JP2013205041A - 照明、検査装置及び基板の製造方法 - Google Patents

照明、検査装置及び基板の製造方法 Download PDF

Info

Publication number
JP2013205041A
JP2013205041A JP2012070915A JP2012070915A JP2013205041A JP 2013205041 A JP2013205041 A JP 2013205041A JP 2012070915 A JP2012070915 A JP 2012070915A JP 2012070915 A JP2012070915 A JP 2012070915A JP 2013205041 A JP2013205041 A JP 2013205041A
Authority
JP
Japan
Prior art keywords
light
incident
illumination
honeycomb structure
transparent member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012070915A
Other languages
English (en)
Inventor
Katsuya Ido
勝也 井戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2012070915A priority Critical patent/JP2013205041A/ja
Publication of JP2013205041A publication Critical patent/JP2013205041A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

【課題】正確な平行光を得ることができる照明などの技術を提供する。
【解決手段】照明20は、光源21と、ハニカム構造体27とを具備する。前記ハニカム構造体27は、前記光源からの光が入射される入射面27aを有し、前記入射面から入射された光のうち平行な成分の光以外の光をカットし、平行な成分の光を出射する。
【選択図】図2

Description

本技術は、照明、この照明を備える検査装置及び基板の製造方法に関する。
従来から、半田が印刷された基板、電子部品が実装された基板、液晶ガラス基板等の各種の検査対象物の品質を検査する方法として、検査対象物を撮像して得られた画像を解析して、検査対象物の品質を検査する方法が用いられている。2次元的な画像解析では、検査対象物の高さ方向の欠陥検出が困難であるため、近年においては、3次元的な画像解析により検査対象物の3次元形状を測定して、検査対象物の品質を検査する方法が用いられるようになってきている。
近年、検査対象物を3次元的に測定する方法として、照度差ステレオ法が注目を集めている(例えば、特許文献1、2参照)。
照度差ステレオ法では、まず、光の照射方向が異なる3つ以上の照明によって検査対象物に対して順番に光が照射され、照明が切り換えられる度に撮像部によって基板が撮像される。次に、撮像部によって得られた3枚以上の画像に基づいて検査対象物表面の各点における法線方向が法線マップとして取得される。これにより、検査対象物を3次元的に測定することができる。
特開2005−17234号公報 特開2010−237034号公報
照度差ステレオ法を利用して検査対象物を正確に3次元測定するためには、照明から発せられる光の指向性が強くなければならないという条件がある。従って、例えば、このような技術分野において、より平行光に近い光を得ることができる技術が求められている。
以上のような事情に鑑み、本技術の目的は、より平行光に近い光を得ることができる照明などの技術を提供することにある。
本技術に係る照明は、光源と、ハニカム構造体とを具備する。
前記ハニカム構造体は、前記光源からの光が入射される入射面を有し、前記入射面から入射された光のうち平行な成分の光以外の光をカットし、平行な成分の光を出射する。
本技術に係る照明は、ハニカム構造体により、より平行光に近い光を得ることができる。
上記照明は、前記光源の前方側に配置され、入射された光を拡散してハニカム構造体側に向けて出射する拡散部材をさらに具備していてもよい。
これにより、光源からの光を拡散部材により拡散させてハニカム構造体側に導くことができる。
上記照明において、前記拡散部材は、入射された光を拡散しつつ、入射された光に一方向への指向性を付与して出射してもよい。
この照明では、拡散部材によって光に一方向への指向性が付与されるので、光源からの光が拡散部材を通過した時点で、大まかな平行光を得ることができる。
上記照明において、前記拡散部材は、第1のレンズシートと、第2のレンズシートを有していてもよい。
前記第1のレンズシートは、一方向に長い形状の複数の第1のレンズが並べられて形成される。
前記第2のレンズシートは、前記第1のレンズシートに積層され、一方向に長い形状の複数の第2のレンズが前記第1のレンズが並べられる方向と直交する方向に並べられて形成される。
上記照明において、前記ハニカム構造体は、前記光源の光の出射方向に対して垂直な方向から所定の角度傾斜して配置されていてもよい。
この場合、前記照明は、透明部材と、ミラーとをさらに具備していてもよい。
上記透明部材は、前記ハニカム構造体の前記入射面側の位置に、前記ハニカム構造体と共に前記所定の角度傾斜して配置され、光の入射角に応じて、入射される光の一部を反射し、他の一部を透過させる。
前記ミラーは、前記透明部材によって反射された光を反射させて、前記光を前記透明部材側に戻す。
このような構造により、ハニカム構造体の入射面に平行に入射される光が多くなり、この光がハニカム構造体を通過することで、より平行光に近い光を得ることができる。
上記照明において、前記所定の角度は、前記透明部材の反射臨界角以上の角度とされてもよい。
この場合、前記ミラーは、前記光源の出射方向と平行に配置されてもよい。
このような構造により、ハニカム構造体の入射面に平行に入射される光が多くなるため、さらに平行光に近い光を得ることができる。
上記照明において、前記透明部材は、前記ハニカム構造側に、拡散面を有していてもよい。
このような構造により、ハニカム構造体の入射面に平行に入射される光が多くなるため、さらに平行光に近い光を得ることができる。
上記照明において、前記透明部材は、前記光源側に、光沢面を有していてもよい。
上記照明において、前記ハニカム構造体は、検査対象物に向けて光を照射してもよい。
上記照明において、前記検査対象物は、光が照射される照射面を有していてもよい。
この場合、前記ハニカム構造体は、前記検査対象物の照射面に対して傾斜して配置されてもよい。
この場合、前記照明は、前記ハニカム構造体の前記入射面と前記検査対象物の前記照射面との距離に応じた前記照射面に照射される光の照度のバラつきを吸収可能な減光フィルタをさらに具備していてもよい。
例えば、照度差ステレオ法により異なる方向から光を照射する場合などに、検査対象物の照射面に対して斜め方向から平行光を照射する場合がある。この場合、ハニカム構造体の入射面と検査対象物の照射面との距離に応じて、照射面に照射される光の照度にバラつきが生じる。一方、本技術に係る照明では、減光フィルタにより、上記照度のバラつきを吸収することができるので、検査対象物の照射面に対して照度が均一な平行光を照射することができる。
上記照明において、前記ハニカム構造体の前記入射面から入射される光の入射面内での輝度のバラつきを吸収可能な減光フィルタをさらに具備していてもよい。
これにより、照明から均一な輝度の光を出射させることができる。
上記照明において、前記ハニカム構造体は、その表面が黒であってもよい。
これにより、平行な成分の光以外の光をハニカム構造体の表面に適切に吸収させることができるので、平行な成分の光以外の光を適切にカットすることができる。
本技術に係る検査装置は、照明と、撮像部とを具備する。
前記照明は、光源と、前記光源からの光が入射される入射面を有し、前記入射面から入射された光のうち平行な成分の光以外の光をカットし、平行な成分の光を出射するハニカム構造体と有し、検査対象物に向けて光を照射する。
前記撮像部は、前記照明により光が照射された検査対象物を撮像する。
本技術に係る基板の製造方法は、光源と、前記光源からの光が入射される入射面を有し、前記入射面から入射された光のうち平行な成分の光以外の光をカットし、平行な成分の光を出射するハニカム構造体とを有する照明により、基板に向けて光を照射することを含む。
前記照明により光が照射された前記基板が撮像部により撮像される。
撮像された画像に基づいて、前記基板の良否を判定が判定される。
良品と判定された基板が残され、不良品と判定された基板が廃棄される。
以上のように、本技術によれば、正確に平行光を得ることができる照明などの技術を提供することができる。
本技術の第1実施形態に係る検査装置を示す模式的な側面図である。 検査装置に用いられる照明を示す模式的な側面図である。 照明が有する光源及び拡散部材を示す模式的な拡大側面図である。 照明が有する透明部材を示す拡大側面図である。 照明が有するハニカム構造体を示す正面拡大図である。 透明部材に対する光の入射角と、光の動きとの関係を示す図である。 構造体の開口形状として、正六角形が用いられた場合の干渉縞発生リスクを説明するための図である。 構造体の開口形状として、正四角形が用いられた場合の干渉縞発生リスクを説明するための図である。 本技術の第2実施形態に係る照明を示す分解斜視図である。
以下、本技術に係る実施形態を、図面を参照しながら説明する。
<第1実施形態>
[検査装置100の全体構成及び各部の構成]
図1は、本技術の第1実施形態に係る検査装置100を示す模式的な側面図である。図1に示す検査装置100は、基板1上に電子部品を実装する実装システムに用いられる検査装置100である。実装システムは、典型的には、基板1上にクリーム半田を印刷する印刷装置、印刷が施された基板1の印刷状態を検査する印刷検査装置、及び印刷状態の検査後の基板1(良品)上に電子部品を実装する実装装置を備えている。また、実装システムは、実装装置によって電子部品が実装された基板1を検査する基板検査装置、検査後の基板1(良品)をリフロー処理するリフロー処理装置、及びリフロー処理後の基板1を検査する最終検査装置を備えている。
図1に示す検査装置100は、例えば、上記した印刷検査装置、基板検査装置、又は最終検査装置として用いられる。この検査装置100は、2次元的あるいは3次元的な測定により、基板1の良否(例えば、クリーム半田の位置や量、電子部品の位置等)を判定して、良品と判断された基板1を次の装置へ受け渡し、不良品と判断された基板1を廃棄する処理を実行する。
図1には、検査装置100の一例として、照度差ステレオ法によって基板1を3次元測定する検査装置100が示されている。
図1に示すように、検査装置100は、ステージ10と、ステージ移動機構11と、複数の照明20と、撮像部12と、制御部13と、記憶部14と、表示部15と、入力部16と、通信部17とを備えている。
ステージ10は、クリーム半田が印刷された基板1、電子部品が実装された基板1、リフロー処理後の基板1等の各種の検査対象物を載置する。ステージ移動機構11は、制御部13に電気的に接続されており、制御部13からの駆動信号に応じて、ステージ10をXYZ方向に移動させる。
撮像部12は、基板1の上方に配置され、照明20によって光が照射された基板1を撮像する。撮像部12は、CCDセンサ(CCD:Charge Coupled Device)、あるいはCMOSセンサ(CMOS:Complementary Metal Oxide Semiconductor)等の撮像素子と、結像レンズ等の光学系とを含む。
複数の照明20は、基板1の斜め上方の位置において、撮像部12の光軸の周囲を囲むようにして配置される。各照明20は、それぞれ、基板1の斜め上方の位置から、基板1に対して平行光を照射する。各照明20は、それぞれ、制御部13に電子的に接続されており、制御部13の制御に応じて、点灯したり、消灯したりする。
複数の照明20のうち、特定の1つの照明20が点灯している間、他の照明20は、消灯している。点灯する照明20は、制御部13の制御に応じて順次切り換えられる。照度差ステレオ法によって基板1を3次元測定する場合、異なる方向から光が照射された3以上の画像が必要とされるため、照明20の数は、典型的には、3つ以上とされる。照明20の構成については、図2乃至図5を参照して後に詳述する。
制御部13は、例えば、CPU(Central Processing Unit)により構成される。制御部13は、検査装置100の各部と電気的に接続されており、記憶部14に記憶された各種のプログラムに基づき、検査装置100の各部を統括的に制御する。記憶部14は、検査装置100の処理に必要な各種のプログラムが記憶される不揮発性のメモリと、制御部13の作業領域として用いられる揮発性のメモリとを有する。上記各種のプログラムは、光ディスク、半導体メモリ等の可搬性の記録媒体から読み取られても構わない。
表示部15は、例えば、液晶ディスプレイ等により構成され、制御部13の制御に応じて、基板1の検査データ等を表示する。入力部16は、キーボード、マウス、タッチパネル等により構成され、ユーザからの指示を入力する。通信部17は、印刷装置、実装装置などの他の装置へ情報を送信したり、他の装置から情報を受信したりする。
[照明20の構成]
次に、照明20の構成について詳細に説明する。
図2は、照明20を示す模式的な側面図である。図3は、照明20が有する光源21及び拡散部材22を示す模式的な拡大側面図である。図4は、照明20が有する透明部材25を示す拡大側面図である。図5は、照明20が有するハニカム構造体27を示す正面拡大図である。
これらの図に示すように、照明20は、複数の光源21と、拡散部材22と、透明部材25と、ミラー26と、ハニカム構造体27とを含む。
図2及び図3を参照して、複数の光源21は、x−y方向で所定の間隔を開けて規則的に配列される。光源21としては、典型的には、LED(Light Emitting Diode)が用いられる。
光源21の光の出射方向(z軸方向)の前方側には、矩形の平板形状の拡散部材22が配置されている。この拡散部材22は、入射された光をx−y方向に拡散しつつ、入射された光に一方向(z軸方向)への指向性を付与してハニカム構造体27側に向けて出射する。
拡散部材22は、第1のレンチキュラーレンズシート23と、この第1のレンチキュラーレンズシート23に対して光の進行方向の前方側の位置に積層された第2のレンチキュラーレンズシート24とを含む。第1のレンチキュラーレンズシート23は、その下側の面に、複数の第1のシリンドリカルレンズ23aが形成されている。各第1のシリンドリカルレンズ23aは、それぞれ、x軸方向に長い形状を有しており、y軸方向に沿って並べられている。
第2のレンチキュラーレンズシート24は、その下側の面に、複数の第2のシリンドリカルレンズ24aが形成されている。各第2のシリンドリカルレンズ24aは、それぞれ、y軸方向に長い形状を有しており、第1のシリンドリカルレンズ23aが並べられた方向に直交する方向(x軸方向)に沿って並べられている。なお、シリンドリカルレンズの代わりに、プリズムレンズが用いられても構わない。
図2及び図4を参照して、透明部材25は、ハニカム構造体27の入射面27a側の位置に、ハニカム構造体27と共に、光源21の光の出射方向に対して垂直な方向(x−y平面)から所定の角度傾斜して配置されている。透明部材25は、矩形の平板形状を有しており、透明部材25の上端部は、拡散部材22の一端部側に固定されている。この透明部材25は、アクリル材や、ガラス材などの材料により構成される。
透明部材25は、光源21側の面において、光の入射角θに応じて、入射される光の一部を反射し、他の一部を透過させる。たとえば、透明部材25がアクリル材によって構成される場合、透明部材25は、光源21側の面において、アクリル材の反射臨界角である42°以上の入射角で入射された光を全反射し、42°未満の入射角で入射された光を透過させる。
透明部材25がx−y平面に対して傾斜する角度は、透明部材25の反射臨界角以上の角度とされる。例えば、透明部材25の材料として、アクリル材が用いられる場合、透明部材25は、x−y平面に対して、アクリル材の反射臨界角である42°以上傾斜して配置される。図に示す一例では、透明部材25がx−y平面に対して傾斜する角度が60°である場合が示されている。
透明部材25は、光源21側の面に光沢面25aを有しており、ハニカム構造体27側の面に拡散面25bを有している。例えば、光沢面25aは、真空蒸着法、スパッタ法等の方法によって金属薄膜を光源21側の面に形成することで形成することができる。拡散面25bは、例えば、光拡散性を有する複数の微粒子をハニカム構造体27側の面に含有させることで形成することができる。
図2を参照して、ミラー26は、透明部材25と対向する位置に、光源21の光の出射方向(z軸方向)と平行に配置されている。ミラー26は、矩形の平板状の形状を有している。ミラー26は、その上端部が拡散部材22の他端部に対して垂直に固定されており、その下端部が透明部材25の下端部に対して30°の角度で固定されている。このミラー26は、透明部材25によって反射された光を反射させて、光を前記透明部材25側に戻す役割を担っている。
なお、図2では、図示を省略しているが、照明20は、照明20の両側の側面の位置に、拡散部材22、透明部材25、ミラー26によって形成される三角形に対応する形の一対の側壁部を有している。この一対の側壁部は、ミラーによって構成されていてもよい。
図2及び図5を参照して、ハニカム構造体27は、透明部材25に対して光の進行方向の前方側の位置に配置される。ハニカム構造体27は、透明部材25と同様に、x−y平面に対して透明部材25の反射臨界角以上の角度分傾斜して配置されている。ハニカム構造体27は、光源21からの光が入射される入射面27aと、光を出射する出射面27bとを有している。このハニカム構造体27は、入射面27aから入射された光のうち平行な成分の光以外の光をカットし、平行な成分の光を出射面27bから出射する。
ハニカム構造体27は、正六角形が縦横に規則的に並べられるようにして構成されている。ハニカム構造体27の材料としては、典型的には、樹脂や金属が用いられる。ハニカム構造体27は、少なくとも、ハニカム構造体27を構成する正六角形の内周面(つまり、ハニカム構造体27の表面)が黒とされている。これにより、平行な成分の光以外の光をハニカム構造体27の表面に吸収させることができるので、平行な成分の光以外の光を適切にカットすることができる。例えば、ハニカム構造体27の表面を黒とするために、ハニカム構造体27の材料自体に黒の材料が用いられてもよいし、ハニカム構造体27の表面に黒の塗料が塗布されていてもよい。
ハニカム構造体27は、縦の長さ及び横の長さが5cm〜20cm程度とされ、その厚さが20μm〜100μm程度とされる。また、ハニカム構造体27を構成する正六角形の対辺の距離は、1mm〜1cm程度とされる。なお、ここで示した値は、一例に過ぎず、本技術は、これに限定されない。
[動作説明]
次に、検査装置100の処理及び照明20における光の動きについて説明する。
まず、検査装置100の制御部13は、ステージ移動機構11を制御して、ステージ10上に載置された基板1を所定の位置に位置決めする。次に、制御部13は、特定の1つの照明20における複数の光源21を点灯させる。このとき、その特定の1つの照明20以外の照明20は、消灯されている。
図3を参照して、複数の光源21から光が出射されると、その光は、まず、拡散部材22を通過する。このとき、光源21から出射された光は、第1のレンチキュラーレンズシート23の下面側に設けられた複数の第1のシリンドリカルレンズ23aによって、y軸方向に拡散される。y軸方向に拡散された光は、次の第2のレンチキュラーレンズシート24の下側に設けられた複数の第2のシリンドリカルレンズ24aによって、x軸方向に拡散される。
このようにして、光源21から出射された光が拡散部材22を通過するときに、拡散部材22によってx−y方向に均一に拡散される。
また、光が拡散部材22を通過するとき、第1のシリンドリカルレンズ23a及び第2のシリンドリカルレンズ24aの集光作用によって、光にはz軸方向への指向性が付与される。これにより、光源21の光の出射方向(z軸方向)に指向性を持った拡散光が拡散部材22から出射されることになる。但し、拡散部材22から出射される全ての光に対してz軸方向への指向性が付与されるわけではなく、図3に示すように、一部の光は、z軸方向への指向性が付与されずに、拡散部材22から斜め方向に出射される。
すなわち、光源21からの光は、拡散部材22によって、z軸方向に大まかな指向性が付与され、大まかな平行光とされた状態で拡散部材22から出射される。なお、光が拡散部材22を通過する時点では、z軸方向への指向性が付与されずに、斜め方向に出射される光も未だ多い状態である。
拡散部材22から出射された光は、透明部材25に対して入射される。図6には、透明部材25に対する光の入射角と、光の動きとの関係が示されている。透明部材25に対して入射される光の動きについては、図2、図4及び図6が参照される。
透明部材25がx−y平面に対して、反射臨界角以上傾斜して配置されている関係上、z軸方向に指向性を持った光は、透明部材25に対して、反射臨界角以上の入射角θで入射される。ここでの例では、z軸方向に指向性を持った光は、透明部材25に対して60°の入射角θで入射される。従って、z軸方向に指向性を持った光は、透明部材25の光源21側の面(光沢面25a)により60°の反射角で全反射される。
透明部材25の光源21側の面(光沢面25a)によって反射された光は、ミラー26に対して30°の入射角で入射されて、30°の反射角で反射される。ミラー26で反射された光は、0°の入射角θで透明部材25に対して入射される。拡散部材22によって、z軸方向への指向性が付与された光は、このような経路を辿って、透明部材25に対して垂直に入射され、そして、透明部材25の内部に進入することになる。本実施形態では、このようにして、平行光に近い光が作られる。なお、このような経路で、透明部材25の内部に進入する光は、この照明20の構造上、透明部材25の下側の領域で多くなる。
一方、z軸方向への指向性が付与されずに拡散部材22から斜め方向に向けて出射された光は、透明部材25の反射臨界角未満の入射角θで透明部材25に入射される光が多い。この光は、透明部材25の光源21側の面において、透明部材25の材質に応じた屈折角で屈折されて、透明部材25の内部に進入する。本実施形態では、このような経路を辿る光についても、平行光に近い光とすることができる。なお、このような経路で透明部材25の内部に進入する光は、照明20の構造上、透明部材25の上側の領域で多くなる。
透明部材25の反射臨界角未満の入射角θで透明部材25に入射される光は、全てが透明部材25の光源21側の面を透過して透明部材25の内部に進入するわけではなく、一部は、光源21側の面で反射される。透明部材の光源21側の面は、光沢面25aとされているため、反射臨界角未満の入射角θで透明部材25に入射される光のうち、入射角θが0に近い光(透明部材25に対して垂直に近い角度で入射される光)が光源21側の面を透過し易い構成とされている。
透明部材25の内部に進入した平行光に近い光は、透明部材25におけるハニカム構造体27側の面、即ち、拡散面25bに達する。拡散面25bに達した光は、光拡散性を有する複数の微粒子によって、さらに平行に近い光となって、拡散面25bから出射される。
図2及び図5を参照して、透明部材25の拡散面25bから出射された平行光に近い光は、ハニカム構造体27の入射面27a側から入射される。ハニカム構造体27の入射面27aに入射された平行光に近い光のうち、正確に平行でない光は、ハニカム構造体27を通過するときに、正六角形の内周面(黒)によって吸収される。
これにより、正確に平行でない光の成分がハニカム構造体27によってカットされて、ハニカム構造体27の出射面27bから平行光に近い光が出射される。本実施形態では、このように、ハニカム構造体27により平行光に近い光を得ることができる。
ハニカム構造体27から出射された平行光に近い光は、基板1の照射面1a(上面)に対して斜め上方から照射される。
ここで、後述の図9を参照して、平行光が基板1の照射面1aに対して斜め上方から照射される場合、基板1の照射面1a内における光の照度は、透明部材25の拡散面25bにおける輝度×1/(照射距離)で表される。例えば、透明部材25の拡散面25bにおける輝度が拡散面25b内において均一であると仮定した場合、基板1の照射面1aにおいて、拡散面25bから近い位置(図9右側)では照度が大きくなり、拡散面25bから遠い位置(図9左側)では照度が小さくなる。
一方で、本実施形態に係る照明20は、上記したように、拡散部材22によってz軸方向への指向性が付与され、透明部材25によって全反射され、ミラー26によって反射される経路を辿ることで平行光とされる光は、透明部材25の下側の領域で多くなる。このような経路を辿る光は、反射が繰り返えされているため、輝度が小さい。すなわち、本実施形態では、透明部材25の拡散面25bの下側から出射される光は、相対的に輝度が小さい。
また、上述のように、z軸方向への指向性が付与されずに拡散部材22から斜め方向に向けて出射され、透明部材25の光源21側の面で屈折される経路を辿ることで平行光とされる光は、透明部材25の上側の領域で多くなる。このような経路を辿る光は、反射を繰り返えしていないため、相対的に輝度が大きい。すなわち、本実施形態では、透明部材25の拡散面25bの上側から出射される光は、相対的に輝度が大きい。
以上の説明から分かるように、本実施形態では、透明部材25の拡散面25b内における光の輝度は、基板1の照射面1aに対する照射距離が近い位置(下側)で相対的に小さく、照射面1aからの距離が遠い位置(上側)で相対的に大きい。従って、本実施形態では、照明20が基板1に対して斜め方向から平行光を照射する場合に、基板1の照射面1aに対して均一な平行光を照射することができる。
基板1の照射面1aに対して、平行光が照射されると、制御部13は、撮像部12を制御して、平行光が照射された基板1の画像を取得する。次に、制御部13は、先ほど点灯された照明20を消灯して、他の照明20を点灯させる。そして、制御部13は、再び、撮像部12を制御して、平行光が照射された基板1の画像を取得する。照明20が点灯される順番については、特に制限はない。
制御部13は、1つの照明20を点灯させて、撮像部12によって撮像する処理を照明20が設置されている数と同じ回数分、繰り返す。照明20の数は、3つ以上であるため、この処理は、典型的には、3回以上繰り返される。これにより、異なる照射角度で平行光が照射された3以上の基板1の画像が取得される。
次に、制御部13は、撮像部12によって得られた3枚以上の画像に基づいて基板1上の各点における法線方向を法線マップとして取得する。これにより、制御部13は、基板1を3次元的に測定する。本実施形態では、照明20により基板1に対してより平行光に近い光を照射することができるため、制御部13は、基板1を正確に3次元測定することができる。次に、制御部13は、測定結果に基づいて、基板1の良否(例えば、クリーム半田の位置や量、電子部品の位置等)を判定する。そして、制御部13は、良品と判断された基板1を次の装置へ受け渡し、不良品と判断された基板1を廃棄する処理を実行する。
[ハニカム構造体27を採用する場合の利点]
次に、ハニカム構造体27を採用する場合の利点について説明する。
ここでの説明では、正確に平行でない平行光をカットする構造体の開口形状として、正六角形が用いられた場合と、正四角形や、正三角形などの正六角形以外の形状が採用された場合とを比較しつつ、ハニカム構造体27の利点について説明する。
複数の開口の開口形状として、正六角形が用いられた場合の第1の利点は、正四角形などの他の形状が用いられた場合と比べて、基板1上に投影される影を最小にしつつ、効率よく平行な成分以外の光をカットすることができる点である。
正六角形が用いられる場合の第2の利点は、正四角形などの他の形状が用いられた場合と比べて、干渉縞の発生リスクが低い点である。図7は、構造体の開口形状として、正六角形が用いられた場合の干渉縞発生リスクを説明するための図であり、図8は、構造体の開口形状として、正四角形が用いられた場合の干渉縞発生リスクを説明するための図である。
図8を参照して、正四角形が規則的に並べられる形態の場合、正四角形の対辺の距離が僅かに異なっていく現象(微小ピッチずれ)が、構造上発生し易い。つまり、歪み無く正確な正四角形を規則的に並べた構造体を作成することは、その構造上、困難である。図8では、左から右へ向かうに従って、四角形の横幅が少しずつ小さくなっていく場合の一例が示されている。微小ピッチずれが生じた場合、基板1上に干渉縞が生じてしまうといった問題がある。
図7を参照して、正六角形が規則的に並べられる形態の場合、正六角形の対辺の距離が僅かに異なっていく現象(微小ピッチずれ)が、他の形状が用いられる場合に比べて、構造上発生しにくい。微小ピッチずれのリスクが3方向に分散されており、また、より大きなばらつきが許容されているためである。このように、正六角形の場合、滑らかに変化する微小ピッチずれが発生しにくいため、他の形状に比べて、基板1上に干渉縞が発生してしまうリスクが小さい。また、正六角形を規則的に並べた構造体を作成することは、構造上簡単であり、これは、コスト削減にも繋がる。
[作用等]
以上説明したように、本実施形態に係る照明20は、ハニカム構造体27により、より平行光に近い光を得ることができる。さらに、本実施形態に係る照明20は、例えば、点光源と、1枚のレンズとの組み合わせや、2枚のレンズとアイリスとの組み合わせなどの平行光を得るための構造に比べて、コンパクト化が容易となる。また、2枚のレンズとアイリスとの組み合わせによってより平行光に近い光を得ようとすると、各部品について、厳格な部品取り付け精度が要求されるが、本実施形態では、このような厳格な部品取り付け精度は要求されない。
さらに、本実施形態に係る照明20に用いられている各部材は、全て、入手が簡単であり、かつ、安価な部材である。従って、本実施形態に係る照明20は、安価な費用で簡単に製造することができる。
<第2実施形態>
次に、本技術の第2実施形態について説明する。第2実施形態以降の説明では、上述の第1実施形態と同様の構成及び機能を有する部材については、同一符号を付し、説明を省略又は簡略化する。
第2実施形形態では、上述の第1実施形態に係る照明20に対して、さらに、減光フィルタ28が設けられる点で上述の第1実施形態と異なっている。従って、その点を中心に説明する。
図9は、第2実施形態に係る照明20を示す分解斜視図である。図9では、透明部材25の拡散面25b、減光フィルタ28、及びハニカム構造体27(入射面27a、出射面27b)が示されており、それ以外の部分については、省略されている。
図9に示すように、減光フィルタ28は、透明部材25(拡散面25b)と、ハニカム構造体27(入射面27a)との間に配置される。この減光フィルタ28は、透明部材25の拡散面25b(ハニカム構造体27の入射面27a)と、基板1上の照射面1aとの距離に応じた、照射面1aに照射される光の照度のバラつきを吸収可能とされる。
図9に示すように、照明20からの平行光が斜めから照射される場合、基板1の照射面1a内における光の照度は、透明部材25の拡散面25bにおける輝度×1/(照射距離)で表される。例えば、透明部材25の拡散面25bにおける輝度が拡散面25b内において均一であると仮定した場合、基板1の照射面1aにおいて、拡散面25bから近い位置(図9右側)では照度が大きくなり、拡散面25bから遠い位置(図9左側)では照度が小さくなる。
上記したように、上述の第1実施形態では、透明部材25の拡散面25b内における光の輝度は、基板1の照射面1aに対する照射距離が近い位置(下側)で相対的に小さく、照射面1aからの距離が遠い位置(上側)で相対的に大きい。従って、上述のように、第1実施形態では、平行光を斜め方向から照射する場合に、基板1の照射面1aに対して均一な平行光を照射することができる。
しかしながら、これだけでは、基板1上へ照射される平行光の均一化対策としては、十分ではない場合も想定される。そこで、第2実施形態では、透明部材25の拡散面25b(ハニカム構造体27の入射面27a)と、基板1上の照射面1aとの距離に応じた、照射面1aに照射される光の照度のバラつきを吸収可能な減光フィルタ28をさらに設けることとしている。
減光フィルタ28は、典型的には、照射距離(拡散面25b(ハニカム構造体27の入射面27a)上の特定の位置と、その特定の位置から出射された平行光が基板1上に到達する位置との距離)が近いほど、光の透過率が低くなるように構成されている。従って、減光フィルタ28は、上側から下側に向かうに従って、徐々に透過率が低くなるように構成されている。これにより、平行光を斜め方向から照射する場合に、さらに均一な照度の平行光を基板1の照射面1aに対して照射することができる。
[減光フィルタ28の製造方法]
次に、減光フィルタ28の製造方法について説明する。減光フィルタ28を製造する方法として、2つの方法がある。まず、第1の方法について説明する。
第1の方法では、まず、減光フィルタ28の作成者は、減光フィルタ28も、ハニカム構造体27も存在しない状態で、透明部材25の拡散面25bに対してカメラを正対させ、このカメラによって透明部材25の拡散面25bを撮像する。これによって、作成者は、透明部材25の拡散面25b内(ハニカム構造体27の入射面27a内)における輝度分布のバラつきに応じたデータを得ることができる。
次に、作成者は、照射距離を測定する。そして、作業者は、光の照度が、透明部材25の拡散面25bにおける輝度×1/(照射距離)で表されることを考慮して、基板1の照射面1aでの平行光の照度が均一となるように、減光フィルムの設計を行なう。
第2の方法では、減光フィルタ28の作成者は、減光フィルタ28も、ハニカム構造体27も存在しない状態で、透明部材25の拡散面25bに対する基板1の照射面1aの位置及び角度に応じた位置及び角度にカメラをセットする。そして、作成者は、カメラによって、透明部材25の拡散面25bを撮像する。これにより、透明部材25の拡散面25b内(ハニカム構造体27の入射面27a内)における輝度分布のバラつきと、上記照射距離に起因する基板1上の照射面1a内における照度のバラつきとの両方とに応じたデータを得ることができる。次に、作成者は、得られたデータを減光フィルムに反映させればよい。
減光フィルタ28の製造方法としては、上記した2つの方法のうち、どちらが用いられても構わない。減光フィルタ28を製造する際に、どちらの方式が用いられたとしても、精度のよい減光フィルタ28を作成することができる。
<各種変形例>
上述の各実施形態では、照明20が基板1の斜め上方の位置に位置され、基板1の照射面1aに対して照明20が斜め方向から平行光を照射する場合について説明した。一方、照明20が基板1の直上に位置され、基板1に対して照明20が直上から平行光を照射してもよい(例えば、照度差ステレオ法による3次元測定以外の場合)。この場合、撮像部12は、斜め上方に位置され、斜め上方から基板1を撮像する。
上記した例では、減光フィルタ28の位置が、ハニカム構造体27の入射面27a側の位置に配置される場合について説明したが、減光フィルタ28の位置は、ハニカム構造体27の出射面27b側に配置されていてもよい。なお、ハニカム構造体27の入射面27a側の位置に減光フィルタ28が配置される形態の場合、ハニカム構造体27の出射面27b側の位置に減光フィルタ28が配置される形態に比べて、減光フィルタ28の透過率の変化が滑らかになる。従って、ハニカム構造体27の入射面27a側の位置に減光フィルタ28が配置される形態は、ハニカム構造体27の出射面27b側の位置に減光フィルタ28が配置される形態に比べて、特に有利である。
照明20が基板1の直上から平行光を照射する場合の減光フィルタについて説明する。この場合、減光フィルタ28は、照射距離に起因する基板1上の照射面1a内における照度のバラつきを考慮せずに、透明部材25の拡散面25b内(ハニカム構造体27の入射面27a内)における輝度分布のバラつきのみを考慮して作成される。この場合、減光フィルタ28の作成者は、減光フィルタ28も、ハニカム構造体27も存在しない状態で、透明部材25の拡散面25bに対してカメラを正対させ、このカメラによって透明部材25の拡散面25bを撮像する。そして、作成者は、透明部材25の拡散面25b内(ハニカム構造体27の入射面27a内)における輝度分布のバラつきに応じたデータを得て、このデータを減光フィルタ28に反映させればよい。これにより、照明20から均一な輝度の光を出射させて、基板1の照射面1aに対して均一な照度の光を照射させることができる。
上記した各実施形態では、照明20は、照度差ステレオ法によって基板1を3次元検査するときの照明20として用いられている。しかし、本技術に係る照明20は、位相シフト等の他の3次元測定用の照明20として用いられてもよいし、2次元測定用の照明20として用いられてもよい。本技術に係る照明20は、画像処理が要求される検査装置100等の装置に用いられると、特に有効であるが、画像処理が要求されない装置についても用いることができる。例えば、技術に係る照明20は、顕微鏡等の照明20として用いられても構わない。本技術に係る照明20は、コンパクト化が容易であるので、スペース制約が多い装置についての有効活用が期待される。
本技術は、以下の構成をとることもできる。
(1) 光源と、
前記光源からの光が入射される入射面を有し、前記入射面から入射された光のうち平行な成分の光以外の光をカットし、平行な成分の光を出射するハニカム構造体と
を具備する照明。
(2) 上記(1)に記載の照明であって、
前記光源の前方側に配置され、入射された光を拡散してハニカム構造体側に向けて出射する拡散部材
をさらに具備する照明。
(3) 上記(2)に記載の照明であって、
前記拡散部材は、入射された光を拡散しつつ、入射された光に一方向への指向性を付与して出射する
照明。
(4) 上記(2)又は(3)に記載の照明であって、
前記拡散部材は、一方向に長い形状の複数の第1のレンズが並べられて形成された第1のレンズシートと、前記第1のレンズシートに積層され、一方向に長い形状の複数の第2のレンズが前記第1のレンズが並べられる方向と直交する方向に並べられて形成された第2のレンズシートとを有する
照明。
(5) 上記(1)乃至(4)のうちいずれか1つに記載の照明であって、
前記ハニカム構造体は、前記光源の光の出射方向に対して垂直な方向から所定の角度傾斜して配置され、
前記照明は、
前記ハニカム構造体の前記入射面側の位置に、前記ハニカム構造体と共に前記所定の角度傾斜して配置され、光の入射角に応じて、入射される光の一部を反射し、他の一部を透過させる透明部材と、
前記透明部材によって反射された光を反射させて、前記光を前記透明部材側に戻すミラーとをさらに具備する
照明。
(6) 上記(5)に記載の照明であって、
前記所定の角度は、前記透明部材の反射臨界角以上の角度とされ、
前記ミラーは、前記光源の出射方向と平行に配置される
照明。
(7) 上記(5)又は(6)に記載の照明であって、
前記透明部材は、前記ハニカム構造側に、拡散面を有する
照明。
(8) 上記(5)乃至(7)のうちいずれか1つに記載の照明であって、
前記透明部材は、前記光源側に、光沢面を有する
照明。
(9) 上記(1)乃至(8)のうちいずれか1つに記載の照明であって、
請求項1に記載の照明であって、
前記ハニカム構造体は、検査対象物に向けて光を照射する
照明。
(10) 上記(9)に記載の照明であって、
前記検査対象物は、光が照射される照射面を有し、
前記ハニカム構造体は、前記検査対象物の照射面に対して傾斜して配置され、
前記照明は、前記ハニカム構造体の前記入射面と前記検査対象物の前記照射面との距離に応じた前記照射面に照射される光の照度のバラつきを吸収可能な減光フィルタをさらに具備する
照明。
(11) 上記(1)乃至(9)に記載のうちいずれか1つに記載の照明であって、
前記ハニカム構造体の前記入射面から入射される光の入射面内での輝度のバラつきを吸収可能な減光フィルタをさらに具備する
照明。
(12) 上記(1)乃至(12)のうちいずれか1つに記載の照明であって、
前記ハニカム構造体は、その表面が黒である
照明。
(13) 光源と、前記光源からの光が入射される入射面を有し、前記入射面から入射された光のうち平行な成分の光以外の光をカットし、平行な成分の光を出射するハニカム構造体と有し、検査対象物に向けて光を照射する照明と、
前記照明により光が照射された検査対象物を撮像する撮像部と
を具備する検査装置。
(14) 光源と、前記光源からの光が入射される入射面を有し、前記入射面から入射された光のうち平行な成分の光以外の光をカットし、平行な成分の光を出射するハニカム構造体とを有する照明により、基板に向けて光を照射し、
前記照明により光が照射された前記基板を撮像部により撮像し、
撮像された画像に基づいて、前記基板の良否を判定し、
良品と判定された基板を残し、不良品と判定された基板を廃棄する
基板の製造方法。
1…基板
1a…照射面
20…照明
21…光源
22…拡散部材
23…第1のレンチキュラーレンズシート
23a…第1のシリンドリカルレンズ
24…第2のレンチキュラーレンズシート
24a…第2のシリンドリカルレンズ
25…透明部材
25a…光沢面
25b…拡散面
26…ミラー
27…ハニカム構造体
27a…入射面
27b…出射面
28…減光フィルタ
100…検査装置

Claims (14)

  1. 光源と、
    前記光源からの光が入射される入射面を有し、前記入射面から入射された光のうち平行な成分の光以外の光をカットし、平行な成分の光を出射するハニカム構造体と
    を具備する照明。
  2. 請求項1に記載の照明であって、
    前記光源の前方側に配置され、入射された光を拡散してハニカム構造体側に向けて出射する拡散部材
    をさらに具備する照明。
  3. 請求項2に記載の照明であって、
    前記拡散部材は、入射された光を拡散しつつ、入射された光に一方向への指向性を付与して出射する
    照明。
  4. 請求項2に記載の照明であって、
    前記拡散部材は、一方向に長い形状の複数の第1のレンズが並べられて形成された第1のレンズシートと、前記第1のレンズシートに積層され、一方向に長い形状の複数の第2のレンズが前記第1のレンズが並べられる方向と直交する方向に並べられて形成された第2のレンズシートとを有する
    照明。
  5. 請求項1に記載の照明であって、
    前記ハニカム構造体は、前記光源の光の出射方向に対して垂直な方向から所定の角度傾斜して配置され、
    前記照明は、
    前記ハニカム構造体の前記入射面側の位置に、前記ハニカム構造体と共に前記所定の角度傾斜して配置され、光の入射角に応じて、入射される光の一部を反射し、他の一部を透過させる透明部材と、
    前記透明部材によって反射された光を反射させて、前記光を前記透明部材側に戻すミラーとをさらに具備する
    照明。
  6. 請求項5に記載の照明であって、
    前記所定の角度は、前記透明部材の反射臨界角以上の角度とされ、
    前記ミラーは、前記光源の出射方向と平行に配置される
    照明。
  7. 請求項5に記載の照明であって、
    前記透明部材は、前記ハニカム構造側に、拡散面を有する
    照明。
  8. 請求項5に記載の照明であって、
    前記透明部材は、前記光源側に、光沢面を有する
    照明。
  9. 請求項1に記載の照明であって、
    前記ハニカム構造体は、検査対象物に向けて光を照射する
    照明。
  10. 請求項9に記載の照明であって、
    前記検査対象物は、光が照射される照射面を有し、
    前記ハニカム構造体は、前記検査対象物の照射面に対して傾斜して配置され、
    前記照明は、前記ハニカム構造体の前記入射面と前記検査対象物の前記照射面との距離に応じた前記照射面に照射される光の照度のバラつきを吸収可能な減光フィルタをさらに具備する
    照明。
  11. 請求項1に記載の照明であって、
    前記ハニカム構造体の前記入射面から入射される光の入射面内での輝度のバラつきを吸収可能な減光フィルタをさらに具備する
    照明。
  12. 請求項1に記載の照明であって、
    前記ハニカム構造体は、その表面が黒である
    照明。
  13. 光源と、前記光源からの光が入射される入射面を有し、前記入射面から入射された光のうち平行な成分の光以外の光をカットし、平行な成分の光を出射するハニカム構造体と有し、検査対象物に向けて光を照射する照明と、
    前記照明により光が照射された検査対象物を撮像する撮像部と
    を具備する検査装置。
  14. 光源と、前記光源からの光が入射される入射面を有し、前記入射面から入射された光のうち平行な成分の光以外の光をカットし、平行な成分の光を出射するハニカム構造体とを有する照明により、基板に向けて光を照射し、
    前記照明により光が照射された前記基板を撮像部により撮像し、
    撮像された画像に基づいて、前記基板の良否を判定し、
    良品と判定された基板を残し、不良品と判定された基板を廃棄する
    基板の製造方法。
JP2012070915A 2012-03-27 2012-03-27 照明、検査装置及び基板の製造方法 Pending JP2013205041A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012070915A JP2013205041A (ja) 2012-03-27 2012-03-27 照明、検査装置及び基板の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012070915A JP2013205041A (ja) 2012-03-27 2012-03-27 照明、検査装置及び基板の製造方法

Publications (1)

Publication Number Publication Date
JP2013205041A true JP2013205041A (ja) 2013-10-07

Family

ID=49524297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012070915A Pending JP2013205041A (ja) 2012-03-27 2012-03-27 照明、検査装置及び基板の製造方法

Country Status (1)

Country Link
JP (1) JP2013205041A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015232479A (ja) * 2014-06-09 2015-12-24 株式会社キーエンス 検査装置、検査方法およびプログラム
JP6039119B1 (ja) * 2016-02-23 2016-12-07 株式会社ヒューテック 欠陥検査装置
JP2017044939A (ja) * 2015-08-28 2017-03-02 株式会社Screenホールディングス 光規制器具および撮像方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015232479A (ja) * 2014-06-09 2015-12-24 株式会社キーエンス 検査装置、検査方法およびプログラム
US10036713B2 (en) 2014-06-09 2018-07-31 Keyence Corporation Inspection apparatus, inspection method, and program
US10156525B2 (en) 2014-06-09 2018-12-18 Keyence Corporation Inspection apparatus, inspection method, and program
US10241056B2 (en) 2014-06-09 2019-03-26 Keyence Corporation Inspection apparatus, inspection method, and program
JP2017044939A (ja) * 2015-08-28 2017-03-02 株式会社Screenホールディングス 光規制器具および撮像方法
WO2017038155A1 (ja) * 2015-08-28 2017-03-09 株式会社Screenホールディングス 撮像方法および光規制器具
EP3343251A4 (en) * 2015-08-28 2019-04-24 SCREEN Holdings Co., Ltd. IMAGING METHOD AND LIGHT REGULATION TOOL
JP6039119B1 (ja) * 2016-02-23 2016-12-07 株式会社ヒューテック 欠陥検査装置

Similar Documents

Publication Publication Date Title
CN1936496B (zh) 图案光照射装置、三维形状计测装置以及图案光照射方法
JP6056058B2 (ja) 3次元測定装置、3次元測定方法、プログラム及び基板の製造方法
JP2017111121A (ja) ビジョンシステムで鏡面上の欠陥を検出するためのシステム及び方法
CN105572149A (zh) 平板玻璃表面的异物检测装置
JP3483948B2 (ja) 欠陥検出装置
JP2007078581A (ja) 外観検査用照明装置
TWI700473B (zh) 用於量測玻璃物品厚度的方法及系統
JP2013205041A (ja) 照明、検査装置及び基板の製造方法
TWI691714B (zh) 檢查裝置及檢查方法
CN107796829B (zh) 检查装置
JP2007107960A5 (ja)
JP2512093B2 (ja) 異物検出装置及び方法
JP5821092B2 (ja) 照度分布測定装置及び照度分布測定方法
KR102633672B1 (ko) 유리 시트들 상의 표면 결함들을 검출하기 위한 방법들 및 장치
JP2008268011A (ja) 異物検査装置
JPH10153413A (ja) Icリードの外観寸法検査装置
JP2011226939A (ja) 基板検査方法及び装置
KR20080019395A (ko) 평판디스플레이용 이물검사장치
KR20120086333A (ko) 적응 초점을 갖는 고속 광학 검사 시스템
JP6625901B2 (ja) 照明装置、および検査装置
JP3139398U (ja) 表面撮影装置
JP2000097864A (ja) 外観検査用投光装置
JPWO2013099981A1 (ja) ライン光照射装置
US9874807B2 (en) Optical image capturing module, alignment method, and observation method
JP2006017487A (ja) レンズシートの検査装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140522