JP2008115416A - Vacuum vapor-deposition source and vacuum vapor-deposition apparatus - Google Patents

Vacuum vapor-deposition source and vacuum vapor-deposition apparatus Download PDF

Info

Publication number
JP2008115416A
JP2008115416A JP2006298469A JP2006298469A JP2008115416A JP 2008115416 A JP2008115416 A JP 2008115416A JP 2006298469 A JP2006298469 A JP 2006298469A JP 2006298469 A JP2006298469 A JP 2006298469A JP 2008115416 A JP2008115416 A JP 2008115416A
Authority
JP
Japan
Prior art keywords
crucible
reflector
lid
vacuum
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006298469A
Other languages
Japanese (ja)
Inventor
Naoto Fukuda
直人 福田
Toshiaki Yoshikawa
俊明 吉川
Seiji Mashita
精二 真下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006298469A priority Critical patent/JP2008115416A/en
Publication of JP2008115416A publication Critical patent/JP2008115416A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve a working ratio and maintenability of the apparatus by quickly stopping the evaporation of a vapor deposition material after having finished film formation and inhibiting the material from depositing on a lid and an inner wall of a crucible. <P>SOLUTION: A vacuum vapor-deposition source 10 having a crucible 11, a lid 13, a heater 12 for heating the crucible 11 and the lid 13, and a reflector 20 for shielding radiant heat has a movable mechanism 21 which moves the reflector 20 up and down. The vacuum vapor-deposition source quickly stops the evaporation of the vapor deposition material M in the crucible 11 when the film formation has been finished, by stopping the heating of the heater 12, and making the movable mechanism 21 lift the reflector 20. In the period, only the lid 13 and the upper part of the crucible 11 are kept warm by the reflector 20, so as to prevent the material from depositing on the lid and the crucible. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、有機エレクトロルミネッセンス素子を作製するための真空蒸着源および真空蒸着装置に関するものである。   The present invention relates to a vacuum evaporation source and a vacuum evaporation apparatus for producing an organic electroluminescence element.

有機エレクトロルミネッセンス素子は、一般的に透明導電膜(例えばインジウム錫酸化物)からなる陽極と、金属(例えばAl)からなる陰極との間に、有機薄膜層として正孔輸送層、発光層、電子輸送層等を形成する。そして、陽極側から注入された正孔と、陰極側から注入された電子が、それぞれ正孔輸送層、電子注入層を介して発光層で再結合することにより、発光を得る電子デバイスである。   An organic electroluminescent device generally has a hole transport layer, a light emitting layer, an electron as an organic thin film layer between an anode made of a transparent conductive film (for example, indium tin oxide) and a cathode made of a metal (for example, Al). A transport layer or the like is formed. And it is an electronic device which obtains light emission, when the hole inject | poured from the anode side and the electron inject | poured from the cathode side recombine in a light emitting layer through a hole transport layer and an electron injection layer, respectively.

この有機エレクトロルミネッセンス素子の製造方法の一つとして、真空蒸着法が知られている。有機エレクトロルミネッセンス材料(蒸着材料)を坩堝に入れ、真空装置内で蒸着材料の気化温度以上に坩堝等の温度を加熱することで、坩堝から気化した蒸着材料を基板に堆積させて上記の有機薄膜層を形成する。   A vacuum deposition method is known as one method for producing the organic electroluminescence element. An organic electroluminescent material (vapor deposition material) is put in a crucible, and the temperature of the crucible or the like is heated above the vaporization temperature of the vapor deposition material in a vacuum apparatus, so that the vapor deposition material vaporized from the crucible is deposited on the substrate and the organic thin film Form a layer.

真空蒸着法は真空を扱うプロセスであるので、真空装置内を排気する時間や、坩堝を加熱して有機エレクトロルミネッセンス材料を蒸発させるまでの時間、さらには坩堝を冷却して取り出すまでの時間等が非常に長い。この時間を短縮化することは、装置の稼動率が増して、生産性の向上につながる。一般的に、有機エレクトロルミネッセンス材料は熱伝導性が悪く、材料自体がなかなか温まらないうえに、急激に加熱すると突沸等の現象が発生しやすい。   Since the vacuum deposition method is a process that handles vacuum, the time for exhausting the inside of the vacuum apparatus, the time for heating the crucible to evaporate the organic electroluminescent material, the time for cooling the crucible and taking it out, etc. Very long. Shortening this time increases the operating rate of the apparatus and leads to an improvement in productivity. In general, an organic electroluminescent material has poor thermal conductivity, and the material itself does not readily warm, and a phenomenon such as bumping is likely to occur when heated rapidly.

また、蒸着終了後に素早く坩堝の冷却を行わないと有機エレクトロルミネッセンス材料が無駄に蒸発してしまううえに、メンテナンスサイクル短期化の弊害となり得る。ところが、蒸着終了後すぐに坩堝の加熱を停止してしまうと、冷却後に蓋の開口部や坩堝内壁に材料が付着する場合があり、その後のメンテナンス性の観点から好ましくない。このため、有機エレクトロルミネッセンス材料の蒸発を素早く停止し、かつ、蓋や坩堝内壁への材料付着を抑えることが望ましい。このような問題を解決できれば、装置稼動率およびメンテナンス性が向上する。   In addition, if the crucible is not cooled immediately after completion of the vapor deposition, the organic electroluminescent material will evaporate unnecessarily, and the maintenance cycle may be shortened. However, if heating of the crucible is stopped immediately after completion of vapor deposition, the material may adhere to the opening of the lid or the inner wall of the crucible after cooling, which is not preferable from the viewpoint of subsequent maintenance. For this reason, it is desirable to quickly stop the evaporation of the organic electroluminescent material and suppress the material adhesion to the lid or the inner wall of the crucible. If such a problem can be solved, the apparatus operation rate and maintainability are improved.

有機エレクトロルミネッセンス材料の真空蒸着源として、特許文献1に開示されたように、リフレクターを冷却しつつ蒸着を行う方法が知られている。これは、リフレクターを冷却して、蒸着源からの輻射熱がマスク等に悪影響を与えないようにするものである。
特開2004−214185号公報
As a vacuum vapor deposition source of an organic electroluminescent material, as disclosed in Patent Document 1, a method of performing vapor deposition while cooling a reflector is known. This is to cool the reflector so that the radiant heat from the vapor deposition source does not adversely affect the mask or the like.
JP 2004-214185 A

しかしながら、リフレクターを冷却する構成においても、蒸着終了時に蒸着材料の蒸発を素早く停止し、装置稼動率およびメンテナンス性を向上させるという観点からは対策が不十分である。   However, even in the configuration in which the reflector is cooled, measures are insufficient from the viewpoint of quickly stopping evaporation of the vapor deposition material at the end of vapor deposition and improving the apparatus operation rate and maintainability.

本発明は、上記従来の技術の有する未解決の課題に鑑みてなされたものであり、蒸着材料の蒸発を素早く停止するとともに、蓋や坩堝内壁への材料付着を抑えることのできる真空蒸着源および真空蒸着装置を提供することを目的とするものである。   The present invention has been made in view of the above-mentioned unsolved problems of the prior art, and a vacuum evaporation source capable of quickly stopping evaporation of the evaporation material and suppressing the adhesion of the material to the inner wall of the lid or the crucible. It aims at providing a vacuum evaporation system.

本発明の真空蒸着源は、蒸着材料を収容する坩堝と、前記坩堝を加熱するためのヒーターと、前記ヒーターの輻射熱を遮断するためのリフレクターと、前記リフレクターの少なくとも一部を前記坩堝に対して相対移動させるための可動機構と、を有することを特徴とする。   The vacuum vapor deposition source of the present invention includes a crucible containing a vapor deposition material, a heater for heating the crucible, a reflector for blocking radiant heat of the heater, and at least a part of the reflector with respect to the crucible. And a movable mechanism for relative movement.

蒸着終了時に、坩堝を加熱するヒーターの輻射熱を遮断するためのリフレクターの少なくとも一部を移動させ、坩堝の上部や蓋のみを保温することで、坩堝底部の蒸着材料の蒸発を素早く停止し、同時に坩堝の蓋や内壁への材料付着を抑える。これによって、真空蒸着装置の装置稼動率およびメンテナンス性を向上させる。   At the end of deposition, move the at least part of the reflector to shut off the radiant heat of the heater that heats the crucible, and keep only the top and lid of the crucible to keep the evaporation of evaporation material at the bottom of the crucible quickly. Suppresses material adhesion to the crucible lid and inner wall. As a result, the apparatus operating rate and maintainability of the vacuum deposition apparatus are improved.

本発明を実施するための最良の形態を図面に基づいて説明する。   The best mode for carrying out the present invention will be described with reference to the drawings.

図1に示すように、真空蒸着装置の真空チャンバー1内の真空蒸着源10は、坩堝11と、坩堝11を加熱するためのヒーター12と、蓋13と、リフレクター20と、を備えている。有機エレクトロルミネッセンス材料である蒸着材料Mは、坩堝11内に充填され、蓋13に設けられた開口部14から蒸気が発生し、マスク30を介して基板Wに薄膜を形成する。リフレクター20は、可動機構21を備え、坩堝11と蓋13およびヒーター12に対して相対移動可能であり、これらを任意に冷却・保温することができる。   As shown in FIG. 1, the vacuum deposition source 10 in the vacuum chamber 1 of the vacuum deposition apparatus includes a crucible 11, a heater 12 for heating the crucible 11, a lid 13, and a reflector 20. The vapor deposition material M, which is an organic electroluminescence material, is filled in the crucible 11, vapor is generated from the opening 14 provided in the lid 13, and a thin film is formed on the substrate W through the mask 30. The reflector 20 includes a movable mechanism 21 and can move relative to the crucible 11, the lid 13, and the heater 12, and can arbitrarily cool and heat them.

この真空蒸着装置は図示しないアライメント機構を備えていて、マスク30に高精細マスクを用いて発光層の塗り分け成膜を行ってもよい。真空蒸着装置内を排気するための図示しない真空排気系は、迅速に高真空領域まで排気できる能力を持った真空ポンプを用いることが望ましい。   This vacuum vapor deposition apparatus includes an alignment mechanism (not shown), and the light emitting layer may be separately formed using a high-definition mask as the mask 30. As a vacuum exhaust system (not shown) for exhausting the inside of the vacuum vapor deposition apparatus, it is desirable to use a vacuum pump having a capability of exhausting quickly to a high vacuum region.

リフレクター20に備えられている可動機構21は、リフレクター20を昇降させる手段を有する。例えば図2の(a)に示すように、蒸着中は最下端に配設されたリフレクター20を、蒸着終了時には同図の(b)に示すように上昇させて、蒸着材料Mの蒸発を素早く停止させ、坩堝11の上部と蓋13のみを高温に保つ。これによって、坩堝11の内壁や蓋13への材料付着を抑える。   The movable mechanism 21 provided in the reflector 20 has a means for moving the reflector 20 up and down. For example, as shown in FIG. 2A, during the vapor deposition, the reflector 20 disposed at the lowermost end is raised as shown in FIG. Stop and keep only the top of the crucible 11 and the lid 13 at a high temperature. This suppresses material adhesion to the inner wall of the crucible 11 and the lid 13.

リフレクター20は冷却管または空冷手段等の冷却手段を備えていてもよい。また、上下に分割したリフレクターの一方を昇降させる構成でもよいし、多重管となっていてもよい。   The reflector 20 may include cooling means such as a cooling pipe or air cooling means. Moreover, the structure which raises / lowers one of the reflectors divided | segmented up and down may be sufficient, and it may be a multiple tube.

有機エレクトロルミネッセンス素子の製造装置においては、図示しない他の真空チャンバーとゲートバルブにより接合して、それら他の真空チャンバーにおいて有機エレクトロルミネッセンス素子を作製するための様々な工程を行えばよい。   In an organic electroluminescence element manufacturing apparatus, various processes for producing an organic electroluminescence element in another vacuum chamber may be performed by joining to another vacuum chamber (not shown) with a gate valve.

有機エレクトロルミネッセンス素子の製造装置には、上記のような真空蒸着装置を複数備えていることが望ましい。   It is desirable that an organic electroluminescence element manufacturing apparatus includes a plurality of vacuum deposition apparatuses as described above.

図1および図2は、実施例1による真空蒸着装置を示す。   1 and 2 show a vacuum deposition apparatus according to the first embodiment.

まず、坩堝11に、蒸着材料Mとして有機エレクトロルミネッセンス材料を1.00[g]充填し、坩堝11に蓋13を取り付け、真空蒸着源10にセットした。可動機構21は、リフレクター20を任意に昇降させる手段を有する。次に、図示しない真空排気系によって真空チャンバー1内を1.0×10-5[Pa]まで排気した。排気した後、ヒーター12で坩堝11を200℃まで加熱した。坩堝11の底面付近の温度でヒーターパワーを制御した。200℃のまま30[min]保持して有機エレクトロルミネッセンス材料の脱ガスを行った後、膜厚センサー15において蒸着レートが1.0[nm/sec]となる温度まで坩堝11を加熱した。蒸着レートが1.0[nm/sec]となった時の温度は310[℃]であった。 First, the crucible 11 was filled with 1.00 g of an organic electroluminescence material as the vapor deposition material M, the lid 13 was attached to the crucible 11, and the vacuum vapor deposition source 10 was set. The movable mechanism 21 has means for arbitrarily raising and lowering the reflector 20. Next, the inside of the vacuum chamber 1 was evacuated to 1.0 × 10 −5 [Pa] by a vacuum exhaust system (not shown). After evacuation, the crucible 11 was heated to 200 ° C. with the heater 12. The heater power was controlled at a temperature near the bottom of the crucible 11. After degassing the organic electroluminescent material while maintaining at 200 ° C. for 30 [min], the crucible 11 was heated to a temperature at which the deposition rate became 1.0 [nm / sec] in the film thickness sensor 15. The temperature when the deposition rate reached 1.0 [nm / sec] was 310 [° C.].

膜厚センサー15において蒸着レートが1.0[nm/sec]となったところで、マスク30を介して基板Wに有機薄膜の成膜を行った。膜厚が基板Wの中心部分で100[nm]となるように成膜した後、可動機構21によりリフレクター20を上昇させて、蓋13が保温されるようにリフレクター20を配置し、坩堝11の冷却を行った。ヒーター12による加熱は、可動機構21でリフレクター20を移動させるのと同時に停止した。   When the deposition rate in the film thickness sensor 15 reached 1.0 [nm / sec], an organic thin film was formed on the substrate W through the mask 30. After the film is formed so that the film thickness becomes 100 [nm] at the central portion of the substrate W, the reflector 20 is raised by the movable mechanism 21, and the reflector 20 is disposed so that the lid 13 is kept warm. Cooling was performed. Heating by the heater 12 was stopped simultaneously with the movement of the reflector 20 by the movable mechanism 21.

このようにして、坩堝11を冷却したところ、坩堝11の底面の温度が310[℃]から室温になるまで約2時間かかった。   When the crucible 11 was cooled in this way, it took about 2 hours for the temperature of the bottom surface of the crucible 11 to reach room temperature from 310 [° C.].

比較のために、図7に示すように可動機構21を省略した真空蒸着装置によってリフレクター20を固定したまま冷却を行ったところ、坩堝11の温度が310[℃]から室温になるまで約4時間かかった。比較例との比較の結果、本実施例によれば、冷却時間が短くなり、装置稼動率向上の観点から有効であることが判った。また、本実施例では冷却開始から蒸着レートが迅速に低下し始めて、直ちに0.0[nm/sec]となった。これは、坩堝11がリフレクター20により保温されなくなり、有機エレクトロルミネッセンス材料が蒸発しなくなったためである。   For comparison, as shown in FIG. 7, cooling was performed with the reflector 20 being fixed by a vacuum evaporation apparatus in which the movable mechanism 21 was omitted, and the temperature of the crucible 11 was about 4 hours from 310 [° C.] to room temperature. It took. As a result of comparison with the comparative example, it was found that according to the present example, the cooling time is shortened, which is effective from the viewpoint of improving the apparatus operating rate. In this example, the deposition rate started to decrease rapidly from the start of cooling, and immediately became 0.0 [nm / sec]. This is because the crucible 11 is not kept warm by the reflector 20 and the organic electroluminescent material no longer evaporates.

さらに、蓋13が保温されつつ坩堝11が冷却されるため、取り出し後の蓋13や坩堝11の内壁に有機エレクトロルミネッセンス材料が付着することなく、メンテナンス性の観点からも有効であることが判った。   Further, since the crucible 11 is cooled while the lid 13 is kept warm, it has been found that the organic electroluminescent material does not adhere to the inner wall of the lid 13 and the crucible 11 after removal, and is effective from the viewpoint of maintainability. .

図7の比較例では、ヒーター12のパワーを制御して、蓋13と坩堝11を温めつつ緩やかに冷却を行わないと、冷却後の蓋13や坩堝11の内壁に有機エレクトロルミネッセンス材料が付着してしまった。また、坩堝11の温度が高い状態で長時間維持されるため、冷却中に有機エレクトロルミネッセンス材料が無駄に蒸発して材料利用効率が低下する。さらに、防着板等の他の部位に有機エレクトロルミネッセンス材料が付着し、メンテナンス性が悪化する要因となる。   In the comparative example of FIG. 7, if the power of the heater 12 is controlled and the lid 13 and the crucible 11 are warmed and the cooling is not performed slowly, the organic electroluminescent material will adhere to the inner wall of the lid 13 and the crucible 11 after cooling. I have. Further, since the temperature of the crucible 11 is maintained at a high temperature for a long time, the organic electroluminescent material is wasted during cooling and the material utilization efficiency is lowered. Furthermore, the organic electroluminescent material adheres to other parts such as a deposition preventing plate, which causes a deterioration in maintainability.

本実施例では、坩堝11に有機エレクトロルミネッセンス材料を1.00[g]充填し、蒸着後の坩堝11内には有機エレクトロルミネッセンス材料が約0.88[g]残っていた。比較例においては、蒸着後の坩堝11内に有機エレクトロルミネッセンス材料が約0.80[g]残っていた。   In this example, the crucible 11 was filled with 1.00 [g] of organic electroluminescent material, and about 0.88 [g] of organic electroluminescent material remained in the crucible 11 after vapor deposition. In the comparative example, about 0.80 [g] of the organic electroluminescent material remained in the crucible 11 after vapor deposition.

上記の結果から、本実施例では、坩堝を迅速に冷却し、少ない量の材料で同一の膜厚が得られ、かつ速やかに冷却可能となるために装置稼動率が向上することが判った。また、冷却後に蓋や坩堝の内壁等に有機エレクトロルミネッセンス材料が付着せず、メンテナンス性が向上することが判った。このように、有機エレクトロルミネッセンス素子の有機薄膜層を効率的に形成することができる。   From the above results, it was found that in this example, the crucible was cooled quickly, the same film thickness was obtained with a small amount of material, and the apparatus operating rate was improved because it was possible to cool quickly. Moreover, it turned out that an organic electroluminescent material does not adhere to a cover, the inner wall of a crucible, etc. after cooling, and maintainability improves. Thus, the organic thin film layer of an organic electroluminescent element can be formed efficiently.

本実施例では真空雰囲気中で坩堝の冷却を行ったが、冷却時に真空チャンバー内に不活性ガスを導入して、冷却効率を向上させてもよい。また、リフレクターに冷却管等の冷却手段を設けて、部分的に水冷もしくは空冷を行ってもよい。   In this embodiment, the crucible was cooled in a vacuum atmosphere, but an inert gas may be introduced into the vacuum chamber during cooling to improve the cooling efficiency. Further, the reflector may be provided with cooling means such as a cooling pipe, and water cooling or air cooling may be partially performed.

図3および図4は、実施例2による真空蒸着装置を示す。これは、実施例1のリフレクター20を上下の管状部材に2分割して、下方のリフレクター20bを昇降させる手段を有する可動機構22を設けた以外は、実施例1と同様である。上方のリフレクター20aは、蓋13および坩堝11の上部のみを保温できる位置に配置されている。   3 and 4 show a vacuum deposition apparatus according to the second embodiment. This is the same as that of the first embodiment except that the reflector 20 of the first embodiment is divided into upper and lower tubular members and a movable mechanism 22 having means for raising and lowering the lower reflector 20b is provided. The upper reflector 20a is arranged at a position where only the upper part of the lid 13 and the crucible 11 can be kept warm.

実施例1と同様に、図4の(a)に示すように下方のリフレクター20bを下端位置に設置して、膜厚センサー15において蒸着レートが1.0[nm/sec]となったところで、基板Wに有機エレクトロルミネッセンス材料の蒸着を行った。膜厚が基板Wの中心部分で100[nm]となるように成膜した後、図4の(b)に示すように下方のリフレクター20bを上昇させる。このように、蓋13および坩堝11の上部が保温されるように上下のリフレクター20a、20bを配置して、坩堝11の冷却を行った。ヒーター12による加熱は、可動機構22で下方のリフレクター20bを上昇させると同時に停止した。   As in Example 1, the lower reflector 20b was installed at the lower end position as shown in FIG. 4A, and when the deposition rate became 1.0 [nm / sec] in the film thickness sensor 15, An organic electroluminescent material was deposited on the substrate W. After forming the film so that the film thickness becomes 100 [nm] at the center of the substrate W, the lower reflector 20b is raised as shown in FIG. Thus, the crucible 11 was cooled by arranging the upper and lower reflectors 20a and 20b so that the top of the lid 13 and the crucible 11 was kept warm. Heating by the heater 12 was stopped simultaneously with raising the lower reflector 20b by the movable mechanism 22.

このようにして、坩堝11を冷却したところ、坩堝11の底面の温度が310[℃]から室温になるまで約1時間45分かかった。前述の比較例と比較すると、本実施例においても、坩堝11を迅速に冷却できた。また、実施例1と同様に冷却開始から、蒸着レートが迅速に低下し始めて直ちに0.0[nm/sec]となった。さらに、実施例1と同様に蓋13が保温されつつ坩堝11が冷却されるため、取り出し後の蓋13や坩堝11の内壁に有機エレクトロルミネッセンス材料が付着することはなかった。   When the crucible 11 was cooled in this way, it took about 1 hour and 45 minutes until the temperature of the bottom surface of the crucible 11 was changed from 310 [° C.] to room temperature. Compared to the comparative example described above, the crucible 11 could be rapidly cooled also in this example. Moreover, the vapor deposition rate started to decrease rapidly from the start of cooling as in Example 1, and immediately became 0.0 [nm / sec]. Furthermore, since the crucible 11 was cooled while keeping the lid 13 warm as in Example 1, the organic electroluminescent material did not adhere to the lid 13 and the inner wall of the crucible 11 after removal.

本実施例においては、坩堝11に有機エレクトロルミネッセンス材料を1.0[g]充填し、蒸着後の坩堝11内には有機エレクトロルミネッセンス材料が約0.90[g]残っていた。前述の比較例においては、蒸着後の坩堝11内に有機エレクトロルミネッセンス材料が約0.80[g]残っていたことから、本実施例においても少ない量の材料で同一の膜厚が得られることが判る。   In this example, the crucible 11 was filled with 1.0 [g] of the organic electroluminescent material, and about 0.90 [g] of the organic electroluminescent material remained in the crucible 11 after vapor deposition. In the comparative example described above, about 0.80 [g] of the organic electroluminescent material remained in the crucible 11 after vapor deposition, so that the same film thickness can be obtained with a small amount of material also in this embodiment. I understand.

本実施例では真空雰囲気中で坩堝11の冷却を行ったが、冷却時に真空チャンバー1内に不活性ガスを導入して、冷却効率を向上させてもよい。また、上下のリフレクター20a、20bに冷却管を設けて、部分的に水冷もしくは空冷を行ってもよい。   In this embodiment, the crucible 11 is cooled in a vacuum atmosphere, but an inert gas may be introduced into the vacuum chamber 1 during cooling to improve the cooling efficiency. Moreover, a cooling pipe may be provided in the upper and lower reflectors 20a and 20b, and water cooling or air cooling may be performed partially.

また、図5および図6に示すようにそれぞれ開口を有する2つの管状部材からなる多重管構成を用いてもよい。第1のリフレクター20cの下半部に複数の開口を設け、同様の開口を設けた第2のリフレクター20dを回転させる手段を有する可動機構23を設ける。図6の(a)、(b)、(c)に示すように、第1のリフレクター20cに対して第2のリフレクター20dを回転させ、開口面積を変えることによって、温度の昇降温勾配を変化させる。   Further, as shown in FIGS. 5 and 6, a multiple tube configuration including two tubular members each having an opening may be used. A plurality of openings are provided in the lower half of the first reflector 20c, and a movable mechanism 23 having means for rotating the second reflector 20d having the same openings is provided. As shown in FIGS. 6A, 6B, and 6C, the temperature rise / fall gradient is changed by rotating the second reflector 20d relative to the first reflector 20c and changing the opening area. Let

この構成によれば、蒸着中に坩堝11の開口部14が詰まった場合には、第2のリフレクター20dを回転させて蓋13のみを保温し、蓋13の温度を上昇させることにより、詰まった有機エレクトロルミネッセンス材料を真空中で蒸発させて取り除くことができる。   According to this configuration, when the opening 14 of the crucible 11 is clogged during vapor deposition, the clogging is caused by rotating only the lid 13 by rotating the second reflector 20d and increasing the temperature of the lid 13. The organic electroluminescent material can be removed by evaporation in a vacuum.

このように蒸着材料の詰まりを解消できれば、蒸着プロセスを中断することなく有機エレクトロルミネッセンス素子をより効率的に作製することが可能となる。   Thus, if the clogging of the vapor deposition material can be eliminated, it becomes possible to more efficiently produce the organic electroluminescence element without interrupting the vapor deposition process.

実施例1による真空蒸着装置を示す模式図である。1 is a schematic diagram showing a vacuum vapor deposition apparatus according to Example 1. FIG. 図1の装置の動作を説明する図である。It is a figure explaining operation | movement of the apparatus of FIG. 実施例2による真空蒸着装置を示す模式図である。6 is a schematic diagram showing a vacuum evaporation apparatus according to Example 2. FIG. 図3の装置の動作を説明する図である。It is a figure explaining operation | movement of the apparatus of FIG. 実施例2の一変形例を示す図である。FIG. 10 is a diagram illustrating a modification of the second embodiment. 図5の装置の動作を説明する図である。It is a figure explaining operation | movement of the apparatus of FIG. 比較例を説明する図である。It is a figure explaining a comparative example.

符号の説明Explanation of symbols

1 真空チャンバー
10 真空蒸着源
11 坩堝
12 ヒーター
13 蓋
14 開口部
15 膜厚センサー
20、20a、20b、20c、20d リフレクター
21、22、23 可動機構
30 マスク
DESCRIPTION OF SYMBOLS 1 Vacuum chamber 10 Vacuum evaporation source 11 Crucible 12 Heater 13 Lid 14 Opening part 15 Film thickness sensor 20, 20a, 20b, 20c, 20d Reflector 21, 22, 23 Movable mechanism 30 Mask

Claims (5)

蒸着材料を収容する坩堝と、前記坩堝を加熱するためのヒーターと、前記ヒーターの輻射熱を遮断するためのリフレクターと、前記リフレクターの少なくとも一部を前記坩堝に対して相対移動させるための可動機構と、を有することを特徴とする真空蒸着源。   A crucible containing a vapor deposition material, a heater for heating the crucible, a reflector for blocking radiant heat of the heater, and a movable mechanism for moving at least a part of the reflector relative to the crucible; A vacuum evaporation source characterized by comprising: 前記可動機構は、前記リフレクターを昇降させる手段を備えたことを特徴とする請求項1記載の真空蒸着源。   The vacuum evaporation source according to claim 1, wherein the movable mechanism includes means for moving the reflector up and down. 前記リフレクターが複数の管状部材を有し、前記可動機構は、前記複数の管状部材のうちの少なくとも1つの管状部材を昇降または回転させる手段を備えたことを特徴とする請求項1または2記載の真空蒸着源。   3. The reflector according to claim 1, wherein the reflector has a plurality of tubular members, and the movable mechanism includes means for moving up and down or rotating at least one tubular member of the plurality of tubular members. Vacuum deposition source. 前記リフレクターに冷却手段を配設したことを特徴とする請求項1ないし3いずれか1項記載の真空蒸着源。   The vacuum evaporation source according to any one of claims 1 to 3, wherein cooling means is disposed on the reflector. 請求項1ないし4いずれか1項記載の真空蒸着源を用いて、有機エレクトロルミネッセンス素子の作製を行うことを特徴とする真空蒸着装置。   An organic electroluminescence element is manufactured using the vacuum evaporation source of any one of Claims 1 thru | or 4. The vacuum evaporation apparatus characterized by the above-mentioned.
JP2006298469A 2006-11-02 2006-11-02 Vacuum vapor-deposition source and vacuum vapor-deposition apparatus Pending JP2008115416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006298469A JP2008115416A (en) 2006-11-02 2006-11-02 Vacuum vapor-deposition source and vacuum vapor-deposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006298469A JP2008115416A (en) 2006-11-02 2006-11-02 Vacuum vapor-deposition source and vacuum vapor-deposition apparatus

Publications (1)

Publication Number Publication Date
JP2008115416A true JP2008115416A (en) 2008-05-22

Family

ID=39501610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006298469A Pending JP2008115416A (en) 2006-11-02 2006-11-02 Vacuum vapor-deposition source and vacuum vapor-deposition apparatus

Country Status (1)

Country Link
JP (1) JP2008115416A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101174633B1 (en) 2011-05-12 2012-08-17 에스엔유 프리시젼 주식회사 Apparatus for supplying materials
JP2012207263A (en) * 2011-03-29 2012-10-25 Hitachi High-Technologies Corp Vapor deposition method, and vapor deposition apparatus
EP2682503A1 (en) * 2012-07-04 2014-01-08 Riber Evaporation device for a vacuum-deposition apparatus and vacuum-deposition apparatus including such an evaporation device
KR101367373B1 (en) 2012-02-01 2014-03-14 서울대학교산학협력단 Apparatus for manufacturing thin film
US20140109829A1 (en) * 2012-10-22 2014-04-24 Samsung Display Co., Ltd. Linear evaporation source and vacuum deposition apparatus including the same
KR20150075873A (en) * 2013-12-26 2015-07-06 삼성디스플레이 주식회사 Apparatus for depositing thin film
CN107236932A (en) * 2017-08-04 2017-10-10 京东方科技集团股份有限公司 A kind of crucible device and evaporated device
CN110093586A (en) * 2019-06-06 2019-08-06 京东方科技集团股份有限公司 Evaporation source and evaporation coating method
CN110499492A (en) * 2019-09-19 2019-11-26 京东方科技集团股份有限公司 A kind of evaporation coating device and its evaporation coating method

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207263A (en) * 2011-03-29 2012-10-25 Hitachi High-Technologies Corp Vapor deposition method, and vapor deposition apparatus
KR101174633B1 (en) 2011-05-12 2012-08-17 에스엔유 프리시젼 주식회사 Apparatus for supplying materials
WO2012153887A1 (en) * 2011-05-12 2012-11-15 에스엔유프리시젼 주식회사 Apparatus for supplying raw materials
KR101367373B1 (en) 2012-02-01 2014-03-14 서울대학교산학협력단 Apparatus for manufacturing thin film
EP2682503A1 (en) * 2012-07-04 2014-01-08 Riber Evaporation device for a vacuum-deposition apparatus and vacuum-deposition apparatus including such an evaporation device
US20140007814A1 (en) * 2012-07-04 2014-01-09 Riber Evaporation device for a vaccum deposition apparatus and vacuum deposition apparatus comprising such an evaporation device
FR2992976A1 (en) * 2012-07-04 2014-01-10 Riber EVAPORATION DEVICE FOR VACUUM DEPOSITION APPARATUS AND VACUUM DEPOSITION APPARATUS COMPRISING SUCH EVAPORATION DEVICE
CN103526163A (en) * 2012-07-04 2014-01-22 瑞必尔 Evaporation device for a vacuum-deposition apparatus and vacuum-deposition apparatus including such an evaporation device
CN103774095A (en) * 2012-10-22 2014-05-07 三星显示有限公司 Linear deposition source and vacuum deposition apparatus including the same
KR20140050931A (en) * 2012-10-22 2014-04-30 삼성디스플레이 주식회사 Linear evaporation source and vacuum deposition apparatus and having the same
US20140109829A1 (en) * 2012-10-22 2014-04-24 Samsung Display Co., Ltd. Linear evaporation source and vacuum deposition apparatus including the same
TWI588278B (en) * 2012-10-22 2017-06-21 三星顯示器有限公司 Linear evaporation source and vacuum deposition apparatus including the same
KR102124588B1 (en) * 2012-10-22 2020-06-22 삼성디스플레이 주식회사 Linear evaporation source and vacuum deposition apparatus and having the same
US10689749B2 (en) 2012-10-22 2020-06-23 Samsung Display Co., Ltd. Linear evaporation source and vacuum deposition apparatus including the same
KR20150075873A (en) * 2013-12-26 2015-07-06 삼성디스플레이 주식회사 Apparatus for depositing thin film
KR102231603B1 (en) * 2013-12-26 2021-03-26 삼성디스플레이 주식회사 Apparatus for depositing thin film
CN107236932A (en) * 2017-08-04 2017-10-10 京东方科技集团股份有限公司 A kind of crucible device and evaporated device
CN110093586A (en) * 2019-06-06 2019-08-06 京东方科技集团股份有限公司 Evaporation source and evaporation coating method
CN110093586B (en) * 2019-06-06 2022-09-02 京东方科技集团股份有限公司 Evaporation source and evaporation method
CN110499492A (en) * 2019-09-19 2019-11-26 京东方科技集团股份有限公司 A kind of evaporation coating device and its evaporation coating method

Similar Documents

Publication Publication Date Title
JP2008115416A (en) Vacuum vapor-deposition source and vacuum vapor-deposition apparatus
US8524313B2 (en) Method for manufacturing a device
KR100796148B1 (en) Vertical movement type effusion cell for depositing material and deposition system having it
JP4436920B2 (en) Organic vapor deposition source and method for controlling the heating source
KR101175165B1 (en) Evaporator vapor deposition apparatus and method of switching evaporator in vapor deposition apparatus
JP2008140669A (en) Vacuum vapor deposition apparatus and vacuum vapor deposition method
JP4648868B2 (en) Inorganic vapor deposition source heating source control method
JP2007227086A (en) Deposition apparatus and method of manufacturing light emitting element
KR101191569B1 (en) Film forming device
JP2007186787A (en) Vapor deposition pot, thin-film forming apparatus provided therewith and method for producing display device
JP2008024998A (en) Vacuum deposition source and vacuum deposition device
US20120012883A1 (en) Method for manufacturing light-emitting device and film formation substrate
JP4593008B2 (en) Vapor deposition source and thin film forming method and apparatus using the same
JP5798452B2 (en) Evaporation source
KR100952313B1 (en) Unit for supplying source and method for supplying source and apparatus for depositioning thin film
JP4494126B2 (en) Film forming apparatus and manufacturing apparatus
JP2011044380A (en) Manufacturing device and manufacturing method of functional layer of organic el element
JP4110966B2 (en) Vapor deposition apparatus and vapor deposition method
KR101553619B1 (en) Inline deposition apparatus for manufacturing oled
JP2008293675A (en) Deposition device and organic el element
JP3775909B2 (en) Organic thin film manufacturing method and organic vapor deposition apparatus
KR100829738B1 (en) Heating crucible of organic thin film forming apparatus
JP2007046098A (en) Vacuum deposition system
JP7162639B2 (en) Evaporation source device, vapor deposition device, and control method for evaporation source device
KR100625966B1 (en) Method of vacuum evaporation for EL and appratus the same

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090527