JP2013211138A - Evaporation source and vacuum deposition device using the same - Google Patents

Evaporation source and vacuum deposition device using the same Download PDF

Info

Publication number
JP2013211138A
JP2013211138A JP2012079803A JP2012079803A JP2013211138A JP 2013211138 A JP2013211138 A JP 2013211138A JP 2012079803 A JP2012079803 A JP 2012079803A JP 2012079803 A JP2012079803 A JP 2012079803A JP 2013211138 A JP2013211138 A JP 2013211138A
Authority
JP
Japan
Prior art keywords
evaporation source
crucible
heating
heating means
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012079803A
Other languages
Japanese (ja)
Inventor
Hiroyasu Matsuura
宏育 松浦
Eiji Matsuzaki
永二 松崎
Tomohiko Ogata
智彦 尾方
Tatsuya Miyake
竜也 三宅
Hideaki Minekawa
英明 峰川
Akio Yazaki
秋夫 矢崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2012079803A priority Critical patent/JP2013211138A/en
Priority to KR1020130015305A priority patent/KR20130111272A/en
Priority to TW102105598A priority patent/TW201339336A/en
Priority to CN2013100535083A priority patent/CN103361610A/en
Publication of JP2013211138A publication Critical patent/JP2013211138A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an evaporation source in which, even if a vapor deposition material enters the inside of the evaporation source, deterioration of film quality is prevented and hindrance on continuous operation and maintenance is also prevented from occurring, and to provide a vacuum deposition device.SOLUTION: An evaporation source is configured of: a crucible having a nozzle for releasing an evaporated vapor deposition material obtained by heating a sealed vapor deposition material; heating means for heating this crucible; and heat insulation means which is arranged around the crucible and the heating means. Floating vapor deposit collecting means held at low temperature by this heating means is installed between the heat insulation means and the crucible or the heating means, and the heat insulation means is installed between this floating vapor deposit collecting means, and the crucible and the heating means. Furthermore, the evaporation source is used in a vapor deposition device.

Description

真空下で蒸着材料を加熱して蒸着粒子を発生させ、基板上に蒸着材料の膜を形成する真空蒸着装置に関する。   The present invention relates to a vacuum vapor deposition apparatus that heats a vapor deposition material under vacuum to generate vapor deposition particles and forms a film of the vapor deposition material on a substrate.

一般的な有機エレクトロルミネッセンス素子(以下、有機EL素子という)を簡単に説明する。
有機EL素子は基板上に陽極、正孔輸送層、発光層、電子輸送層、電子注入層、陰極の順に膜を形成し、陽極と陰極との間に電流を流すことにより発光するものである。
A general organic electroluminescence element (hereinafter referred to as an organic EL element) will be briefly described.
An organic EL element is one in which a film is formed on a substrate in the order of an anode, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode, and light is emitted by passing a current between the anode and the cathode. .

特に正孔輸送層から電子注入層については、有機化合物又は無機化合物を真空蒸着又は印刷又は塗布により形成し、陽極上に積層構造体を形成する。さらに、マグネシウム・銀やアルミニウム等の金属膜を真空蒸着またはスパッタで積層構造体の上に形成し、陰極を設けるものである。このようにして有機EL素子は形成される。   In particular, from the hole transport layer to the electron injection layer, an organic compound or an inorganic compound is formed by vacuum deposition, printing, or coating, and a laminated structure is formed on the anode. Furthermore, a metal film such as magnesium / silver or aluminum is formed on the laminated structure by vacuum deposition or sputtering, and a cathode is provided. In this way, the organic EL element is formed.

一般的な真空蒸着方法の例を図2を使って説明する。
図2において、真空蒸着装置1は、真空チャンバ2と、真空ポンプ3及び蒸発源4を備えている。真空チャンバ2は密閉容器となっており、その内部には蒸発源4と蒸着対象の基板5とが配置されている。また真空チャンバ2の内部は、基板5に対して成膜する際には、10-3〜10-6Paの真空度を保つ必要があるため、真空ポンプ3によって真空排気される。蒸発源4では蒸着材料を加熱して気化させ、基板5に対して吹きつけて成膜するようになっている。その際、基板5の大形化に対しては、基板5を回転させる、或いは基板5又は蒸発源4のいずれかを移動させて成膜を行うようになっている。
An example of a general vacuum deposition method will be described with reference to FIG.
In FIG. 2, the vacuum deposition apparatus 1 includes a vacuum chamber 2, a vacuum pump 3, and an evaporation source 4. The vacuum chamber 2 is a sealed container, in which an evaporation source 4 and a substrate 5 to be deposited are arranged. Further, the inside of the vacuum chamber 2 is evacuated by the vacuum pump 3 because it is necessary to maintain a vacuum degree of 10 −3 to 10 −6 Pa when the film is formed on the substrate 5. In the evaporation source 4, the vapor deposition material is heated and vaporized and sprayed onto the substrate 5 to form a film. At this time, in order to increase the size of the substrate 5, film formation is performed by rotating the substrate 5 or moving either the substrate 5 or the evaporation source 4.

一般的な蒸発源構造の例を簡単に説明すると、蒸着材料を内部に封入したルツボはヒータにより加熱される。これにより、蒸着材料は気化し、ルツボの蓋に設けた開口から、蒸着材料のガスが基板に向けて上方に放出するようになっている。   Briefly explaining an example of a general evaporation source structure, a crucible enclosing a vapor deposition material is heated by a heater. Thereby, the vapor deposition material is vaporized, and the gas of the vapor deposition material is discharged upward toward the substrate from the opening provided in the lid of the crucible.

上述したルツボはルツボ本体及び上蓋と中蓋とから構成されている。ルツボ本体は構造体によって支持されており、加熱手段であるヒータにより輻射加熱されて蒸着材料が蒸発するようになっている。   The crucible described above is composed of a crucible body, an upper lid, and an inner lid. The crucible main body is supported by a structure, and the vapor deposition material is evaporated by being radiantly heated by a heater as a heating means.

これにより、ルツボの上方に配置した基板に膜が形成される。ヒータの出力を制御するために、熱電対によりルツボの底部温度を測定するようになっている。さらにヒータの外周部にはリフレクタが設置され、ヒータからの輻射熱がルツボ内に集中するように構成されている。   As a result, a film is formed on the substrate disposed above the crucible. In order to control the output of the heater, the bottom temperature of the crucible is measured by a thermocouple. Further, a reflector is installed on the outer peripheral portion of the heater so that the radiant heat from the heater is concentrated in the crucible.

特開2008−24998号公報JP 2008-24998 A

上記従来技術では、ルツボのノズルから放出された蒸着材料の蒸気の大多数は、基板の方向へ向かって移動する。しかし、中には蒸発源の内部に向かって入り込む蒸気の粒子、或いはルツボ本体と上蓋との隙間から洩れ出てくるものが発生する。   In the above prior art, the majority of the vapor of the vapor deposition material released from the crucible nozzle moves toward the substrate. However, some vapor particles enter the inside of the evaporation source or leak from the gap between the crucible body and the upper lid.

蒸発源の内部に入り込んだ蒸着材料の蒸気の粒子は、リフレクタの外部と接続する部材、例えば構造部材やヒータの端子及び熱電対などに対して、蒸発源内部の低温の部材に集中して凝縮し析出してしまう。   Vapor particles of the vapor deposition material that have entered the evaporation source concentrate and condense on the low-temperature members inside the evaporation source against members connected to the outside of the reflector, such as structural members, heater terminals, and thermocouples. And precipitate.

有機化合物の蒸着材料が析出してしまうと、有機蒸着では、長時間ヒータの熱を受けることにより分解し、膜質に影響を及ぼす不純物が生じる。また、無機化合物の蒸着材料の場合は、蒸着材料が付着した部材が貼り付き、メンテナンス時に各部材を分解できなくなることもある。特に、金属材料を蒸着材料とすると、ヒータの端子間などで短絡が発生する可能性もある。これらの問題点は従来技術の蒸発源では解決されなかった。   If the vapor deposition material of the organic compound is deposited, the organic vapor deposition is decomposed by receiving heat from the heater for a long time, and impurities that affect the film quality are generated. Further, in the case of a vapor deposition material of an inorganic compound, a member to which the vapor deposition material is attached may stick and it may not be possible to disassemble each member during maintenance. In particular, when a metal material is used as a vapor deposition material, a short circuit may occur between the terminals of the heater. These problems have not been solved by prior art evaporation sources.

これに対して特許文献1に示される蒸発源には、上記に示した蒸発源内部で蒸着材料が析出する問題に関しての解決策については開示されていない。   On the other hand, the evaporation source disclosed in Patent Document 1 does not disclose a solution regarding the above-described problem of the deposition material being deposited inside the evaporation source.

本発明の目的は、蒸着材料が蒸発源内部に入り込んでも、膜質の劣化を防止し、連続運転やメンテナンスに支障が生じないようにする蒸発源、及び真空蒸着装置を提供することにある。   An object of the present invention is to provide an evaporation source and a vacuum evaporation apparatus that prevent deterioration of film quality and prevent troubles in continuous operation and maintenance even when an evaporation material enters the evaporation source.

上記目的を達成するために本発明は、封入された蒸着材料を加熱して蒸発した蒸着材料の放出するためのノズルを有するルツボと、このルツボを加熱するための加熱手段と、前記ルツボと前記加熱手段の周辺に配置した断熱手段とにより構成された蒸発源において、前記断熱手段とルツボ又は加熱手段の間にこの加熱手段より低温に保持された浮遊蒸着物回収手段を設けるとともに、この浮遊蒸着物回収手段と前記ルツボ及び前記加熱手段との間に断熱手段を設けたものである。   In order to achieve the above object, the present invention provides a crucible having a nozzle for heating an enclosed vapor deposition material to discharge the vaporized vapor deposition material, heating means for heating the crucible, the crucible and the crucible In the evaporation source constituted by the heat insulating means arranged around the heating means, a floating deposit collecting means held at a lower temperature than the heating means is provided between the heat insulating means and the crucible or the heating means, and the floating vapor deposition is provided. A heat insulating means is provided between the object collecting means, the crucible and the heating means.

前記加熱手段は前記ルツボと一体、またはルツボの内部に設けられていても良い。   The heating means may be integrated with the crucible or provided inside the crucible.

前記加熱手段は抵抗加熱を用いて発熱するものであっても良い。   The heating means may generate heat using resistance heating.

前記加熱手段は前記ルツボの外に配置され、かつ抵抗加熱、誘導加熱、赤外線加熱のいずれかの加熱手段を用いるものであっても良い。   The heating means may be disposed outside the crucible and may use any one of resistance heating, induction heating, and infrared heating.

前記断熱手段は前記ルツボ及び加熱手段に対する前記浮遊蒸着物回収手段の対向面を少なくとも覆う形状であっても良い。
The heat insulating means may have a shape that covers at least the facing surface of the floating deposit recovery means with respect to the crucible and the heating means.

また上記目的を達成するために本発明は好ましくは、前記断熱手段は単数又は複数の板を積層した構造であると良い。   In order to achieve the above object, the present invention preferably has a structure in which the heat insulating means is formed by laminating a single plate or a plurality of plates.

また上記目的を達成するために本発明は好ましくは、前記断熱手段はカーボン・金属・セラミックのいずれか一つ又は複数より形成された綿あるいは布状若しくは発泡材を用いると良い。   In order to achieve the above object, in the present invention, preferably, the heat insulating means is made of cotton, cloth, or foam formed of one or more of carbon, metal, and ceramic.

また上記目的を達成するために本発明は好ましくは、前記浮遊蒸着物回収手段とルツボ又は加熱手段との間に設けた断熱手段は単数又は複数の板を積層した構造であると良い。   In order to achieve the above object, the present invention preferably has a structure in which the heat insulating means provided between the floating deposit recovery means and the crucible or the heating means has a structure in which a single plate or a plurality of plates are laminated.

また上記目的を達成するために本発明は好ましくは、前記断熱手段はカーボン・金属・セラミックのいずれか一つ又は複数より形成された綿あるいは布状若しくは発泡材を用いると良い。   In order to achieve the above object, in the present invention, preferably, the heat insulating means is made of cotton, cloth, or foam formed of one or more of carbon, metal, and ceramic.

また上記目的を達成するために本発明は好ましくは、前記浮遊蒸着物回収手段の周りに着脱可能なカバーを設け、このカバーは冷却手段と少なくとも部分的に接触して冷却されると良い。   In order to achieve the above object, the present invention preferably provides a detachable cover around the floating deposit collection means, and the cover is cooled at least partially in contact with the cooling means.

また上記目的を達成するために本発明は好ましくは、前記浮遊蒸着物回収手段を前記ルツボのノズルを有する面以外に設けると良い。   In order to achieve the above object, the present invention preferably provides the floating deposit recovery means other than the surface having the crucible nozzle.

また上記目的を達成するために本発明は好ましくは、前記浮遊蒸着物回収装置は循環する冷却媒体によって冷却されると良い。   In order to achieve the above object, the present invention is preferably configured such that the floating deposit recovery device is cooled by a circulating cooling medium.

また上記目的を達成するために本発明は好ましくは、前記冷却媒体はハウジングの壁自体を循環するとともに、前記ハウジングと前記浮遊蒸着物回収手段は熱的に接触すると良い。
また、上記目的を達成するための本発明の構成は、前記蒸発源のいずれかを用いた真空蒸着装置である。
In order to achieve the above object, preferably, the cooling medium circulates through the wall of the housing itself, and the housing and the floating deposit recovery means are in thermal contact with each other.
Moreover, the structure of this invention for achieving the said objective is a vacuum evaporation system using any of the said evaporation sources.

本発明によれば、蒸着材料が蒸発源内部に入り込んでも、膜質の劣化を防止し、連続運転やメンテナンスに支障が生じないようにする真空蒸着装置及び蒸発源を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, even if a vapor deposition material enters the inside of an evaporation source, it can provide the vacuum evaporation apparatus and evaporation source which prevent deterioration of film quality and do not produce trouble in continuous operation and a maintenance.

本発明の実施例に係る蒸発源の基本構成の概略図である。It is the schematic of the basic composition of the evaporation source which concerns on the Example of this invention. 一般的な真空蒸着による成膜装置の概略構成図である。It is a schematic block diagram of the film-forming apparatus by general vacuum evaporation. 本発明の実施例に係る蒸発源の概略構成図である。It is a schematic block diagram of the evaporation source which concerns on the Example of this invention. 本発明の実施例に係る有機ELデバイス製造装置の概略構成図である。It is a schematic block diagram of the organic EL device manufacturing apparatus which concerns on the Example of this invention. 本発明の他の実施例に係る蒸発源の冷却手段を示す図である。It is a figure which shows the cooling means of the evaporation source which concerns on the other Example of this invention. 本発明の他の実施例に係る蒸発源の冷却手段を示す図である。It is a figure which shows the cooling means of the evaporation source which concerns on the other Example of this invention.

以下、本発明の一実施例を図にしたがって説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

本発明を実施するための最良の形態を図面に基づいて説明する。   The best mode for carrying out the present invention will be described with reference to the drawings.

図2を用いて本発明の実施例に係る真空蒸着装置の概要を説明する。
図2において、真空蒸着装置1は、真空容器であるチャンバ2を有し、その中に蒸着材料21の蒸気を放出する蒸発源4と被蒸着物である基板5が配置されている。蒸着時にはチャンバ内部を10-3Paよりも高い真空度にするために、チャンバに接続した真空ポンプ3により常に真空排気されている。
The outline of the vacuum deposition apparatus according to the embodiment of the present invention will be described with reference to FIG.
In FIG. 2, a vacuum vapor deposition apparatus 1 has a chamber 2 that is a vacuum container, and an evaporation source 4 that emits vapor of a vapor deposition material 21 and a substrate 5 that is a deposition target are disposed therein. During vapor deposition, the inside of the chamber is always evacuated by a vacuum pump 3 connected to the chamber in order to make the degree of vacuum higher than 10 −3 Pa.

減圧を開始してから、蒸発源4の加熱手段44によってルツボ22が加熱される。この加熱によって蒸着材料21は蒸発又は昇華されて蒸着材料21の蒸気が発生して基板5に成膜する。ここで用いる基板5は、ガラス、セラミック、金属、有機物のいずれかの平板を用いる。基板5の蒸着面には、あらかじめ陽極を形成しておく。   After starting the pressure reduction, the crucible 22 is heated by the heating means 44 of the evaporation source 4. By this heating, the vapor deposition material 21 is evaporated or sublimated, and vapor of the vapor deposition material 21 is generated to form a film on the substrate 5. The substrate 5 used here is a flat plate of glass, ceramic, metal, or organic matter. An anode is formed in advance on the vapor deposition surface of the substrate 5.

陽極は、例えばITO、金、よう化銅、酸化錫など正孔注入能力が高い、仕事関数の大きな金属や合金の電気伝導性化合物が好ましい。
正孔注入層としては、例えばCuPcやm-MTDATAが用いられる。正孔輸送層としては、例えばα−NPD、TPD、PDAが用いられる。発光層としては、例えばホスト材料にルブレン、CBP、CDBP、Alq3、ドーパント材料にクマリン6、Ir(ppy)3,FIrpic等が用いられる。電子輸送層としては、例えばAlq3,PBD,TAZ,BND,OXDなどが使用される。電子輸送層としては、例えばLiF、BCP,ストロンチウム等が用いられる。陰極としてはMg-Ag共蒸着膜、Alなどが用いられる。
The anode is preferably an electrically conductive compound of metal or alloy having a high work function, such as ITO, gold, copper iodide, tin oxide and the like, which has a high hole injection capability.
For example, CuPc or m-MTDATA is used as the hole injection layer. For example, α-NPD, TPD, or PDA is used as the hole transport layer. As the light emitting layer, for example, rubrene, CBP, CDBP, Alq3 is used as a host material, and coumarin 6, Ir (ppy) 3, FIrpic, or the like is used as a dopant material. As the electron transport layer, for example, Alq3, PBD, TAZ, BND, OXD and the like are used. For example, LiF, BCP, strontium, or the like is used as the electron transport layer. As the cathode, Mg—Ag co-deposited film, Al or the like is used.

蒸着は、ルツボ22、加熱手段44、断熱手段43により構成される蒸発源4を用いて蒸着を行う。蒸着材料21を封入したルツボ22を加熱手段44により加熱し、蒸着材料21の蒸気を発生させる。そして、ルツボ22に設けたノズル34より基板5に向けて放出することで成膜を行う。これらルツボ22や加熱手段44や断熱手段43等はハウジング27に収納されている。なお、加熱手段44は、ルツボ内部の蒸着材料を加熱することができれば良いので、ルツボの内部にあっても構わない。以下の実施例2〜3でも同様に加熱手段44の位置はルツボの内外を問わず設置可能である。   The vapor deposition is performed using the evaporation source 4 constituted by the crucible 22, the heating means 44, and the heat insulation means 43. The crucible 22 enclosing the vapor deposition material 21 is heated by the heating means 44 to generate vapor of the vapor deposition material 21. Then, the film is formed by discharging toward the substrate 5 from the nozzle 34 provided in the crucible 22. The crucible 22, the heating means 44, the heat insulating means 43, etc. are accommodated in the housing 27. The heating means 44 only needs to be able to heat the vapor deposition material inside the crucible, and may be inside the crucible. Similarly in the following Examples 2 to 3, the position of the heating means 44 can be set regardless of the inside or outside of the crucible.

蒸発源4の制御は、蒸発源4内部に熱電対を設け、ルツボ22やその雰囲気温度を所定の温度になるように加熱手段44への投入電力を調整するものである。或いは、蒸発源4と基板との間に設けられた空間にレートセンサ26を設け、このレートセンサ26への単位時間当たりの蒸着レートが所定の値になるように、加熱手段44の投入電力を調整してもよい。25は熱電対である。50は端子である。   The evaporation source 4 is controlled by providing a thermocouple inside the evaporation source 4 and adjusting the input power to the heating means 44 so that the crucible 22 and its ambient temperature become a predetermined temperature. Alternatively, the rate sensor 26 is provided in a space provided between the evaporation source 4 and the substrate, and the input power of the heating means 44 is set so that the deposition rate per unit time to the rate sensor 26 becomes a predetermined value. You may adjust. Reference numeral 25 denotes a thermocouple. 50 is a terminal.

基板5を大形化するには基板5を回転させ、回転軸から蒸発源4をずらした状態で固定するか、基板5又は蒸発源4のいずれかを蒸気噴出方向と垂直方向に移動させる。特に後者の場合はノズル34を基板の幅方向に整列させ、整列方向と直角方向に基板5又は蒸発源4を移動させれば良い。   To increase the size of the substrate 5, the substrate 5 is rotated and fixed with the evaporation source 4 being displaced from the rotation axis, or either the substrate 5 or the evaporation source 4 is moved in a direction perpendicular to the vapor ejection direction. Particularly in the latter case, the nozzles 34 may be aligned in the width direction of the substrate, and the substrate 5 or the evaporation source 4 may be moved in a direction perpendicular to the alignment direction.

連続して基板5に蒸着を行うためには、チャンバ2にゲートバルブ6を設け、処理の終わった基板5を真空が維持された状態のまま別のチャンバ2に移動させ、同じく真空度を保ったまま未処理の基板5を搬入すればよい。
このようにして蒸着装置及び蒸発源の運用は図られている。本発明の蒸発源4も上記と同じ運用が可能である。
In order to perform deposition on the substrate 5 continuously, a gate valve 6 is provided in the chamber 2 and the processed substrate 5 is moved to another chamber 2 with the vacuum maintained, and the degree of vacuum is also maintained. What is necessary is just to carry in the unprocessed board | substrate 5 as it is.
In this way, the vapor deposition apparatus and the evaporation source are operated. The evaporation source 4 of the present invention can be operated in the same manner as described above.

以下、本発明の蒸発源について図1を用いて説明する。
図1は本発明の実施例に係る蒸発源の基本構成の概略図である。
なお、本実施例で示す図は全て基板5の成膜面を下に向けて処理する形態の例を示しているが、本発明は成膜面の向きによらず適用可能である。
Hereinafter, the evaporation source of the present invention will be described with reference to FIG.
FIG. 1 is a schematic diagram of a basic configuration of an evaporation source according to an embodiment of the present invention.
Note that all the drawings shown in this embodiment show examples of processing in which the film formation surface of the substrate 5 is directed downward, but the present invention can be applied regardless of the orientation of the film formation surface.

図1において、蒸発源4は蒸着材料21を封入し、かつ蒸着材料21を放出するためのノズル34を有するルツボ22と、ルツボ22の外部にあって、ルツボ22を加熱するための加熱手段44、ルツボ22及び加熱手段44の周辺に配置した断熱手段43により構成される。さらに断熱手段43とルツボ22又は加熱手段44との間には冷却手段45(浮遊蒸着物回収手段)が設けられている。   In FIG. 1, the evaporation source 4 encloses the vapor deposition material 21 and has a crucible 22 having a nozzle 34 for discharging the vapor deposition material 21, and heating means 44 for heating the crucible 22 outside the crucible 22. The heat insulating means 43 is arranged around the crucible 22 and the heating means 44. Further, a cooling means 45 (floating deposit recovery means) is provided between the heat insulating means 43 and the crucible 22 or the heating means 44.

この冷却手段45により、蒸発源4内に入射した材料蒸気の粒子をトラップし、選択的に析出させることができる。これにより、周りの部材への析出を最小限に低減させるものである。この冷却手段45の温度は、蒸着材料が蒸発する温度に比べて十分低い温度、例えば昇華する蒸着材料であれば昇華点以下、蒸発する材料であれば、融点以下の温度に保つことが好ましい。   The cooling means 45 can trap and selectively deposit the material vapor particles that have entered the evaporation source 4. Thereby, precipitation on the surrounding members is reduced to a minimum. The temperature of the cooling means 45 is preferably maintained at a temperature sufficiently lower than the temperature at which the vapor deposition material evaporates, for example, at a temperature below the sublimation point if the vapor deposition material is sublimated and below the melting point if the material is vaporized.

一方、冷却手段45を上記の位置に設置する場合、著しくルツボ22又は加熱手段44の輻射熱を吸収するため、ルツボ内の蒸着材料の温度が下がり、蒸着自体に支障が生じる。これを防止するため、ルツボ22及び加熱手段44が冷却手段45を直視できないように熱輻射断熱手段46が設けられている。   On the other hand, when the cooling means 45 is installed at the above position, the radiant heat of the crucible 22 or the heating means 44 is remarkably absorbed, so that the temperature of the vapor deposition material in the crucible is lowered and the vapor deposition itself is hindered. In order to prevent this, the heat radiation heat insulating means 46 is provided so that the crucible 22 and the heating means 44 cannot see the cooling means 45 directly.

この熱輻射断熱手段46は、冷却手段45に密着していても密着しなくてもどちらでも構わない。加熱手段44又はルツボ22に面する最表面の温度が冷却手段45の温度よりも十分高く、ルツボ22内の蒸着材料21の蒸発に影響を与えなければよい。また、冷却手段45の一部が断熱手段43の中に露出している構造であればよい。   The heat radiation heat insulating means 46 may be in close contact with the cooling means 45 or may not be in close contact therewith. The temperature of the outermost surface facing the heating means 44 or the crucible 22 is sufficiently higher than the temperature of the cooling means 45, so long as it does not affect the evaporation of the vapor deposition material 21 in the crucible 22. Further, a structure in which a part of the cooling unit 45 is exposed in the heat insulating unit 43 may be used.

図3(A)に抵抗加熱式の加熱手段44(ヒータ23)として用いた例を示す。
図3(A)において、ヒータ23の発熱体が700℃以下であれば、周囲との絶縁対策が簡便であるためシーズヒータを用いた方が、管理が容易になるので好ましい。700℃を超える場合、特に1000℃以上ではMo,Ta,Wなどの金属あるいはその合金のワイヤをセラミックフレームに巻きつけてヒータを構成するとよい。セラミックフレームの材質としては、アルミナ、SiC、窒化ホウ素、窒化アルミ等の高い温度で絶縁性に優れた材質が好ましい。ヒータ23はドーナッツ状に構成しても、上下又左右等には2分割又はそれ以上に分割しても構わない。ルツボ22及び蒸着材料21がムラなく加熱できればヒータ23をどのように構成してもよい。
FIG. 3A shows an example used as a resistance heating type heating means 44 (heater 23).
In FIG. 3 (A), if the heating element of the heater 23 is 700 ° C. or lower, it is preferable to use a sheathed heater because the measures for insulation from the surroundings are simple because management becomes easier. When the temperature exceeds 700 ° C., particularly at a temperature of 1000 ° C. or higher, a metal such as Mo, Ta, W, or an alloy thereof is wound around a ceramic frame to constitute a heater. The material of the ceramic frame is preferably a material that is excellent in insulation at a high temperature, such as alumina, SiC, boron nitride, and aluminum nitride. The heater 23 may be configured in a donut shape, or may be divided into two or more parts in the vertical and horizontal directions. The heater 23 may be configured in any way as long as the crucible 22 and the vapor deposition material 21 can be heated without unevenness.

ヒータ23の中にルツボ22が収納されている。図3ではルツボ22とヒータ23は非接触としているが、ルツボ22とヒータ23の直接又は間接的な接触により短絡、地絡が発生しなければ接触させても構わない。   A crucible 22 is accommodated in the heater 23. In FIG. 3, the crucible 22 and the heater 23 are not in contact with each other. However, the crucible 22 and the heater 23 may be in contact with each other as long as no short circuit or ground fault occurs due to direct or indirect contact.

ルツボ22の材質としては金属材料としてはMo,Ta,Wなどの金属又はそれらを含んだ合金が好ましい。セラミック材料としては、アルミナ、SiC、窒化ホウ素、窒化アルミ等が好ましく、その他にカーボングラファイト等の材質も使用可能である。   As a material of the crucible 22, a metal such as Mo, Ta, W or an alloy containing them is preferable as a metal material. As the ceramic material, alumina, SiC, boron nitride, aluminum nitride and the like are preferable, and other materials such as carbon graphite can be used.

図3では、図1、図2に示した断熱手段43に代わるものとして、複数枚の反射板48をそれぞれ離間させた、いわゆるリフレクタ24を示している。この反射板48は700℃以下ではステンレス材やチタン材が使用可能である。それ以上の温度帯域では、Au,Cu,Mo,Ta,Wなどの金属材料及びその合金、カーボン、アルミナ、SiC、BN、AlN等のセラミック材が使用できる。熱輻射を伝搬する赤外線等の電磁波を反射する機能を保てればよい。そのため、赤外線帯域の反射率を向上させるのに、反射板48の表面を鏡面加工することが好ましく、さらにAg,Au,Cu,Alなどの金属をメッキしてもよい。   FIG. 3 shows a so-called reflector 24 in which a plurality of reflectors 48 are separated from each other as an alternative to the heat insulating means 43 shown in FIGS. 1 and 2. The reflector 48 can be made of stainless steel or titanium at 700 ° C. or lower. In a temperature range higher than that, metal materials such as Au, Cu, Mo, Ta, and W and alloys thereof, and ceramic materials such as carbon, alumina, SiC, BN, and AlN can be used. What is necessary is just to keep the function to reflect electromagnetic waves, such as infrared rays which propagate thermal radiation. Therefore, in order to improve the reflectance in the infrared band, the surface of the reflector 48 is preferably mirror-finished, and a metal such as Ag, Au, Cu, or Al may be plated.

リフレクタ24の代わりに熱伝導が小さく耐熱温度の高いセラミック板、あるいはセラミックの繊維で作られたシートを少なくとも1枚以上敷いてもよい。セラミック板を使用する場合は、真空排気を考慮し、気孔率が小さいものを用いるとよい。また、図3に示したリフレクタ24と断熱材等を併用しても構わない。   Instead of the reflector 24, at least one sheet of a ceramic plate having a small heat conduction and a high heat resistance temperature or a sheet made of ceramic fibers may be laid. When using a ceramic plate, it is preferable to use a ceramic plate having a low porosity in consideration of evacuation. Moreover, you may use together the reflector 24 shown in FIG. 3, and a heat insulating material.

図3(B)はヒータ23の形状を示したものである。
図3(B)において、(1)に示したヒータ23aは一体に形成したものであり、(2)に示したヒータ23bは2分割したものである。これらのヒータの使い分けはハウジング27の大きさや基板5の大きさに合わせて選択することになる。
FIG. 3B shows the shape of the heater 23.
In FIG. 3B, the heater 23a shown in (1) is integrally formed, and the heater 23b shown in (2) is divided into two parts. The proper use of these heaters is selected according to the size of the housing 27 and the size of the substrate 5.

ここで有機ELデバイス製造のライン構成を図4を用いて簡単に説明する。
図4は本発明の実施例に係る有機ELデバイス製造装置の概略構成図である。
Here, the line configuration for manufacturing the organic EL device will be briefly described with reference to FIG.
FIG. 4 is a schematic configuration diagram of an organic EL device manufacturing apparatus according to an embodiment of the present invention.

図4において、本発明の有機ELデバイス製造装置100はアライメントと蒸着を同一の真空蒸着チャンバ6で行えるように構成されている。有機ELデバイス製造装置100は中心部に真空搬送ロボット9を持った多角形の真空搬送室7と、その周辺部に放射状に基板ストッカ室8や成膜室である真空蒸着チャンバ6を配置したクラスタ型の有機ELデバイス製造装置100の構成となっている。各真空蒸着チャンバ6は基板10を保持する基板保持部13とマスク12とを有する。また、真空蒸着チャンバ6及び基板ストッカ室8と真空搬送室7との間には互いの真空を隔離するゲート弁14が設けられている。11は蒸着源となる。   In FIG. 4, the organic EL device manufacturing apparatus 100 of the present invention is configured so that alignment and vapor deposition can be performed in the same vacuum vapor deposition chamber 6. The organic EL device manufacturing apparatus 100 is a cluster in which a polygonal vacuum transfer chamber 7 having a vacuum transfer robot 9 at the center, and a substrate stocker chamber 8 and a vacuum deposition chamber 6 as a film forming chamber are arranged radially around the periphery. Type organic EL device manufacturing apparatus 100. Each vacuum deposition chamber 6 has a substrate holding part 13 for holding a substrate 10 and a mask 12. A gate valve 14 is provided between the vacuum deposition chamber 6 and the substrate stocker chamber 8 and the vacuum transfer chamber 7 to isolate the vacuum from each other. 11 is a vapor deposition source.

このような構成によって、真空搬送ロボット5は基板ストッカ室3から基板を取出し、真空蒸着チャンバ1の基板保持部9に搬入する。そして、真空蒸着チャンバ1では、搬入された基板6を基板旋回手段(図示せず)でマスク8に正対させ、アライメント(基板とマスクの位置合わせをすること)し、蒸着源7を上下させ基板6に蒸着する。蒸着後、基板6を水平状態に戻す。その後、真空搬送ロボット2により基板6を真空蒸着チャンバ1から搬出し、他の真空蒸着チャンバ1に搬入又は基板ストッカ室3に戻す。   With such a configuration, the vacuum transfer robot 5 takes out the substrate from the substrate stocker chamber 3 and carries it into the substrate holding unit 9 of the vacuum deposition chamber 1. In the vacuum deposition chamber 1, the loaded substrate 6 is directly opposed to the mask 8 by a substrate turning means (not shown), aligned (the substrate and the mask are aligned), and the deposition source 7 is moved up and down. Vapor deposition is performed on the substrate 6. After vapor deposition, the substrate 6 is returned to a horizontal state. Thereafter, the substrate 6 is unloaded from the vacuum deposition chamber 1 by the vacuum transfer robot 2 and is carried into another vacuum deposition chamber 1 or returned to the substrate stocker chamber 3.

このような処理における基板6の搬出入おいて、各真空蒸着チャンバ1の処理に影響を与えないように関連するゲート弁10が制御される。   In carrying in and out of the substrate 6 in such processing, the related gate valve 10 is controlled so as not to affect the processing of each vacuum deposition chamber 1.

以上のごとく、本実施例では冷却手段45をルツボ22及びヒータ23の外部に設けたものであり、かつリフレクタ24で囲んだ領域の内側に設けたものである。これにより、浮遊する洩れ蒸気を冷却手段45に集中的に付着させることができるため余分な所への上記付着を防止することができる。   As described above, in this embodiment, the cooling means 45 is provided outside the crucible 22 and the heater 23 and is provided inside the region surrounded by the reflector 24. As a result, floating leakage vapor can be concentrated on the cooling means 45, so that it is possible to prevent the above-described adhesion to an extra portion.

また冷却手段45に対するヒータ23からの熱は断熱手段43によって遮断されるため冷却手段45が加熱されることはない。したがって、安定した洩れ蒸気の捕集が可能となる。   Moreover, since the heat from the heater 23 with respect to the cooling means 45 is interrupted | blocked by the heat insulation means 43, the cooling means 45 is not heated. Therefore, it is possible to collect the leaked steam stably.

図5に冷却手段の詳細を示す。
図5は本発明の他の実施例に係る蒸発源の冷却手段を示す図である。
図5において、本実施例では冷却手段45として、例えばステンレス製のブロック28とし、リフレクタ24の外部からクーラント52(冷却媒体としてオイル又は水等を使用)を循環させる構造としたものである。
FIG. 5 shows details of the cooling means.
FIG. 5 is a view showing a cooling means for an evaporation source according to another embodiment of the present invention.
In FIG. 5, in this embodiment, as the cooling means 45, for example, a stainless steel block 28 is used, and a coolant 52 (oil or water or the like is used as a cooling medium) is circulated from the outside of the reflector 24.

つまり、チャンバ2とハウジング27を貫通する2本のクーラント流通孔52aを設け、さらに冷却ブロック28で2本のクーラント流通孔52aが合流するようにUターン部52bが設けられている。クーラント流通孔52aはそれぞれ連続した流通孔となるように配管51で接続されている。   That is, two coolant circulation holes 52 a that pass through the chamber 2 and the housing 27 are provided, and a U-turn portion 52 b is provided so that the two coolant circulation holes 52 a merge at the cooling block 28. The coolant circulation holes 52a are connected by a pipe 51 so as to be continuous circulation holes.

なお、本実施例ではチャンバ2、ハウジング27、冷却ブロック28を貫通するクーラント流通孔52aで構成したが、この構成に限定されるものではなくU字状の配管で構成しても同じ効果が得られることは言うまでもない。   In this embodiment, the coolant circulation hole 52a that penetrates the chamber 2, the housing 27, and the cooling block 28 is used. However, the present invention is not limited to this configuration, and the same effect can be obtained even if it is formed of a U-shaped pipe. Needless to say.

以上のごとく本実施例によれば、クーラント25を冷却ブロック28に循環させることにより冷却ブロック28は常に低温状態を保持することができるため洩れ蒸気の捕集効果を高めることができる。   As described above, according to the present embodiment, the coolant 25 is circulated to the cooling block 28, so that the cooling block 28 can always maintain a low temperature state, so that the effect of collecting leaking steam can be enhanced.

図6は本発明の他の実施例に係る蒸発源の冷却手段を示す図である。   FIG. 6 is a view showing a cooling means for an evaporation source according to another embodiment of the present invention.

図6において、実施例2では冷却ブロック28に冷却媒体を循環させる構成としたが本実施例ではリフレクタ24に穴をあけ、外部のハウジング27と接続あるいは一体化させたものである。また、ハウジング27と接続あるいは一体構造にする場合は、ハウジング側のみを水冷してもよい。   In FIG. 6, the cooling medium is circulated through the cooling block 28 in the second embodiment. However, in this embodiment, a hole is formed in the reflector 24 and connected to or integrated with the external housing 27. When the housing 27 is connected or integrated, only the housing side may be water-cooled.

つまり、冷却ブロック28をそのまま使用すると、ルツボ22又は加熱手段44(ヒータ23)の熱輻射を吸収してしまい、蒸発源内の温度を著しく低下させ、蒸着に支障が生じる。このため、図5又は図6に示すように、冷却ブロック28の内、加熱手段44又はルツボ22と対峙する面に、輻射熱遮断手段46を設けたものである。この輻射熱遮断手段46はリフレクタ24又は断熱材等のいずれでも構わない。   That is, if the cooling block 28 is used as it is, the heat radiation of the crucible 22 or the heating means 44 (heater 23) is absorbed, the temperature in the evaporation source is significantly reduced, and vapor deposition is hindered. Therefore, as shown in FIG. 5 or FIG. 6, a radiant heat blocking means 46 is provided on the surface of the cooling block 28 that faces the heating means 44 or the crucible 22. The radiant heat blocking means 46 may be either the reflector 24 or a heat insulating material.

冷却ブロック28の温度は、蒸発源4のリフレクタ24の内側にある部材のいずれよりも低い温度設定が望ましい。また、蒸着材料21の蒸発温度よりも十分低い温度、例えば蒸着材料21が溶融系材料の場合は融点付近、昇華系材料の場合は昇華開始温度以下に設定するのが好ましい。これにより、ノズル近傍から蒸発源4の中に侵入してきた蒸着材料21の粒子は蒸発源4の構成部材、例えば熱電対やリフレクタ24をではなく、冷却ブロック28に集中して析出させることができる。   The temperature of the cooling block 28 is desirably set to a temperature lower than any of the members inside the reflector 24 of the evaporation source 4. Moreover, it is preferable to set the temperature sufficiently lower than the evaporation temperature of the vapor deposition material 21, for example, near the melting point when the vapor deposition material 21 is a molten material, and below the sublimation start temperature when it is a sublimation material. Thereby, the particles of the vapor deposition material 21 entering the evaporation source 4 from the vicinity of the nozzle can be concentrated and deposited on the cooling block 28 instead of the constituent members of the evaporation source 4, such as the thermocouple and the reflector 24. .

また、図5又は図6に示すように、冷却ブロック28に防着板29を取り付けてもよい。防着板29は冷却ブロック28と接触し、熱伝導性の良い材料で作られていることが望ましい。また、防着板29の外側の面はサンドブラスト等で凹凸を持たせ、付着した蒸着材料が脱落しないようにするとよい。また、防着板29を容易に着脱できるようにすることで、メンテナンスが容易に行えるようになる。   Further, as shown in FIG. 5 or FIG. 6, a deposition preventing plate 29 may be attached to the cooling block 28. It is desirable that the deposition preventing plate 29 is made of a material having good thermal conductivity in contact with the cooling block 28. Further, it is preferable that the outer surface of the deposition preventing plate 29 is roughened by sandblasting or the like so that the deposited vapor deposition material does not fall off. In addition, maintenance can be easily performed by making it possible to easily attach and detach the deposition preventing plate 29.

さて、実施例2ではクーラント流通孔52aのUターン部52bを冷却ブロック28に設けたが本実施例ではハウジング27に設けたものである。これにより冷却ブロック28はハウジング27を介して間接的に冷却されるため、クーラント流通孔52aの加工が比較的簡単に行え、低コスト化を図ることができる。   In the second embodiment, the U-turn portion 52b of the coolant circulation hole 52a is provided in the cooling block 28. However, in this embodiment, the U-turn portion 52b is provided in the housing 27. Thereby, since the cooling block 28 is indirectly cooled via the housing 27, the coolant circulation hole 52a can be processed relatively easily, and the cost can be reduced.

なお、上述したように本実施例においてもチャンバ2、ハウジング27を貫通するクーラント流通孔52aで構成したが、この構成に限定されるものではなくU字状の配管で構成しても同じ効果が得られることは言うまでもない。   As described above, in the present embodiment also, the coolant circulation hole 52a penetrating the chamber 2 and the housing 27 is used. However, the present invention is not limited to this configuration, and the same effect can be obtained by using a U-shaped pipe. It goes without saying that it is obtained.

以上のごとく本発明によれば、冷却手段を断熱手段で覆われている中に設け、蒸着材料が蒸発する温度に比べ十分に低い温度または、蒸着材料の融点以下になる部分を冷却手段によって局所的に作り出すことにより、ルツボ・加熱手段と断熱手段の間に入り込んだ蒸着材料の粒子を冷却手段45に集中して析出する。   As described above, according to the present invention, the cooling unit is provided while being covered with the heat insulating unit, and a portion that is sufficiently lower than the temperature at which the vapor deposition material evaporates or is lower than the melting point of the vapor deposition material is locally applied by the cooling unit. Thus, the vapor deposition material particles that have entered between the crucible / heating means and the heat insulating means are concentrated on the cooling means 45 and deposited.

また、冷却手段の加熱手段又はルツボに面する部分に断熱手段を設けることにより、蒸着プロセスの影響を抑えることが可能となる。   Moreover, it becomes possible to suppress the influence of a vapor deposition process by providing a heat insulation means in the part of the cooling means facing the heating means or the crucible.

さらに、加熱手段(ヒータ)の端子、熱電対、ルツボや加熱手段を支える構造体への蒸着材料の付着を最小限にし、従来これらの部材への蒸着材料の析出に起因して発生していた膜質の劣化や連続運転又はメンテナンスへの支障を抑えることが可能となる。   Furthermore, adhesion of the vapor deposition material to the terminal of the heating means (heater), the thermocouple, the crucible and the structure supporting the heating means is minimized, and this has conventionally occurred due to the deposition of the vapor deposition material on these members. It is possible to suppress film quality deterioration and troubles in continuous operation or maintenance.

また、冷却手段の蒸着材料が析出する部分に取り外し可能で、熱伝導性の良い材質で作られた防着板を取り付けることで、簡単にメンテナンスが行え、性能を維持できるようになる。   Further, by attaching a deposition plate made of a material having good thermal conductivity, which can be removed at a portion where the vapor deposition material of the cooling means is deposited, maintenance can be easily performed and performance can be maintained.

1…真空蒸着装置、 2…チャンバ、
3…真空ポンプ、 4…蒸発源、
5…基板、 6…真空蒸発チャンバ、
7…真空搬送室、 8…基板ストッカー室、
9…真空搬送ロボット、 10…基板、
11…蒸発源、 12…マスク、
13…基板保持部、 14…ゲート弁、
21…蒸発材料、 22…ルツボ、
25…熱電対、 24…リフレクタ、
26…レートセンサ、 27…ハウジング、
28…冷却ブロック、 34…ノズル、
43…断熱手段、 44…加熱手段(ヒータ23)、
45…冷却手段(浮遊蒸着物回収手段)、
46…熱輻射断熱手段、 50…端子、
51…水冷配管、 52…クーラント、
52a…クーラント流通孔、 52b…Uターン部、
100…有機ELデバイス製造装置。
1 ... Vacuum deposition equipment, 2 ... Chamber,
3 ... vacuum pump, 4 ... evaporation source,
5 ... Substrate, 6 ... Vacuum evaporation chamber,
7 ... Vacuum transfer chamber, 8 ... Substrate stocker chamber,
9 ... Vacuum transfer robot, 10 ... Substrate,
11 ... evaporation source, 12 ... mask,
13 ... Substrate holding part, 14 ... Gate valve,
21 ... evaporation material, 22 ... crucible,
25 ... Thermocouple, 24 ... Reflector,
26 ... Rate sensor 27 ... Housing,
28 ... Cooling block, 34 ... Nozzle,
43 ... heat insulation means, 44 ... heating means (heater 23),
45 ... Cooling means (floating deposit recovery means),
46 ... thermal radiation insulation means, 50 ... terminal,
51 ... Water-cooled piping, 52 ... Coolant,
52a ... coolant circulation hole, 52b ... U-turn part,
100: Organic EL device manufacturing apparatus.

Claims (14)

封入された蒸着材料を加熱して蒸発した蒸着材料の放出するためのノズルを有するルツボと、このルツボを加熱するための加熱手段と、前記ルツボと前記加熱手段の周辺に配置した断熱手段とにより構成された蒸発源において、
前記断熱手段とルツボ又は加熱手段の間にこの加熱手段より低温に保持された浮遊蒸着物回収手段を設けるとともに、
この浮遊蒸着物回収手段と前記ルツボ及び前記加熱手段との間に断熱手段を設けていることを特徴とする蒸発源。
By a crucible having a nozzle for heating the encapsulated deposition material and releasing the evaporated deposition material, a heating means for heating the crucible, and a heat insulating means arranged around the crucible and the heating means In the configured evaporation source,
Between the heat insulation means and the crucible or the heating means, provided with a floating deposit recovery means held at a lower temperature than this heating means,
An evaporation source, characterized in that a heat insulating means is provided between the floating deposit collection means and the crucible and the heating means.
請求項1記載の蒸発源において、
前記加熱手段は前記ルツボと一体、またはルツボの内部に設けられていることを特徴とする蒸発源。
The evaporation source according to claim 1,
The evaporation source characterized in that the heating means is integrated with the crucible or provided inside the crucible.
請求項2記載の蒸発源において、
前記加熱手段は抵抗加熱を用いて発熱することを特徴とする蒸発源。
The evaporation source according to claim 2.
An evaporation source characterized in that the heating means generates heat using resistance heating.
請求項1記載の蒸発源において、
前記加熱手段は前記ルツボの外に配置され、かつ抵抗加熱、誘導加熱、赤外線加熱のいずれかの加熱手段を用いていることを特徴とする蒸発源。
The evaporation source according to claim 1,
2. The evaporation source according to claim 1, wherein the heating means is disposed outside the crucible and uses any one of resistance heating, induction heating, and infrared heating.
請求項1〜4のいずれかに記載の蒸発源において、
前記断熱手段は前記ルツボ及び加熱手段に対する前記浮遊蒸着物回収手段の対向面を少なくとも覆う形状であることを特徴とする蒸発源。
In the evaporation source according to any one of claims 1 to 4,
The evaporation source characterized in that the heat insulating means has a shape covering at least the facing surface of the floating deposit recovery means with respect to the crucible and the heating means.
請求項1〜4のいずれかに記載の蒸発源において、
前記断熱手段は単数又は複数の板を積層した構造であることを特徴とする蒸発源。
In the evaporation source according to any one of claims 1 to 4,
The evaporation source characterized in that the heat insulating means has a structure in which a single plate or a plurality of plates are laminated.
請求項1〜4のいずれかに記載の蒸発源において、
前記断熱手段はカーボン・金属・セラミックのいずれか一つ又は複数より形成された綿あるいは布状若しくは発泡材を用いていることを特徴とする蒸発源。
In the evaporation source according to any one of claims 1 to 4,
An evaporation source characterized in that the heat insulating means uses cotton, cloth or foam formed from one or more of carbon, metal and ceramic.
請求項1〜4のいずれかに記載の蒸発源において、
前記浮遊蒸着物回収手段と前記ルツボ又は前記加熱手段との間に設けた断熱手段は単数又は複数の板を積層した構造を持つことを特徴とする蒸発源。
In the evaporation source according to any one of claims 1 to 4,
The evaporation source characterized in that the heat insulation means provided between the floating deposit recovery means and the crucible or the heating means has a structure in which a single plate or a plurality of plates are laminated.
請求項1〜4のいずれかに記載の蒸発源において、
前記断熱手段はカーボン・金属・セラミックのいずれか一つ又は複数より形成された綿あるいは布状若しくは発泡材を用いていることを特徴とする蒸発源。
In the evaporation source according to any one of claims 1 to 4,
An evaporation source characterized in that the heat insulating means uses cotton, cloth or foam formed from one or more of carbon, metal and ceramic.
請求項1〜4のいずれかに記載の蒸発源において、
前記浮遊蒸着物回収手段の周りに着脱可能なカバーを設け、このカバーは冷却手段と少なくとも部分的に接触して冷却されていることを特徴とする蒸発源。
In the evaporation source according to any one of claims 1 to 4,
An evaporation source characterized in that a detachable cover is provided around the floating deposit collection means, and the cover is cooled at least partially in contact with the cooling means.
請求項1〜4のいずれかに記載の蒸発源において、
前記浮遊蒸着物回収手段を前記ルツボのノズルを有する面以外に設けることを特徴とする蒸発源。
In the evaporation source according to any one of claims 1 to 4,
An evaporation source, wherein the floating deposit recovery means is provided on a surface other than the surface having the nozzle of the crucible.
請求項1〜4のいずれかに記載の蒸発源において、
前記浮遊蒸着物回収装置は循環する冷却媒体によって冷却されていることを特徴とする蒸発源。
In the evaporation source according to any one of claims 1 to 4,
The evaporation source characterized in that the floating deposit recovery device is cooled by a circulating cooling medium.
請求項12記載の蒸発源において、
前記冷却媒体はハウジングの壁自体を循環するとともに、
前記ハウジングと前記浮遊蒸着物回収手段は熱的に接触していることを特徴とする蒸発源。
The evaporation source according to claim 12,
The cooling medium circulates through the housing wall itself,
The evaporation source, wherein the housing and the floating deposit recovery means are in thermal contact.
蒸着材料の蒸気を放出する蒸発源と、該蒸発源から放出された蒸気により成膜を行う基板と、該蒸発源と該基板を減圧雰囲気内で保持する真空チャンバと、
を備えた真空蒸着装置において、
前記蒸発源が、請求項1〜13のいずれかに記載の蒸発源であることを特徴とする真空蒸着装置。
An evaporation source that emits vapor of the vapor deposition material, a substrate that forms a film with the vapor released from the evaporation source, a vacuum chamber that holds the evaporation source and the substrate in a reduced-pressure atmosphere,
In a vacuum deposition apparatus comprising:
The said evaporation source is the evaporation source in any one of Claims 1-13, The vacuum evaporation system characterized by the above-mentioned.
JP2012079803A 2012-03-30 2012-03-30 Evaporation source and vacuum deposition device using the same Pending JP2013211138A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012079803A JP2013211138A (en) 2012-03-30 2012-03-30 Evaporation source and vacuum deposition device using the same
KR1020130015305A KR20130111272A (en) 2012-03-30 2013-02-13 Evaporation source and vacuum deposition device using the same
TW102105598A TW201339336A (en) 2012-03-30 2013-02-18 Evaporation source and vacuum evaporation apparatus using the same
CN2013100535083A CN103361610A (en) 2012-03-30 2013-02-19 Evaporating source and vacuum evaporation device employing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012079803A JP2013211138A (en) 2012-03-30 2012-03-30 Evaporation source and vacuum deposition device using the same

Publications (1)

Publication Number Publication Date
JP2013211138A true JP2013211138A (en) 2013-10-10

Family

ID=49363848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012079803A Pending JP2013211138A (en) 2012-03-30 2012-03-30 Evaporation source and vacuum deposition device using the same

Country Status (4)

Country Link
JP (1) JP2013211138A (en)
KR (1) KR20130111272A (en)
CN (1) CN103361610A (en)
TW (1) TW201339336A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110904427A (en) * 2019-12-25 2020-03-24 东莞市天瞳电子有限公司 Water circulation device for vacuum coating equipment
CN112210751A (en) * 2020-09-24 2021-01-12 铜陵市超越电子有限公司 Oil-spraying type isolation device for metallized film evaporation
CN113088892A (en) * 2021-03-31 2021-07-09 京东方科技集团股份有限公司 Vapor deposition source and vapor deposition device

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014072005A (en) * 2012-09-28 2014-04-21 Hitachi High-Technologies Corp Evaporation source, vacuum deposition device and method of manufacturing organic el display device
KR102192500B1 (en) * 2013-10-24 2020-12-17 히다치 조센 가부시키가이샤 Manifold for vacuum evaporation apparatus
CN104213080B (en) * 2014-08-20 2016-08-24 京东方科技集团股份有限公司 Evaporation source and evaporated device
TWI624554B (en) 2015-08-21 2018-05-21 弗里松股份有限公司 Evaporation source
US10982319B2 (en) 2015-08-21 2021-04-20 Flisom Ag Homogeneous linear evaporation source
SG10201510101XA (en) * 2015-12-09 2017-07-28 Au Optronics Corp Evaporation apparatus and evaporation method
CN105762278B (en) * 2016-03-04 2018-05-01 苏州大学 Vacuum evaporation device and method for preparing organic electroluminescent device by using same
TWI737718B (en) * 2016-04-25 2021-09-01 美商創新先進材料股份有限公司 Deposition systems including effusion sources, and related methods
WO2018199184A1 (en) * 2017-04-26 2018-11-01 株式会社アルバック Evaporation source and film deposition device
CN106947944A (en) * 2017-05-23 2017-07-14 京东方科技集团股份有限公司 One kind evaporation crucible, vapor deposition source, evaporation coating device and evaporation coating method
CN107254661A (en) * 2017-08-01 2017-10-17 河源耀国电子科技有限公司 Flexible OLED evaporated device and its technique
JP6576009B2 (en) * 2017-08-28 2019-09-18 キヤノントッキ株式会社 Evaporation source container and evaporation source device
JP6570012B2 (en) * 2017-12-27 2019-09-04 キヤノントッキ株式会社 Evaporation source and vapor deposition equipment
JP6526880B1 (en) * 2018-06-29 2019-06-05 キヤノントッキ株式会社 Evaporation source and evaporation apparatus
CN108624849B (en) * 2018-07-19 2023-09-22 北京泰科诺科技有限公司 Resistance evaporator
DE102018131944A1 (en) * 2018-12-12 2020-06-18 VON ARDENNE Asset GmbH & Co. KG Evaporation arrangement and method
KR20200104976A (en) * 2019-02-27 2020-09-07 삼성디스플레이 주식회사 Evaporating apparatus for deposition source and manufacturing method thereof
CN112376018A (en) * 2020-10-29 2021-02-19 云谷(固安)科技有限公司 Evaporation source device and evaporation equipment
CN117702056B (en) * 2024-02-06 2024-05-24 上海升翕光电科技有限公司 Evaporation equipment of display screen

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110904427A (en) * 2019-12-25 2020-03-24 东莞市天瞳电子有限公司 Water circulation device for vacuum coating equipment
CN110904427B (en) * 2019-12-25 2024-05-14 东莞市天瞳电子有限公司 Water circulation device for vacuum coating equipment
CN112210751A (en) * 2020-09-24 2021-01-12 铜陵市超越电子有限公司 Oil-spraying type isolation device for metallized film evaporation
CN113088892A (en) * 2021-03-31 2021-07-09 京东方科技集团股份有限公司 Vapor deposition source and vapor deposition device
CN113088892B (en) * 2021-03-31 2023-02-28 京东方科技集团股份有限公司 Vapor deposition source and vapor deposition device

Also Published As

Publication number Publication date
KR20130111272A (en) 2013-10-10
TW201339336A (en) 2013-10-01
CN103361610A (en) 2013-10-23

Similar Documents

Publication Publication Date Title
JP2013211138A (en) Evaporation source and vacuum deposition device using the same
KR101084333B1 (en) Deposition source for manufacturing organic electroluminescence display panel and deposition apparatus having the same
KR100645689B1 (en) Linear type deposition source
EP1770186B1 (en) Evaporation source and vacuum deposition apparatus using the same
KR100711886B1 (en) Source for inorganic layer and the method for controlling heating source thereof
US8366831B2 (en) Evaporation source
KR101191569B1 (en) Film forming device
JP2007177319A (en) Evaporation source and method of depositing thin film using the same
KR101087821B1 (en) Method for manufacturing semiconductor light emitting element
CN107761056A (en) A kind of evaporation source, evaporated device and the control method for putting evaporation source
US20140050850A1 (en) Vacuum apparatus, method for cooling heat source in vacuum, and thin film manufacturing method
JP2008115416A (en) Vacuum vapor-deposition source and vacuum vapor-deposition apparatus
JP6140539B2 (en) Vacuum processing equipment
WO2012029260A1 (en) Deposition cell and vacuum deposition device provided with same
JP4593008B2 (en) Vapor deposition source and thin film forming method and apparatus using the same
JP2014189878A (en) Vapor deposition apparatus
TWI554642B (en) Metal organic chemical vapour deposition apparatus
KR100962967B1 (en) Depositing source
JP5251015B2 (en) Heat treatment apparatus and heat treatment method
JP5900614B2 (en) Semiconductor manufacturing equipment
JP2014181387A (en) Evaporation source, and vacuum vapor deposition apparatus using the evaporation source
KR101895795B1 (en) Deposition Chamber including Heat Blocking Shield
KR100625983B1 (en) Effusion Cell
KR101442784B1 (en) High quality sublimation purifying apparatus
CN111304598B (en) Evaporation assembly and method