JP2013204122A - 金属粉末射出成形用成形型 - Google Patents

金属粉末射出成形用成形型 Download PDF

Info

Publication number
JP2013204122A
JP2013204122A JP2012076163A JP2012076163A JP2013204122A JP 2013204122 A JP2013204122 A JP 2013204122A JP 2012076163 A JP2012076163 A JP 2012076163A JP 2012076163 A JP2012076163 A JP 2012076163A JP 2013204122 A JP2013204122 A JP 2013204122A
Authority
JP
Japan
Prior art keywords
runner
runners
auxiliary
main
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012076163A
Other languages
English (en)
Other versions
JP5874493B2 (ja
Inventor
Hidefumi Nakamura
英文 中村
Shigeharu Yamahata
茂晴 山端
Tomo Takahashi
友 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2012076163A priority Critical patent/JP5874493B2/ja
Priority to TW102110760A priority patent/TWI611898B/zh
Priority to CN201310105413.1A priority patent/CN103357879B/zh
Publication of JP2013204122A publication Critical patent/JP2013204122A/ja
Application granted granted Critical
Publication of JP5874493B2 publication Critical patent/JP5874493B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Powder Metallurgy (AREA)

Abstract

【課題】複雑な形状のキャビティに対しても高い充填性を発揮し、高品質の成形体を効率よく製造可能な金属粉末射出成形用成形型を提供すること。
【解決手段】キャビティ10内に金属粉末射出成形材料を導入する複数のゲート23と、主スプルー21からランナー分岐点225までをつなぐ主ランナー221と、ランナー分岐点225から各ゲート23までをつなぐ複数の副ランナー222と、を有し、複数の副ランナー222のうち、主ランナー221となす角度が鈍角であるものを第1の副ランナー2221とし、主ランナー221となす角度が直角であるものを第2の副ランナー2222としたとき、第1の副ランナー2221の長さは第2の副ランナー2222の長さより短くなっており、かつ、第2の副ランナー2222はその途中で湾曲している。
【選択図】図2

Description

本発明は、金属粉末射出成形用成形型に関するものである。
近年、複雑な形状の金属焼結体を製造する方法として、金属粉末射出成形法(MIM)が普及しつつある。金属粉末射出成形法は、金属粉末と有機バインダーとの混練物を成形型のキャビティ内に射出成形し、得られた成形体を脱脂、焼成することにより、所望の形状の金属焼結体を製造する方法である。この方法であれば、最終形状に近い形状の金属焼結体を製造することができるので、二次加工を省略したり、加工量を減らすことができ、製造工程の簡略化および製造コストの削減が図られる。
射出成形法に用いられる成形型は、一般に、キャビティと、そこに成形材料を供給するゲート、ランナーおよびスプルーと、を有する。成形機のノズルから供給された成形材料は、スプルー、ランナーおよびゲートを順次通過しキャビティ内に充填される。その結果、キャビティの形状が転写された成形体が得られる。
ところで、キャビティの形状によっては、1つのキャビティに対して複数のゲートを設けるマルチゲート式の成形型が用いられる。この場合、複数のゲートから成形材料が供給されるが、成形材料の充填性を高めるためには、各ゲートからほぼ同時に成形材料が供給され始めることが重要である。
このため、各ゲートまでのランナーの長さを等しくした等長ランナーが用いられる(例えば、特許文献1参照)。等長ランナーでは、ランナーを2つに分岐する分岐点を繰り返し設けることによって、各ゲートまでのランナー長が等しくなるよう設計される。このため、成形材料の流動速度が等しければ、原理上、各ゲートにほぼ同時に成形材料が到達すると考えられる。
しかしながら、多数個取りの成形型の場合、等長ランナーにおける分岐の回数が多くなる。そして、1つのキャビティに対して3つ以上のゲートを設ける場合には、さらに分岐の回数が多くなる。その結果、ランナーにおける成形材料の流動抵抗が大きくなり、充填性の低下を招いている。
そこで、分岐回数をできるだけ減らしつつ、各ゲートへの成形材料の到達時間の均等化を図り、充填性を高めることが課題となっている。
特開2007−50554号公報
本発明の目的は、複雑な形状のキャビティに対しても高い充填性を発揮し、高品質の成形体を効率よく製造可能な金属粉末射出成形用成形型を提供することにある。
上記目的は、下記の本発明により達成される。
本発明の金属粉末射出成形用成形型は、キャビティ内に金属粉末射出成形材料を導入する複数のゲートと、
スプルーからランナー分岐点までをつなぐ主ランナーと、
前記ランナー分岐点から前記各ゲートに接続する副スプルーまでをそれぞれつなぐ複数の副ランナーと、を有し、
前記複数の副ランナーと前記主ランナーとがなす角度は、それぞれ直角または鈍角であり、
前記複数の副ランナーのうち、前記スプルーに垂直な面に対する平面視において前記主ランナーとなす角度が鈍角であるものを第1の副ランナーとし、前記主ランナーとなす角度が直角であるものを第2の副ランナーとしたとき、前記第1の副ランナーの長さは前記第2の副ランナーの長さより短くなっており、かつ、前記第2の副ランナーは前記平面視においてその途中で湾曲していることを特徴とする。
これにより、複数のゲートからキャビティに対して成形材料を供給する際のタイムラグを短縮することができるので、複雑な形状のキャビティに対しても高い充填性を発揮し、高品質の成形体を効率よく製造可能な金属粉末射出成形用成形型が得られる。
本発明の金属粉末射出成形用成形型では、前記ランナー分岐点1個当たり、前記第1の副ランナーの数は1本以上3本以下、前記第2の副ランナーの数は1本または2本であることが好ましい。
これにより、ゲートの数によらず、高品質の成形体を効率よく製造可能な金属粉末射出成形用成形型が得られる。
本発明の金属粉末射出成形用成形型では、前記第1の副ランナーは前記平面視において直線状に延伸していることが好ましい。
これにより、第1の副ランナーには主ランナーから流れてきた成形材料がより短時間で充填されることとなる。その結果、第1の副ランナーに成形材料が充填されるまでの時間をより短縮することができ、ひいては、複数のゲートからそれぞれ成形材料が供給され始めるまでのタイムラグをさらに短縮することができる。
本発明の金属粉末射出成形用成形型では、前記複数の副ランナーの配置は、前記主ランナーに対して線対称の関係を満たすことが好ましい。
これにより、主ランナーを流れてきた成形材料は、複数の第2の副ランナーに均等に分配される。その結果、複数の第2の副ランナーに成形材料が充填されるまでのタイムラグが確実に短縮され、ひいては、複数のゲートからそれぞれ成形材料が供給され始めるまでのタイムラグをさらに短縮することができる。
本発明の金属粉末射出成形用成形型では、さらに、前記スプルーが複数の前記主ランナーに分岐するスプルー分岐点を有し、
前記複数の主ランナーの配置および前記各主ランナーからそれぞれ分岐する複数の前記副ランナーの配置は、前記スプルー分岐点に対して点対称の関係を満たすことが好ましい。
これにより、スプルーを流れてきた成形材料は、複数の主ランナーに均等に分配される。その結果、各キャビティに充填される成形材料の充填密度および充填時間のバラツキが抑えられることとなり、個体差の少ない成形体を効率よく製造することができる。
本発明の金属粉末射出成形用成形型の第1実施形態の型閉め状態を示す縦断面図である。 図1に示す金属粉末射出成形用成形型に形成された成形材料流動用の流路を模式的に示す平面図である。 図2に示す流路を模式的に示す斜視図である。 本発明の金属粉末射出成形用成形型の第2実施形態に形成された成形材料流動用の流路の一部を模式的に示す平面図である。 図4に示す流路の他の構成例を模式的に示す平面図である。 比較例1で用いた成形型に形成された成形材料流動用の流路を模式的に示す平面図である。
以下、本発明の金属粉末射出成形用成形型について、添付図面に示す好適実施形態に基づいて詳細に説明する。
<第1実施形態>
まず、本発明の金属粉末射出成形用成形型の第1実施形態について説明する。
図1は、本発明の金属粉末射出成形用成形型の第1実施形態の型閉め状態を示す縦断面図、図2は、図1に示す金属粉末射出成形用成形型に形成された成形材料流動用の流路を模式的に示す平面図、図3は、図2に示す流路を模式的に示す斜視図である。
図1に示す金属粉末射出成形用成形型(以下、省略して「成形型」という。)1は、型開きおよび型閉め可能に設けられた上側プレート11と中間プレート12と下側プレート13とを有しており、中間プレート12と下側プレート13との間がパーティング面Pになっている。パーティング面Pには、成形用のキャビティ10が形成されている。
また、上側プレート11および中間プレート12内には、キャビティ10内に成形材料を流動させるための流路2が形成されている。この流路2は、キャビティ10から見て最も上流側に位置する主スプルー21と、主スプルー21の下流側に位置するランナー22と、流路2とキャビティ10との接続部に位置するゲート23と、を有している。また、ランナー22は、図2に示すように、その上流側の部分である主ランナー221と、主ランナー221の下流側に位置する副ランナー222とに分かれている。射出成形機から供給された成形材料は、主スプルー21、ランナー22およびゲート23を順次通過してキャビティ10に充填される。これにより、成形材料はキャビティ10の形状に成形され、任意の形状の成形体を得ることができる。
また、図1に示す成形型1は、いわゆるマルチゲート式の成形型であり、1つのキャビティ10に対して複数のゲート23が設けられている。なお、成形型1は、図1〜3に示すような複数のキャビティ10を有するいわゆる多数個取りが可能なものでもよく、1個取りのものでもよい。図1〜3に示すような多数個取り可能なマルチゲート式の成形型の場合、各キャビティ10に対してそれぞれ複数のゲート23が設けられることとなる。
以下、流路2について詳述する。
図2、3に示す流路2においては、主スプルー21がその終端において4本の主ランナー221に分岐している。この分岐点をスプルー分岐点215とする。4本の主ランナー221は、主スプルー21に対して直交する面、すなわちパーティング面Pにおいてスプルー分岐点215から放射状に延伸するよう構成されている。
また、各主ランナー221は、それぞれ、その終端において3本の副ランナー222に分岐している。この分岐点をランナー分岐点225とする。3本の副ランナー222は、パーティング面Pに対する平面視(以下、単に「平面視」という。)においてランナー分岐点225から放射状に延伸するよう構成されている。
ここで、3本の副ランナー222のうち、1本は、ランナー分岐点225を越えて主ランナー221を延長するように配設されており、2本は、平面視においてランナー分岐点225から主ランナー221に対して直角をなす方向に延伸するよう配設されている。前者の1本の副ランナー222を第1の副ランナー2221とし、後者の2本の副ランナー222をそれぞれ第2の副ランナー2222とする。第1の副ランナー2221および第2の副ランナー2222は、それぞれ副スプルー24を介してゲート23に接続されており、これらのゲート23は同一のキャビティ10と連通している。したがって、このキャビティ10には、これらの3つのゲート23からそれぞれ成形材料が供給され、短時間で充填されることとなる。なお、第1の副ランナー2221の終端に接続されたゲート23をゲート231とし、各第2の副ランナー2222の終端に接続されたゲート23をそれぞれゲート232とする。なお、副スプルー24は、それぞれ図3に示すように主スプルー21と平行に延伸し、各副ランナー222の終端と各ゲート23との間を接続している。
3本の副ランナー222のうち第1の副ランナー2221は、ゲート231に至るまで平面視において直線状に延伸している。そして、図2の場合、第1の副ランナー2221と主ランナー221とが同一の直線上に配設されており、第1の副ランナー2221が主ランナー221となす角度θ1(以下、「分岐角度」ともいう。)は180°である。なお、この角度θ1は、平面視において第1の副ランナー2221の軸線と主ランナー221の軸線とがなす角度のことを指す。角度θ1は鈍角であればよく、具体的には95°超180°以下であればよい。また、角度θ1は、好ましくは100°以上180°以下とされ、より好ましくは110°以上180°以下とされ、さらに好ましくは120°以上180°以下とされる。
また、第1の副ランナー2221の長さ(延長)は、第2の副ランナー2222よりも短くなるよう設定されている。なお、各副ランナー222の長さとは、ランナー分岐点225から各副ランナー222と副スプルー24との接続点までの平面視における長さである。
一方、2本の第2の副ランナー2222は、それぞれ、前述したように平面視において主ランナー221に対する角度θ2(以下、「分岐角度」ともいう。)が直角をなしており、かつ互いに反対の方向に向かって延伸している。なお、この角度θ2は、平面視において各第2の副ランナー2222の軸線と主ランナー221の軸線とがなす角度のことを指し、これが直角であるとは、角度θ2が88°以上95°以下であることをいう。
このように副ランナー222についてランナー分岐点225からの分岐角度や長さを規定することにより、成形型1では3つのゲート23からほぼ同時に成形材料を供給することができる。これにより、キャビティ10には短時間で成形材料が充填されることとなり、成形材料の温度低下や経時的な性状変化を抑制することができる。その結果、各ゲート23から供給された成形材料同士が出会う位置におけるウェルドラインの発生が抑制されるとともに、充填密度の均一化が図られる。このようにして均質で形状再現性の高い高品質な成形体が得られる。
このような効果は、以下のような理由によるものと考えられる。主スプルー21、スプルー分岐点215および主ランナー221を順次通過した成形材料は、ランナー分岐点225において3方向に分岐する。このとき、成形材料は引き続き主ランナー221の延伸方向に沿って流れようとするので、3本の副ランナーのうち、主ランナー221に対する角度θ1が鈍角である第1の副ランナー2221に向かって優先的に流れ込むこととなる。その結果、第1の副ランナー2221内は極めて短時間に成形材料によって充填される。
一方、第1の副ランナー2221が成形材料によって充填されると、行き場を失った成形材料が、自ずと、主ランナー221に対する角度θ2が直角である第2の副ランナー2222に向かって流れ込む。その結果、2本の第2の副ランナー2222内にも短時間で成形材料が充填されることとなる。そして、第1の副ランナー2221および第2の副ランナー2222が成形材料で充填されると、各ゲート23からキャビティ10へと成形材料が供給される。
これらの一連の挙動のうち、第1の副ランナー2221内に成形材料が充填された後、第2の副ランナー2222内に成形材料が充填されるまでの時間は、極めて短時間である。これは、第1の副ランナー2221の長さ(延長)が第2の副ランナー2222よりも短く設定されているため、第1の副ランナー2221内に極めて短時間で成形材料が充填されることとなり、その後、速やかに第2の副ランナー2222を充填するように成形材料を流動させることができるからである。
すなわち本発明では、第1の副ランナー2221内が成形材料で短時間に充填されるようランナー長およびランナーの分岐角度を設定することにより、第1の副ランナー2221内に成形材料が充填されることで行き場を失った成形材料を第2の副ランナー2222側へと短時間で振り向けることができ、結果的には、3つのゲート23からそれぞれ成形材料が供給され始めるまでのタイムラグを短縮することを可能にしている。
なお、従来の等長ランナーでは、ランナー分岐点において、主ランナーから2本の副ランナーが等しい分岐角度で分岐しているため、成形材料が各副ランナーに対してほぼ同時に流れ始めることができる。この点において等長ランナーは有用であるものの、マルチゲート式の成形型の場合、多数のゲートを設けるべく、主ランナーを多数の副ランナーに分岐しなければならないため、ランナー分岐点の数が非常に多くなってしまう。このため、ランナー分岐点の数とともに流路の流動抵抗が増加し、各ゲートから成形材料が供給され始めるまでの時間が長くなるという問題があった。
これに対し、図2に示す成形型1では、ランナー分岐点225において主ランナー221を3本の副ランナー222に分岐させることができるので、ランナー分岐点の数を減らすことができる。その結果、成形材料がゲート23に到達するまでの時間を短縮し、ウェルドラインや充填不良等の発生を抑制することができる。
また、2本の第2の副ランナー2222は、平面視においてその途中で湾曲している。このように第2の副ランナー2222を湾曲させることにより、第2の副ランナー2222の流動抵抗の増加を抑えつつ、ゲート23の配置の自由度を高めることができる。すなわち、第2の副ランナー2222に比べて第1の副ランナー2221の長さを短く設定した場合、平面視において第1の副ランナー2221の終端に位置するゲート231と第2の副ランナー2222の終端に位置するゲート232とが取り得る最長の離間距離も短くなってしまうため、ゲート23の配置の自由度に制約が生じてしまうが、第2の副ランナー2222を湾曲させることにより、前記最長の離間距離がより長くとることができ、かつ、湾曲せず折れ曲がっている場合に比べて流動抵抗の増加も抑えられる。その結果、ゲート23の配置の自由度が高まることとなる。
また、第2の副ランナー2222と主ランナー221とがなす角度θ2を直角としたことにより、ランナー分岐点225における流動抵抗の増大を抑えつつ、ゲート231とゲート232とが取り得る最長の離間距離をより長くとることができる。なお、角度θ2が直角より小さい場合、主ランナー221を流動してきた成形材料はその流れの方向を、逆戻りするように大きく変えることを強いられるため、ランナー分岐点225における流動抵抗が極めて大きくなり、流速が低下することで第2の副ランナー2222に成形材料が充填されるまでの時間が長くなってしまう。一方、角度θ2が直角より大きい場合、ランナー分岐点225における流動抵抗の著しい増加は抑えられるものの、ゲート231とゲート232との離間距離を確保しづらくなり、ゲート23の配置の自由度が小さくなってしまう。
なお、上述したような成形材料の挙動は、成形材料中に金属粉末が含まれていること、すなわち金属粉末射出成形用の成形材料であるがゆえのものであり、このような成形材料を成形する際に上記作用・効果がより確実に発揮される。これは、金属粉末を含む成形材料はその比重が大きいものであるため、流動時の運動エネルギーが大きく、その流動方向を速やかに変化させることが困難であるからである。その一方、成形材料の運動エネルギーが大きいことによって、例えば図2に示すランナー分岐点225においては、特に制御しなくても、まず第1の副ランナー2221に成形材料が優先的に流れ込み、第1の副ランナー2221が成形材料で充填されると、次いで、第2の副ランナー2222に成形材料が流れ込むという挙動が自ずと生じることとなる。したがって、金属粉末を含んだ成形材料を用いた場合にのみ、本発明の成形型はその機能を存分に発揮することができる。
一方、図2に示す第1の副ランナー2221は、平面視において直線上に延伸している。これにより、第1の副ランナー2221には主ランナー221から流れてきた成形材料がより短時間で充填されることとなる。その結果、第1の副ランナー2221に成形材料が充填されるまでの時間をより短縮することができ、ひいては、3つのゲート23からそれぞれ成形材料が供給され始めるまでのタイムラグをさらに短縮することができる。
なお、第1の副ランナー2221は、平面視において湾曲していてもよい。また、主ランナー221も平面視において湾曲していてもよい。
また、2本の第2の副ランナー2222の配置は、主ランナー221に対して線対称の関係を満たしている。このように配置されていることで、主ランナー221を流れてきた成形材料は、2本の第2の副ランナー2222に均等に分配される。その結果、2本の第2の副ランナー2222に成形材料が充填されるまでのタイムラグが確実に短縮され、ひいては、3つのゲート23からそれぞれ成形材料が供給され始めるまでのタイムラグをさらに短縮することができる。
以上のように、本発明では、主ランナー221に対して分岐角度が鈍角である第1の副ランナー2221と直角である第2の副ランナー2222とを有し、第1の副ランナー2221の長さを第2の副ランナー2222の長さより短く設定し、かつ、第2の副ランナー2222がその途中で湾曲するように構成することにより、各副ランナー222に接続されたゲート23から成形材料が供給され始めるまでのタイムラグを十分に短縮することができる。その結果、キャビティ10に対して複数のゲート23から均一に成形材料を供給し短時間で充填することができるので、複雑な形状のキャビティ10であってもウェルドラインや充填不良等の発生を確実に抑制しつつ、均質かつ高密度の成形体を効率よく製造することができる。
なお、第1の副ランナー2221の数は2本以上であってもよいが、好ましくは1本以上3本以下とされる。また、第2の副ランナー2222の数も特に限定されないが、好ましくは1本または2本とされる。
また、成形型1に形成された流路2では、上述したように、主スプルー21がその終端において4本の主ランナー221に分岐しており、各主ランナー221の先にはそれぞれ各副ランナー222、各副スプルー24、各ゲート23等が設けられており、さらにその先にキャビティ10が設けられている。
ここで、これらの主ランナー221およびその先に設けられた各副ランナー222の配置は、図2に示すように、スプルー分岐点215に対して点対称の関係を満たしている。これにより、主スプルー21を流れてきた成形材料は、4本の主ランナー221に均等に分配される。その結果、各キャビティ10に充填される成形材料の充填密度および充填時間のバラツキが抑えられることとなり、個体差の少ない成形体を効率よく製造することができる。
なお、1つの成形型1に形成されるキャビティ10の数は、特に限定されず、1〜3個でも、5個以上でもよい。
<第2実施形態>
次に、本発明の金属粉末射出成形用成形型の第2実施形態について説明する。
図4は、本発明の金属粉末射出成形用成形型の第2実施形態に形成された成形材料流動用の流路の一部を模式的に示す平面図である。
以下、第2実施形態について説明するが、第1実施形態との相違点を中心に説明し、同様の事項についてはその説明を省略する。なお、図4において第1実施形態と同様の構成部分については、先に説明したのと同様の符号を付し、その詳細な説明を省略する。
第2実施形態は、各主ランナー221がその終端において4本の副ランナー222に分岐している以外、第1実施形態と同様である。
図4に示す流路2には、第1の副ランナー2221が2本配置されている。これらの第1の副ランナー2221の配置は、主ランナー221に対して線対称の関係を満たしている。このように配置されていることで、主ランナー221を流れてきた成形材料は、2本の第1の副ランナー2221に均等に分配される。その結果、2本の第1の副ランナー2221に成形材料が充填されるまでのタイムラグが確実に短縮される。
図5は、図4に示す流路の他の構成例を模式的に示す平面図である。
図5に示す流路2には、第1の副ランナー2221が3本配置されている。これらの第1の副ランナー2221の配置も、主ランナー221に対して線対称の関係を満たしている。なおこの場合、3本の第1の副ランナー2221のうちの1本は主ランナー221の延長線上に配置されることとなる。
以上、本発明について、好適な実施形態に基づいて説明したが、本発明はこれらに限定されるものではない。
例えば、成形型には、上記の構造物以外に任意の構造物が付加されていてもよい。
また、本発明の金属粉末射出成形用成形型のキャビティは、いかなる形状であってもよい。
次に、本発明の具体的実施例について説明する。
1.成形体の製造
(実施例1)
まず、水アトマイズ法により製造されたSUS316L粉末を用意した。SUS316L粉末について、レーザー回折方式の粒度分布測定装置(マイクロトラック、日機装株式会社製、HRA9320−X100)により平均粒径を測定したところ、平均粒径が10μmであった。有機バインダーは、ポリプロピレンとパラフィンワックスを質量比で9:1となるよう混合したものを用いた。そして、SUS316L粉末と有機バインダーとの質量比は、91:9とした。
次いで、これらを混合し、加圧ニーダー(混練機)にて混練した。
次いで、得られた混練物をペレタイザーにより粉砕し、平均粒径5mmのペレットを得た。
次いで、得られたペレットを用い、材料温度:150℃、射出圧力:10.8MPa(110kgf/cm)という成形条件で、射出成形機にて成形を行った。これにより、成形体を得た。なお、成形体の形状は、直径30mm×厚さ5mmの円盤形状である。
また、成形型としてはキャビティの数が4つの多数個取りのものを用い、流路が図3に示す形状になっているものを用いた。なお、流路の形状条件は以下に示す通りである。
<流路の形状>
・スプルー分岐点における分岐数:4
・ランナー分岐点における分岐数:3
・キャビティ当たりのゲート数 :3個
・第1の副ランナーの本数 :1本
・第2の副ランナーの本数 :2本
・第1の副ランナーの分岐角度 :180°
・第2の副ランナーの分岐角度 :90°
(実施例2)
流路の形状を以下に示す形状(図4に示す形状)に変更し、1つのキャビティ当たりのゲートの数を4個に変更した以外は、実施例1と同様にして成形体を得た。
<流路の形状>
・ランナー分岐点における分岐数:4
・第1の副ランナーの本数 :2本
・第2の副ランナーの本数 :2本
・第1の副ランナーの分岐角度 :135°
・第2の副ランナーの分岐角度 :90°
(実施例3)
流路の形状を以下に示す形状(図5に示す形状)に変更し、1つのキャビティ当たりのゲートの数を5個に変更した以外は、実施例1と同様にして成形体を得た。
<流路の形状>
・ランナー分岐点における分岐数:5
・第1の副ランナーの本数 :3本
・第2の副ランナーの本数 :2本
・第1の副ランナーの分岐角度 :120°および180°
・第2の副ランナーの分岐角度 :90°
(比較例1)
流路の形状を以下に示す形状に変更した以外は、実施例1と同様にして成形体を得た。なお、図6は、比較例1で用いた成形型に形成された成形材料流動用の流路を模式的に示す平面図である。
<流路の形状>
・第1の副ランナーの本数 :1本
・第2の副ランナーの本数 :2本
・第1の副ランナーの分岐角度 :180°
・第2の副ランナーの分岐角度 :60°
(比較例2)
流路の形状を以下に示す形状に変更した以外は、実施例2と同様にして成形体を得た。
<流路の形状>
・第1の副ランナーの本数 :2本
・第2の副ランナーの本数 :2本
・第1の副ランナーの分岐角度 :135°
・第2の副ランナーの分岐角度 :60°
(比較例3)
流路の形状を以下に示す形状に変更した以外は、実施例3と同様にして成形体を得た。
<流路の形状>
・第1の副ランナーの本数 :3本
・第2の副ランナーの本数 :2本
・第1の副ランナーの分岐角度 :120°および180°
・第2の副ランナーの分岐角度 :60°
2.成形体の評価
次に、各実施例および各比較例で得られた成形体を脱脂、焼成して焼結体を得た。そして、得られた焼結体について以下の評価を行った。なお、脱脂条件および焼成条件は以下に示す通りである。
<脱脂条件>
・脱脂温度 :500℃
・脱脂時間 :1時間
・脱脂雰囲気:窒素雰囲気
<焼成条件>
・焼成温度 :1300℃
・焼成時間 :3時間
・焼成雰囲気:アルゴン雰囲気
2.1 焼結密度の評価
各実施例および各比較例で得られた焼結体100個について、アルキメデス法(JIS Z 2501に規定)に準じた方法により密度を測定した。また、測定された焼結密度の平均値と金属粉末の真密度から焼結体の相対密度を算出した。
その結果、各実施例で得られた焼結体は、各比較例で得られた焼結体に比べて相対密度が高いことが認められた。
2.2 外観の評価
各実施例および各比較例で得られた焼結体100個について、その外観を以下の評価基準にしたがって評価した。
<外観の評価基準>
◎:割れ、欠損および変形が発生した焼結体の数が3個以下である。
○:割れ、欠損および変形の発生した焼結体の数が4個以上10個以下である。
△:割れ、欠損および変形の発生した焼結体の数が11個以上50個以下である。
×:割れ、欠損および変形の発生した焼結体の数が51個以上である。
2.3 寸法精度の評価
各実施例および各比較例で得られた焼結体100個について、その外径をマイクロメーターで測定した。そして、測定値の平均値について、JIS B 0411(金属焼結品の普通許容差)に規定の「幅の普通許容差」に基づき、以下の評価基準に基づいて評価した。
<寸法精度の評価基準>
◎:等級が精級である(許容差±0.05mm以下)。
○:等級が中級である(許容差±0.05mm超±0.1mm以下)。
△:等級が並級である(許容差±0.1mm超±0.2mm以下)。
×:許容外である。
以上、2.2および2.3の評価結果を表1に示す。
Figure 2013204122
2.4 焼結均一性の評価
各実施例および各比較例で得られた焼結体100個について、ランダムに選択した10カ所のビッカース硬度を測定した。そして、10個の測定値の分布幅を算出し、これを各実施例および各比較例の間で比較した。
その結果、各実施例で得られた焼結体は、各比較例で得られた焼結体に比べてビッカース硬度の分布幅が狭く、かつその平均値が高いことが認められた。すなわち、各実施例で得られた焼結体は、各比較例で得られた焼結体に比べて焼結均一性が高いことが認められた。
1……成形型 10……キャビティ 11……上側プレート 12……中間プレート 13……下側プレート 2……流路 21……主スプルー 215……スプルー分岐点 22……ランナー 221……主ランナー 222……副ランナー 2221……第1の副ランナー 2222……第2の副ランナー 225……ランナー分岐点 23、231、232……ゲート 24……副スプルー P……パーティング面

Claims (5)

  1. キャビティ内に金属粉末射出成形材料を導入する複数のゲートと、
    スプルーからランナー分岐点までをつなぐ主ランナーと、
    前記ランナー分岐点から前記各ゲートに接続する副スプルーまでをそれぞれつなぐ複数の副ランナーと、を有し、
    前記複数の副ランナーと前記主ランナーとがなす角度は、それぞれ直角または鈍角であり、
    前記複数の副ランナーのうち、前記スプルーに垂直な面に対する平面視において前記主ランナーとなす角度が鈍角であるものを第1の副ランナーとし、前記主ランナーとなす角度が直角であるものを第2の副ランナーとしたとき、前記第1の副ランナーの長さは前記第2の副ランナーの長さより短くなっており、かつ、前記第2の副ランナーは前記平面視においてその途中で湾曲していることを特徴とする金属粉末射出成形用成形型。
  2. 前記ランナー分岐点1個当たり、前記第1の副ランナーの数は1本以上3本以下、前記第2の副ランナーの数は1本または2本である請求項1に記載の金属粉末射出成形用成形型。
  3. 前記第1の副ランナーは前記平面視において直線状に延伸している請求項1または2に記載の金属粉末射出成形用成形型。
  4. 前記複数の副ランナーの配置は、前記主ランナーに対して線対称の関係を満たす請求項1ないし3のいずれかに記載の金属粉末射出成形用成形型。
  5. さらに、前記スプルーが複数の前記主ランナーに分岐するスプルー分岐点を有し、
    前記複数の主ランナーの配置および前記各主ランナーからそれぞれ分岐する複数の前記副ランナーの配置は、前記スプルー分岐点に対して点対称の関係を満たす請求項1ないし4のいずれかに記載の金属粉末射出成形用成形型。
JP2012076163A 2012-03-29 2012-03-29 金属粉末射出成形用成形型 Active JP5874493B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012076163A JP5874493B2 (ja) 2012-03-29 2012-03-29 金属粉末射出成形用成形型
TW102110760A TWI611898B (zh) 2012-03-29 2013-03-26 金屬粉末射出成形用成形模
CN201310105413.1A CN103357879B (zh) 2012-03-29 2013-03-28 金属粉末注射成形用成形模具

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012076163A JP5874493B2 (ja) 2012-03-29 2012-03-29 金属粉末射出成形用成形型

Publications (2)

Publication Number Publication Date
JP2013204122A true JP2013204122A (ja) 2013-10-07
JP5874493B2 JP5874493B2 (ja) 2016-03-02

Family

ID=49360614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012076163A Active JP5874493B2 (ja) 2012-03-29 2012-03-29 金属粉末射出成形用成形型

Country Status (3)

Country Link
JP (1) JP5874493B2 (ja)
CN (1) CN103357879B (ja)
TW (1) TWI611898B (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017131386A1 (ko) * 2016-01-26 2017-08-03 엘지전자 주식회사 사출성형을 위한 금형조립체
WO2017146358A1 (ko) * 2016-02-26 2017-08-31 서울과학기술대학교 산학협력단 핫 러너를 적용한 렌즈용 사출 성형품
JP2019123116A (ja) * 2018-01-15 2019-07-25 矢崎総業株式会社 金型、及び、該金型を用いた樹脂成形品の製造方法
CN110815731A (zh) * 2019-11-04 2020-02-21 宁波帅特龙集团有限公司 一种眼镜盒生产模具及生产工艺
JP2021508292A (ja) * 2020-02-18 2021-03-04 金発科技股▲ふん▼有限公司 スーパーマルチキャビティ製品用波型サブランナーシステム
CN112792340A (zh) * 2021-01-26 2021-05-14 东莞市豪准金属制品有限公司 一种弯管内腔r角的制作工具及制作工艺
WO2021110722A1 (en) * 2019-12-03 2021-06-10 Lego A/S A mould tool for injection moulding

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115933A (ja) * 1984-06-29 1986-01-24 Hitachi Metals Ltd 永久磁石合金の製造方法
JPH0952259A (ja) * 1995-08-11 1997-02-25 Tenshiyou Denki Kogyo Kk 射出成形金型のマニホールド製造方法
JPH1058491A (ja) * 1996-08-27 1998-03-03 Citizen Watch Co Ltd 成形金型
JPH1058494A (ja) * 1996-08-23 1998-03-03 Seiko Precision Kk カセット式射出成形金型装置
JP2001192704A (ja) * 2000-01-11 2001-07-17 Denso Corp 射出成形体及び複合射出成形体の成形方法
JP2005000953A (ja) * 2003-06-12 2005-01-06 Matsushita Electric Ind Co Ltd 湯道分岐構造体および鋳造用金型
JP2005103930A (ja) * 2003-09-30 2005-04-21 Seiko Epson Corp 射出成型用金型及び射出成型装置
JP2005178037A (ja) * 2003-12-16 2005-07-07 Kishimoto Sangyo Co Ltd 射出成形方法及び射出成形機用金型装置
JP2007223252A (ja) * 2006-02-27 2007-09-06 Matsushita Electric Ind Co Ltd 光学素子射出成形金型およびその成形方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6450798B1 (en) * 2000-02-04 2002-09-17 Avaya Technology Corp. Apparatus for multiple cavity injection molding
JP2001341166A (ja) * 2000-05-31 2001-12-11 Matsushita Electric Ind Co Ltd 射出成形金型装置
US20030185931A1 (en) * 2002-03-14 2003-10-02 Vanast Timothy Eric Cold runner system for injection molding thermotropic liquid crystal polymer resins
JP2005035242A (ja) * 2003-07-18 2005-02-10 Asmo Co Ltd 樹脂成形装置、樹脂成形品の製造方法、ならびに樹脂成形品
CN201308993Y (zh) * 2008-11-10 2009-09-16 王明喜 信号隔离器壳体粉末注射成型模具
CN101837622A (zh) * 2009-03-20 2010-09-22 施耐德电器工业公司 注塑成型装置、方法及所制备的圆环形塑料制品
CN102241113A (zh) * 2010-05-12 2011-11-16 浙江德玛克机械有限公司 注胚模分区域走胶热流道板
US8241032B2 (en) * 2010-05-18 2012-08-14 Mold-Masters (2007) Limited Single level manifold for an injection molding apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115933A (ja) * 1984-06-29 1986-01-24 Hitachi Metals Ltd 永久磁石合金の製造方法
JPH0952259A (ja) * 1995-08-11 1997-02-25 Tenshiyou Denki Kogyo Kk 射出成形金型のマニホールド製造方法
JPH1058494A (ja) * 1996-08-23 1998-03-03 Seiko Precision Kk カセット式射出成形金型装置
JPH1058491A (ja) * 1996-08-27 1998-03-03 Citizen Watch Co Ltd 成形金型
JP2001192704A (ja) * 2000-01-11 2001-07-17 Denso Corp 射出成形体及び複合射出成形体の成形方法
JP2005000953A (ja) * 2003-06-12 2005-01-06 Matsushita Electric Ind Co Ltd 湯道分岐構造体および鋳造用金型
JP2005103930A (ja) * 2003-09-30 2005-04-21 Seiko Epson Corp 射出成型用金型及び射出成型装置
JP2005178037A (ja) * 2003-12-16 2005-07-07 Kishimoto Sangyo Co Ltd 射出成形方法及び射出成形機用金型装置
JP2007223252A (ja) * 2006-02-27 2007-09-06 Matsushita Electric Ind Co Ltd 光学素子射出成形金型およびその成形方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017131386A1 (ko) * 2016-01-26 2017-08-03 엘지전자 주식회사 사출성형을 위한 금형조립체
US11426907B2 (en) 2016-01-26 2022-08-30 Lg Electronics Inc. Mold assembly for injection molding
WO2017146358A1 (ko) * 2016-02-26 2017-08-31 서울과학기술대학교 산학협력단 핫 러너를 적용한 렌즈용 사출 성형품
US10843424B2 (en) 2016-02-26 2020-11-24 Foundation For Research And Business, Seoul National University Of Science And Technology Lens injection molded product to which hot runner is applied
JP2019123116A (ja) * 2018-01-15 2019-07-25 矢崎総業株式会社 金型、及び、該金型を用いた樹脂成形品の製造方法
JP7118647B2 (ja) 2018-01-15 2022-08-16 矢崎総業株式会社 金型、及び、該金型を用いた樹脂成形品の製造方法
CN110815731A (zh) * 2019-11-04 2020-02-21 宁波帅特龙集团有限公司 一种眼镜盒生产模具及生产工艺
WO2021110722A1 (en) * 2019-12-03 2021-06-10 Lego A/S A mould tool for injection moulding
JP2021508292A (ja) * 2020-02-18 2021-03-04 金発科技股▲ふん▼有限公司 スーパーマルチキャビティ製品用波型サブランナーシステム
CN112792340A (zh) * 2021-01-26 2021-05-14 东莞市豪准金属制品有限公司 一种弯管内腔r角的制作工具及制作工艺

Also Published As

Publication number Publication date
TWI611898B (zh) 2018-01-21
CN103357879A (zh) 2013-10-23
CN103357879B (zh) 2016-06-08
TW201341144A (zh) 2013-10-16
JP5874493B2 (ja) 2016-03-02

Similar Documents

Publication Publication Date Title
JP5874493B2 (ja) 金属粉末射出成形用成形型
Ramazani et al. Metal FDM, a new extrusion-based additive manufacturing technology for manufacturing of metallic parts: a review
CN105710377B (zh) 使用用于复合部件的复合增材制造特征的复合增材制造方法
US9757802B2 (en) Additive manufacturing methods and systems with fiber reinforcement
US9987679B2 (en) Rapid tooling insert manufacture
CN108339983B (zh) 一种304不锈钢或304l不锈钢的选区激光熔化成型方法
US11666973B2 (en) Complex concentrated alloy and high entropy alloy additive manufacturing systems and methods
US20070051199A1 (en) Superalloy powder
JP6057598B2 (ja) 中空部を有する金属粉末焼結体の製造方法
CN102717081A (zh) 一种用粉末微注射成形方法制备微型模具的方法
CN105386035A (zh) 用于表面硬化铝注塑模具的制造方法
KR20170093571A (ko) 3d 프린터를 이용한 금형 코어 제작방법
CN106738857A (zh) 一种基于层流热等离子体射流的零部件直接成型制造方法
JP2009299106A (ja) 複合焼結体の製造方法および複合焼結体
US20200261974A1 (en) Three-dimensional shaped article production method
CN105798294A (zh) 一种难熔材料的快速零件成形方法
JP5942536B2 (ja) 金属粉末射出成形用成形型
WO2014101019A1 (zh) 多金属液态喷射沉积增材制造方法
JP2004525264A (ja) 金属射出成型による構造部材の製造
US20220258235A1 (en) Method for manufacturing a metal part
KR100678589B1 (ko) 복합층 재료 및 그 제조방법
WO2018154907A1 (ja) 樹脂成形品の製造方法
US20200261973A1 (en) Three-dimensional shaped article production method
KR20240062586A (ko) 금형의 제조방법
JP4804825B2 (ja) 光ファイバフェルール製造用金型、及びそれによって製造された光ファイバフェルール

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160104

R150 Certificate of patent or registration of utility model

Ref document number: 5874493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350