガン24とを接続するパウダー供給ホース21aとを備える。
具体的には、図9に示すように、パウダー供給部21は、車輪28によって移動可能なフレーム20と、ドライアイスブロックDBをホルダ21eを介して回転させるモータ21bと、ドライアイスブロックDBの切削によって得られたドライアイスパウダーDPを収容するパウダーホッパ21dと、ドライアイスパウダーDPを圧縮空気とともに噴射する噴射ガン24へパウダーホッパ21dからドライアイスパウダーDPを導くパウダー供給ホース21aと、加圧源としてのエアコンプレッサ22c(車輪29により移動可能)で生じコンプレッサホース27、電磁弁22bを介して供給された圧縮空気を噴射ガン24へ導くエア供給ホース22aと、を備える。
フレーム20は、ドライアイスブロックDBを載置する載置部20bを備え、この載置部20bに形成されたスリット20cから上側にやや突出するように切削刃21cが設けられ、この切削刃21cに押し付けるようにドライアイスブロックDBが載置される。ホルダ21eは、複数の針21fを備え、これらの針21fがドライアイスブロックDBの上面に食い込んでそのブロックDBに回転トルクを伝達する。ホルダ21eは、駆動軸21g及び減速機構21hを介してモータ21bに接続され、モータ21bは、電動モータ又はエアモータであり、その出力は減速機構21hを介してホルダ21eを回転させる駆動軸21gと、ホルダ21eを切削に従って下降させていくネジ軸21iとに分配される。ネジ軸21iは、減速機構21hに保持されフレーム20の一部20aに設けられたナット21jと螺合する。
ドライアイスブロックDBは角柱状、円柱状等のブロック体であり、例えば図10に示すように、その底面が切削刃21cに押し付けられ、載置部20bに形成された回転摺動面20d上をホルダ21eの駆動軸21gを中心に回転する。パウダーホッパ21dは、上部の開口21kから下部に向かって横断面が漸次小さくなる形状を有し、その下部にパウダー供給ホース21aが連結されている。
図8,図10において、モータ21b及びホルダ21eによりドライアイスブロックDBが回転すると、切削刃21cによりそのブロックDBが切削されてドライアイスパウダーDPが得られ、これがパウダーホッパ21dに収容される。切削の進行に従い、このネジ軸21iの作用によりホルダ21eは下方へ変位しホルダ21eが切削刃21cに接近する下限位置でモータ21bは停止する。モータ21bはコントローラ25に接続され、コントローラ25にはモータ21bの回転数を変更することによりドライアイスパウダーDPの粒度を変更するパウダー粒度変更操作部としての操作パネル26が接続される。
操作パネル26は例えば複数段階に切り替えられることにより、モータ21bの回転数ひいてはドライアイスブロックDBの切削によって得られるドライアイスパウダーDPの粒度を変更する。例えば、モータ21bの回転数(回転速度)を低くすれば粒子の大きなドライアイスパウダーDPが生じ、回転数を高めれば粒度が小さいパウダーDPが得られ、粒度が大きいほど質量も大きいから、噴射時の衝突エネルギーもそれだけ大きなものとなる。
コントローラ25は、オンオフレバー24aからオン信号を受けると、エアコンプレッサ22c、モータ21を駆動させるとともに、電磁弁22b,21vを開状態とする。これによって、図8のように、ドライアイスパウダーDPが、コンプレッサ22cからの圧縮空気と共に噴射ガン24へ供給され、噴出口24cから噴射される(図11参照)。他方、コントローラ25は、オンオフレバー24aからオフ信号を受けると、エアコンプレッサ22c、モータ21bを駆動停止させ、かつ電磁弁22b,21vが閉状態とする。これによって、噴射ガン24の噴出口24cからの噴射が止まる。なお、コントローラ25は、オンオフレバー24aからオン信号を受けた場合、電磁弁22b,22vを開いて圧縮空気をエアコンプレッサ22cから噴射ガン24へ導き、かつタイマ25bによる制限時間の計測の後、シーケンス回路25cを介して、上記第1実施例の駆動部としてのモータ21bを起動する。これによって、供給ホース21a内に残留するドライアイスパウダーDPを排出できる。
(第3実施例)
ドライアイスペレットDPEとドライアイスパウダーDPは、同時に使用してもよい。図12に示す第3実施例の汚染物質除去装置1は、第1実施例の図3で示したペレット供給部121を有した装置と同様の構造を備える他、図8と同様のパウダー供給部21も同時に備える。この場合、ペレット供給部121とパウダー供給部21とは並列的に2系統設けられ、それらの先端(下端)に共通(兼用)の噴射ガン24が接続される。噴射ガン24に供給される圧縮空気のベンチュリ効果により、ペレットホッパ121b内のドライアイスペレットDPEが吸引され、ペレット供給ホース121aを介して噴射ガン24へ供給される。一方、切削刃21cでドライアイスブロックDBを削って作られた、パウダーホッパ21d内のドライアイスパウダーDPもベンチュリ効果により吸引され、パウダー供給ホース21aを介して噴射ガン24へ供給される。これによって、図13に示すように、ドライアイスペレットDPE及びドライアイスパウダーDPが圧縮空気にそれぞれ混合された状態で噴射ガン24から噴射されるので、ドライアイスペレットDPEによる高い衝撃エネルギーでの剥離と、ドライアイスパウダーDPによる細部の除染とを並行して行うことができる。
(第4実施例)
図14に示す第4実施例の汚染物質除去装置1は、図12で示した第3実施例の装置と同様の構造を備える他、昇華しない微細な固形物である重曹SH(の粒子、微小細片)を噴射ガン24へ供給する重曹供給部23(固形物供給部)を備え、噴射ガン24からドライアイスペレットDPEと共に重曹SHを噴射する。これにより、衝撃エネルギーをさらに大きくして剥離能力を高めることができる。
具体的には、図14及び図15に示すように、ペレット供給部121とパウダー供給部21と重曹供給部23とは並列的に3系統設けられ、それらの先端(下端)に共通(兼用)の噴射ガン24が接続される。噴射ガン24は、ドライアイス(ここではドライアイスペレットDPEとドライアイスパウダーDP)を汚染面PSに噴射するドライアイス噴射装置として機能するとともに、重曹SHを汚染面PSに噴射する重曹噴射装置(固形物噴射装置)として機能し、一体化された噴射ガン24(共通の噴出口24c)から、ドライアイスペレットDPEとドライアイスパウダーPDと重曹SHとが圧縮空気と混合して噴射される。
重曹供給部23において、重曹SHを貯留する重曹ホッパ23b(固形物ホッパ)が重曹供給ホース23a(固形物供給ホース)を介して噴射ガン24(ノズル)に接続されている。ドライアイスペレットDPEを供給するペレット供給ホース121aと、ドライアイスパウダーPDを供給するパウダー供給ホース21aと、重曹SHを供給する重曹供給ホース23aとは、圧縮空気を供給するエア供給ホース22aに対してほぼ同じ合流位置であって、しかもほぼ同じ傾斜角度(例えば10°〜45°)で交差している。噴射ガン24に供給される圧縮空気のベンチュリ効果により、ペレットホッパ121b内のドライアイスペレットDPEが吸引されてペレット供給ホース121aを介して噴射ガン24へ供給され、パウダーホッパ21d内のドライアイスペレットDPが吸引されてパウダー供給ホース21aを介して噴射ガン24へ供給され、さらに重曹ホッパ23b内の重曹SHが吸引されて重曹供給ホース23aを介して噴射ガン24へ供給される。
コントローラ25は、オンオフレバー24aからオン信号を受けると、エアコンプレッサ22cと、駆動部121sや123mを駆動させるとともに、電磁弁22b,121c,21v,23cを開状態とする。これによって、図15のように、ペレット供給部121からドライアイスペレットDPEが、パウダー供給部21からドライアイスパウダーDPが、重曹供給部23から重曹SHが、コンプレッサ22cからの圧縮空気と共に噴射ガン24へ供給され、噴出口24cから噴射される。他方、コントローラ25は、オンオフレバー24aからオフ信号を受けると、駆動部121sや123mを駆動停止させ、かつ電磁弁22b,121c,23bを閉状態とする。これによって、噴射ガン24の噴出口24cからの噴射が止まる。
なお、第4実施例の汚染物質除去装置1は、図16に示すように、汚染面PSに噴射することが可能な複数種のドライアイスの種別の中から、噴射対象とする種別を設定するためのドライアイス種別設定操作部としての設定スイッチ24b1を備える。
ここでの設定スイッチ24b1は、噴射ガン24の側面の設定操作部24bに設けられている。噴射ガン24は、除染剤DC含有のドライアイスペレットDPEを汚染面PSに噴射する第1ドライアイス噴射装置として機能するとともに除染剤DC含有ないし混入(混合)のドライアイスパウダーDPを汚染面PSに噴射する第2ドライアイス噴射装置として機能する噴射装置として構成される。コントローラ25は、噴射ガン24から噴射されるドライアイスを、パウダー供給部21から供給されるドライアイスパウダーDP(除染剤DCが含有ないし混入・混合)のみとする第1状態と、ペレット供給部121から供給される除染剤ドライアイスペレットDPE(除染剤DCが含有ないし混入・混合)のみとする第2状態と、それらドライアイスペレットDPEとドライアイスパウダーDPの双方とする第3状態との間で切り換える切替手段として機能する。つまり、コントローラ25は、これら第1〜第3状態を人為的に設定する(切り換える)設定スイッチ24b1からの設定信号の入力を受け、これに基づいて、電磁弁22b,121c,21vの開閉を切り替える。上記切換手段は、コントローラ25と、電磁弁22b,121c,21vと、設定スイッチ24b1とにより構成される。
また、第4実施例の汚染物質除去装置1は、図16に示すように、汚染面に重曹SH等の固形物を噴射するか否かを選択して設定するための重曹噴射選択操作部(固形物噴射選択設定操作部)としての設定スイッチ24b2を備える。
ここでの設定スイッチ24b2も、図16の設定操作部24bに設けられている。コントローラ25は、噴射ガン24から噴射される重曹SH等の固形物を噴射する固形物噴射状態と、噴射しない固形物噴射停止状態との間で切り換える切替手段として機能する。つまり、コントローラ25は、固形物噴射状態と固形物噴射停止状態とを人為的に設定する(切り換える)設定スイッチ24b2からの設定信号の入力を受け、これに基づいて、電磁弁23cの開閉を切り替える。上記切換手段は、コントローラ25と、電磁弁23cと、設定スイッチ24b2とにより構成される。
なお、第4実施例において、ペレット供給部121又はパウダー供給部21の一方を省略してもよい(図19及び図20参照)。
また、第4実施例において、噴射対象とするドライアイスの種別を設定して切り替える機能と、重曹SH等の固形物を噴射するか否かを選択設定して切り替える機能とうち、いずれかまたは双方を省略してもよい。
さらに、これまでの各種実施例において、ドライアイスペレットDPEの噴射装置、ドライアイスパウダーDPの噴射装置、除染剤DCの噴射装置、除染剤DCPの噴射装置は、共通(兼用)の噴射ガン24として一体化して構成したが、図17,図18に示すようにドライアイスパウダーDP用の噴射装置(噴射ガン24B)と、ドライアイスペレットDPE用の噴射装置(噴射ガン24A)とをそれぞれ別体に設けてもよい。図17は圧縮空気の供給系(エア供給ホース22a)を別系統とした例、図18はそれを共用する例である。
また、重曹SH等の固形物を噴射する実施例においては、ドライアイスペレットDPEやドライアイスパウダーDPを噴射する1つの噴射ガン24で一体化して構成したが、重曹SH等の固形物を噴射する噴射ガンを別体に設けてもよい。その場合には、重曹ホッパ23b内の重曹SH(固形物)は、噴射ガン24とは別に設ける重曹用噴射ガンへ供給される。
なお、これまでの各種実施例において、ベンチュリ効果によって、圧縮空気と共に、ドライアイスパウダーDPやドライアイスペレットDPE、重曹等の固形物SH等のような固体や粉体を噴射ガン24へ導く圧縮空気供給部22が形成されている。圧縮空気供給部22cは、加圧源としてのエアコンプレッサ22cと、エアコンプレッサ22cからの圧縮空気を噴射ガン24へ導く供給路としてのエア供給ホース22aとを有して構成され、その圧縮空気によって、エア供給ホース22aに途中で合流する上記の固体や粉体を、噴射ガン24(あるいは24A,24B)の噴射口24c(あるいは24c1)や、除染剤供給部221(除染剤供給ホース221a)へと導く。つまり、圧縮空気供給部22cは、パウダー供給部21やペレット供給部221、除染剤供給部221,321、固体物供給部(重曹供給部)23の一部を構成している。なお、エア供給ホース22aに固体や粉体を合流させる各種供給ホース21a,121a,23a,321aは、エア供給ホース22aの供給方向に対し鋭角をなして合流しており、固体や粉体をスムーズに下流側へ導いている。
(第5実施例)
図21に示す第5実施例の汚染物質除去装置1は、図14で示した第3実施例の装置と同様の構造を備える他、汚染物質RMを捕獲する又は汚染物質RMとの化学反応により汚染物質RMの汚染レベルを低減する除染剤DCを供給する除染剤供給部221を備え、噴射ガン24からドライアイスペレットDPE,ドライアイスパウダーDP,重曹SHと共に、液体の除染剤DCと、固体・粉体の除染剤DCPとを噴射する。これにより、より効率的な除染作業が可能となる。
ここでは、図21及び図22に示すように、汚染面PSに噴射される予め定められた除染剤DC,DDPを供給する除染剤供給部221,321が設けられる。
除染剤供給部221は、ここでは図21に示すように、除染剤DCを収容する除染剤収容部(タンク)221bと、加圧ポンプ221pと、除染剤供給ホース221d,221aとを備える。除染剤DCは、除染剤収容部221bから除染剤供給ホース221dを経て加圧源としての加圧ポンプ221pに吸入されて加圧されるとともに、加圧された除染剤DCが吐出側の除染剤供給ホース221aを経て噴射ガン24へ導かれる。
除染剤DCは液体であり、具体的には、複数種の多孔質材料の粉体と汚染物質との化学反応を促進させる界面活性液から組成するスラリー状の浄化液をなす放射能除染液TU−1等である。
なお、液体の除染剤DC(除染液)としては、他にも、汚染物質との化学反応を速める界面活性剤や椰子油系の界面活性剤等の界面活性剤を例示でき、さらにはシリカ化合物や磁気水系の浸透補助液等であってもよい。これらが選択されることで、除染効率を増すことができる。また、除染する舗装面PSの性質(土質やPH)や汚染レベルに応じて、除染液DCの配合の組み合わせを変えることもでき、より一層の放射能除染効果が得られる。
また、ここで扱う液体除染剤(除染液)DCを、上記の除染液780,780p,780a,780b,780cとして利用してもよい。
除染剤供給部321は、ここでは図21に示すように、固体・粉体の除染剤DCPを収容する除染剤ホッパ321bを備え、除染剤ホッパ321bから除染剤供給ホース321aを経て除染剤DCPが、エアコンプレッサ22cからの圧縮空気とともに噴射ガン24へ導かれる。
個体・粉体の除染剤DCPは、たとえば上述の液体の除染剤DCを粉体としたものを用いてもよいし、その他にも、1種類もしくは複数種類の多孔質材料の多孔質材料混合粉体(細孔の大きさによって、ミクロポーラス材料(例えば活性炭やゼオライト等)、メソポーラス材料(例えばMCMやFSM、メソポーラスシリカ等)、マクロポーラス材料(例えば軽石や火山灰等)とに分けられるが、それらのいずれであってもよい)を用いてもよいし、アモルファス系フローレン、ゼオライト、焼成した貝殻といった粉体(固体)を用いてもよい。また、粉体の放射性除染剤TU−2等を用いてもよい。土質に合ったものを選択することで、除染効率を増すことができる。
噴射ガン24は、ドライアイスペレットDPE,ドライアイスパウダーDP,重曹SHを噴射する噴射装置として機能するとともに、除染剤DC(又は負圧吸引された除染剤DC)と除染剤DCPを噴射する噴射装置としても機能し、オンオフレバー24aは、それらの噴射を開始及び停止するオンオフ操作部として機能する。
なお、ここでの液体除染剤(除染液)DCは、噴射ガン24先端の広角噴霧用の噴出口24c2から広角に噴霧されるものとする。噴出口24c2は、直線噴射用の噴出口としてもよいし、噴射角度を絞った直線的な噴射から広角噴霧までを調整可能な噴出口としてもよい。
コントローラ25は、オンオフレバー24aからオン信号を受けると、エアコンプレッサ22c、モータ21b,ポンプ221pを駆動させるとともに、全ての電磁弁22b,22v,221v,221c,321c,21vを開状態とする。これによって、図21のように、加圧ポンプ221pから除染剤DCが噴射ガン24へ供給され、かつコンプレッサ22cからの圧縮空気と共にドライアイスパウダーDPやドライアイスペレットDPE、除染剤DCP、重曹SHが噴射ガン24へ供給される。そして、噴射ガン24に供給された除染剤DCが噴出口24c2から、噴射ガン24に供給されたドライアイスパウダーDPやドライアイスペレットDPE、除染剤DCP、重曹SHが噴出口24c1から噴射される。他方、コントローラ25は、オンオフレバー24aからオフ信号を受けると、エアコンプレッサ22c、モータ21b,加圧ポンプ221pを駆動停止させ、かつ全ての電磁弁22b,22v,221v,221c,321c,21vが閉状態とする。
なお、第5実施例において、ペレット供給部121及びパウダー供給部21のいずれか一方を省略してもよい(図25参照)。
また、第5実施例において、除染剤供給部221,321のいずれか一方を省略してもよい(図25及び図26参照)。
また、第5実施例において、重曹供給部23(固形物供給部)を省略してもよい(図25及び図26参照)。
また、第5実施例においては、噴射対象とするドライアイスの種別を設定して切り替える機能と、重曹SH等の固形物を噴射するか否かを選択設定して切り替える機能と、噴射対象とする除染剤を液体の除染剤DCと固体・粉体の除染剤DCPとのいずれかまたは双方に設定して切り替える機能とを有するが、それら機能のうちのいずれか1以上を省略してもよい。
また、第5実施例においては、ドライアイスペレットDPEの噴射装置、ドライアイスパウダーDPの噴射装置、重曹SH等の固形物の噴射装置、除染剤DCの噴射装置、除染剤DCPの噴射装置を、共通の噴射ガン24として一体化して構成したが、図23,図24に示すようにドライアイス(ドライアイスペレットDPE及び/又はドライアイスパウダーDP)用の噴射装置(噴射ガン24B)と、除染剤DC,DCP用の噴射装置(噴射ガン24A)とをそれぞれ別体に設けてもよい。図23は圧縮空気の供給系(エア供給ホース22a)を別系統とした例、図24はそれを共用する例である。なお、図24でにおいては、固体・粉体の除染剤DCPを採用しているため、圧縮空気の供給系が共用可能である。また、噴射ガン24Aが液体の除染剤DC専用の噴射装置であった場合には、除染剤DCの噴射を噴霧の形で行ってもよいし、噴射角度を絞った直線的な噴射の形で行ってもよい。重曹SH等の固形物は、ドライアイス用の噴射装置24Bから噴射されてもよいし、除染剤DC,DCP用の噴射装置24Aから噴射されてもよい。
また、第5実施例においては、液体の除染剤DCを噴射(例えば噴霧)する液体用噴射口24b2と、ドライアイスパウダーDPやドライアイスペレット、重曹SH等の固形物、固体・粉体の除染剤DCPを噴射する固体用噴射口24b1との双方を有するが(図21参照)、これを1つの噴射口としてもよい(図25参照)。
また、第5実施例において、圧縮空気と共にドライアイスパウダーDPやドライアイスペレット、重曹SH等の固形物、固体・粉体の除染剤DCPのうちのいずれかまたは複数を液体の除染剤DCに供給して混合し、それらが混合された除染剤DCを、噴射ガン24から噴射(噴霧でもよい)するように構成してもよい。例えば図25に示すように、エアコンプレッサ22cからの圧縮空気により高速で除染剤供給ホース221aへと供給されるドライアイスパウダーDP及び/又はドライペDPEは、除染剤供給ホース221a内の除染液DCに取り込まれ、ドライアイスパウダーDP混合の除染液DCが噴射ガン24先端の噴出口24cから噴射される。
ところで、既に述べた実施例のうち、ドライアイスペレットDPEを用いる場合は、除染剤DC入りのドライアイスペレットDPE’としてもよい。除染剤DCは、ドライアイスパウダーをペレット状に固めるためのバインダーそのもの、もしくはバインダーに含まれている。ドライアイスペレットDPE’は、例えば図27A〜図27Dに示すように、ドライアイスパウダーDPを予め定められた除染剤DCを含む液をバインダーとして所定の形状及び大きさに成形されたものとすることができる。具体的には、まずは気体の二酸化炭素(炭酸ガス)を、およそ130気圧前後に加圧して液化させ、その液体の二酸化炭素を急速に大気中に放出する。その際、気化熱が奪われることによってその二酸化炭素の温度が凝固点を下回って粉末状の固体、即ちドライアイスパウダーDPを生成する。そのドライアイスパウダーDPに、これを固めるためのバインダー(ここでは予め定められた除染剤DCを含む液)を添加し(図27A参照)、除染剤DCの添加後のドライアイスパウダーDPを型5(5a,5b)によって圧縮・成形して(図27B及び図27C参照)、所定の形状及び大きさのドライアイスペレットDPE’とする。ドライアイスペレットDPE’は、型5の型穴5hの形状に応じて、例えば直径2〜3mm、長さ2〜4mmくらいの短軸円柱状に成形される(図27D参照)。
なお、バインダーは除染剤DCを含むものであればよく、ここでは界面活性剤を含む液体であり、例えば、汚染物質との化学反応を速める界面活性剤や椰子油系の界面活性剤等の界面活性剤を例示でき、さらには、シリカ化合物や磁気水系の浸透補助液等であってもよい。また、バインダーとして添加される液体は個体・粉体の除染剤DCPを含む液でもよい。例えば、上述の液体の除染剤DCを粉体としたものを用いてもよいし、その他にも、1種類もしくは複数種類の多孔質材料の多孔質材料混合粉体(細孔の大きさによって、ミクロポーラス材料(例えば活性炭やゼオライト等)、メソポーラス材料(例えばMCMやFSM、メソポーラスシリカ等)、マクロポーラス材料(例えば軽石や火山灰等)とに分けられるが、それらのいずれであってもよい)を含む液でもよいし、アモルファス系フローレン、ゼオライト、焼成した貝殻といった粉体(固体)を含む液でもよい。バインダーとして添加される除染剤DCは、上記の他にも、複数種の多孔質材料の粉体と汚染物質との化学反応を促進させる界面活性液から組成するスラリー状の浄化液をなす放射能除染液TU−1や、粉体の放射性除染剤TU−2等を含む液でもよい。
ただし、バインダーを「水のみ」とはしないものとする。
また、既に述べた実施例のうち、ドライアイスブロックDBを切削して得たドライアイスパウダーDPを用いる場合は、除染剤DC,DCP入りのドライアイスブロックDB’を用いることができる。ここでのドライアイスブロックDB’は、図28A〜図28Dに示すように、ドライアイスパウダーDPを,既に述べたような除染剤DC,DCPを含む液をバインダーとして所定の形状及び大きさに成形されたものである。具体的には、まずは気体の二酸化炭素(炭酸ガス)を、およそ130気圧前後に加圧して液化させ、その液体の二酸化炭素を急速に大気中に放出する。その際、気化熱が奪われることによってその二酸化炭素の温度が凝固点を下回って粉末状の固体、即ちドライアイスパウダーDPを生成する。そのドライアイスパウダーDPに、これを固めるための、既に述べたようなバインダーとして予め定められた除染剤DC、DCPを含む液を添加し(図28A参照)、除染剤DC、DCPの添加後のドライアイスパウダーDPを型5(5c,5d)によって成形して(図28B及び図28C参照)、所定の形状及び大きさのブロックDB’とする。これによって、型5の型穴5kの形状に応じたブロック形状を有する、除染剤DC含有のドライアイスブロックDB’が成形される(図28C参照)。モータ21b及びホルダ21eによりドライアイスブロックDBが回転すると、切削刃21cによりそのブロックDBが切削されて、除染剤DC,DCPが混入(混合)されたドライアイスパウダーDPが得られ、これがパウダーホッパ21dに収容されて、噴射ガン24から噴射される。
ところで、各種の実施例において、ドライアイスペレットDPEやドライアイスパウダーDPの衝撃エネルギーにより放射性物質RMを剥離する現象は、次のような効果も期待できる。すなわち、除染媒体であるドライアイスペレットDPEやドライアイスパウダーDPは、圧縮空気によって固体状態で高速で(場合によっては超音速で)加速されて舗装面PSに噴射され、舗装面PS上で昇華して気体(二酸化炭素)になるときの膨張現象(あるいは小爆発現象)により、ガス状ウェッジ(くさび)として放射性物質RMを剥離する(ガスウェッジ作用)ことに寄与するとも考えられる。
また、各種の実施例に関して、衝撃エネルギーが大きくなるほど、長時間の噴射によりドライアイスが再凍結するような事態を避けることができる。なお、重曹SHはドライアイスパウダーDP,DPよりも質量が大きいので、例えばドライアイスパウダーDPの10重量%程度を加えれば除染時間の短縮に効果がある。
除染で噴射される微細な固形物(例えば重曹SH)は、ドライアイスと異なり昇華しないので、吸引口4から除染物質(放射性物質RM)とともに吸引されて集塵部7の例えば分離室71で重力により下方へ分離され、あるいはHEPAフィルタ72aで捕獲されるか、除染された舗装面に残るか、一部は残り他は分離室71やHEPAフィルタ72aで除かれるか、適宜処理することができる。
なお、除染で噴射される微細な固形物としては、実施例では重曹SH(重炭酸ナトリウム、炭酸水素ナトリウム、重炭酸ソーダともいう)を用いたが、胡桃の殻、ガーネット(ザクロ石ともいう)、食塩等、あるいはこれらの混合物等をはじめ、固形物であれば汚染除去に有効である限り、種類を問わず用いることができる。
また、全ての実施例において、電磁弁121c,21v,23c,22bの代わりに人為的に開閉操作されるシャッタ、ダンパ等の開閉装置を用いてもよく、これらの切換手段は各ホッパ121b,21d,23bから噴射ガン24に至る任意の位置、コンプレッサ22cから噴射ガン24に至る任意の位置に設けることができる。
また、全ての実施例において、ベンチュリ効果によって、圧縮空気と共に、ドライアイスパウダーDPやドライアイスペレットDPE、重曹等の固形物SH等のような固体や粉体を噴射ガン24へ導く圧縮空気供給部22が形成されている。圧縮空気供給部22cは、加圧源としてのエアコンプレッサ22cと、エアコンプレッサ22cからの圧縮空気を噴射ガン24へ導く供給路としてのエア供給ホース22aとを有して構成され、その圧縮空気によって、エア供給ホース22aに途中で合流する上記の固体や粉体を、噴射ガン24(あるいは24A,24B)の噴射口24c(あるいは24c1)や、除染剤供給部221(除染剤供給ホース221a)へと導く。つまり、圧縮空気供給部22cは、パウダー供給部21やペレット供給部221、除染剤供給部221,321、固体物供給部(重曹供給部)23の一部を構成している。なお、エア供給ホース22aに固体や粉体を合流させる各種供給ホース21a,121a,23a,321aは、エア供給ホース22aの供給方向に対し鋭角をなして合流しており、固体や粉体をスムーズに下流側へ導いている。
また、各種の実施例は、技術的な矛盾を生じない範囲において適宜組み合わせて実施できる。さらに、上記した放射性物質に限らず、有毒物質、細菌等のように大気、水、土等の環境を汚染する汚染物質を除去する装置一般に適用できる。
1 汚染物質除去装置(除染装置)
121 ペレット供給部
21 パウダー供給部
23 重曹供給部(固形物供給部)
221,321 除染剤供給部
24 噴射ガン(噴射装置)
24b 設定スイッチ(切換手段)
25 コントローラ(噴射制御装置;切換手段)
3 ブース
6 ホース(搬送手段;連通手段)
7(71,72) 捕獲装置(ろ過装置)
70 排出手段
8 負圧ポンプ(負圧形成手段;負圧発生装置)
9 負圧コントローラ
780,780p、780a,780b,780c 除染液
DC 除染剤
DPE 除染剤DC含有のドライアイスペレット
DPB 除染剤DC含有(又は混入)のドライアイスパウダー
SH 重曹(固形物)

Claims (5)

  1. 除染する領域を負圧雰囲気にするとともに、所定の形状及び大きさに成形されたドライアイスを汚染面に噴射し、その噴射により剥離された汚染物質を周りの空気とともに負圧吸引して搬送するとともに捕獲フィルタで捕獲して空気を排出し、汚染物質を捕獲したフィルタを除染液に所定時間浸漬することにより不溶化し、その後、該フィルタを離隔・管理のために取り出すことを特徴とする除染方法。
  2. 前記フィルタは、プレフィルタ、HEPAフィルタ、活性炭フィルタ、ゼオライトフィルタを含むものである請求項1に記載の除染方法。
  3. 前記ドライアイスは、所定の形状及び大きさに成形されたドライアイスペレットである請求項1に記載の除染方法。
  4. 前記ドライアイスは、ドライアイスが粉状の性状にされたドライアイスパウダーである請求項1に記載の除染方法。
  5. 前記ドライアイスパウダーに加えてドライアイスパウダーより密度が高い非昇華性の固形物を併用して噴射する請求項4に記載の除染方法。
JP2012113639A 2012-05-17 2012-05-17 除染方法 Pending JP2013242155A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012113639A JP2013242155A (ja) 2012-05-17 2012-05-17 除染方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012113639A JP2013242155A (ja) 2012-05-17 2012-05-17 除染方法

Publications (1)

Publication Number Publication Date
JP2013242155A true JP2013242155A (ja) 2013-12-05

Family

ID=49843185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012113639A Pending JP2013242155A (ja) 2012-05-17 2012-05-17 除染方法

Country Status (1)

Country Link
JP (1) JP2013242155A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102550077B1 (ko) * 2023-02-08 2023-06-30 (주)빅텍스 방사능 제염을 위한 하이브리드 블라스팅 시스템
KR102550208B1 (ko) * 2023-02-24 2023-06-30 (주)빅텍스 극저준위 폐기물 제염용 연마제염 시스템
KR102562982B1 (ko) * 2023-02-24 2023-08-03 (주)빅텍스 극저준위 폐기물 제염용 연마제염 시스템
KR102562979B1 (ko) * 2023-02-15 2023-08-03 (주)빅텍스 이종 제염제가 혼합되는 호퍼를 갖는 하이브리드 블라스팅 시스템

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5863898A (ja) * 1981-10-13 1983-04-15 株式会社東芝 排気処理装置のフイルタユニツト交換方法
JPH05113494A (ja) * 1991-09-07 1993-05-07 Ebara Kogyo Senjiyou Kk ドライアイスブラストによる除染方法及び装置
JPH0911132A (ja) * 1995-06-23 1997-01-14 Sho Bond Constr Co Ltd 研掃方法
JP2005334994A (ja) * 2004-05-25 2005-12-08 Nichiro Kogyo Co Ltd ドライアイスブラスト装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5863898A (ja) * 1981-10-13 1983-04-15 株式会社東芝 排気処理装置のフイルタユニツト交換方法
JPH05113494A (ja) * 1991-09-07 1993-05-07 Ebara Kogyo Senjiyou Kk ドライアイスブラストによる除染方法及び装置
JPH0911132A (ja) * 1995-06-23 1997-01-14 Sho Bond Constr Co Ltd 研掃方法
JP2005334994A (ja) * 2004-05-25 2005-12-08 Nichiro Kogyo Co Ltd ドライアイスブラスト装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102550077B1 (ko) * 2023-02-08 2023-06-30 (주)빅텍스 방사능 제염을 위한 하이브리드 블라스팅 시스템
KR102562972B1 (ko) * 2023-02-08 2023-08-03 (주)빅텍스 측정된 오염도에 대응되는 제염을 수행하는 하이브리드 블라스팅 시스템
KR102562979B1 (ko) * 2023-02-15 2023-08-03 (주)빅텍스 이종 제염제가 혼합되는 호퍼를 갖는 하이브리드 블라스팅 시스템
KR102550208B1 (ko) * 2023-02-24 2023-06-30 (주)빅텍스 극저준위 폐기물 제염용 연마제염 시스템
KR102562982B1 (ko) * 2023-02-24 2023-08-03 (주)빅텍스 극저준위 폐기물 제염용 연마제염 시스템

Similar Documents

Publication Publication Date Title
JP5702331B2 (ja) 汚染物質除去装置
JP5787823B2 (ja) 汚染物質除去装置
JP2013242155A (ja) 除染方法
CN108367306B (zh) 具有过喷物清除系统的涂装隔室、用于清除过喷物的方法和设备
KR102152984B1 (ko) 도장 작업시 발생되는 오염물질 집진장치
JP6363936B2 (ja) 汚染物質除去方法
JP6193604B2 (ja) ドライアイスを用いた除染システム及び除染方法
JPH05507557A (ja) 放射能汚染表面の除染方法と装置
KR100923280B1 (ko) 흡착성 연기 및 냄새 제거 집진기
JP2013242153A (ja) 除染方法及び除染装置
JP2013242154A (ja) 除染方法及び除染装置
JP2005147114A (ja) 複合排気ガス清浄機の機構
KR20130137921A (ko) 집진기
CA1140056A (fr) Installation de filtration d'un fluide contamine utilisant un materiau granule renouvelable pneumatiquement
KR101344133B1 (ko) 탄산칼슘 자동공급장치
KR20150099308A (ko) 여과집진기
KR101943027B1 (ko) 집진장치
JP2013178211A (ja) 除染方法およびドライアイス打ち込みシステム並びに除染システム
JPH05113499A (ja) 害性媒体中の表面の剥落による遠隔掃除をし廃棄物回収及び処理を有する設備
JPH1068800A (ja) 吸引ドライアイスブラストノズルを用いた除染方法及び除染装置
JP2011237378A (ja) ブラスト装置及びブラスト処理方法
KR100500765B1 (ko) 방사성물질로 오염된 장비의 원격제염장치
JP5090748B2 (ja) 処理システム
JP4946571B2 (ja) 付着物除去方法
JP2013212467A (ja) 洗浄方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140328

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140723