JP2013237336A - ハイブリッド自動車の制御装置 - Google Patents

ハイブリッド自動車の制御装置 Download PDF

Info

Publication number
JP2013237336A
JP2013237336A JP2012111144A JP2012111144A JP2013237336A JP 2013237336 A JP2013237336 A JP 2013237336A JP 2012111144 A JP2012111144 A JP 2012111144A JP 2012111144 A JP2012111144 A JP 2012111144A JP 2013237336 A JP2013237336 A JP 2013237336A
Authority
JP
Japan
Prior art keywords
engine
clutch
motor
output
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012111144A
Other languages
English (en)
Other versions
JP6019732B2 (ja
Inventor
Yukihiro Niisato
幸浩 新里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2012111144A priority Critical patent/JP6019732B2/ja
Priority to US13/848,459 priority patent/US9126582B2/en
Priority to EP13160677.4A priority patent/EP2664508B1/en
Priority to CN201310180363.3A priority patent/CN103419775B/zh
Publication of JP2013237336A publication Critical patent/JP2013237336A/ja
Application granted granted Critical
Publication of JP6019732B2 publication Critical patent/JP6019732B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0208Clutch engagement state, e.g. engaged or disengaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0283Clutch input shaft speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0677Engine power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

【課題】ハイブリッド自動車の制御装置に関し、クラッチの切り換え時の走行性能を向上させる。
【解決手段】車両10の駆動輪8に動力を伝達するエンジン1と、エンジン1及び駆動輪8間の動力伝達経路上に介装されたクラッチ2と、クラッチ2よりも駆動輪8側で駆動輪8に動力を伝達する電動機3とを設ける。車両10の走行モードとして、電動機3の動力で車両10を走行させる第一走行モードと、エンジン1の動力で車両10を走行させる第二走行モードとを設ける。
また、第一走行モードから第二走行モードへの切り換えに際し、クラッチ2の係合後におけるエンジン1の第一目標出力をクラッチ2の係合前に演算する演算手段12aを設ける。さらに、クラッチ2の係合前に、エンジン1の出力を演算手段12aで演算された第一目標出力以上となる第二目標出力に制御するエンジン制御手段12bを設ける。
【選択図】図1

Description

本発明は、エンジン及び電動機を備えたハイブリッド自動車の制御装置に関する。
従来、車両の駆動源としてエンジンと電動機とを搭載し、走行条件に応じて駆動源を切り換えて使用するハイブリッド自動車が知られている。すなわち、車両の発進時や低速走行時には、低回転域で大きなトルクを出力する特性を持った電動機を使用し、車速がある程度高くなった段階で、高回転域でのトルク特性が良好なエンジンを使用するものである。それぞれの駆動源のトルク特性に応じた使い分けにより、あらゆる条件下で効率的に車両を走行させることが可能となる。
ところで、このようなハイブリッド自動車のパワートレインでは、エンジンから駆動輪に至る動力伝達経路上にクラッチが介装され、クラッチよりも駆動輪側の動力伝達経路に対して電動機が接続される。クラッチは、エンジンの不使用時には開放状態(切断状態)に制御され、エンジンの使用時には接続状態(係合状態)とされる。また、クラッチの断接状態を開放状態から接続状態へと移行させる際には、クラッチの入力側の回転数と出力側の回転数とを同期させる制御が実施される。
例えば、特許文献1には、クラッチとして機能するカップリングを備えたハイブリッド車両が記載されている。この技術では、カップリングの入力側軸の回転数と出力側軸の回転数とが同期した後にカップリングを締結し、カップリングの締結後に電動機及びエンジンのトルクを制御している。また、特許文献2においても同様であり、クラッチに内蔵されるエンジン側の回転要素と電動機側の回転要素との回転速度がほぼ同じになったときに、これらの回転要素を係合させる制御が実施されている。このような制御により、クラッチの断接状態の変化に伴って大きなトルクショックが発生しないようにしている。
特開2005−130564号公報 特開2007−320388号公報
しかしながら、上述のような従来のハイブリッド自動車では、クラッチがほぼ完全に接続された後でエンジンの出力が制御されるため、断接状態を切り換えた直後に加速のもたつきや空走感が発生することがある。例えば、クラッチの切断中にアクセルペダルが踏み込まれた場合、運転者が要求するトルクに比して、駆動輪に伝達されるトルクが不足するおそれが生じる。このトルクが不足した状態は、クラッチがほぼ完全に接続された状態となるまで継続される。
一方、このようなトルク不足を解消すべく、運転者が要求するトルクに合わせて電動機やエンジンの出力を変化させることも考えられる。しかしながら、電動機,エンジンの出力を変化させることによって、クラッチの回転要素を同期回転させることが困難となる。したがって、トルクショックが発生しやすくなり、クラッチをスムーズに接続することができなくなる他、クラッチの断接状態の変更に係る制御時間が延長される場合がある。
本件の目的の一つは、上記のような課題に鑑み創案されたもので、クラッチの切り換え時の走行性能を向上させることができるようにしたハイブリッド自動車の制御装置を提供することである。なお、この目的に限らず、後述する発明を実施するための形態に示す各構成により導かれる作用効果であって、従来の技術によっては得られない作用効果を奏することも、本件の他の目的として位置づけることができる。
(1)ここで開示するハイブリッド自動車の制御装置は、車両の駆動輪に動力を伝達するエンジンと、前記エンジンと前記駆動輪との間の動力伝達経路上に介装されたクラッチと、前記クラッチよりも前記駆動輪側で前記駆動輪に動力を伝達する電動機とを備える。
また、前記電動機の動力で前記車両を走行させる第一走行モード(例えばEVモードやシリーズモードなど)から、前記エンジンの動力で前記車両を走行させる第二走行モード(例えばパラレルモード)への切り換えに際し、前記クラッチの係合後における前記エンジンの第一目標出力を前記クラッチの係合前に演算する演算手段と、前記クラッチの係合前に、前記エンジンの出力を前記演算手段で演算された前記第一目標出力以上となる第二目標出力に制御するエンジン制御手段と、を備える。
(2)また、前記エンジンの動力で発電し、前記電動機に電力を供給するバッテリーを充電する発電機と、前記クラッチの係合前に、前記第一目標出力に相当する前記エンジンの出力により前記発電機を駆動して発電させる(例えば、発電量可変制御を実施する)発電機制御手段と、を備えることが好ましい。
(3)また、前記バッテリーの充電率が所定値以下である場合に、前記発電機制御手段が前記発電機に発電させる(例えば、前記発電量可変制御を実施する)ことが好ましい。
(4)また、前記第一走行モードから前記第二走行モードへの切り換えに際し、前記クラッチの係合後に前記電動機の出力トルクを減少させる電動機制御手段を備え、前記電動機制御手段が前記電動機の出力トルクを減少させるのと同時に、前記発電機制御手段が前記発電機の出力を減少させることが好ましい。
(5)また、前記第一走行モードから前記第二走行モードへの切り換えに際し、前記クラッチの前記エンジン側及び前記電動機側の回転速度差が所定値以下になったときに、前記クラッチを係合させるクラッチ制御手段を備えることが好ましい。
(6)また、前記車両の走行速度に基づいて、前記第一走行モードから前記第二走行モードへの切り換えを実施するか否かを判定する切り換え判定手段を備えることが好ましい。
(7)また、前記切り換え判定手段が、前記電動機の電力源である第二バッテリーの充電率又は温度に応じて設定される判定車速と前記車両の走行速度との大小関係に基づき、前記切り換えを実施するか否かを判定することが好ましい。
開示のハイブリッド自動車の制御装置によれば、走行モードを切り換える前からエンジントルクを大きくしておくことで、切り換え直後から過不足のないエンジントルクで車両を走行させることができ、もたつきや空走感を解消することができる。つまり、走行モードの切り換え後にエンジン出力を調節する制御手法と比較して、切り換えの前後での軸トルク変動を抑制することができ、走行性能を向上させることができる。
一実施形態に係るハイブリッド車両の制御装置の構成を示すブロック図である。 図1の制御装置での制御に係るグラフであり、(a)は充電率と第一判定車速との関係を例示するグラフ、(b)は電池温度と第二判定車速との関係を例示するグラフである。 図1の制御装置で実施される制御内容を説明するためのフローチャートである。 図1の制御装置で実施される制御内容を説明するためのフローチャートである。 図1の制御装置で実施される制御内容を説明するためのグラフであり、(a)は目標モータートルク等、(b)はジェネレータートルク、(c)はエンジントルク、(d)はエンジン回転数、(e)はクラッチ指令、(f)は軸トルクを示すものである。
図面を参照してハイブリッド自動車の制御装置について説明する。なお、以下に示す実施形態はあくまでも例示に過ぎず、以下の実施形態で明示しない種々の変形や技術の適用を排除する意図はない。本実施形態の各構成は、それらの趣旨を逸脱しない範囲で種々変形して実施することができるとともに、必要に応じて取捨選択することができ、あるいは適宜組み合わせることが可能である。
[1.車両]
第一実施形態のハイブリッド自動車の制御装置は、図1に示す車両10に適用される。この車両10は、エンジン1及びモーター3(電動機)を駆動源とし、前輪を駆動輪8としたFF方式のハイブリッド車両である。車両10のパワートレインには、エンジン1,モーター3,ジェネレーター4(発電機),インバーター5,バッテリー6,トランスアクスル7が設けられる。エンジン1及びモーター3の駆動力は、トランスアクスル7を介して駆動輪8に伝達され、車両10を走行させる。
エンジン1は、ガソリンや軽油を燃焼とする内燃機関(ガソリンエンジン,ディーゼルエンジン)である。このエンジン1には、エンジン回転数Ne(エンジン回転速度)を検出するエンジン回転数センサー21が設けられる。ここで検出されたエンジン回転数Neの情報は、後述する車両制御装置11に伝達される。
モーター3は、バッテリー6に蓄えられた電力やジェネレーター4で発電された電力の供給を受けて動力を発生させる電動機であり、例えば高出力の永久磁石式同期電動機である。モーター3には、モーター回転数Nm(モーター回転速度)を検出するモーター回転数センサー22が設けられる。ここで検出されたモーター回転数Nmの情報も、車両制御装置11に伝達される。
バッテリー6は、例えばリチウムイオン電池やニッケル水素電池といったエネルギー密度の高い高性能な蓄電装置であり、モーター3に電力を供給するものである。このバッテリー6には、充放電に係る電流値Aを検出するバッテリー電流センサー24,電圧値Bを検出するバッテリー電圧センサー25,電池温度Eを検出するバッテリー温度センサー26が内蔵される。これらのセンサー24〜26で検出された電流値A,電圧値B及び電池温度Eの情報は、車両制御装置11に伝達される。
ジェネレーター4(発電機)は、エンジン1を始動させるためのスターターとしての機能と発電機能とを持った交流電動発電機(モーター・ジェネレーター)であり、エンジン1の作動時にはエンジン1の動力で発電を実施するものである。また、このジェネレーター4は、モーター3の電力供給源であるバッテリー6を充電する機能や、モーター3へ直接電力を供給する機能も併せ持つ。
モーター3,ジェネレーター4及びバッテリー6を接続する電気回路上には、インバーター5が介装される。インバーター5よりもバッテリー6側で授受される電流は直流電流であり、インバーター5よりもモーター3,ジェネレーター4側で授受される電流は交流電流である。インバーター5は、これらの電流の直流・交流変換を実施する。また、モーター3の回転速度は、モーター3に供給される電流の交流周波数に比例する。したがって、インバーター5を制御することでモーター3の回転速度及びトルクを調節することが可能である。
トランスアクスル7は、ディファレンシャルギヤ(差動装置)を含むファイナルドライブ(終減速機)とトランスミッション(減速機)とを一体に形成した動力伝達装置であり、駆動源と駆動輪8との間の動力伝達を担う複数の機構を内蔵する。また、トランスアクスル7の内部には、クラッチ2が設けられる。
クラッチ2は、エンジン1の動力の断接状態を制御する連軸器であり、エンジン1から駆動輪8までに至る動力伝達経路上に介装される。図1中に示すように、モーター3は、クラッチ2よりも駆動輪8側の動力伝達経路に対して接続される。したがって、モーター3の駆動力は、クラッチ2の断接状態に関わらず駆動輪8側へと伝達可能である。これに対し、エンジン1の駆動力は、クラッチ2が係合しているときにのみ駆動輪8側へと伝達可能である。
クラッチ2の内部には、エンジン1からの駆動力が入力される駆動側の係合要素2aと、駆動輪8側に駆動力を出力する被駆動側の係合要素2bとが設けられる。これらの係合要素2a,2bは、図示しないクラッチ油圧ポンプから与えられるクラッチ油圧に応じて、接近,離間(すなわち係合,開放)する方向に駆動される。
また、車両10の任意の位置には、アクセルペダルの踏み込み操作量に対応するアクセル開度Dを検出するアクセル開度センサー23と、車速Vを検出する車速センサー27とが設けられる。これらのアクセル開度D,車速Vの情報は、車両制御装置11に伝達される。
[2.制御装置]
[2−1.概要]
車両制御装置11は、パワートレインの各種装置の動作を統括的に管理する電子制御装置であり、例えばマイクロプロセッサやROM,RAM等を集積したLSIデバイスや組み込み電子デバイスとして構成される。ここでは、車両10の走行状態や運転条件などに応じた走行モードが選択されるとともに、走行モードに応じてエンジン1の作動状態やエンジン出力,クラッチ2の断接状態,モーター3の出力,ジェネレーター4での発電量などが制御される。
車両10の走行モードとしては、EVモード,シリーズモード(第一走行モード),パラレルモード(第二走行モード)等が設定されている。EVモードとは、モーター3のみの駆動力で車両10を走行させるモードであり、すなわち電気自動車(EV,Electric Vehicle)の駆動手法と同様の制御が実施されるものである。このEVモードは、おもにバッテリー6の充電率が十分に大きく、車両10の走行速度(車速)が所定の判定車速V0以下のときに選択される。EVモードではエンジン1が停止し、クラッチ2が切断された状態となる。また、モーター3の出力は、車両10に要求されている出力(例えば、アクセル開度Dや車速Vに基づいて設定される要求出力)に応じて増減制御される。
シリーズモードは、モーター3の駆動力で走行しながらエンジン1の動力で発電を行うモードである。シリーズモードでは、クラッチ2が切断された状態とされ、トランスアクスル7の内部において、クラッチ2よりもエンジン1側の動力伝達経路と駆動輪8側の動力伝達経路とが分離される。また、前者の動力伝達経路では、エンジン1の駆動力がジェネレーター4に伝達され、ジェネレーター4での発電が実施される。
ジェネレーター4で発生した電力は、インバーター5を介してバッテリー6に充電され、あるいは、インバーター5から直接的にモーター3へと供給される。このシリーズモードは、おもに車両10の走行速度(車速)が所定の判定車速V0以下であって、バッテリー6の充電率が十分に大きくないとき(バッテリー残量がやや少ないとき)に選択される。例えば、EVモードでの走行中にバッテリー6の充電率が低下してきたときには、走行モードがEVモードからシリーズモードに変更される。
パラレルモードは、エンジン1とモーター3とを併用して走行するモードである。このパラレルモードでは、クラッチ2が係合した状態に制御され、エンジン1の駆動力が駆動輪8に伝達される。また、モーター3の出力は、車両10に要求されている出力に応じて増減制御される。典型的には、車両10に要求されている出力からエンジン1の出力を減じたものが、モーター3の出力とされる。このパラレルモードは、おもに車両10の走行速度(車速)が所定の判定車速V0を超えるときに選択される。例えば、EVモードやシリーズモードでの走行中に車速が上昇し、所定の判定車速V0を超えたときには、走行モードがパラレルモードに変更される。
上記のEVモード,シリーズモード(第一走行モード)は、モーター3が主体となって車両10を走行させるモードである。これに対し、パラレルモード(第二走行モード)は、エンジン1が主体となって車両10を走行させるモードであり、エンジン1の出力が不足しない限りモーター3は作動しない。パラレルモードでのモーター3の動力は、車両10に要求されている出力をエンジン1のみで賄えないような場合に補助的に使用される。
EVモード,シリーズモードからパラレルモードへの移行時には、クラッチ2の断接状態が開放状態から係合状態へと切り換えられ、車両10を走行させる主体となる駆動源が変更される。車両制御装置11は、このような切り換えに伴う駆動力の急変やトルクショックの発生を防止するために、移行制御を実施する。本実施形態では、シリーズモードからパラレルモードへの移行時に実施される移行制御について詳述する。
[2−2.制御ブロック]
移行制御では、開放状態のクラッチ2が係合するようにクラッチ油圧が制御されるとともに、車両10に要求されている出力に応じてエンジン1の出力が増加するように、エンジン1の点火系,燃料系,吸排気系及び動弁系が制御される。また、モーター3の出力は、車両10に要求されている出力を基準として、エンジン出力の不足分を補う大きさとなるように制御される。
この移行制御を実施するために、車両制御装置11には、エンジン制御部12,クラッチ制御部13,モーター制御部14,ジェネレーター制御部15及びバッテリー制御部16が設けられる。これらの各要素は電子回路(ハードウェア)によって実現してもよく、ソフトウェアとしてプログラミングされたものとしてもよいし、あるいはこれらの機能のうちの一部をハードウェアとして設け、他部をソフトウェアとしたものであってもよい。
エンジン制御部12は、エンジン1の動作を制御するものである。図1に示すように、エンジン制御部12には、予測演算部12aとエンジントルク制御部12bとが設けられる。
予測演算部12a(演算手段)は、クラッチ2の係合後におけるエンジン1の出力目標値としての目標トルクTTGTを、クラッチ2の係合前に予測して演算するものである。目標トルクTTGTは、例えば車速Vやアクセル開度Dに基づいて演算され、あるいはその時点でのモーター3の出力に対応する値として演算される。クラッチ2の係合後におけるエンジン1の出力目標値(第一目標出力)は、目標トルクTTGTとその時点でのエンジン回転数Neとの積で表現してもよい。ここで演算された目標トルクTTGTの値は、エンジントルク制御部12bに伝達される。
エンジントルク制御部12b(エンジン制御手段)は、燃料噴射量や点火時期,吸気量等を制御して、エンジン1から実際に出力されるトルクの大きさを制御するものである。ここではまず、予測演算部12aで演算された目標トルクTTGTに所定のロス分トルクTLOSを加算したものが、制御用目標トルクTとして演算される。ロス分トルクTLOSとは、クラッチ2の係合要素2a,2b間の回転速度を同期させるときに失われるトルク(トルク損失)に相当するものであり、各々の係合要素2a,2bの回転速度や速度差に基づいて演算される値である。
本実施形態では、例えば車速Vやエンジン回転数Ne,アクセル開度D等に基づいて、ロス分トルクTLOSが演算されるものとする。また、ロス分トルクTLOSは、少なくとも0以上の値を持つ。したがって、目標トルクTTGTに所定のロス分トルクTLOSを加算したものとその時点でのエンジン回転数Neとの積で表現される出力(第二目標出力)は、少なくとも目標トルクTTGTとその時点でのエンジン回転数Neとの積で表現される出力(第一目標出力)以上の大きさである。
また、エンジントルク制御部12bは、後述する切り換え判定部13aで移行制御の開始条件が成立すると、クラッチ2が係合するタイミングよりも前から、エンジン1の実際の出力トルクが制御用目標トルクTに一致する(又は近づく)ように、エンジン1の作動状態を制御する。つまり、エンジン1の駆動力がクラッチ2の係合要素2bにまだ伝達されていない状態で、早々とエンジン1の出力を上昇させる制御が実施される。なお、ここで演算された制御用目標トルクT及びロス分トルクTLOSは、ジェネレーター制御部15に伝達される。
ただし、エンジントルク制御部12bは、バッテリー6の充電率Cが所定充電率C0以下の場合に限り、制御用目標トルクTを用いたエンジン制御を実施する。バッテリー6の充電率Cが所定充電率C0を超える場合には、エンジン出力が比較的小さい一定の値(例えば、アイドリング回転を維持する程度の出力)となるように、エンジン1を制御する。
クラッチ制御部13(クラッチ制御手段)は、クラッチ2の動作を制御するものである。クラッチ制御部13には、切り換え判定部13aと回転数差演算部13bとが設けられる。
切り換え判定部13a(切り換え判定手段)は、上記のEVモード,シリーズモードからパラレルモードへの移行制御を実施するか否かを判定するものである。移行制御の開始条件は、所定の判定車速V0以下であった車速Vが判定車速V0を超えることである。ここでいう判定車速V0は、予め設定された固定値(例えば、時速80[km/h]など)としてもよいが、本実施形態では、後述するバッテリー制御部16で演算されるバッテリー6の充電率C及び電池温度Eに応じて設定されるものとする。
例えば、切り換え判定部13aには、充電率Cを引数として第一判定車速V1を算出するための制御マップと、電池温度Eを引数として第二判定車速V2を算出するための制御マップとを予め記憶させておく。これらの制御マップを図2(a),(b)に例示する。第一判定車速V1,第二判定車速V2はそれぞれ、充電率Cが高いほど、あるいは電池温度Eが高温であるほど大きな値に設定されるものとする。その後、切り換え判定部13aは、第一判定車速V1,第二判定車速V2の何れか小さい一方を判定車速V0として、移行制御の開始条件を判定する。
なお、移行制御の開始条件は、車速Vだけでなく、バッテリー6の充電率Cやアクセル開度D等に基づいて判定してもよい。切り換え判定部13aでの判定結果は、エンジン制御部12,ジェネレーター制御部15に伝達される。
回転数差演算部13bは、移行制御の開始条件が成立したのちに、クラッチ2の係合要素2a,2bの回転速度が同期した時点でクラッチ2を係合させるものである。係合要素2a,2bのそれぞれの回転速度は、エンジン回転数Ne,モーター回転数Nmに基づいて演算される。ここでは、例えば係合要素2a,2bの回転速度差が所定速度以下になったときに回転速度が同期したものと判定され、少なくとも何れかの係合要素2a,2bに対してクラッチ油圧を与える制御信号が出力される。
これにより、係合要素2a,2bが接近して係合し、クラッチ2が接続される。係合要素2a,2bの回転速度が同期した状態でクラッチ2が接続されるため、クラッチスリップが発生せずトルクショックも発生しない。また、回転数差演算部13bは、クラッチ油圧を与えてから所定の係合時間Gが経過した時点でクラッチ2が係合したと判断し、クラッチ2が係合したことをモーター制御部14,ジェネレーター制御部15に伝達する。
モーター制御部14(電動機制御手段)は、モーター3の動作を制御するものである。ここでは、例えば車速Vやモーター回転数Nm,アクセル開度D等に基づいて目標モータートルクTmが演算され、実際のモーター3の出力トルクTMTRが目標モータートルクTmに一致する(又は近づく)ように、モーター3及びインバーター5が制御される。
また、モーター制御部14は、クラッチ2がほぼ完全に係合した旨の情報を回転数差演算部13bから受け取ったときには、モーター3を停止させる制御を実施する。このとき、モーター3の出力トルクTMTRが所定の減少時間Fでゼロになるようにモーター3及びインバーター5が制御され、例えばモーター3に供給される電流値を漸減させる制御が実施される。
ジェネレーター制御部15(発電機制御手段)は、ジェネレーター4の動作を制御するものである。このジェネレーター制御部15には、発電量演算部15aと発電トルク制御部15bとが設けられる。
発電量演算部15aは、移行制御時にジェネレーター4で吸収される発電トルクTGENを演算するものである。発電トルクTGENは、エンジン1で発生する出力(すなわち、ジェネレーター4での理論上の最大発電量)から、係合要素2a,2b間の回転速度を同期させるときに失われる出力を減算したものである。なお、クラッチ2よりもエンジン1側の動力伝達経路におけるエネルギー収支は、以下のように表現される。したがって、クラッチ2がまだ係合していないときにエンジン1で生成されるエネルギーは、動力伝達経路内での損失エネルギーを除いて、ジェネレーター4で電力として回収される。
(ジェネレーター4での発電エネルギー)
=(エンジン1で発生するエネルギー)−(クラッチ2の同期に係る損失)
エンジン1で発生する出力は、例えば制御用目標トルクT及びエンジン回転数Neに基づいて演算される。また、クラッチ2の同期に係る損失は、例えば車速Vやエンジン回転数Ne,アクセル開度D,ロス分トルクTLOS等に基づいて演算される。ここで、前者から後者を減算した出力が、ジェネレーター4で吸収すべき目標出力となる。あるいは、予測演算部12aで演算された目標トルクTTGT及びエンジン回転数Neから演算される出力が、ジェネレーター4で吸収すべき目標出力となる。
発電量演算部15aは、ジェネレーター4の発電特性に基づき、ジェネレーター4で発電される電力がジェネレーター4で吸収すべき目標出力と一致するような発電トルクTGENを演算する。ここで演算された発電トルクTGENは、発電トルク制御部15bに伝達される。
発電トルク制御部15bは、発電量演算部15aで演算された発電トルクTGENがジェネレーター4で電力に変換されるように、ジェネレーター4の駆動電流を制御するものである。発電トルク制御部15bは、切り換え判定部13aで移行制御の開始条件が成立すると、クラッチ2が係合するタイミングよりも前から、エンジン1で発生する出力のうち、目標トルクTTGTに相当する出力を電力に変換するように機能する。
このとき、ジェネレーター4での発電量は、エンジン1で実際に発生する出力に応じて変化しうる。例えば、アクセル開度Dの変動により、エンジン1の出力が増加又は減少したときには、それに応じてジェネレーター4での発電量も増加又は減少する。このように、クラッチ2の係合後におけるエンジン1の目標トルクTTGTに応じた発電を実施する制御のことを、発電量可変制御と呼ぶ。
ただし、発電量可変制御には、二つの制御禁止条件がある。第一の禁止条件は、バッテリー6の充電率Cが所定充電率C0よりも高い場合であり、第二の禁止条件は、判定車速V0が所定車速Vxよりも高い場合である。
前者の場合、バッテリー6の充電率Cが十分に高い状態では、ジェネレーター4で発電することができない。つまり、ジェネレーター4で電力として吸収されるエネルギーが減少することから、動力伝達経路内でのエネルギー収支のバランスが崩れ、クラッチ2の回転数を同期させることが困難になる。そこで、発電トルク制御部15bは、バッテリー6の充電率Cが所定充電率C0を超えるときには発電量可変制御を実施せず、少なくともバッテリー6の充電率Cが所定充電率C0以下のときに、発電量可変制御を実施する。ここでいう所定充電率C0とは満充電状態に近い充電率(例えば、90[%]や95[%]など)である。
バッテリー6の充電率Cが所定充電率C0を超えるとき、発電トルク制御部15bは、発電量が一定値に固定されるようにジェネレーター4の駆動電流を制御する。このときの発電量は、例えばアイドリング状態のエンジン1の出力に対応する程度の大きさに設定される。
後者の場合、判定車速V0が高い状態ではモーター3の回転数Nmが大きく、さらにクラッチ2の係合後のエンジン回転数Neも大きくなるため、ジェネレーター4で電力として吸収しなければならないエネルギーが増大してしまう。これにより、動力伝達経路内でのエネルギー収支のバランスが崩れ、クラッチ2の回転数を同期させることが困難になる。そこで、発電トルク制御部15bは、判定車速V0が所定車速Vxを超えるときには発電自体を実施せず、少なくとも判定車速V0が所定車速Vx以下のときに、発電量可変制御を実施する。ここでいう所定車速Vxとは、例えば時速100[km/h]以上の速度である。判定車速V0が所定車速Vxを超えるとき、発電トルク制御部15bは発電を実施しない。
なお、発電トルク制御部15bは、クラッチ2がほぼ完全に係合した旨の情報を回転数差演算部13bから受け取ったときには、ジェネレーター4を停止させる制御を実施する。このとき、ジェネレーター4での発電トルクTGENが所定の減少時間Fでゼロになるように、ジェネレーター4の駆動電流が制御される。これにより、クラッチ2がほぼ完全に締結した後には、モーター3がその出力を減少させるのと同時に、ジェネレーター4が変換する電力を減少させることになる。したがって、駆動輪8側に伝達されるトータルの出力が一定のまま、かつ、エンジン1の出力も一定のまま、モーター3及びジェネレーター4の動作が同期的に停止する。
バッテリー制御部16は、バッテリー6の状態を検出,算出するものである。ここでは、電流値A,電圧値B,電池温度E等に基づいて、バッテリー6の充電率Cが演算される。充電率Cは、例えば電流値A,電圧値B,電池温度Eと充電率Cとの対応関係を定める数式やマップを用いて演算される。ここで得られた充電率Cの値は、エンジン制御部12,クラッチ制御部13,ジェネレーター制御部15に伝達される。
[3.フローチャート]
車両制御装置11の内部では、図3に示すフローチャートが所定周期で繰り返し実施される。このフローは、シリーズモードやEVモードからパラレルモードへの移行制御を実施するか否かを判定するためのフローである。
ステップA10では、各種センサー情報が車両制御装置11に入力される。続くステップA20では、切り換え判定部13aにおいて、充電率Cに基づいて第一判定車速V1が算出されるとともに、電池温度Eに基づいて第二判定車速V2が算出される。また、ステップA30では、第一判定車速V1,第二判定車速V2の何れか小さい一方が、最終的な判定車速V0として設定される。
ステップA40では、現在の車速Vが判定車速V0を超える速度であるか否かが判定される。ここで、V>V0である場合にはステップA50へ進み、パラレルモードへの移行制御が開始される。一方、V≦V0である場合にはステップA60へ進み、これまでの走行モードが維持される。
図4は、パラレルモードへの移行制御の内容を説明するためのフローチャートである。このフローは、図3のフローでステップA50に進んだ場合に開始され、走行モードがパラレルモードになるまで(パラレルモードに完全に移行するまで)繰り返し実施される。
ステップB10では、ジェネレーター制御部15の発電トルク制御部15bにおいて、判定車速V0が所定車速Vxを超えているか否かが判定される。ここで、V0>Vxである場合には、ジェネレーター4で電力として吸収しなければならないエネルギーが過大になるものと判断され、ステップB30に進む。一方、ここでV0≦Vxである場合には、ステップB20に進む。
ステップB20では、発電トルク制御部15bにおいて、充電率Cが所定充電率C0を超えているか否かが判定される。ここでC>C0である場合には、ジェネレーター4で電力として吸収可能なエネルギーが少ないものと判断され、ステップB40に進む。一方、ここでC≦C0である場合には、ステップB50に進む。
ステップB30では、発電トルク制御部15bにおいてジェネレーター4による発電が禁止され、ステップB60に進む。一方、ステップB40では、発電量が一定値に固定されるようにジェネレーター4が制御され、ステップB60に進む。この場合、発電電流が直接的にモーター3に供給される。また、ステップB50では、エンジン1で発生する出力に応じて発電量が変化するようにジェネレーター4が制御される発電量可変制御が実施され、ステップB60に進む。
ステップB60では、クラッチ2の係合要素2a,2b間の回転速度を同期させる制御が実施される。すなわち、エンジントルク制御部12bでは、エンジン1の実際の出力トルクが制御用目標トルクTに一致する(又は近づく)ように、エンジン1の作動状態が制御される。また、モーター制御部14では、実際のモーター3の出力トルクTMTRが目標モータートルクTmに一致する(又は近づく)ように、モーター3及びインバーター5が制御される。
続くステップB70では、クラッチ制御部13の回転数差演算部13bにおいて、係合要素2a,2b間の回転速度が同期したか否かが判定される。ここでまだ同期していないと判定された場合には、再び本フローのステップB10に進む。したがって、係合要素2a,2bの回転速度が同期するまでの間はクラッチ2が開放状態のまま、モーター3による駆動輪8の駆動が継続され、これと同時にエンジン1の出力が比較的高い状態で制御され、かつ、ジェネレーター4での発電が実施される。
一方、係合要素2a,2bの回転速度が同期したと判定された場合にはステップB80に進む。ステップB80では、クラッチ制御部13の回転数差演算部13bにおいて、係合要素2a,2bに対してクラッチ油圧を与える制御信号が出力され、クラッチ2が接続される。
続くステップB90では、モーター制御部14において、モーター3の出力トルクTMTRが所定の減少時間Fでゼロになるようにモーター3及びインバーター5が制御され、モーター3が徐々に停止する。またこれと同時に、ジェネレーター制御部15の発電トルク制御部15bでは、ジェネレーター4での発電トルクTGENが減少時間Fでゼロになるように、ジェネレーター4の駆動電流が制御され、ジェネレーター4での発電も徐々に停止する。
モーター3からの出力とジェネレーター4で吸収される出力とが同期して減少するため、駆動輪8側に伝達される軸トルクは変化することなく、一定のまま維持される。
モーター3の出力とジェネレーター4での発電量とがともにゼロになると、エンジン1のみが駆動輪8に駆動力を伝達する状態となり、車両10の走行モードがパラレルモードとなる。
[4.作用]
図5(a)〜(f)を用いて、上記の制御装置による移行制御中の制御作用を説明する。ここでは、時刻t0よりも前の車速Vが判定車速V0以下であり、走行モードはシリーズモードである。時刻t0に車速Vが判定車速V0を超えて移行制御の開始条件が成立すると、エンジン1の実際の出力トルクが制御用目標トルクTに一致するように、エンジン1の作動状態が制御される。このとき、クラッチ2はまだ係合していない状態であるが、クラッチ2が係合した後にエンジン1が出力すべきトルクの目標値が予測され、目標トルクTTGTとして演算される。また、制御用目標トルクTは、図5(c)に示すように、目標トルクTTGTにロス分トルクTLOSを加算したものとなる。
一方、ジェネレーター4での発電量は、エンジン1で発生する出力から損失分の出力を差し引いたものとされる。例えば、図5(b)に示すように、時刻t1でのジェネレーター4の発電量は、そのときの発電トルクTGENにジェネレーター4の回転数を乗じたものに相当する。このとき、ジェネレーター4の発電量が時刻t1でのエンジン1の目標トルクTTGTにエンジン回転数Neを乗じたものと一致するように、ジェネレーター4の駆動電流が制御される。
これにより、ジェネレーター4で吸収される電力は、エンジン1で発生する出力から損失分の出力を差し引いたものに一致し、図5(c)中にハッチング領域で示すように、目標トルクTTGTに相当する出力がすべてジェネレーター4で電力に変換される。
一方、エンジン回転数Neは、図5(d)に示すように徐々に上昇し、クラッチ2の係合要素2a,2bの回転速度差が減少する。これに応じてロス分トルクTLOSも小さくなり、制御用目標トルクTが目標トルクTTGTに漸近する。図5(c)で記号Xが付された白抜き部分は、エンジン回転数Neが上昇するに連れてロス分トルクTLOSが減少することを示している。
その後、時刻t2にクラッチ2の係合要素2a,2bの回転速度が同期する。係合要素2a,2bの回転速度が同期した状態でクラッチ2が接続されるため、クラッチスリップが発生せずトルクショックも発生しない。なお、この同期は、係合要素2a,2bの回転速度差が所定速度以下になったことを以て判定してもよいし、制御用目標トルクTと目標トルクTTGTとが一致したことを以て判定してもよい。あるいは、図5(d)に示すように、エンジン回転数Neがモーター回転数Nmや目標トルクTTGTに対応する所定回転数Ne0になったことを以て判定してもよい。時刻t2からクラッチ2の係合操作が開始され、クラッチ油圧を与える制御信号が車両制御装置11からクラッチ2に出力される。
時刻t2から所定の係合時間Gが経過した時刻t3になると、クラッチ2が係合したと判断され、モーター3及びジェネレーター4の動作が同期的に停止するように制御される。モーター3の出力トルクTMTRは、図5(a)に示すように、所定の減少時間Fでゼロになるように一定の勾配で減少する。また、ジェネレーター4の発電トルクTGENも、図5(b)に示すように、減少時間Fでゼロになるように線形に減少する。図5(a)中にハッチング領域で示すトルクに対応する出力は、図5(b)中にハッチング領域で示すトルクに対応する電力量に相当する。
これにより、エンジン1から駆動輪8側に伝達される出力は、ジェネレーター4に吸収されていた分を徐々に取り戻して増大する。また、時刻t4にジェネレーター4での発電が停止する(発電量がゼロになる)と、エンジン1の出力は本来の制御用目標トルクTに対応するものとなる。上記のような制御の結果、図5(f)に示すように、クラッチ2の係合前から係合後にかけての軸トルク(クラッチ2から駆動輪8側に伝達されるトルク)が安定し、過不足のない駆動力が駆動輪8に伝達される。
[5.効果]
(1)このように、上記の車両10での走行モードの切り換え時には、クラッチ2が係合する前から、クラッチ2の係合後に必要となる出力よりも、エンジン出力が大きく設定される。これにより、クラッチ2の係合直後から過不足のないエンジン出力で車両10を走行させることができ、走行,加速のもたつきや空走感を解消して、走行性能を向上させることができる。なお、クラッチの係合前に制御用目標トルクTを少なくとも目標トルクTTGT以上の大きさに設定しておけば、このような効果を奏するものとなる。
(2)また、上記の車両10では、エンジン出力の余剰分に相当する電力が、クラッチ2の係合前からジェネレーター4で吸収される。つまり、ジェネレーター4で吸収される電力を変更すれば、クラッチ2の係合状態に関わらず、係合要素2aに伝達されるエンジン出力の大きさが可変となる。したがって、クラッチ2を係合させる際の制御性を向上させることができる。
また、クラッチ2の係合前のエンジン出力が、クラッチ係合後を見越した大きめの値に設定されていることから、クラッチ2に伝達されるエンジン出力の最大値は、クラッチ2の係合後に必要となる出力以上の大きな値となる。一方、ジェネレーター4で吸収される電力を大きくすれば、クラッチ2に伝達されるエンジン出力が微小な値となる。したがって、クラッチ2に伝達される出力の変更幅を増大させることができる。さらに、幅広い変更幅で駆動輪8側に伝達される出力が変更可能であるため、クラッチ2の係合直後から過不足のないエンジン出力を駆動輪8側に伝達することができ、加速のもたつきや空走感を確実に解消することができ、走行性能をさらに向上させることができる。
(3)また、上記の車両10では、バッテリー6の充電率Cが所定充電率C0以下のときに、発電量可変制御が実施される。ジェネレーター4での発電ができない場合には、発電量可変制御が不実施とされ、発電量が一定値に固定されて、発電電流が直接的にモーター3に供給される。このような制御構成により、動力伝達経路内でのエネルギー収支を精度よく均衡させることができ、クラッチ2の係合要素2a,2bの回転数を同期させやすくすることができるとともに、クラッチ2の係合後の出力制御性を向上させることができる。
(4)また、上記の車両10では、クラッチ2の係合後にモーター3を停止させる際に、モーター3及びジェネレーター4の動作が同期的に停止するように制御される。例えば、図5(a),(b)に示すように、モーター3の出力トルクTMTRは所定の減少時間Fでゼロになるように一定の勾配で減少し、ジェネレーター4の発電トルクTGENも減少時間Fでゼロになるように一定の勾配で減少する。一方、エンジン1の制御用目標トルクTは、モーター3の作動状態とは無関係に制御可能であり、例えば図5(c)に示す例では変動せず一定のままとなる。
このように、モーター3の出力を減少させる操作とジェネレーター4で電力に変換される出力を減少させる操作とを連動させることにより、エンジン1の出力を変化させることなく、駆動輪8に伝達される軸トルクを一定に維持することが容易となり、パラレルモードへのスムーズな移行が可能となる。また、例えば従来のハイブリッド自動車では、クラッチ2の係合後にエンジン1の出力を短時間で増大させる必要があったが、上記の車両10ではその必要がない。したがって、クラッチ係合後の駆動トルクを安定させることができ、走行性能を向上させることができる。
(5)また、上記の車両10では、クラッチ2の係合要素2a,2bの回転速度が同期したときに、クラッチ2を係合させる操作が実施される。したがって、クラッチスリップの発生を防止することができるとともに、トルクショックの発生を防止することができる。また、発電量可変制御では、係合要素2a,2bの回転速度を同期させるのに要する出力のみがクラッチ2のエンジン1側の係合要素2aに伝達されるため、制御精度を向上させることができ、比較的短時間で係合要素2a,2bの回転速度を同期させることができる。
(6)また、上記の車両10では、車速Vに基づいて走行モードの切り換えが実施され、パラレルモードはEVモード,シリーズモードよりも比較的高速での走行時に設定される。一般に、モーター3はエンジン1と比較して低速域で安定した大トルクを出力可能であることから、低速域にモーター3を主体とした走行モードを利用することで、車両10の発進性を向上させることができる。一方、中高速域ではモーター3の出力トルクが減少するのに対してエンジン1の出力トルクが増大するため、エンジン1を主体とした走行モードを利用して、車両10のエネルギー効率や運動性能を高めることができる。また、このように、モーター3及びエンジン1のそれぞれの出力特性を考慮して走行モードを切り換えることにより、車両10の走行性能を向上させることができる。
(7)さらに、上記の車両10では走行モードの切り換えの要否判定に際し、バッテリー6の充電率Cに基づいて設定される第一判定車速V1や、電池温度Eに基づいて設定される第二判定車速V2を用いて、判定車速V0を演算している。このような制御により、バッテリー6の充電率を常に高めの値に維持しておくことができる。また、高温環境下でのバッテリー6及びモーター3の使用をできるだけ控えてエンジン1を使用することができ、バッテリー6及びモーター3の寿命を延ばすことができる。したがって、モーター走行に係る制御の信頼性を向上させることができる。
[6.変形例]
上述の実施形態では、走行モードをシリーズモードからパラレルモードへと切り換える際の移行制御について詳述したが、EVモードからパラレルモードへの移行制御についても、同様の制御を実施することができる。この場合、図5(b)中で時刻t0以前の発電トルクTGENがゼロであり、図5(c)中で時刻t0以前の制御用目標トルクTもゼロである。一方、時刻t0以降は、ほぼ同様のグラフ形状となる。
また、上述の実施形態では、図5(f)に示すように、移行制御中の軸トルクがほぼ一定となる場合にについて例示したが、軸トルクの値は必ずしも一定とは限らない。例えば、移行制御中にアクセルペダルの踏み込み操作が強められれば、モーター3の出力トルクTMTRが増加するとともにエンジン1の制御用目標トルクTが増加し、これに伴って、発電トルクTGENも増加する。これにより、駆動輪8に伝達される軸トルクの大きさは、アクセルペダルの踏み込み操作に応じたものとなる。
また、モーター3の出力トルクTMTRとジェネレーター4の発電トルクTGENとがともに増加することから、モーター3及びジェネレーター4の動作を同期させることができ、すなわちモーター3の作動状態とは無関係にエンジン1の出力を制御することができる。したがって、モーター3を停止させるときにエンジン1に特別な操作は不要であり、クラッチ係合後の駆動トルクを安定させて、走行性能を向上させることができる。
1 エンジン
2 クラッチ
3 モーター(電動機)
4 ジェネレーター(発電機)
11 車両制御装置
12 エンジン制御部
12a 予測演算部(演算手段)
12b エンジントルク制御部(エンジン制御手段)
13 クラッチ制御部(クラッチ制御手段)
13a 切り換え判定部(切り換え判定手段)
14 モーター制御部(電動機制御手段)
15 ジェネレーター制御部(発電機制御手段)
16 バッテリー制御部

Claims (7)

  1. 車両の駆動輪に動力を伝達するエンジンと、
    前記エンジンと前記駆動輪との間の動力伝達経路上に介装されたクラッチと、
    前記クラッチよりも前記駆動輪側で前記駆動輪に動力を伝達する電動機と、
    前記電動機の動力で前記車両を走行させる第一走行モードから、前記エンジンの動力で前記車両を走行させる第二走行モードへの切り換えに際し、前記クラッチの係合後における前記エンジンの第一目標出力を前記クラッチの係合前に演算する演算手段と、
    前記クラッチの係合前に、前記エンジンの出力を前記演算手段で演算された前記第一目標出力以上となる第二目標出力に制御するエンジン制御手段と、を備える
    ことを特徴とする、ハイブリッド自動車の制御装置。
  2. 前記エンジンの動力で発電し、前記電動機に電力を供給するバッテリーを充電する発電機と、
    前記クラッチの係合前に、前記第一目標出力に相当する前記エンジンの出力により前記発電機を駆動して発電させる発電機制御手段と、を備える
    ことを特徴とする、請求項1記載のハイブリッド自動車の制御装置。
  3. 前記バッテリーの充電率が所定値以下である場合に、前記発電機制御手段が前記発電機に発電させる
    ことを特徴とする、請求項2記載のハイブリッド自動車の制御装置。
  4. 前記第一走行モードから前記第二走行モードへの切り換えに際し、前記クラッチの係合後に前記電動機の出力トルクを減少させる電動機制御手段を備え、
    前記電動機制御手段が前記電動機の出力トルクを減少させるのと同時に、前記発電機制御手段が前記発電機の出力を減少させる
    ことを特徴とする、請求項2又は3記載のハイブリッド自動車の制御装置。
  5. 前記第一走行モードから前記第二走行モードへの切り換えに際し、前記クラッチの前記エンジン側及び前記電動機側の回転速度差が所定値以下になったときに、前記クラッチを係合させるクラッチ制御手段を備える
    ことを特徴とする、請求項1〜4の何れか1項に記載のハイブリッド自動車の制御装置。
  6. 前記車両の走行速度に基づいて、前記第一走行モードから前記第二走行モードへの切り換えを実施するか否かを判定する切り換え判定手段を備える
    ことを特徴とする、請求項1〜5の何れか1項に記載のハイブリッド自動車の制御装置。
  7. 前記切り換え判定手段が、前記電動機の電力源である第二バッテリーの充電率又は温度に応じて設定される判定車速と前記車両の走行速度との大小関係に基づき、前記切り換えを実施するか否かを判定する
    ことを特徴とする、請求項6記載のハイブリッド自動車の制御装置。
JP2012111144A 2012-05-15 2012-05-15 ハイブリッド自動車の制御装置 Active JP6019732B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012111144A JP6019732B2 (ja) 2012-05-15 2012-05-15 ハイブリッド自動車の制御装置
US13/848,459 US9126582B2 (en) 2012-05-15 2013-03-21 Control apparatus for a hybrid vehicle
EP13160677.4A EP2664508B1 (en) 2012-05-15 2013-03-22 Control apparatus for a hybrid vehicle
CN201310180363.3A CN103419775B (zh) 2012-05-15 2013-05-15 用于混合动力车辆的控制设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012111144A JP6019732B2 (ja) 2012-05-15 2012-05-15 ハイブリッド自動車の制御装置

Publications (2)

Publication Number Publication Date
JP2013237336A true JP2013237336A (ja) 2013-11-28
JP6019732B2 JP6019732B2 (ja) 2016-11-02

Family

ID=48141735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012111144A Active JP6019732B2 (ja) 2012-05-15 2012-05-15 ハイブリッド自動車の制御装置

Country Status (4)

Country Link
US (1) US9126582B2 (ja)
EP (1) EP2664508B1 (ja)
JP (1) JP6019732B2 (ja)
CN (1) CN103419775B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019151283A (ja) * 2018-03-06 2019-09-12 本田技研工業株式会社 車両制御システム、車両制御方法、およびプログラム
JP2021020599A (ja) * 2019-07-29 2021-02-18 日産自動車株式会社 電動車両の制御方法及び電動車両の駆動システム

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2488969A (en) * 2011-02-01 2012-09-19 Land Rover Uk Ltd Hybrid electric vehicle control using virtual speed of an actuator
KR101361384B1 (ko) * 2011-12-26 2014-02-21 현대자동차주식회사 하이브리드 차량의 ev/hev모드 천이 제어방법
JP5900023B2 (ja) * 2012-03-02 2016-04-06 三菱自動車工業株式会社 ハイブリッド車用トランスアクスル装置
DE102014213080A1 (de) * 2013-09-20 2015-04-16 Robert Bosch Gmbh Verfahren zum Abstellen einer Brennkraftmaschine
US20160090005A1 (en) * 2014-03-10 2016-03-31 Dean Drako Distributed Torque Generation System and Method of Control
US20160236589A1 (en) * 2014-03-10 2016-08-18 Shivinder Singh Sikand Four motor propulsion system and yaw vectoring control circuit
US20160020618A1 (en) * 2014-07-21 2016-01-21 Ford Global Technologies, Llc Fast Charge Algorithms for Lithium-Ion Batteries
CN105035089A (zh) * 2015-08-07 2015-11-11 厦门金龙联合汽车工业有限公司 一种混联混合动力系统串并联切换控制算法
JP6733288B2 (ja) * 2016-04-27 2020-07-29 いすゞ自動車株式会社 ハイブリッド車両
JP6725879B2 (ja) * 2016-09-15 2020-07-22 三菱自動車工業株式会社 ハイブリッド車の作動制御装置
GB2564877B (en) * 2017-07-25 2020-03-25 Jaguar Land Rover Ltd Method for starting a hybrid vehicle
CN111433090B (zh) * 2017-12-04 2023-06-27 三菱自动车工业株式会社 车辆控制单元
JP7217860B2 (ja) * 2018-03-20 2023-02-06 マツダ株式会社 車両駆動装置
CN111098847B (zh) * 2018-10-25 2021-08-10 比亚迪股份有限公司 一种串联切换混联模式的控制方法、系统及车辆
JP7163271B2 (ja) * 2019-12-20 2022-10-31 本田技研工業株式会社 車両の制御装置
DE102020004450A1 (de) 2020-07-23 2022-01-27 Daimler Ag Hybridantriebseinrichtung für ein Kraftfahrzeug, insbesondere für einen Kraftwagen, sowie Kraftfahrzeug
DE102020005101A1 (de) 2020-08-20 2022-02-24 Daimler Ag Hybridantriebseinrichtung für ein Kraftfahrzeug sowie Kraftfahrzeug
CN113335262B (zh) * 2021-07-19 2022-08-23 中国第一汽车股份有限公司 混合动力汽车驱动模式切换的控制方法、车辆及存储介质
CN113847420B (zh) * 2021-09-29 2023-03-31 潍柴动力股份有限公司 一种车辆换挡控制方法及装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000071815A (ja) * 1998-08-26 2000-03-07 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2000110602A (ja) * 1998-09-30 2000-04-18 Mazda Motor Corp ハイブリッド自動車
JP2000225871A (ja) * 1999-02-03 2000-08-15 Mazda Motor Corp ハイブリッド車両
JP2004112956A (ja) * 2002-09-20 2004-04-08 Honda Motor Co Ltd ハイブリッド車両
JP2006306209A (ja) * 2005-04-27 2006-11-09 Nissan Motor Co Ltd ハイブリッド駆動装置のエンジン始動方法
JP2009274677A (ja) * 2008-05-16 2009-11-26 Denso Corp ハイブリッド車両の制御装置
JP2010111194A (ja) * 2008-11-05 2010-05-20 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2011016390A (ja) * 2009-07-07 2011-01-27 Aisin Aw Co Ltd ハイブリッド駆動装置
JP2011225034A (ja) * 2010-04-15 2011-11-10 Mitsubishi Motors Corp ハイブリッド自動車

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3480316B2 (ja) * 1998-06-15 2003-12-15 日産自動車株式会社 ハイブリッド車両の制御装置
JP2005130564A (ja) 2003-10-22 2005-05-19 Fuji Heavy Ind Ltd ハイブリッド車両の制御装置
JP2005138743A (ja) * 2003-11-07 2005-06-02 Nissan Motor Co Ltd ハイブリッド車両の駆動力制御装置
JP2007320388A (ja) 2006-05-31 2007-12-13 Honda Motor Co Ltd ハイブリッド車両の制御装置
JP5325120B2 (ja) * 2007-02-22 2013-10-23 マック トラックス インコーポレイテッド ハイブリッド車両のエネルギ管理方法及び装置
JP5311610B2 (ja) * 2007-12-27 2013-10-09 現代自動車株式会社 ハイブリッド車の駆動力制御装置
JP4554702B2 (ja) * 2008-11-19 2010-09-29 トヨタ自動車株式会社 動力伝達装置の制御装置
TWI413593B (zh) * 2008-11-28 2013-11-01 Ind Tech Res Inst 一種混合動力系統的串並聯耦合控制方法與系統
JP5201190B2 (ja) * 2010-10-08 2013-06-05 三菱自動車工業株式会社 ハイブリット車のクラッチ制御装置
JP5402982B2 (ja) * 2011-05-12 2014-01-29 トヨタ自動車株式会社 内燃機関の異常判定装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000071815A (ja) * 1998-08-26 2000-03-07 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2000110602A (ja) * 1998-09-30 2000-04-18 Mazda Motor Corp ハイブリッド自動車
JP2000225871A (ja) * 1999-02-03 2000-08-15 Mazda Motor Corp ハイブリッド車両
JP2004112956A (ja) * 2002-09-20 2004-04-08 Honda Motor Co Ltd ハイブリッド車両
JP2006306209A (ja) * 2005-04-27 2006-11-09 Nissan Motor Co Ltd ハイブリッド駆動装置のエンジン始動方法
JP2009274677A (ja) * 2008-05-16 2009-11-26 Denso Corp ハイブリッド車両の制御装置
JP2010111194A (ja) * 2008-11-05 2010-05-20 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2011016390A (ja) * 2009-07-07 2011-01-27 Aisin Aw Co Ltd ハイブリッド駆動装置
JP2011225034A (ja) * 2010-04-15 2011-11-10 Mitsubishi Motors Corp ハイブリッド自動車

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019151283A (ja) * 2018-03-06 2019-09-12 本田技研工業株式会社 車両制御システム、車両制御方法、およびプログラム
JP2021020599A (ja) * 2019-07-29 2021-02-18 日産自動車株式会社 電動車両の制御方法及び電動車両の駆動システム
JP7324644B2 (ja) 2019-07-29 2023-08-10 日産自動車株式会社 電動車両の制御方法及び電動車両の駆動システム

Also Published As

Publication number Publication date
CN103419775B (zh) 2016-03-16
US9126582B2 (en) 2015-09-08
JP6019732B2 (ja) 2016-11-02
EP2664508A2 (en) 2013-11-20
EP2664508A3 (en) 2017-08-09
CN103419775A (zh) 2013-12-04
US20130311018A1 (en) 2013-11-21
EP2664508B1 (en) 2019-09-04

Similar Documents

Publication Publication Date Title
JP6019732B2 (ja) ハイブリッド自動車の制御装置
US9227628B1 (en) Method and system for selecting an engine operating point for a hybrid vehicle
US8668621B2 (en) Control device
US9056613B2 (en) System and method for upshift torque modification using an upstream clutch in a hybrid vehicle
KR101434123B1 (ko) 하이브리드 차량의 제어 장치
US9630626B2 (en) System and method for managing hybrid vehicle regenerative braking
US9573584B2 (en) Hybrid vehicle control device
US9061681B2 (en) Control device
JP5391654B2 (ja) ハイブリッド車両の制御装置
US10252712B2 (en) Adapting engine-on time to driver aggressiveness in a hybrid vehicle
US9783183B2 (en) Battery charging strategy in a hybrid vehicle
US9381908B2 (en) Hybrid vehicle control device
US10214203B2 (en) System and method for determining engine pull-up threshold
JP6492908B2 (ja) ハイブリッド車両の制御装置
JP2010149783A (ja) ハイブリッド車両の制御装置
JP2021109603A (ja) アシスト制御装置
CN107585156B (zh) 用于车辆的变速控制装置
JP5418850B2 (ja) 制御装置
JP2012086678A (ja) 車両の駆動力制御装置
JP5565636B2 (ja) 制御装置
JP2017177970A (ja) ハイブリッド車両システム、ハイブリッド車両システムの制御装置及びハイブリッド車両システムの制御方法
JP2017177969A (ja) ハイブリッド車両システム、ハイブリッド車両システムの制御装置及びハイブリッド車両システムの制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160919

R151 Written notification of patent or utility model registration

Ref document number: 6019732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350