WO2018091000A1 - 一种适用于零件与模具的复合增材制造方法 - Google Patents

一种适用于零件与模具的复合增材制造方法 Download PDF

Info

Publication number
WO2018091000A1
WO2018091000A1 PCT/CN2017/112908 CN2017112908W WO2018091000A1 WO 2018091000 A1 WO2018091000 A1 WO 2018091000A1 CN 2017112908 W CN2017112908 W CN 2017112908W WO 2018091000 A1 WO2018091000 A1 WO 2018091000A1
Authority
WO
WIPO (PCT)
Prior art keywords
forming
layer
speed cold
cold spray
milling
Prior art date
Application number
PCT/CN2017/112908
Other languages
English (en)
French (fr)
Inventor
张海鸥
王桂兰
张华昱
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Priority to US16/462,222 priority Critical patent/US11298792B2/en
Priority to JP2019527124A priority patent/JP2020514525A/ja
Priority to EP17872681.6A priority patent/EP3546091A1/en
Publication of WO2018091000A1 publication Critical patent/WO2018091000A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B19/00Single-purpose machines or devices for particular grinding operations not covered by any other main group
    • B24B19/22Single-purpose machines or devices for particular grinding operations not covered by any other main group characterised by a special design with respect to properties of the material of non-metallic articles to be ground
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/50Treatment of workpieces or articles during build-up, e.g. treatments applied to fused layers during build-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/367Feeding the material to be shaped using spray nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/241Chemical after-treatment on the surface
    • B22F2003/242Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/30Producing shaped prefabricated articles from the material by applying the material on to a core or other moulding surface to form a layer thereon
    • B28B1/32Producing shaped prefabricated articles from the material by applying the material on to a core or other moulding surface to form a layer thereon by projecting, e.g. spraying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention belongs to the field of moldless growth manufacturing of parts and molds, and more particularly to a composite additive manufacturing method suitable for parts and molds.
  • the moldless fusion forming method of high-density metal parts or molds mainly includes high-power laser deposition forming, electron beam free forming, plasma arc and arc fusion forming.
  • the high-power laser deposition forming adopts a high-power laser to melt the metal powder sent to the substrate layer by layer, and rapidly solidify and melt the forming, thereby finally obtaining a near-finished part; the method has high forming precision and the workpiece is
  • the density is much higher than that of selective laser sintered parts, but the forming efficiency, energy and material utilization rate are not high, it is difficult to reach full density, equipment investment and operating cost are high (see literature: AJPinkkerton, L.Li, Effects of Geometry and Composition) In Coaxial Laser Deposition of 316L Steel for Rapid Protyping, Annals of the CIRP, Vol. 52, 1 (2003), p181-184).
  • the electron beam free forming method uses a high-power electron beam to melt the powder material, applies an electromagnetic field according to a computer model, controls the movement of the electron beam, and scans layer by layer until the entire part is formed; the method has high forming precision and good forming quality, however, The process conditions are strict, the entire forming process needs to be carried out in a vacuum, resulting in limited forming dimensions, high equipment investment and operating costs; and it is difficult to use for gradient functional material parts due to the same layering method as selective sintering.
  • Forming see literature: Matz JE, Eagar T. W. Carbide formation in Alloy 718during electron-beam solid freeform fabrication.
  • Plasma deposition forming method uses high-compression, cluster-forming plasma beam melting synchronization
  • the supplied metal powder or wire is melted layer by layer on the substrate to form a metal part or a mold.
  • This method has higher forming efficiency and material utilization ratio than the former two methods, and is easy to obtain full density, and equipment and running cost are low, but the arc is low.
  • the diameter of the column is larger than the former two, and the size and surface precision of the forming are inferior to those of the former two. Therefore, similar to the high-power laser deposition forming method, it is necessary to finish the finishing after forming (see document: Haiou Zhang, Jipeng Xu, Guilan Wang, Fundamental Study on Plasma Deposition Manufacturing, Surface and Coating Technology, v. 171 (1-3), 2003, pp.
  • the high power laser deposition forming method and the plasma arc forming method are all unsupported, moldless fusion forming methods for forming homogeneous or composite gradient functional material parts.
  • LOM Laminated Object Manufacturing
  • SLA Stepolithography Apparatus
  • FDM Feused Deposition Modeling
  • the plasma fusion milling composite manufacturing method reduces the processing complexity by layer forming and milling finishing, but for the complicated shape parts with large inclination angles on the side, especially the lateral overhangs, the flow caused by gravity during stacking is even Slumping is still unavoidable, making it difficult to grow horizontally.
  • variable-direction slicing techniques selecting the direction with the most support conditions as the main direction of part forming, or decomposing complex-shaped parts into several simple-shaped parts. Forming in sequence; or developing five-axis die-free forming equipment and software to make the melt-forming material as supportive as possible (see document: P.Singh, D.Dutta, Multi-direction slicing for layered manufacturing, Journal of Computing) And Information Science and Engineering, 2001, 2, pp: 129–142; Jianzhong Ruan, Todd E. Sparks, Ajay Panackal et. al. Automated Slicing for a Multiaxis Metal Deposition System.
  • the five-axis machining technology can significantly improve the support conditions for growth forming and avoid the falling of materials.
  • heat source fusion forming such as electroslag welding and submerged arc welding can improve efficiency and reduce cost, it is difficult to form thin walls and fine shapes due to these heat sources, and the forming precision and the thin wall are less than the high power laser deposition forming method
  • CMT cold metal transfer
  • the existing moldless additive manufacturing method is characterized by its rapid heating and rapid solidification and free growth forming. Cracking, stomata, etc. are difficult to avoid, and the performance and stability of the tissue are not satisfactory.
  • the above problems have become the key technical difficulties and bottlenecks that are urgently needed to solve the problem of whether the direct additive forming technology can further develop and realize industrial application. Therefore, there is a need to develop a new method which can effectively improve manufacturing precision, improve formability, and structural properties of parts.
  • the use of the above-mentioned technology for additive manufacturing is essentially a "hot forming process" in which molten metal is cast by heat source input, and defects in the casting and welding processes, such as pores, shrinkage cavities, unfused, slag inclusions.
  • defects in the casting and welding processes such as pores, shrinkage cavities, unfused, slag inclusions.
  • adverse effects of heat such as dilution, oxidation, decomposition, phase transformation, deformation, cracking, runny, collapse, etc., are difficult to avoid completely.
  • the present invention provides a composite additive forming processing method suitable for parts and molds, which combines high-speed cold spraying and milling or press forming processes skillfully, and overcomes In the prior art moldless growth manufacturing method of parts and molds, due to the defects existing in the hot forming process, the stack forming defects caused by the single high speed cold spraying are also overcome.
  • the present invention provides a composite additive manufacturing method suitable for a part and a mold, comprising the following steps:
  • the three-dimensional CAD model of the workpiece to be formed is layered and sliced to obtain data of a plurality of layered slices, and the data of each layered slice includes the layer.
  • the thickness, shape and dimensional accuracy of the slice
  • step S3 forming, according to the numerical control code of each layered slice obtained in step S2, the powder material is layer-by-layer stacked on the substrate, and the layer-by-layer stack forming uses a numerically controlled high-speed cold spray gun to spray the powder material to a set position and stack forming ,
  • the numerically controlled high speed cold spray gun moves on the surface of the substrate coating during operation, and a press forming device or/and a milling forming device is mounted behind the numerically controlled high speed cold spray gun, and the press forming device or/and
  • the milling forming device is closely adjacent to the area to be processed or separated by several layers (several layers can be one layer, two layers, three layers, or other layers according to actual engineering needs), and is simultaneously formed by high-speed cold spray forming.
  • the device or the press forming and forming device can be moved with the numerically controlled high-speed cold spray gun for forming the formed material after the forming and the forming of the press-forming material after the forming and/or the post-forming forming, thereby improving the forming performance of the stacked forming and Forming accuracy.
  • the press working forming device or/and the milling forming device are closely adjacent to or separated from the area to be processed, and when the press forming device or/and the milling forming device are closely adjacent to the area to be processed, Immediately after the layer-by-layer stack forming, the current stacked forming layer can be subjected to press working or milling; when the press forming device or/and the milling forming device are separated from the area to be processed by several layers, the forming layer before the forming layer can be formed. Processing, that is, processing one layer, two layers, three layers or other layers.
  • the milling or press forming device combined with the high speed cold spray additive forming can be fixed on the high speed cold spray gun, the numerical control processing head or the robot wrist, on the surface of the base forming layer, with the high speed cold spray gun Or move away from the CNC high-speed cold spray gun at a certain distance, and perform milling and material cutting or press forming.
  • the high-speed cold spray additive forming and the milling or press forming are combined or separated in layers or layers to achieve the dimensional and surface precision and quality requirements of the part or mold.
  • the material of the coating region is forced to be deformed by forced milling or press forming tools installed behind the sprayed layer, forced forming
  • the resulting compressive strain and compressive stress state can be avoided Cracking, mitigating or eliminating residual stress, improving tissue performance; in addition, it can effectively reduce the taper and side surface step effect of the upper surface of the formed body, improve the forming precision and surface quality, so that only a small amount or no milling is required.
  • the size and surface accuracy of the part can be achieved only by grinding or polishing.
  • step S3 when the powder material is sprayed to the set position by the numerically controlled high-speed cold spray gun and stacked, the substrate and the spray particles are simultaneously heated to simultaneously soften the matrix and spray particles, thereby reducing the particles.
  • the substrate and the spray particles are simultaneously heated to simultaneously soften the substrate and the sprayed particles.
  • the particles are selected from the group consisting of metals, intermetallic compounds, ceramics, cermets, ceramic composites, and gradient functional materials whose composition and composition are gradient-variable. Nitrogen is used as a shielding gas during stacking.
  • the method further includes a step S4: when the part to be formed does not meet the size and surface precision requirements of the part or the mold, the layering or multi-layer segmentation is performed by milling, grinding or polishing during the forming process. The shaped body is finished until the part or mold size and surface accuracy requirements are met.
  • a plurality of high-speed cold spray guns and a composite milling or press forming device may be installed to perform composite additive forming.
  • the invention maintains the high-speed cold spraying as a "cold processing" of low heat input, which can effectively avoid the thermal-induced adverse effects occurring during the "hot forming process” of thermal spraying and fusion deposition of laser, electron beam, arc and the like.
  • the invention can obtain parts, or molds of metals, intermetallic compounds, cermets, ceramics and composite gradient functional materials thereof with high quality, fastness and low cost.
  • the method of the invention solves the practical engineering problem, and the parts or molds prepared by the method of the invention have no thermal defects such as pores, shrinkage, unfusion, slag inclusion, dilution, oxidation, decomposition, phase transformation, deformation, cracking, flow, collapse, etc. Impact, there is no problem of low mechanical mechanical properties, but also For hard materials, a wide range of sprayable materials, the method of the present invention also overcomes the problem that the surface of the coating is tapered after cold spraying, resulting in a linear decrease in deposition rate and high equipment and operating costs.
  • the invention can also be used for surface repair or strengthening of parts or molds, overcoming the technical bottleneck problem that the prior art method is very difficult to repair the quench hardening and subsequent finishing of the strengthening layer after repairing or strengthening.
  • Fig. 1 is a flow chart showing a method of manufacturing a composite additive for a part and a mold in an embodiment of the present invention.
  • the method of the invention skillfully combines the high-speed cold spraying technology and the milling forming or pressure forming forming process, and can fully utilize the advantages of high-speed cold spraying, so that the prepared product has neither defects of hot forming nor defects of high-speed cold spraying process. .
  • High-speed cold spray technology is a new type of coating preparation method and is being applied to additive manufacturing.
  • the technology uses a high-pressure gas carrying particle to generate a supersonic gas-solid two-phase flow through a Laval nozzle.
  • the particles impinge on the substrate in a completely solid state, undergoing severe plastic deformation and depositing to form a coating, which is a low-heat input "cold forming process”.
  • the process can effectively avoid the adverse effects of heat generated in the above "hot forming process”.
  • the cold spray technology only relies on the high-speed flying particles to impact the matrix, and the combination of severe plastic deformation, the critical speed required for particle deposition is higher, and it is more suitable for spraying plasticity. s material.
  • the application range of cold spray is expanding, but the range of sprayable materials is still smaller than that of thermal spraying and laser cladding; for hard materials, cold spraying is difficult to achieve effective deposition; Insufficient density, plasticity and toughness; the surface of the coating is tapered after continuous spraying, resulting in poor dimensional and surface precision, and the deposition rate decreases linearly.
  • cold spraying technology requires the use of helium to spray particles.
  • the cost of using helium is more than 80 times the cost of using nitrogen. Even for some materials that are plastically good and can be sprayed with nitrogen, it is necessary to rely on a high-power gas heater to heat the gas. Increase the particle speed. However, this will increase both equipment and operating costs. Therefore, the single cold spray technology is not very competitive in terms of economy and application compared to other surface coating technologies.
  • the invention introduces pressure processing or milling processing technology in the high-speed cold spraying process, overcomes the defects of high-speed cold spraying, and ensures the final precision and performance of the product.
  • high-speed cold spray forming is carried out using iron-nickel-chromium alloy powder.
  • a high-speed cold spray gun is used to move on the forming substrate to perform metal deposition forming
  • the micro-rolls fixed behind the high-speed cold spray gun move with the gun, and simultaneously perform high-speed cold spray forming and continuous cold forging rolling pressure forming; if the size and surface precision are not up to standard, the above synchronization is required.
  • Surface finishing is performed during the forming process or layer by layer or several layers. Therefore, according to the grinding and polishing path planning combined with the synchronous forming processing path, grinding is performed layer by layer or several layers in the synchronous forming process. Polishing and finishing.
  • the finishing process is alternated with the simultaneous forming process until the mold cavity forming process is completed, and the dimensional and surface precision are required.
  • a high frequency induction heating device can be used to simultaneously heat the powder forming region to soften the matrix and improve formability and coating properties.
  • high-temperature alloy powder is used for high-speed cold spray forming.
  • a high-speed cold spray gun is used to move on the forming substrate to perform metal deposition forming.
  • the spinning forming device fixed after the high-speed cold spray gun moves with the gun, and simultaneously performs high-speed cold spray forming and rotary pressure forming; if the size and surface precision fail to meet the requirements, the above-mentioned simultaneous forming processing is required.
  • Surface finishing is performed in the process or layer by layer or several layers. Therefore, according to the grinding and polishing path planning combined with the synchronous forming processing path, grinding or polishing is performed layer by layer or several layers in the synchronous forming process. Finishing processing.
  • the finishing process is alternated with the simultaneous forming process until the mold cavity forming process is completed, and the dimensional and surface precision are required.
  • aluminum alloy powder is used for high-speed cold spray forming.
  • a high-speed cold spray gun is used to move on the forming substrate to perform metal deposition forming
  • the milling cutter, laser or electric spark milling device fixed behind the high-speed cold spray gun moves with the gun, and simultaneously performs high-speed cold spray forming and milling material reduction processing; if the size and surface precision are not met, Then in the above synchronous forming process or layer by layer or several layers
  • the surface finishing is performed in stages. Therefore, according to the grinding and polishing path planning combined with the synchronous forming processing path, the grinding and polishing finishing are performed layer by layer or several layers in the synchronous forming process.
  • the finishing process is alternated with the simultaneous forming process until the mold cavity forming process is completed, and the dimensional and surface precision are required.
  • ceramic powder is used for high-speed cold spray forming.
  • a high-speed cold spray gun is used to move the forming substrate on the substrate in accordance with the digital additive forming path obtained from the three-dimensional CAD model of the part.
  • the pressure processing device fixed after the high-speed cold spray gun moves with the gun, and simultaneously performs high-speed cold spray forming and equal material forming processing; if the size and surface precision fail to meet the requirements, the synchronous forming process is required.
  • Surface finishing by layer or layer or layer therefore, according to the grinding and polishing path planning combined with the synchronous forming processing path, grinding or polishing is performed layer by layer or several layers in the synchronous forming process. Finishing.
  • the finishing process alternates with the simultaneous forming process until the part forming process is completed, and the dimensional and surface precision are required.
  • a laser beam can be used to simultaneously heat the powder forming region to soften the matrix and improve formability and coating properties.
  • gradient functional material powder feeder and accelerating device are used for high-speed cold spray forming of gradient composite materials.
  • a high-speed cold spray gun is used to move the forming substrate on the substrate in accordance with the digital additive forming path obtained from the three-dimensional CAD model of the part.
  • the pressure processing device fixed behind the high-speed cold spray gun moves with the gun, the same High-speed cold spray forming and equal material forming; if the size and surface precision are not up to standard, the surface must be processed during the above-mentioned simultaneous forming process or layer by layer or several layers, so The surface of the processing path is combined with laser milling, grinding and polishing path planning, and surface finishing is performed layer by layer or several layers in the synchronous forming process.
  • the finishing process alternates with the simultaneous forming process until the part forming process is completed, and the dimensional and surface precision are required.
  • a laser beam can be used to simultaneously heat the powder forming region to soften the matrix and improve formability and coating properties.
  • the invention provides a composite additive forming processing method for parts and molds, which can effectively solve some defects of the moldless growth manufacturing method of the existing parts and molds, for example, the pores existing by the "melt forming process" by metal melting and stacking. , shrinkage, unmelting, slag inclusion, and thermal adverse effects such as dilution, oxidation, decomposition, phase transformation, deformation, cracking, falling, runny, collapse, etc.
  • the coating layer formed by a single high-speed cold spray deposition has low mechanical properties such as density, plasticity, and toughness, hard materials are difficult to achieve effective deposition, and the coating material has a small range, and the surface of the coating is tapered after continuous cold spraying. This leads to a linear decrease in deposition rate, low surface and dimensional accuracy, and high equipment and operating costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

一种适用于零件与模具的复合增材制造方法,属于零件与模具的无模生长制造领域,其包括如下步骤:S1、根据待成形工件的形状、厚度以及尺寸精度的要求,将待成形工件的三维CAD模型进行分层切片处理,获得多个分层切片的数据,S2、根据所述分层切片的数据进行成形路径规划,生成成形加工所需的各个分层切片数控代码,S3、根据步骤S2获得的各个分层切片的数控代码,在基板上将粉末材料逐层堆积成形并进行压力加工或者铣削加工,所述逐层堆积成形采用数控的高速冷喷涂枪将粉末材料喷涂至设定位置而堆积成形。该方法克服了热加工的热致不良影响以及冷喷涂堆积成形的缺陷。

Description

一种适用于零件与模具的复合增材制造方法 技术领域
本发明属于零件与模具的无模生长制造领域,更具体地,涉及一种适用于零件与模具的复合增材制造方法。
背景技术
高致密金属零件或模具的无模熔积成形方法主要有大功率激光熔积成形、电子束自由成形、等离子弧与电弧熔积成形等方法。
其中,大功率激光熔积成形是采用大功率激光,逐层将送到基板上的金属粉末熔化,并快速凝固熔积成形,最终得到近终成形件;该方法成形精度较高,工件的密度远高于选择性激光烧结件,但成形效率、能量和材料的利用率不高、不易达到满密度、设备投资和运行成本高(参见文献:A.J.Pinkkerton,L.Li,Effects of Geometry and Composition in Coaxial Laser Deposition of 316L Steel for Rapid Protyping,Annals of the CIRP,Vol.52,1(2003),p181-184)。
电子束自由成形方法采用大功率的电子束熔化粉末材料,根据计算机模型施加电磁场,控制电子束的运动,逐层扫描直至整个零件成形完成;该方法成形精度较高、成形质量较好,然而其工艺条件要求严格,整个成形过程需在真空中进行,致使成形尺寸受到限制,设备投资和运行成本很高;且因采用与选择性烧结相同的层层铺粉方式,难以用于梯度功能材料零件的成形(参见文献:Matz J.E.,EagarT.W.Carbide formation inAlloy 718during electron-beam solid freeform fabrication.Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2002,v33(8):p2559-2567)。
等离子熔积成形方法是采用高度压缩、集束性好的等离子束熔化同步 供给的金属粉末或丝材,在基板上逐层熔积形成金属零件或模具,该方法比前两种方法成形效率和材料利用率高,易于获得满密度,设备和运行成本低,但因弧柱直径较前两者大,成形的尺寸和表面精度不及前两者,故与大功率激光熔积成形方法相似,大都要在成形完后进行精整加工(参见文献:Haiou Zhang,Jipeng Xu,Guilan Wang,Fundamental Study on Plasma Deposition Manufacturing,Surface and Coating Technology,v.171(1-3),2003,pp.112~118;以及张海鸥,吴红军,王桂兰,陈竞,等离子熔积直接成形高温合金件组织结构研究,华中科技大学学报(自然科学版),v 33,n 11,2005,p54-56)。
然而,直接成形的难加工材料零件因急冷凝固使表面硬度增大,导致加工非常困难;形状复杂的零件还需多次装夹,致使加工时间长,有时甚至要占整个制造周期的60%以上,成为高性能难加工零件低成本短流程生长制造的瓶颈。为此,出现了等离子熔积成形与铣削加工复合无模快速制造方法,即以等离子束为成形热源,在分层或分段熔积成形过程中,依次交叉进行熔积成形与数控铣削精加工,以实现短流程、低成本的直接精确制造(参见文献:专利号为ZL00131288.X,专利名称为:直接快速制造模具与零件的方法及其装置;张海鸥,熊新红,王桂兰,等离子熔积/铣削复合直接制造高温合金双螺旋整体叶轮,中国机械工程,2007,Vol18,No.14:P1723~1725)。
上述三种方法中,大功率激光熔积成形法和等离子电弧成形法皆为无支撑、无模熔积成形匀质或复合梯度功能材料零件的方法。与电子束成形、选择性激光烧结/熔化,以及采用熔点低的纸、树脂、塑料等的LOM(Laminated Object Manufacturing纸叠层成形)、SLA(Stereolithography Apparatus光固化成形),FDM(Fused Deposition Modeling熔丝沉积制造)、SLS(Selective Laser Sintering选择性激光烧结)等有支撑的无模堆积成形的方法相比,避免了成形时因需要支撑而须添加和去除支撑材料导致的材 料、工艺、设备上的诸多不利,减少了制造时间,降低了成本,并可成形梯度功能材料的零件,但同时也因无支撑而在有悬臂的复杂形状零件的成形过程中,熔融材料在重力作用下,可能产生下落、流淌等现象,导致难以熔积成形。等离子熔积铣削复合制造方法虽通过分层的成形和铣削精整,降低了加工复杂程度,但对于侧面带大倾角尤其是横向悬角部分的复杂形状零件,堆积成形时因重力产生的流淌甚至塌落仍不能避免,以至难以横向生长成形。
为此,美国Michigan大学、Southern Methodist大学、新加坡国立大学等一些国外研究机构研究采用变方向切片技术,选择支撑条件最多的方向作为零件成形主方向,或将复杂形状零件分解成若干简单形状的部件依次成形;或开发五轴无模成形加工设备和软件,使熔融成形材料尽可能处于有支撑的条件下(参见文献:P.Singh,D.Dutta,Multi-direction slicing for layered manufacturing,Journal of Computing and Information Science and Engineering,2001,2,pp:129–142;Jianzhong Ruan,Todd E.Sparks,Ajay Panackal et.al.Automated Slicing for a Multiaxis Metal Deposition System.Journal of Manufacturing Science and Engineering.APRIL 2007,Vol.129.pp:303-310;R.Dwivedi,R.Kovacevic,An expert system for generation of machine inputs for laser-based multi-directional metal deposition,International Journal ofMachine Tools&Manufacture,46(2006),pp:1811-1822。)
采用五轴加工技术,可显著改善生长成形的支撑条件,避免材料的下落,但对于复杂精细、薄壁形状的零件,采用气体保护的等离子弧/电弧、真空保护的电子束、熔渣保护的电渣焊与埋弧焊等热源熔积成形,虽可提高效率、降低成本,但因这些热源难以成形薄壁和精细形状,可成形精度和薄壁程度不及大功率激光熔积成形法(参见文献:Almeida P M S,Williams S,Innovative process model of Ti-6Al-4V additive layer manufacturing using cold metal transfer(CMT)[C].Proceedings of the 21th  Annual International Solid Freeform Fabrication Symposium,Austin,Texas,USA,2010:25-26),难以获得比激光成形精细和壁薄的零件。
此外,航空航天、能源动力等行业对零部件的组织性能及其稳定性的要求很高,现有无模增材制造方法因其急速加热快速凝固和自由生长成形的特点,增材成形过程中的开裂、气孔等难以避免,组织性能及其稳定性尚不能满足要求。以上诸问题已成为制约熔积直接增材成形技术能否进一步发展和实现工业化应用所急需解决的关键技术难点和瓶颈问题。因此,需要开发可有效提高制造精度、改善成形性和零件组织性能的新方法。
总而言之,采用上述技术进行增材制造实质上都是通过热源输入高热量将金属熔铸成形的“热成形加工过程”,铸造和焊接过程中存在的缺陷,如气孔、缩孔、未熔合、夹渣,以及稀释、氧化、分解、相变、变形、开裂、流淌、坍塌等热致不良影响难以完全避免。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种适用于零件与模具的复合增材成形加工方法,其将高速冷喷涂和铣削或压力加工成形工艺巧妙的结合在一起,克服了现有技术中零件与模具的无模生长制造方法中,因采用热成形加工存在的缺陷,还克服了单一采用高速冷喷涂造成的堆积成形缺陷。
为实现上述目的,本发明提供了一种适用于零件与模具的复合增材制造方法,其包括如下步骤:
S1:根据待成形工件的形状、厚度以及尺寸精度的要求,将待成形工件的三维CAD模型进行分层切片处理,获得多个分层切片的数据,每个分层切片的数据包括该分层切片的厚度、形状以及尺寸精度,
S2:根据所述分层切片的数据进行成形路径规划,生成成形加工所需的各个分层切片数控代码,
S3:根据步骤S2获得的各个分层切片的数控代码,在基板上将粉末材料逐层堆积成形,所述逐层堆积成形采用数控的高速冷喷涂枪将粉末材料喷涂至设定位置而堆积成形,
所述数控的高速冷喷涂枪工作时在基板涂層表面上移动,在所述数控的高速冷喷涂枪后面安装有压力加工成形装置或/和铣削成形装置,所述压力加工成形装置或/和铣削成形装置与待加工区域紧密相邻或者相隔若干层数(若干层可是一层、二层、三层、或者是根据实际工程需要的其他层数),在进行高速冷喷涂成形同时,铣削成形装置或压力加工成形装置能随着数控的高速冷喷涂枪移动,以用于堆积成形后的即时铣削减材成形或/和堆积成形后压力加工等材成形,从而能提高堆积成形的成形性能和成形精度。
以上发明构思中,所述压力加工成形装置或/和铣削成形装置与待加工区域紧密相邻或者相隔若干层数,当压力加工成形装置或/和铣削成形装置与待加工区域紧密相邻时,在进行逐层堆积成形后能立刻对当下堆积成形层进行压力加工或者铣削加工;当压力加工成形装置或/和铣削成形装置与待加工区域相隔若干层数,能对当先成形层之前的成形层进行加工,即隔开一层、二层、三层或者其他层数进行加工。
以上发明构思中,与高速冷喷涂增材成形复合的铣削或压力加工成形装置可固定于高速冷喷涂枪上、数控加工头上或机器人手腕上,在基体成形層表面上,随高速冷喷涂枪或离开数控的高速冷喷涂枪一定距离移动,进行铣削减材成形或压力加工等材成形。
以上发明构思中,逐层或多层分段地将高速冷喷涂增材成形与铣削成形或压力加工成形复合进行或分离进行,直至达到零件或模具的尺寸和表面精度、质量的要求。
以上发明构思中,在高速冷喷涂的无支撑、无模成形过程中,通过安装在喷涂層后方的铣削成形或压力加工成形工具,对涂层区域的材料进行压力加工受迫变形,受迫成形产生的压缩应变和压缩应力状态,可避免开 裂、减轻或消除残余应力、改善组织性能;此外,还可有效地减少成形体上表面的锥形和侧表面阶梯效应,提高成形精度和表面质量,从而仅需少量或省去铣削加工、而仅采用研磨或抛光加工即可达到零件的尺寸和表面精度的要求。
进一步的,在所述步骤S3中,在采用数控的高速冷喷涂枪将粉末材料喷涂至设定位置而堆积成形时,同步对基体和喷涂颗粒加热,以同时软化基体和喷涂颗粒,从而降低颗粒沉积所需的临界速度。
进一步的,在所述步骤S3中,在采用数控的高速冷喷涂枪将粉末材料喷涂至设定位置而堆积成形时,同步对基体和喷涂颗粒加热,以同时软化基体和喷涂颗粒,所述喷涂颗粒选自金属、金属间化合物、陶瓷、金属陶瓷、陶瓷复合物以及组织和成分可梯度变化的梯度功能材料,堆积成形时采用氮气为保护气体。
进一步的,还包括步骤S4,步骤S4:在待成形件达不到零件或模具的尺寸和表面精度要求时,则堆积成形过程中逐层或多层分段采用铣削、研磨或抛光工艺,对待成形体进行精整加工,直至达到零件或模具的尺寸和表面精度要求。本步骤中,为提高成形效率和成形精度,可安装多个高速冷喷涂枪及复合的铣削或压力加工成形装置,进行复合增材成形加
总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:
本发明保持了高速冷喷涂是一种低热量输入的“冷加工过程”,可有效避免热喷涂和激光、电子束、电弧等熔化沉积“热成形加工”过程中出现的热致不良影响。采用本发明可以高质量、快速、低成本地获得金属、金属间化合物、金属陶瓷、陶瓷及其复合梯度功能材料的零件或模具。
本发明方法解决了实际工程问题,采用本发明方法制备的零件或者模具没有气孔、缩孔、未熔合、夹渣、稀释、氧化、分解、相变、变形、开裂、流淌、坍塌等热致不良影响,也没有组织力学性能不高的问题,还适 用于硬质材料,可喷涂材料范围广,本发明方法还克服了冷喷涂后涂层表面呈锥形而导致沉积速率呈线性下降、设备和运营成本较高的问题。
本发明还可用于零件或模具的表面修复或强化,克服现有方法在修复或强化完后对急冷硬化的修复和强化层进行后续精加工非常困难的技术瓶颈问题。
附图说明
图1是本发明实施例中零件与模具的复合增材制造方法流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明方法巧妙地结合了高速冷喷涂技术和铣削加工成形或压力加工成形工艺,能够充分利用高速冷喷涂的优势,使制备的产品既没有热加工成形的缺陷,也没有高速冷喷涂工艺的缺陷。
为了更详细的说明本发明方法的优势,下面仔细介绍高速冷喷涂技术:
高速冷喷涂技术是一种新型的涂层制备方法,并正在应用于增材制造。该技术借助高压气体携带粒子经Laval喷管产生超音速气固双相流,粒子在完全固态下撞击基板,发生剧烈的塑性变形而沉积形成涂层,是一种低热量输入的“冷成形加工过程”,可有效避免上述“热成形加工过程”中出现的热致不良影响。
然而,正是因为冷喷涂技术仅依靠高速飞行的颗粒撞击基体,发生剧烈塑性变形而结合的,颗粒沉积所需的临界速度较高,多适合喷涂塑性好 的材料。近些年,随着对其沉积机理的不断研究,冷喷涂应用范围不断扩大,但可喷涂材料范围仍较热喷涂、激光熔覆要小;对于硬质材料,冷喷涂难以实现有效沉积;且致密度、塑性、韧性存在不足;持续喷涂后涂层表面呈锥形而导致尺寸和表面精度差、沉积速率呈线性下降;为制备高强度材料涂层,冷喷涂技术需要使用氦气使喷涂颗粒达到有效结合所需的高碰撞速度,而使用氦气的成本是使用氮气成本的80多倍,即使对于一些塑性好、可以使用氮气喷涂的材料,仍需要依靠高功率的气体加热器加热气体以提高颗粒速度。然而,这将同时增加设备和运营成本。因此,单一的冷喷涂技术在经济上与应用范围上同其他表面涂层技术相比竞争优势不是十分明显。
本发明在高速冷喷涂过程中引入压力加工或者铣削加工工艺,克服了高速冷喷涂的缺陷,同时保证了产品最终的精度和性能。
下面结合具体实施例,进一步详细说明本发明方法在制备零件和模具中的应用。
实施例1:
根据铁-镍-铬合金零件的使用性能要求,采用铁-镍-铬合金粉末进行高速冷喷涂成形。
在基板上,按照由零件三维CAD模型得到的数字化增材成形加工路径,采用高速冷喷涂枪在成形基体上移动进行金属堆积成形;
在成形过程中,固定在高速冷喷涂枪之后的微型轧辊随枪运动,同步进行高速冷喷涂成形与连续冷锻滚压压力成形加工;若尺寸及表面精度达不到要求,则需在上述同步成形加工过程中或逐层或数层分段进行表面精整加工,因此,按照与同步成形加工路径复合的研磨、抛光路径规划,在同步成形加工过程中逐层或数层分段复合进行研磨、抛光精整加工。
该精整加工过程与同步成形加工过程交替进行,直到模具型腔成形加工结束,尺寸和表面精度达到要求。对于高硬度的合金粉末材料成形,可采用高频感应加热装置对粉末成形区域同时进行加热,软化基体,提高成形性和涂层性能。
实施例2:
根据高温合金零件的使用性能要求,采用高温合金粉末进行高速冷喷涂成形。
在基板上按照由零件三维CAD模型得到的数字化增材成形加工路径,采用高速冷喷涂枪在成形基体上移动进行金属堆积成形。
在成形过程中,固定在高速冷喷涂枪之后的旋压成形装置随枪运动,同步进行高速冷喷涂成形与旋转压力成形加工;若尺寸及表面精度达不到要求,则需在上述同步成形加工过程中或逐层或数层分段进行表面精整加工,因此,按照与同步成形加工路径复合的研磨、抛光路径规划,在同步成形加工过程中逐层或数层分段复合进行研磨、抛光精整加工。
该精整加工过程与同步成形加工过程交替进行,直到模具型腔成形加工结束,尺寸和表面精度达到要求。
实施例3:
根据铝合金零件的使用性能要求,采用铝合金粉末进行高速冷喷涂成形。
在基板上按照由零件三维CAD模型得到的数字化增材成形加工路径,采用高速冷喷涂枪在成形基体上移动进行金属堆积成形;
在成形过程中,固定在高速冷喷涂枪之后的铣刀、激光或者电火花铣削加工装置随枪运动,同步进行高速冷喷涂成形与铣削减材成形加工;若尺寸及表面精度达不到要求,则需在上述同步成形加工过程中或逐层或数层 分段进行表面精整加工,因此,按照与同步成形加工路径复合的研磨、抛光路径规划,在同步成形加工过程中逐层或数层分段复合进行研磨、抛光精整加工。
该精整加工过程与同步成形加工过程交替进行,直到模具型腔成形加工结束,尺寸和表面精度达到要求。
实施例4:
根据陶瓷零件的使用性能要求,采用陶瓷粉末进行高速冷喷涂成形。
在基板上按照由零件三维CAD模型得到的数字化增材成形加工路径,采用高速冷喷涂枪在成形基体上移动进行堆积成形。
在成形过程中,固定在高速冷喷涂枪之后的压力加工装置随枪运动,同步进行高速冷喷涂成形与等材成形加工;若尺寸及表面精度达不到要求,则需在上述同步成形加工过程中或逐层或数层分段进行表面精整加工,因此,按照与同步成形加工路径复合的研磨、抛光路径规划,在同步成形加工过程中逐层或数层分段复合进行研磨、抛光精整加工。
该精整加工过程与同步成形加工过程交替进行,直到零件成形加工结束,尺寸和表面精度达到要求。对于高硬度、脆性的陶瓷粉末材料成形,可采用激光束对粉末成形区域同时进行加热,软化基体,提高成形性和涂层性能。
实施例5:
根据金属和陶瓷梯度复合零件的使用性能要求,采用梯度功能材料送粉器和加速装置进行梯度复合材料高速冷喷涂成形。
在基板上按照由零件三维CAD模型得到的数字化增材成形加工路径,采用高速冷喷涂枪在成形基体上移动进行堆积成形。
在成形过程中,固定在高速冷喷涂枪之后的压力加工装置随枪运动,同 步进行高速冷喷涂成形与等材成形加工;若尺寸及表面精度达不到要求,则需在上述同步成形加工过程中或逐层或数层分段对表面进行加工,因此,按照与同步成形加工路径复合的表面激光铣削、研磨、抛光路径规划,在同步成形加工过程中逐层或数层分段复合进行表面精整加工。
该精整加工过程与同步成形加工过程交替进行,直到零件成形加工结束,尺寸和表面精度达到要求。对于高硬度、脆性的陶瓷粉末材料成形,可采用激光束对粉末成形区域同时进行加热,软化基体,提高成形性和涂层性能。
本发明提供一种零件与模具的复合增材成形加工方法,可有效解决现有零件与模具的无模生长制造方法的一些缺陷,比如,因采用金属熔化堆积“热成形加工”而存在的气孔、缩孔、未熔合、夹渣,以及稀释、氧化、分解、相变、变形、开裂、下落、流淌、坍塌等热致不良影响。又比如,采用单一高速冷喷涂堆积成形的喷涂层的致密度、塑性、韧性等组织力学性能不高、硬质材料难以实现有效沉积而喷涂材料范围小、持续冷喷涂后涂层表面呈锥形而导致沉积速率呈线性下降、表面和尺寸精度不高、设备和运营成本较高的问题。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (4)

  1. 一种适用于零件与模具的复合增材制造方法,其特征在于,其包括如下步骤:
    S1:根据待成形工件的形状、厚度以及尺寸精度的要求,将待成形工件的三维CAD模型进行分层切片处理,获得多个分层切片的数据,每个分层切片的数据包括该分层切片的厚度、形状以及尺寸精度,
    S2:根据所述分层切片的数据进行成形路径规划,生成成形加工所需的各个分层切片数控代码,
    S3:根据步骤S2获得的各个分层切片的数控代码,在基板上将粉末材料逐层堆积成形,所述逐层堆积成形采用数控的高速冷喷涂枪将粉末材料喷涂至设定位置而堆积成形,
    所述数控的高速冷喷涂枪工作时在基板涂層表面上移动,在所述数控的高速冷喷涂枪后面安装有压力加工成形装置或/和铣削成形装置,
    所述压力加工成形装置或/和铣削成形装置与待加工区域紧密相邻或者相隔若干层数,
    在进行高速冷喷涂成形同时,压力加工成形装置或/和铣削成形装置能随数控的高速冷喷涂枪移动,以用于堆积成形后的压力加工等材成形或/和堆积成形后的铣削减材成形,从而能提高堆积成形的成形性能和成形精度。
  2. 如权利要求1所述的一种适用于零件与模具的复合增材制造方法,其特征在于,在所述步骤S3中,在采用数控的高速冷喷涂枪将粉末材料喷涂至设定位置而堆积成形时,同步对基体和喷涂颗粒加热,以同时软化基体和喷涂颗粒,从而降低颗粒沉积所需的临界速度。
  3. 如权利要求2所述的一种适用于零件与模具的复合增材制造方法,其特征在于,在所述步骤S3中,在采用数控的高速冷喷涂枪将粉末材料喷涂至设定位置而堆积成形时,同步对基体和喷涂颗粒加热,
    所述喷涂颗粒选自金属、金属间化合物、陶瓷、金属陶瓷、陶瓷复合 物以及组织和成分可梯度变化的梯度功能材料,堆积成形时能采用氮气为保护气体。
  4. 如权利要1-3之一所述的一种适用于零件与模具的复合增材制造方法,其特征在于,还包括步骤S4,
    S4:在待成形工件达不到零件或模具的尺寸和表面精度要求时,在逐层堆积成形过程中逐层或多层分段采用铣削、研磨或抛光工艺,对待成形工件进行精整加工,直至达到零件或模具的尺寸和表面精度要求。
PCT/CN2017/112908 2016-11-18 2017-11-24 一种适用于零件与模具的复合增材制造方法 WO2018091000A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/462,222 US11298792B2 (en) 2016-11-18 2017-11-24 Combined additive manufacturing method applicable to parts and molds
JP2019527124A JP2020514525A (ja) 2016-11-18 2017-11-24 部品及び金型に適用されるハイブリッド付加製造方法
EP17872681.6A EP3546091A1 (en) 2016-11-18 2017-11-24 Combined additive manufacturing method applicable to parts and molds

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611034046.0A CN106694872A (zh) 2016-11-18 2016-11-18 一种适用于零件与模具的复合增材制造方法
CN201611034046.0 2016-11-18

Publications (1)

Publication Number Publication Date
WO2018091000A1 true WO2018091000A1 (zh) 2018-05-24

Family

ID=58941244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112908 WO2018091000A1 (zh) 2016-11-18 2017-11-24 一种适用于零件与模具的复合增材制造方法

Country Status (5)

Country Link
US (1) US11298792B2 (zh)
EP (1) EP3546091A1 (zh)
JP (1) JP2020514525A (zh)
CN (1) CN106694872A (zh)
WO (1) WO2018091000A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3674018A1 (en) * 2018-12-29 2020-07-01 Huazhong University of Science and Technology Method for controlling deformation and precision of parts in parallel during additive manufacturing process
EP3756798A1 (en) * 2019-06-24 2020-12-30 Huazhong University of Science and Technology Additive manufacturing method and device for ceramic and composite thereof
JP2021031773A (ja) * 2019-08-29 2021-03-01 ▲華▼中科技大学Huazhong University Of Science And Technology 積層造形と表面コーティングの複合成形システム及び方法
CN114309642A (zh) * 2020-09-29 2022-04-12 中国航发商用航空发动机有限责任公司 航空发动机部件的增材制造方法和可读存储介质

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9335296B2 (en) 2012-10-10 2016-05-10 Westinghouse Electric Company Llc Systems and methods for steam generator tube analysis for detection of tube degradation
CN106694872A (zh) * 2016-11-18 2017-05-24 华中科技大学 一种适用于零件与模具的复合增材制造方法
CN107283061A (zh) * 2017-08-11 2017-10-24 西安增材制造国家研究院有限公司 一种激光‑cmt焊接铝合金增材制造方法和成形系统
CN107745515B (zh) * 2017-11-13 2018-12-14 山东大学 面向熔融成型与切削复合加工的数控代码生成方法和装置
CN108274123B (zh) * 2017-12-28 2020-07-07 北京航空航天大学 一种用于激光增材构件内壁的增材-抛光一体化加工方法
EP3511163B1 (en) * 2018-01-12 2024-03-20 Concept Laser GmbH Method for operating an apparatus for additively manufacturing of three-dimensional objects
CN108309477B (zh) * 2018-02-08 2019-05-03 成都优材科技有限公司 个性化牙科种植基台的增减材复合加工成型方法
CN108581490A (zh) * 2018-04-11 2018-09-28 北京工业大学 一种多机器人协作增等减材复合加工装置及工艺方法
CN108500275B (zh) * 2018-04-18 2019-11-26 西安交通大学 一种高致密度与低残余应力的零件增材制造设备及方法
CN108581397B (zh) * 2018-04-26 2020-02-18 大连理工大学 增减材复合制造涡轮叶片的加工方法
CN108714773B (zh) * 2018-05-25 2019-12-27 大连理工大学 异质金属冲压模具增材制造方法
IT201900001323A1 (it) * 2019-01-30 2020-07-30 Ima Spa Metodo per la realizzazione di un componente per una macchina per la produzione e/o il confezionamento di prodotti farmaceutici.
US11935662B2 (en) 2019-07-02 2024-03-19 Westinghouse Electric Company Llc Elongate SiC fuel elements
CA3151605C (en) 2019-09-19 2023-04-11 Westinghouse Electric Company Llc Apparatus for performing in-situ adhesion test of cold spray deposits and method of employing
CN111605031B (zh) * 2020-06-04 2023-04-07 青岛科技大学 一种基于分层制片与多工序控形控性的增材制造方法
CN114182246A (zh) * 2020-09-15 2022-03-15 源兴盛实业有限公司 基于低温超音速喷涂生产自由成型部件的方法及应用
CN112388107A (zh) * 2020-11-11 2021-02-23 福州大学 一种增材制造成形几何在线监控与校正方法
CN112846229B (zh) * 2021-01-04 2023-02-17 西安航天发动机有限公司 一种大尺寸夹层直槽环状构件激光增减材制造方法
CN113172728B (zh) * 2021-04-21 2022-07-19 连云港东睦新材料有限公司 一种采用粉末注射成形由原形件复制零件的方法
CN113664536B (zh) * 2021-08-31 2022-08-09 华中科技大学 一种电弧增材制造-旋压复合加工装置及方法
CN113814409B (zh) * 2021-10-12 2022-04-01 广东省科学院新材料研究所 一种拉瓦尔推力管及其制造方法
CN114147558B (zh) * 2021-11-04 2022-11-11 北京科技大学 一种带钢热连轧工作辊的磨削辊形确定方法
KR102506916B1 (ko) * 2021-12-13 2023-03-07 홍스웍스 주식회사 제품을 금속 3d 프린팅 하이브리드 방식으로 제조하는 방법
CN114952439A (zh) * 2022-05-31 2022-08-30 重庆大学 一种基于增材制造镍基合金磁粒抛光增强增韧的方法
CN115213427A (zh) * 2022-07-19 2022-10-21 季华实验室 增材制造的方法及产品

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1792513A (zh) * 2005-12-28 2006-06-28 华中科技大学 零件与模具的无模直接制造方法
CN101362272A (zh) * 2008-09-17 2009-02-11 华中科技大学 零件或模具的无模熔融层积制造方法
CN101713071A (zh) * 2008-10-06 2010-05-26 H.C.施塔克公司 制备整体金属结构的方法以及由该方法制备的结构
CN103521769A (zh) * 2013-09-24 2014-01-22 西安交通大学 一种基于多材料粒子高速喷射成形的增材制造方法
CN104493491A (zh) * 2014-12-12 2015-04-08 华南理工大学 一种单缸式激光选区熔化与铣削复合加工的设备与方法
CN104985813A (zh) * 2015-06-23 2015-10-21 同济大学 一种基于冷喷涂的3d打印方法及系统
WO2016130953A1 (en) * 2015-02-13 2016-08-18 University Of Florida Research Foundation, Inc. High speed 3d printing system for wound and tissue replacement
CN105945281A (zh) * 2016-05-09 2016-09-21 华中科技大学 零件与模具的熔积成形加工制造方法
CN106609369A (zh) * 2015-10-23 2017-05-03 中国科学院金属研究所 一种冷气动力喷涂实现增材制造的方法
CN106694872A (zh) * 2016-11-18 2017-05-24 华中科技大学 一种适用于零件与模具的复合增材制造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1186475C (zh) * 2003-01-17 2005-01-26 西安交通大学 铜或铜合金基体上镍基自熔合金涂层的制备方法
US20060269685A1 (en) * 2005-05-31 2006-11-30 Honeywell International, Inc. Method for coating turbine engine components with high velocity particles
US8905742B2 (en) * 2010-09-17 2014-12-09 Synerdyne Corporation Compact rotary platen 3D printer
CN102299016B (zh) * 2011-07-22 2015-09-23 辽宁金力源新材料有限公司 一种直接成型银基合金触点的方法
WO2014116256A1 (en) * 2013-01-28 2014-07-31 United Technologies Corporation Solid state metal powder consolidation for structural components
US9364995B2 (en) * 2013-03-15 2016-06-14 Matterrise, Inc. Three-dimensional printing and scanning system and method
US9815268B2 (en) * 2013-03-22 2017-11-14 Markforged, Inc. Multiaxis fiber reinforcement for 3D printing
US9649813B2 (en) * 2013-11-12 2017-05-16 Robotic Research, Llc Method for enabling the partial printing of a device
CN103920626B (zh) * 2014-03-19 2016-08-24 浙江工业大学 一种激光辅助冷喷涂方法及喷嘴装置
US20150352618A1 (en) * 2014-06-06 2015-12-10 United Technologies Corporation Additive manufactured enhanced sheet bend and method of manufacture

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1792513A (zh) * 2005-12-28 2006-06-28 华中科技大学 零件与模具的无模直接制造方法
CN101362272A (zh) * 2008-09-17 2009-02-11 华中科技大学 零件或模具的无模熔融层积制造方法
CN101713071A (zh) * 2008-10-06 2010-05-26 H.C.施塔克公司 制备整体金属结构的方法以及由该方法制备的结构
CN103521769A (zh) * 2013-09-24 2014-01-22 西安交通大学 一种基于多材料粒子高速喷射成形的增材制造方法
CN104493491A (zh) * 2014-12-12 2015-04-08 华南理工大学 一种单缸式激光选区熔化与铣削复合加工的设备与方法
WO2016130953A1 (en) * 2015-02-13 2016-08-18 University Of Florida Research Foundation, Inc. High speed 3d printing system for wound and tissue replacement
CN104985813A (zh) * 2015-06-23 2015-10-21 同济大学 一种基于冷喷涂的3d打印方法及系统
CN106609369A (zh) * 2015-10-23 2017-05-03 中国科学院金属研究所 一种冷气动力喷涂实现增材制造的方法
CN105945281A (zh) * 2016-05-09 2016-09-21 华中科技大学 零件与模具的熔积成形加工制造方法
CN106694872A (zh) * 2016-11-18 2017-05-24 华中科技大学 一种适用于零件与模具的复合增材制造方法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
A. J. PINKKERTONL. LI: "Effects of Geometry and Composition in Coaxial Laser Deposition of 316L Steel for Rapid Protyping", ANNALS OF THE CIRP, vol. 52, no. 1, 2003, pages 181 - 184, XP022135313, DOI: doi:10.1016/S0007-8506(07)60560-5
ALMEIDA P M SWILLIAMS S: "Innovative process model of Ti-6AI-4V additive layer manufacturing using cold metal transfer (CMT) [C", PROCEEDINGS OF THE 21TH ANNUAL INTERNATIONAL SOLID FREEFORM FABRICATION SYMPOSIUM, AUSTIN, TEXAS, USA, 2010, pages 25 - 26
HAIOU ZHANGJIPENG XUGUILAN WANG: "Fundamental Study on Plasma Deposition Manufacturing", SURFACE AND COATING TECHNOLOGY, vol. 171, no. 1-3, 2003, pages 112 - 118
JIANZHONG RUANTODD E. SPARKSAJAY PANACKAL: "Automated Slicing for a Multiaxis Metal Deposition System", JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING, vol. 129, April 2007 (2007-04-01), pages 303 - 310
MATZ J.E.EAGAR T.W.: "Carbide formation in Alloy 718 during electron-beam solid freeform fabrication", METALLURGICAL AND MATERIALS TRANSACTIONS A: PHYSICAL METALLURGY AND MATERIALS SCIENCE, vol. 33, no. 8, 2002, pages 2559 - 2567, XP019694226
P. SINGHD. DUTTA: "Multi-direction slicing for layered manufacturing", JOURNAL OF COMPUTING AND INFORMATION SCIENCE AND ENGINEERING, vol. 2, 2001, pages 129 - 142
R. DWIVEDIR. KOVACEVIC: "An expert system for generation of machine inputs for laser-based multi-directional metal deposition", INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, vol. 46, 2006, pages 1811 - 1822
ZHANG HAIOUWU HONGJUNWANG GUILANCHEN JING: "Research on the microstructure of direct forming high temperature alloy parts by plasma deposition", JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY (NATURAL SCIENCE EDITION, vol. 33, no. 11, 2005, pages 54 - 56
ZHANG HAIOUXIONG XINHONGWANG GUILAN: "Plasma deposition/milling combined direct manufacturing of superalloy double helix integral impeller", CHINA MECHANICAL ENGINEERING, vol. 118, no. 14, 2007, pages 1723 - 1725

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3674018A1 (en) * 2018-12-29 2020-07-01 Huazhong University of Science and Technology Method for controlling deformation and precision of parts in parallel during additive manufacturing process
JP2020108960A (ja) * 2018-12-29 2020-07-16 ▲華▼中科技大学Huazhong University Of Science And Technology 付加製造過程で部品の変形及び精度を並行制御する方法
JP7002142B2 (ja) 2018-12-29 2022-01-20 ▲華▼中科技大学 付加製造過程で部品の変形及び精度を並行制御する方法
EP3756798A1 (en) * 2019-06-24 2020-12-30 Huazhong University of Science and Technology Additive manufacturing method and device for ceramic and composite thereof
JP2021000825A (ja) * 2019-06-24 2021-01-07 ▲華▼中科技大学Huazhong University Of Science And Technology セラミック及びその複合材料に適した積層造形法及び装置
JP2021031773A (ja) * 2019-08-29 2021-03-01 ▲華▼中科技大学Huazhong University Of Science And Technology 積層造形と表面コーティングの複合成形システム及び方法
JP7089662B2 (ja) 2019-08-29 2022-06-23 ▲華▼中科技大学 積層造形と表面コーティングの複合成形システム及び方法
CN114309642A (zh) * 2020-09-29 2022-04-12 中国航发商用航空发动机有限责任公司 航空发动机部件的增材制造方法和可读存储介质
CN114309642B (zh) * 2020-09-29 2024-01-12 中国航发商用航空发动机有限责任公司 航空发动机部件的增材制造方法和可读存储介质

Also Published As

Publication number Publication date
EP3546091A1 (en) 2019-10-02
CN106694872A (zh) 2017-05-24
US20190329374A1 (en) 2019-10-31
JP2020514525A (ja) 2020-05-21
US11298792B2 (en) 2022-04-12

Similar Documents

Publication Publication Date Title
US11298792B2 (en) Combined additive manufacturing method applicable to parts and molds
EP3756798B1 (en) Additive manufacturing method and device for ceramic and composite thereof
Jiménez et al. Powder-based laser hybrid additive manufacturing of metals: a review
EP3785827B1 (en) Forming system and method of hybrid additive manufacturing and surface coating
CN105945281B (zh) 零件与模具的熔积成形加工制造方法
CA3065982C (en) Method for controlling deformation and precision of parts in parallel during additive manufacturing process
Duda et al. 3D metal printing technology
Gibson et al. Directed energy deposition processes
Fessler et al. Laser deposition of metals for shape deposition manufacturing
Nowotny et al. Laser beam build-up welding: precision in repair, surface cladding, and direct 3D metal deposition
WO2011127798A1 (zh) 零件与模具的熔积成形复合制造方法及其辅助装置
CN101780544A (zh) 一种采用激光成形难熔金属零件的方法
Abdulrahman et al. Laser metal deposition of titanium aluminide composites: A review
WO2015185001A1 (zh) 一种用于零件或模具的增量制造方法
CN107127343A (zh) 一种镍基合金结构件的电子束增材制造方法
Shi et al. Additive manufacturing and foundry innovation
Liu et al. A complete study on satellite thruster structure (STS) manufactured by a hybrid manufacturing (HM) process with integration of additive and subtractive manufacture
GUO et al. Research progress in additive–subtractive hybrid manufacturing
Peyre et al. Additive manufacturing of metal alloys 1: processes, raw materials and numerical simulation
AU2021102055A4 (en) Metal Additive Manufacturing Method Based on Double High-energy Beams Technique
CN102699324A (zh) 陶瓷模片约束下的等离子沉积成形新方法
Hedayatnejad et al. Investigation of Additive Manufacturing Process by LMD Method, Affecting Process Parameters on Microstructure and Quality of Deposition Layers
El Hassanin et al. Laser-Powder Bed Fusion of Inconel 718 Alloy: Effect of the Contour Strategy on Surface Quality and Sub-Surface Density
Udroiu Additive Manufacturing Technologies Used for Superalloys Processing
VOLOKITIN et al. PROGRESS IN ADDITIVE MANUFACTURING.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17872681

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019527124

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017872681

Country of ref document: EP

Effective date: 20190618