WO2014101019A1 - 多金属液态喷射沉积增材制造方法 - Google Patents

多金属液态喷射沉积增材制造方法 Download PDF

Info

Publication number
WO2014101019A1
WO2014101019A1 PCT/CN2012/087575 CN2012087575W WO2014101019A1 WO 2014101019 A1 WO2014101019 A1 WO 2014101019A1 CN 2012087575 W CN2012087575 W CN 2012087575W WO 2014101019 A1 WO2014101019 A1 WO 2014101019A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
spray deposition
layer
forming method
spray
Prior art date
Application number
PCT/CN2012/087575
Other languages
English (en)
French (fr)
Inventor
单忠德
刘丰
卢泽宇
Original Assignee
机械科学研究总院先进制造技术研究中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 机械科学研究总院先进制造技术研究中心 filed Critical 机械科学研究总院先进制造技术研究中心
Priority to PCT/CN2012/087575 priority Critical patent/WO2014101019A1/zh
Publication of WO2014101019A1 publication Critical patent/WO2014101019A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/115Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by spraying molten metal, i.e. spray sintering, spray casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/22Direct deposition of molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to the field of additive manufacturing, and relates to multi-metal spray deposition forming, and in particular to a multi-nozzle spray deposition forming method.
  • Metal jet forming technology is a rapid solidification forming material preparation technology which naturally combines atomization (rapid solidification) of liquid metal and deposition of atomized droplets (drip dynamic compacting) with minimal The process of making high-performance materials or near-formed parts directly from liquid metal.
  • the metal spray deposition technology not only overcomes the shortcomings such as blisters, sand sticks, pores and shrinkage cavities in the traditional casting process, but also eliminates the shortage of powder metallurgy processes and serious oxidation.
  • the multi-metal spray deposition rapid prototyping technology is based on the advantages of the material preparation in the comprehensive use of the spray forming process, using different metal properties of the material, through a reasonable spray forming process, direct injection molding to obtain high-density multi-metal parts, Achieve precision and rapid manufacturing of multi-metal parts with sufficient hardness and toughness.
  • SUMMARY OF THE INVENTION In view of the current metal spray deposition forming method, only a single alloy material and a single spray head are used for a metal spray deposition additive manufacturing method.
  • An object of the present invention is to provide a multi-nozzle, multi-metal spray deposition additive manufacturing method which has a high degree of flexibility and a high hardness and high toughness of a formed part in consideration of the above problems.
  • the layering includes part structure size information and deposition material information.
  • the heating device is provided with various raw material auxiliary material feeding systems. 4.
  • the heating means heats and melts a metal material or simultaneously heats and melts the plurality of metal materials.
  • moving a layer height is a step thickness of the table or a rise in thickness of the nozzle.
  • a plurality of metal deposition nozzles are simultaneously deposited on the same layer, or a single one of the plurality of nozzles is separately deposited.
  • the deposition process is carried out under a vacuum atmosphere or under a protective gas atmosphere.
  • the metal material is heated or melted in an atmosphere or a vacuum atmosphere or a protective gas atmosphere.
  • the multi-metal spray deposition forming method of the present invention has the effect that the multi-metal spray forming used is a highly integrated flexible manufacturing process, which can be closely combined with process design, product forming, and has very high spray deposition. Efficiency, able to meet rapid manufacturing and high performance requirements.
  • BRIEF DESCRIPTION OF THE DRAWINGS The invention will be further described below in conjunction with the drawings and embodiments.
  • 1 is a process flow diagram of a method for producing a multi-metal liquid jet deposition additive according to the present invention.
  • FIG. 2 is a cross-sectional view of a multi-metal part manufactured by the method of the present invention.
  • Figure 3 is a top plan view of a multi-metal part made using the method of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to clearly express the step features of the method for manufacturing a multi-metal liquid jet deposition additive of the present invention, a spray-element additive manufacturing example of a multi-metal part compositely formed of three metal materials, fi A, B, and C, is exemplified below. .
  • the computer is used to establish a three-dimensional CAD solid model of the formed part; the three-dimensional solid model is layered in the Z direction, that is, the three-dimensional solid model is divided into a layered model capable of processing a single layer thickness, and each spray layer contains both the selection, B, and C.
  • One or more metal materials including information on the distribution area of one or more metal materials selected; analysis of each spray layer, according to the requirements of the spray deposition process and the distribution of the three metal materials of each spray layer A, B, C Information such as the area, the computer generates the scanning path of each spray layer, controls the moving direction and speed of the worktable, and can make the spray deposition process have different scanning paths and scanning speeds.
  • the worktable can be an integral worktable that can move in the XYZ direction respectively. It can also be a multi-rod controlled workbench with a certain cavity structure with multiple degrees of freedom.
  • an integral worktable that can move in the XYZ direction is selected; for A, B, C three metal materials In the three, 1, 2, and 3 smelting furnaces, respectively, in a vacuum state, heating and melting; using a computer to form a part geometry
  • the bottom rectangular body of the selected multi-metal part is sprayed with A metal liquid, the inside of the hollow cylinder is sprayed with B metal liquid, and the outside of the hollow cylinder is sprayed with C metal liquid; the whole work table is set in the XY plane according to the set scan path Movement, select a nozzle and a suitable injection rate to spray A metal liquid.
  • the table After one layer is sprayed, the table is lowered by one layer thickness and sprayed layer by layer. After the bottom rectangular body spray deposition of the multi-metal part is completed, the table is lowered by one layer thickness.
  • the B and C metal materials are simultaneously present in the layer to be sprayed. According to the scanning layer scanning path and the material region information, the b nozzle and the appropriate injection rate are separately selected to separately spray the B metal liquid, the c nozzle and the suitable injection rate to separate the injection C.
  • the metal liquid, or the b nozzle and the c nozzle simultaneously work to spray two kinds of metal liquids, and after one layer is sprayed, the table is lowered by one layer thickness and sprayed layer by layer;
  • the workbench is lowered by a layer thickness.
  • the layer to be sprayed is only B metal material, and the b nozzle and the appropriate injection rate are sprayed to spray the B metal liquid.
  • the workbench is lowered by one layer. Thick, layer-by-layer spray, which ultimately completes the rapid and precise manufacturing of multi-metal parts with high overall hardness and toughness and good local properties.

Abstract

本发明公开了一种多金属液态喷射沉积增材制造方法,属于一种机械制造领域的增材制造技术,该金属液态喷射沉积增材制造方法:建立零件的计算机三维实体模型,将建立的模型z向分层,得到当前层的扫描路径;待沉积的多种金属材料分别通过加热装置熔化成液态;根据当前层信息选择喷头沿当前层扫描路径进行金属材料液态喷射成形;一层喷射完毕后,移动一个层高。由于本发明采用多喷头、多金属喷射沉积快速成型方法,用该方法增材制造金属零件可使加工的金属零件具有良好的内部组织和工作性能,且生产周期短,效率高。

Description

多金属液态喷射沉积增材制造方法 技术领域 本发明属于增材制造领域, 涉及多金属喷射沉积成形, 具体提供了一种多喷头喷 射沉积成形方法。 背景技术 金属喷射成形技术是一种快速凝固成形材料制备技术, 该方法是把液态金属的雾 化 (快速凝固)以及雾化熔滴的沉积 (熔滴动态致密固化)自然地结合起来, 用最少的工 序, 直接从液态金属制取高性能材料或近成形零件。 金属喷射沉积技术既克服了传统 铸造过程中存在的砂眼、 粘砂、 气孔、 缩孔等缺点, 又摈弃了粉末冶金工序繁多, 氧 化严重等不足。 同时又兼有粉末冶金技术的优点,是一种极具竞争力的快速凝固工艺。 由于快速凝固的组织优势, 各种喷射沉积材料的组织性能, 如耐蚀、 耐磨、 磁性、 强 度、 韧性等性能指标较常规铸锻工艺生产的材料有大幅度提高, 可与粉末冶金材料的 组织性能相当。 对于金属喷射成形技术工业化生产而言, 需要保证足够的加工效率, 满足不同的 金属零件工艺性能, 但是目前的金属喷射成形技术, 一般都是采用同种金属或合金加 工, 相同的金属喷射成形喷头。 而多金属喷射沉积快速成形技术是在综合利用喷射成 形工艺在材料制备方面优势的基础上, 采用不同金属性能的材料, 通过合理的喷射成 形工艺, 直接喷射成形获得高致密度的多金属零件, 实现多金属零件的精密、 快速制 造, 成形零件具有足够的硬度和韧性。 发明内容 针对目前金属喷射沉积成形方法只有单一合金材料与单一喷射喷头进行金属喷射 沉积增材制造方法。 本发明的目的在于考虑上述问题而提供一种柔性化程度高, 成形 零件具有高硬度和高韧性的多喷头、 多金属喷射沉积增材制造方法。
( 1 )建立零件的计算机三维实体模型, 将建立的模型 z向分层, 得到当前层的扫 描路径, 并加入材料信息;
(2) 待沉积的多种金属材料分别通过加热装置熔化成液态;
(3 ) 根据当前层信息选择喷头沿当前层扫描路径进行金属材料液态喷射成形; (4) 一层喷射完毕后, 移动一个层高;
(5 ) 重复步骤 (3 ) 〜 (4), 直至零件成形完成。
2、在上述喷射沉积增材制造方法中,分层包含零件结构尺寸信息和沉积材料信息。
3、 在上述喷射沉积增材制造方法中, 加热装置配有各种原辅材料加料系统。 4、在上述喷射沉积增材制造方法中,加热装置加热熔化一种金属材料或同时加热 熔化多种金属材料。
5、在上述喷射沉积增材制造方法中,移动一个层高是工作台下降一个层厚或喷嘴 上升一个层厚。
6、 在上述喷射沉积增材制造方法中, 在同一层上是多个金属沉积喷头同时沉积, 或是所述多个喷头中的单个喷头单独沉积。
7、在上述喷射沉积增材制造方法中,在同一层上是不同材料同时沉积或是不同材 料单独沉积。
8、在上述喷射沉积增材制造方法中,沉积过程在真空环境下或在保护气体环境下 进行。 9、在上述喷射沉积增材制造方法中,金属材料在加热熔化过程是在大气环境下或 真空环境下或保护气体环境下。
10、 在上述喷射沉积增材制造方法中, 在轮廓和内部填充可以分别采用不同的喷 头、 不同的喷射速率和不同的扫描速度。
11、 在上述喷射沉积增材制造方法中, 在整体的工作台, 或在一个带有多杆任意 排布、 受控升降组成型腔的柔性工作台上沉积成形。 综上所述: 本发明的多金属喷射沉积成形方法所产生的效果是使用的多金属喷射 成形是集成度很高的柔性制造过程, 可紧密结合过程设计、 产品成形, 具有非常高的 喷射沉积效率, 能够满足快速制造与高性能要求。 附图说明 下面结合附图和实施例对本发明进一步说明。 图 1为本发明的多金属液态喷射沉积增材制造方法的工艺流程图。 图 2 为采用为本发明方法制造的多金属零件剖视图。 图 3 为采用为本发明方法制造的多金属零件俯视图。 具体实施方式 为了清楚地表达出本发明的多金属液态喷射沉积增材制造方法步骤特点, 以下列 举一个 fi A、 B、 C三种金属材料复合成形的多金属零件的喷射沉积增材制造实施例。 利用计算机建立成形零件的三维 CAD实体模型; 将该三维实体模型在 Z向分层, 即将三维实体模型分成可加工单层厚度的层状模 型, 每个喷射层既包含选择 、 B、 C中的一种或多种金属材料, 也包含所选用一种或 多种金属材料的分布区域等信息; 分析各个喷射层, 根据喷射沉积工艺要求和各喷射层 A、 B、 C三种金属材料的分 布区域等信息, 计算机生成各喷射层的扫描路径, 控制工作台的运动方向和速度, 可 使喷射沉积过程具有不同的扫描路径和扫描速度,工作台可以是能分别沿 XYZ方向运 动的整体工作台, 也可以是一个由多杆控制, 具有多自由度的带有一定型腔结构的工 作台, 本实施例中选用可沿 XYZ方向运动的整体工作台; 对于 A、 B、 C三种金属材料分别采用 1、 2、 3三个熔炼炉中, 在真空状态下, 进 行加热熔化; 利用计算机对成型零件几何形状和加工工艺的分析, 选定多金属零件底部长方体 用 A金属液喷射, 空心圆柱内部用 B金属液喷射, 空心圆柱外部用 C金属液喷射; 整体工作台在 XY平面内按照设定的扫描路径运动, 选择 a喷头和适合的喷射速 率喷射 A金属液, 一层喷射完毕之后, 工作台下降一个层厚, 逐层喷射; 多金属零件底部长方体喷射沉积完成后, 工作台下降一个层厚, 此时待喷射层同 时出现 B、 C两种金属材料, 按照该喷射层扫描路径和材料区域信息, 交替选择 b喷 头和适合的喷射速率单独喷射 B金属液、 c喷头和适合的喷射速率单独喷射 C金属液、 或者 b喷头和 c喷头同时工作喷射两种金属液, 一层喷射完毕之后, 工作台下降一个 层厚, 逐层喷射; 当空心圆柱外部喷射成形完成后, 工作台下降一个层厚, 此时待喷射层只有 B金 属材料, 选择 b喷头和适合的喷射速率喷射 B金属液, 一层喷射完毕之后, 工作台下 降一个层厚, 逐层喷射, 最终完成整体硬度和韧性高, 且局部性能好的多金属零件的 快速、 精密制造。

Claims

权 利 要 求 书 多金属液态喷射沉积增材制造方法, 其特征在于, 该方法包括如下步骤:
( 1 )建立零件的计算机三维实体模型, 将建立的模型 z向分层, 得到当前 层的扫描路径, 并加入材料信息;
(2) 待沉积的多种金属材料分别通过加热装置熔化成液态;
(3 ) 根据当前层信息选择喷头沿当前层扫描路径进行金属材料液态喷射 成形;
(4) 一层喷射完毕后, 移动一个层高;
(5 ) 重复步骤 (3 ) 〜 (4), 直至零件成形完成。 根据权利要求 1所述的多金属喷射沉积成形方法, 其特征在于, 所述分层包含 零件结构尺寸信息和沉积材料信息。 根据权利要求 1所述的多金属喷射沉积成形方法, 其特征在于, 所述加热装置 配有各种原辅材料加料系统。 根据权利要求 1所述的多金属喷射沉积成形方法, 其特征在于, 所述加热装置 加热熔化一种金属材料或同时加热熔化多种金属材料。 根据权利要求 1所述的多金属喷射沉积成形方法, 其特征在于, 所述的移动一 个层高是工作台下降一个层厚或喷嘴上升一个层厚。 根据权利要求 1所述的多金属喷射沉积成形方法, 其特征在于, 在同一层上是 多个金属沉积喷头同时沉积, 或是所述多个喷头中的单个喷头单独沉积。 根据权利要求 1所述的多金属喷射沉积成形方法, 其特征在于, 在同一层上是 不同材料同时沉积或是不同材料单独沉积。 根据权利要求 1所述的多金属喷射沉积成形方法, 其特征在于, 所述沉积过程 在真空环境下或在保护气体环境下进行。 根据权利要求 1所述的多金属喷射沉积成形方法, 其特征在于, 所述金属材料 在加热熔化过程是在大气环境下或真空环境下或保护气体环境下。
10. 根据权利要求 1所述的多金属喷射沉积成形方法, 其特征在于, 在轮廓和内部 填充分别采用不同的喷头、 不同的喷射速率和不同的扫描速度。
11. 根据权利要求 1所述的多金属喷射沉积成形方法, 其特征在于, 在整体的工作 台,或在一个带有多杆任意排布、受控升降组成型腔的柔性工作台上沉积成形。
PCT/CN2012/087575 2012-12-26 2012-12-26 多金属液态喷射沉积增材制造方法 WO2014101019A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/087575 WO2014101019A1 (zh) 2012-12-26 2012-12-26 多金属液态喷射沉积增材制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/087575 WO2014101019A1 (zh) 2012-12-26 2012-12-26 多金属液态喷射沉积增材制造方法

Publications (1)

Publication Number Publication Date
WO2014101019A1 true WO2014101019A1 (zh) 2014-07-03

Family

ID=51019681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087575 WO2014101019A1 (zh) 2012-12-26 2012-12-26 多金属液态喷射沉积增材制造方法

Country Status (1)

Country Link
WO (1) WO2014101019A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104175557A (zh) * 2014-08-06 2014-12-03 西安交通大学 一种基于微滴控制的3d打印头系统及其打印方法
CN106312069A (zh) * 2016-11-22 2017-01-11 赵晴堂 一种増材制造的熔池控制方法
CN113649592A (zh) * 2021-08-06 2021-11-16 宿迁学院 同步喷射雾化沉积和致密化的零件制备方法
CN115070060A (zh) * 2022-06-09 2022-09-20 山东大学 一种金属零部件增材制造装置及工作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6513567B2 (en) * 1998-11-04 2003-02-04 Ford Global Technologies, Inc. Method of making a spray formed rapid tool
CN1597193A (zh) * 2004-07-28 2005-03-23 西北工业大学 非均质功能器件快速成形微制造方法
CN102294478A (zh) * 2011-08-18 2011-12-28 广东工业大学 精密喷射成形装置及用该装置实现模具快速制造的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6513567B2 (en) * 1998-11-04 2003-02-04 Ford Global Technologies, Inc. Method of making a spray formed rapid tool
CN1597193A (zh) * 2004-07-28 2005-03-23 西北工业大学 非均质功能器件快速成形微制造方法
CN102294478A (zh) * 2011-08-18 2011-12-28 广东工业大学 精密喷射成形装置及用该装置实现模具快速制造的方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104175557A (zh) * 2014-08-06 2014-12-03 西安交通大学 一种基于微滴控制的3d打印头系统及其打印方法
CN106312069A (zh) * 2016-11-22 2017-01-11 赵晴堂 一种増材制造的熔池控制方法
CN113649592A (zh) * 2021-08-06 2021-11-16 宿迁学院 同步喷射雾化沉积和致密化的零件制备方法
CN115070060A (zh) * 2022-06-09 2022-09-20 山东大学 一种金属零部件增材制造装置及工作方法

Similar Documents

Publication Publication Date Title
CN103056367B (zh) 一种基于脉冲小孔液滴喷射三维快速成型的方法及装置
WO2018091000A1 (zh) 一种适用于零件与模具的复合增材制造方法
CN106001568B (zh) 一种梯度材料金属模具3d打印一体化制备方法
CN108555301B (zh) 一种大型精密金属零件的分区并行式三维打印成型方法
CN103586466A (zh) 多金属液态喷射沉积增材制造方法
CN103639412A (zh) 一种3d打印机
CN107030280A (zh) 三维造型物的制造方法及三维造型物的制造装置
CN104628393B (zh) 一种高性能陶瓷的制备方法
CN108393492A (zh) 一种利用增材制造成形复杂NiTi合金构件的方法
WO2014101020A1 (zh) 多金属液态喷射沉积增材制造设备
CN203109235U (zh) 多金属液态喷射沉积增材制造设备
CN106862568A (zh) 基于电子束熔丝的增减材复合制造装置和方法
WO2014101019A1 (zh) 多金属液态喷射沉积增材制造方法
CN106827527A (zh) 三维造型物的制造方法
CN103600072B (zh) 多金属液态喷射沉积增材制造设备
CN108372305A (zh) 一种具有疏水作用的随形冷却流道及其制造方法
CN108097953A (zh) 一种模具智能随形冷却流道及其制造方法
JP6836097B2 (ja) 三次元造形物の製造方法及び三次元造形物の製造装置
CN104550959A (zh) 一种金属复合材料零件的成形方法
CN109396434A (zh) 一种基于选区激光熔化技术制备钛合金零件的方法
Fang et al. An investigation on effects of process parameters in fused-coating based metal additive manufacturing
CN104441656A (zh) 三维打印机及其打印方法
JP2016078097A (ja) 3dプリンターで積層造形する粉末冶金用ロストワックス型の製造方法
CN105328121A (zh) 基于熔融沉积工艺的无模快速铸造方法
CN102717081A (zh) 一种用粉末微注射成形方法制备微型模具的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12890802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12890802

Country of ref document: EP

Kind code of ref document: A1