WO2011127798A1 - 零件与模具的熔积成形复合制造方法及其辅助装置 - Google Patents

零件与模具的熔积成形复合制造方法及其辅助装置 Download PDF

Info

Publication number
WO2011127798A1
WO2011127798A1 PCT/CN2011/072524 CN2011072524W WO2011127798A1 WO 2011127798 A1 WO2011127798 A1 WO 2011127798A1 CN 2011072524 W CN2011072524 W CN 2011072524W WO 2011127798 A1 WO2011127798 A1 WO 2011127798A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
forming
roller
layer
mold
Prior art date
Application number
PCT/CN2011/072524
Other languages
English (en)
French (fr)
Inventor
张海鸥
王桂兰
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Publication of WO2011127798A1 publication Critical patent/WO2011127798A1/zh
Priority to US13/651,509 priority Critical patent/US9302338B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/188Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control
    • B29C64/194Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control during lay-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • B22F10/18Formation of a green body by mixing binder with metal in filament form, e.g. fused filament fabrication [FFF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/80Plants, production lines or modules
    • B22F12/82Combination of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/86Serial processing with multiple devices grouped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • B23K10/006Control circuits therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3066Fe as the principal constituent with Ni as next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • B23K9/044Built-up welding on three-dimensional surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P23/00Machines or arrangements of machines for performing specified combinations of different metal-working operations not covered by a single other subclass
    • B23P23/04Machines or arrangements of machines for performing specified combinations of different metal-working operations not covered by a single other subclass for both machining and other metal-working operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/34Coated articles, e.g. plated or painted; Surface treated articles
    • B23K2101/35Surface treated articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/52Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention belongs to a moldless growth manufacturing and remanufacturing method for parts and molds. [Background fine
  • the moldless deposition forming method for high-density metal parts or molds mainly includes high-power laser deposition forming, electron beam free forming, and plasma deposition forming.
  • the high-power laser deposition forming method uses a high-power laser to melt the metal powder sent to the substrate layer by layer, and rapidly solidify and form the film to finally obtain a near-finished part; the method has high forming precision and the density of the workpiece.
  • the forming efficiency, energy and material utilization are not high, not easy to reach full density, equipment investment and running cost, see AJ Pinkkerton, L.
  • Electron beam freeform method uses high-power electron beam to melt powder material, apply electromagnetic field according to computer model, control the movement of electron beam, scan layer by layer until the whole part is formed
  • the method has high forming precision and good forming quality, but the process conditions are strict, and the whole forming process needs to be carried out in a vacuum, which limits the forming size, equipment investment and running cost are high; and because of the adoption and selectivity Sintering the same layer layering method, difficult to use for gradient functional material parts Forming, see Matz JE, Eagar TW Carbide formation in Alloy 718 during electron-beam solid ireeform fabrication.
  • Plasma fusion forming method uses high compression, clustering A good plasma beam melts the synchronously supplied metal powder or wire and deposits layer by layer on the substrate to form a metal part or mold. This method has higher forming efficiency and material utilization than the former two methods, and is easy to obtain full density, equipment and operation. The cost is low, but because the diameter of the arc column is larger than the former two, the size and surface precision of the forming are inferior to those of the former two. Therefore, similar to the high-power laser melting forming method, the finishing process should be finished after forming, see Haiou Zhang.
  • high-power laser deposition molding and plasma forming are methods for unsupported, moldless fusion forming homogeneous or composite gradient functional material parts.
  • LOM Laminated Object Manufacturing
  • SLA Stepolithography Apparatus
  • FDM Feused Deposition Modeling
  • the supportless moldless forming method such as SLS (Selective Laser Sintering)
  • it avoids many materials, processes and equipments caused by the need to add and remove support materials during forming.
  • the plasma fusion milling composite manufacturing method reduces the processing complexity by layer forming and milling finishing, but for the complex shape parts with large inclination angles on the side, especially the lateral overhangs, the flow caused by gravity during stacking is even The slump is still unavoidable, so that it cannot be formed laterally.
  • variable-direction slicing technology to select the direction with the most support conditions as the main direction of part forming, or to decompose complex-shaped parts into simple shapes.
  • the continuous casting direct rolling technology is a revolutionary new technology in the steel industry. It has transformed the traditional steel industry process of continuous casting and rolling separation, and realized the short process manufacturing of the integration of blanking and forming.
  • the use of liquid core reduction technology not only greatly reduces energy consumption, but also refines the organization. See Xu Rudi, Liu Qingyou, Analysis of the fine crystallization phenomenon in the continuous casting and rolling process of thin slab process, the third technical exchange meeting of thin slab continuous casting and rolling technology exchange and development association [C], 2005; and Gunter Flemming , Karl-Ernst Hensger. Extension of product range and perspectives of CSP technology , MPT International, 2000, (1) : 54.
  • the invention provides a method for manufacturing a composite forming method of a part and a mold, and at the same time provides an auxiliary device for the method, which solves the problem of the moldless growth manufacturing method of the existing parts and the mold, wherein the molten material generates flow due to gravity. , falling, collapsing, and the problem of easy cracking, deformation and residual stress, and unstable structural properties caused by repeated rapid heat and cold during the moldless multi-layer deposition growth forming process.
  • a method for manufacturing a composite forming method of a part and a mold of the present invention comprises:
  • Model stratification step According to the dimensional accuracy requirements of the 3D CAD model of the part or mold, the part Or a three-dimensional CAD model of the mold to perform layered slicing;
  • NC code steps According to the 3D CAD model of the part or mold, the sliced data and the characteristics of the size and shape of each layer are used to form the path planning, and the NC code of each layer required for the forming process is generated;
  • Fusing forming step using a numerically controlled gas shielded welding beam or laser beam, using a fusion forming torch according to the trajectory specified by each layer of the numerical control code, the metal, intermetallic compound, ceramic and composite gradient functional material on the substrate Powder or wire is formed by layer-by-layer fusion;
  • a micro-roller or micro-extrusion device is installed in contact with the gas-softened welding beam and the region melt-softened by the laser beam; while the fusion forming step is performed, the micro-roller or micro-extrusion device is synchronized with the deposition region Moving, compressing and processing the fusion zone;
  • the forming and processing are carried out simultaneously layer by layer until the size and surface accuracy of the part or mold are met.
  • the fusion forming composite manufacturing method is characterized by:
  • the forming body In the deposition forming step, if the formed body does not meet the requirements of the size and surface precision of the part or the mold, the forming body is subjected to finishing and polishing by layering or polishing in the forming process. Until the size and surface accuracy requirements of the part or mold are reached.
  • the fusion forming torch is a plasma torch, a gas shielded torch or a laser head;
  • the metal is a metal or alloy material that can be used for gas shielded welding or laser welding;
  • the intermetallic compound is an intermetallic compound material that can be used for surface cladding
  • the ceramic is a ceramic material that can be used for surface cladding
  • the composite or gradient functional material is a material composed of the above metal, an intermetallic compound, a ceramic composite, or a material whose composition of the material can be changed in a gradient.
  • the micro roll or micro-extruding device can be fixed on the welding forming gun head. «1 During the forming process, the micro roll or micro-extruding device moves synchronously with the welding forming torch, and the side roll of the micro roll Or the pinch of the micro-extruding device follows the side of the melt-softening zone, acts as a 1 ⁇ 2 casting mold and a guide roller, and can adjust the spacing and angle according to the wall thickness and profile of the part, thereby constraining the tick material in the molten pool.
  • the micro-roller with a perforated type of water can be maintained at all times. Disintegrating with the semi-solidified softened area near the back of the molten pool, applying plastic deformation to the area, thereby improving the accuracy and surface finish of the welded layer, reducing the additional tensile stress in the weld bead and nearby areas, avoiding deformation and cracking, and improving The purpose of organizational performance.
  • the micro-roller or micro-extrusion device can also be fixed on a CNC machining head or a wrist of a robot, and the CNC machining head or the robot wrist is synchronized with the fusion-molding torch used in the production of the fusion forming, and is layer-by-layer.
  • the micro-roller or micro-extrusion device moves with the welding torch, and the side roller of the micro-roller or the micro-extrusion device of the micro-extrusion device is along the side of the melt softening zone, and can be according to the wall thickness and contour shape of the workpiece. Adjust the spacing and angle to prevent the unloading of the dog parts.
  • the micro-roller's perforated water-tight (or )) or micro-extrusion platen flexibly tracks the semi-solidified softened zone near the back of the weld pool, applying plastic deformation to the zone to reduce welds Additional tensile stresses in the road and nearby areas avoid « ⁇ cracking, improve shape dimensional accuracy, and improve tissue performance.
  • some concave profile parts can be assisted by single-sided micro rolls or micro-extrusion devices .
  • ⁇ 3 ⁇ 4 can also be used. The method and the auxiliary miniature, the repair of the part thank you.
  • a microroll of the present invention for a fusion forming composite manufacturing method of the part and the mold comprising a left and a right vertical roll and a horizontal roll, characterized in that:
  • the left and right vertical rollers are respectively connected to the left and right rotating arms through the axle pin, and the left and right rotating arms are respectively connected to the left and right vertical arms through the axle pin, and the left and right vertical arms are fixed on the first fixing bracket. ;
  • the horizontal roller is coupled to the rear swivel arm via a pivot pin
  • the rear swivel arm is coupled to the rear vertical arm by a pivot pin
  • the rear vertical arm is fixed to the second mount.
  • the first and second fixing brackets of the micro roll can be fixed on the welding forming gun head, or can be fixed on the CNC machining head or the wrist of the robot, and the CNC machining head or the robot wrist can be synchronized with the welding forming torch.
  • the micro-roller moves synchronously with the welding forming torch, and the vertical crepe follows the side of the melt-softening zone. It acts as a kind of “casting mold and guide roller, and can adjust the spacing according to the part » and the profile dog.
  • the layer's high precision, surface quality, surface properties and venting performance allow the micro-perforated water-cooled water to remain removed from the semi-solidified softened zone near the back of the molten pool, applying plastic deformation to the area, thereby increasing the deposition. Layer accuracy, surface finish, reduced tensile stress in the weld bead and nearby areas, avoiding deformation and cracking, and improving tissue performance.
  • the invention adopts gas shielded welding (non-melting tungsten inert gas shielded welding, plasma arc welding; active gas shielded welding of inert gas and inert gas shielded welding) or high power laser forming, in which no powder or wire is melted During the support and moldless forming process, the material in the semi-melting/softening zone and its vicinity is subjected to forced deformation or extrusion by micro-rollers or extrusion tools installed behind the molten pool.
  • gas shielded welding non-melting tungsten inert gas shielded welding, plasma arc welding; active gas shielded welding of inert gas and inert gas shielded welding
  • high power laser forming in which no powder or wire is melted
  • the constraint can also effectively reduce the step effect on the surface of the shaped body, improve the forming precision and surface quality, so that only a small amount or Deposition go into milling body, using only grinding or polishing to achieve size and surface accuracy of parts required.
  • the invention maintains the advantages of high-power laser deposition forming and electron beam forming technology, high forming efficiency, low cost and easy formation of full density of the molded body; and high-power laser deposition forming and plasma deposition forming Similarly, the same unsupported, moldless deposition forming technology has similar problems with plasma forming in complex shape forming, cracking, and structural properties, so it can also be used for high-power laser deposition forming to solve plasma deposition. Forming similar problems as described above. Therefore, the present invention can obtain parts, or molds of metals, intermetallic compounds, cermets, ceramics, and composite gradient functional materials thereof with high quality, speed, and low cost.
  • the invention can also be applied to the surface repair or strengthening of parts or molds, overcoming the technical bottleneck problem that the prior art method is very difficult to repair the quench hardening and subsequent finishing of the strengthening layer after repairing or strengthening.
  • Figure 1 is a schematic view of a micro roll fixed to a welding gun.
  • a plasma fusion gun using non-molten gas shielded welding the micro-roller fixed on the plasma fusion gun moves synchronously with the plasma fusion gun, and the side erection is along the side of the melt softening zone.
  • the welding current of the non-molten gas shielded welding is 60A, and according to the performance requirements of the mold cavity to be melted, the iron-nickel-chromium alloy powder is used, and the digital forming process is performed on the substrate according to the three-dimensional CAD model of the mold.
  • the path is formed by layer forming and micro forced forming simultaneously; if the shape of the mold cavity is complicated, the surface finishing process is performed during the synchronous forming process, and therefore, the grinding is performed in accordance with the synchronous forming process.
  • Polishing path planning, grinding or polishing finishing layer by layer or several layers in the synchronous forming process This finishing process alternates with the simultaneous forming process until the end of the mold cavity forming process, with dimensional and surface accuracy required.
  • the forming process can be synchronized in the same steps as the above process, and the finishing process is alternately performed until the die punch forming process is completed, and the dimensional and surface precision are required. Further, depending on the complexity of the shape of the punch, the finishing process can also be performed after the simultaneous forming process is completed.
  • the gas-shielded welding torch is used, and the micro-extrusion device fixed on the welding gun moves synchronously, the splint follows the softening area of the worm, the welding current of the gas-shielded welding torch is 50A, and the aluminum alloy parts are made of aluminum alloy.
  • the wire material is subjected to a fusion forming process and a micro forced forming process on a substrate in accordance with a digital forming process path obtained from a three-dimensional CAD model of the part.
  • the composite field forming process can be performed under vibration; for the complex shape part of the part, according to the grinding and polishing path planning combined with the above-mentioned forming processing path, the synchronous forming is performed.
  • the grinding or polishing finishing is alternately performed layer by layer or several layers until the end of the part forming process, and the size and surface precision meet the requirements of the parts.
  • a solid-state laser with a power of 1000 wo and a micro-roll fixed on the laser head move synchronously with the laser head, and the side sills are along the side of the melt-softening zone, and the level of the hole-shaped horizontal 3 ⁇ 43 ⁇ 4 track the suspected softened zone near the rear of the molten pool.
  • laser deposition molding and micro forced forming of superalloy parts are performed layer by layer in accordance with the digital forming processing path obtained from the three-dimensional CAD model of the part. If the shape of the part is complicated, it needs to be finished in the forming process. Therefore, according to the grinding and polishing path planning combined with the forming path, the composite grinding and polishing finishing are performed layer by layer or several layers in the forming process. The finishing process and the simultaneous forming process Alternate until the end of the mold forming, size and surface accuracy meet the requirements.
  • a plasma fusion torch with a transfer arc current of 70A the micro roll is fixed on the wrist of an industrial robot, and the wrist of the industrial robot is synchronized with the numerically controlled plasma fusion gun used in the manufacturing of the fusion forming, laterally
  • the horizontal 3 ⁇ 43 ⁇ 4 of the perforated pattern tracks the suspected softened zone near the back of the molten pool.
  • the nickel-aluminum intermetallic compound powder and the nickel-based superalloy powder are simultaneously subjected to plasma deposition forming and micro-extrusion processing in a layered manner according to a digital fusion forming path obtained from a three-dimensional CAD model with gradient functional material composition information.
  • the gradient functional material part According to the forming precision and surface quality requirements of the parts, surface grinding or polishing finishing can be alternately combined in the simultaneous forming process until the required size and surface quality of the parts are achieved.
  • the micro rolls used in the embodiments 1, 3, and 4 and the present embodiment are as shown in Fig. 1, and include a left vertical roll 9, a right vertical roll 6, and a horizontal roll 11, the left side vertical roll 9, and the right side stand
  • the rollers 6 are respectively connected to the left rotating arm 12 and the right rotating arm 5 through the axle pin, and the left and right rotating arms are respectively connected to the left vertical arm 13 and the right vertical arm 2 through the axle pin, and the left and right vertical arms are fixed at the first fixing.
  • the horizontal roller 11 is coupled to the rear rotary arm 4 via a pivot pin 4, and the rear rotary arm 4 is coupled to the rear vertical arm 3 via a pivot pin, and the rear vertical arm 3 is fixed to the second fixed frame 14.
  • a gas-shielded gas-shielded welding torch is used, and the micro-roller fixed on the numerical control welding gun 15 moves synchronously with the nipper, and the processed forming member 7 is placed on the susceptor 8, and the horizontal roller 11 with a hole type is flexibly tracked near the rear of the molten pool.
  • the welding current of the MIG welding torch is 60A.
  • the stainless steel wire 10 is used, and the digital welding obtained by the three-dimensional CAD model of the die is performed on the surface of the part to be repaired.
  • Repair path simultaneous compression forming and micro-rolling forced forming; Due to the complex shape of the mold cavity, surface finishing is required in the above-mentioned synchronous repair forming process, therefore, compounded with the synchronous repair forming path
  • the grinding and polishing path planning alternately performs grinding and polishing finishing in the synchronous repair forming process until the end of the mold repair forming process, and the size and surface precision meet the requirements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)
  • Arc Welding In General (AREA)
  • Powder Metallurgy (AREA)

Description

与模具的熔积成形复 造雄及其辅助
【 领域】
本发明属于零件与模具的无模生长制造与再制造方法。 【背景細
高致密金属零件或模具的无模熔积成形方法主要有大功率激光熔积成形、电子束 自由成形以及等离子熔积成形的方法。 大功率激光熔积成形方法是采用大功率激光, 逐层将送到基板上的金属粉末熔化, 并快速凝固熔积成形,最终得到近终成形件; 该 方法成形精度较高,工件的密度远高于选择性激光烧结件,但成形效率、能量和材料 的利用率不高、 不易达到满密度、 设备投资和运行成本高, 见 A. J. Pinkkerton, L. Li, Effects of Geometry and Composition in Coaxial Laser Deposition of 316L Steel for Rapid Protyping,Annals of the CIRP , Vol ,l 电子束自由成形方法采用大功 率的电子束熔化粉末材料,根据计算机模型施加电磁场,控制电子束的运动,逐层扫 描直至整个零件成形完成; 该方法成形精度较高、成形质量较好,然而其工艺条件要 求严格,整个成形过程需在真空中进行,致使成形尺寸受到限制, 设备投资和运行成 本很高;且因采用与选择性烧结相同的层层铺粉方式,难以用于梯度功能材料零件的 成形, 见 Matz J.E., Eagar T.W. Carbide formation in Alloy 718 during electron-beam solid ireeform fabrication. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, v33(8): 等离子熔积成形方法是采用高度压缩、集 束性好的等离子束熔化同步供给的金属粉末或丝材,在基板上逐层熔积形成金属零件 或模具, 该方法比前两种方法成形效率和材料利用率高, 易于获得满密度, 设备和运 行成本低,但因弧柱直径较前两者大,成形的尺寸和表面精度不及前两者, 故与大功 率激光熔积成形方法相似,大都要在成形完后进行精整加工,见 Haiou Zhang, Jipeng Xu, Guilan Wang, Fundamental Study on Plasma Deposition Manufacturing, Surface and Coating Technology , v. 171 (1-3), 2003, pp. 112-118; 以及张海鸥,吴红军,王桂兰,陈竞, 等离子熔积直接成形高温合金件组织结构研宄,华中科技大学学报 (自然科学版), V 33, n il, 2005, p 54-56。 然而, 直接成形的难加工材料零件因急冷凝固使表面硬度增大, 导致加工非常困难; 形状复杂的零件还需多次装夹,致使加工时间长,有时甚至要占 整个制造周期的 60%以上, 成为高性能难加工零件低成本短流程生长制造的瓶颈。 为此, 出现了等离子熔积成形与铣削加工复合无模快速制造方法,即以等离子束为成 形热源, 在分层或分段熔积成形过程中, 依次交叉进行熔积成形与数控铣削精加工, 以实现短流程、 低成本的直接精确制造, 见 ZL00131288.X, 直接快速制造模具与零 件的方法及其装置; 以及张海鸥,熊新红,王桂兰,等离子熔积 /铣削复合直接制造高温 合金双螺旋整体叶轮, 中国机械工程, 2007, Voll8, Νο.14: Ρ1723〜1725。
上述三种方法中,大功率激光熔积成形法和等离子成形法皆为无支撑、无模熔积 成形匀质或复合梯度功能材料零件的方法。与电子束成形、选择性激光烧结, 以及采 用熔点低的纸、树脂、塑料等的 LOM (Laminated Object Manufacturing纸叠层成形)、 SLA ( Stereolithography Apparatus光固化成形 ), FDM ( Fused Deposition Modeling烙 丝沉积制造)、 SLS (Selective Laser Sintering选择性激光烧结)等有支撑的无模堆积 成形的方法相比,避免了成形时因需要支撑而须添加和去除支撑材料导致的材料、工 艺、设备上的诸多不利, 减少了制造时间, 降低了成本, 并可成形梯度功能材料的零 件,但同时也因无支撑而在有悬臂的复杂形状零件的成形过程中,熔融材料在重力作 用下, 可能产生下落、流淌等现象, 导致难以熔积成形。等离子熔积铣削复合制造方 法虽通过分层的成形和铣削精整,降低了加工复杂程度,但对于侧面带大倾角尤其是 横向悬角部分的复杂形状零件, 堆积成形时因重力产生的流淌甚至塌落仍不能避免, 以至无法横向生长成形。
为此, 美国 Michigan大学、 Southern Methodist大学、 新加坡国立大学等一些国 外研宄机构研宄采用变方向切片技术,选择支撑条件最多的方向作为零件成形主方 向,或将复杂形状零件分解成若干简单形状的部件依次成形的方法;或开发五轴无模 成形加工设备和软件, 使熔融成形材料尽可能处于有支撑的条件下, 见 P. Singh, D. Dutta, Multi-direction slicing for layered manufacturing, Journal of Computing and Information Science and Engineering, 2001, 2, pp: 129-142; Jianzhong Ruan, Todd E. Sparks, Ajay Panackal e al. Automated Slicing for a Multiaxis Metal Deposition System. Journal of Manufacturing Science and Engineering. APRIL 2007, Vol. 129. pp: 303-310; R. Dwivedi, R. Kovacevic, An expert system for generation of machine inputs for laser-based multi-directional metal deposition, International Journal of Machine Tools & Manufacture, 46 (2006), pp: 1811-1822。 采用五轴加工技术, 虽然改善了生长成形的支撑条件, 避 免了材料的下落,但将导致空间干涉检验和成形路径规划复杂,软件编程与加工时间 长、难度大, 有效工作空间受限, 设备投资和运行成本增加, 而且对于复杂形状零件 仍难以从根本上解决因重力造成的流淌等问题,致使零件成形精度不高,尺寸规格和 形状复杂程度受到限制。
此外, 航空航天、 能源动力等行业对零部件的组织性能及其稳定性的要求很高, 现有无模快速制造方法因其急速加热快速凝固和自由生长成形的特点,成形过程中的 开裂难以避免,组织性能的稳定性尚不能满足要求。以上诸问题已成为制约高能束直 接成形技术能否进一步发展和实现工业化应用所急需解决的关键技术难点和瓶颈问 题。 因此, 制造业急需开发在复杂形状零件的无支撑、无模熔积成形过程中, 可有效 防止熔融层积材料下落、 流淌、 开裂并提高制造精度和改善组织性能的新方法。
值得注意的是,连铸直接轧制技术是钢铁工业革命性的新技术,它变革了连铸与 轧制分离的传统钢铁工业流程,实现了制坯与成形加工一体化的短流程制造,其中采 用的液芯压下技术, 不仅大幅度降低了能耗, 而且细化了组织。 见徐匡迪、 刘清友, 薄板坯流程连铸连轧过程中的细晶化现象分析,薄板坯连铸连轧技术交流与开发协会 第三次技术交流会论文集 [C], 2005 ; 以及 Gunter Flemming, Karl-Ernst Hensger. Extension of product range and perspectives of CSP technology , MPT International, 2000, (1) : 54。
【发明内容】
本发明提供一种零件与模具的熔积成形复合制造方法,同时提供一种用于该方法 的辅助装置,解决现有零件与模具的无模生长制造方法中,熔融材料因重力作用而产 生流淌、下落、坍塌, 以及无模多层熔积生长成形过程中因反复急热急冷导致的成形 件易开裂、 变形和残余应力大、 组织性能不稳定的问题。
本发明的一种零件与模具的熔积成形复合制造方法, 包括:
一. 模型分层步骤: 根据零件或模具的三维 CAD模型的尺寸精度要求, 对零件 或模具的三维 CAD模型进行分层切片处理;
二. 生成数控代码步骤: 根据零件或模具的三维 CAD模型分层切片数据和各层 尺寸和形状的特点进行成形路径规划, 生成成形加工所需的各层数控代码;
三.熔积成形步骤:采用数控的气体保护焊束或激光束,按照各层数控代码指定 的轨迹, 使用熔积成形焊枪, 在基板上将金属、金属间化合物、 陶瓷及复合梯度功能 材料的粉末或丝材逐层熔积成形;
其特征在于:
在与气体保护焊束和激光束作用下熔融软化的区域相接触处,安装微型轧辊或微 型挤压装置;在进行熔积成形步骤的同时,微型轧辊或微型挤压装置随着熔积区域同 步移动, 对熔积区域作压縮成形与加工;
逐层同步进行熔积成形与加工, 直至达到零件或模具的尺寸和表面精度的要求。 所述的熔积成形复合制造方法, 其特征在于:
所述熔积成形步骤中,若成形体达不到零件或模具的尺寸和表面精度的要求,则 在成形过程中逐层或多层分段采用研磨、抛光,对成形体进行精整加工,直至达到零 件或模具的尺寸和表面精度要求。
所述的熔积成形复合制造方法, 其特征在于:
所述熔积成形步骤中,所述熔积成形焊枪为等离子焊枪、气体保护焊枪或者激光 焊头;
所述金属为可用于气体保护焊或激光焊接的金属或合金材料;
所述金属间化合物为可用于表面熔覆的金属间化合物材料;
所述陶瓷为可用于表面熔覆的陶瓷材料;
所述复合或梯度功能材料为由上述金属、金属间化合物、陶瓷复合的材料,或复 合之后材料成分可梯度变化的材料。
所述微型轧辊或微型挤压装置可以固定于所述熔积成形焊枪头上, «1熔积成 形过程中, 微型轧辊或微型挤压装置随熔积成形焊枪同步运动, 微型轧辊的侧立辊或 微型挤压装置的夹 艮随在熔融软化区侧面, 起类½铸结晶器和导辊作用, 并能根据 制件壁厚和轮廓職, 调整间距和角度, 从而约束熔池中觸虫材料的流动, 防止无 掌情 况下熔謝料因重力产生的流淌、贿坍塌、从而保证錄職零件的可麵生,并改善 侧表面精度; 若要进一步改善熔积il的层高精度、表面质量、麵性和泄只性能, 让微型 轧辊带孔型的水 昆(可以为辘且)或微型挤压装置的压板始终保持与熔池后方附近的 半凝固软化区域相撤虫, 对该区域施加塑性变形, 从而达到提高熔积层的精度、 表面 光洁度, 降低焊道及附近区域附加拉应力,避免变形与开裂,并改善组织性能的目的。
所述微型轧辊或微型挤压装置也可固定于数控加工头上或机器人手腕上,所述数 控加工头或机器人手腕与熔积成形制造中使用的熔积成形焊枪保持同步,在逐层熔积 成形过程中,微型轧辊或微型挤压装置随熔积成形焊枪运动,微型轧辊的侧立辊或微 型挤压装置的夹柳艮随在熔融软化区侧面, 并能根据制件壁厚和轮廓形状, 调整间距和 角度, 防止錄 犬零件无支撑直接«情况熔融材料的流淌、滴 坍塌,从而保证任意 xmm r , 并改善侧表面精度; 若要进一步改善熔积 ^的高度的精度、表面 质量、 «性和组织性能, 微型轧辊的带孔型的水 昆(可以为辘且)或微型挤压装置 的压板柔性跟踪熔池后方附近的半凝固软化区域, 对该区域施加塑性变形, 以降低焊 道及附近区域附加拉应力, 避免« ^开裂, 提高形状尺寸精度, 并改善组织性能。
对于有些只需单 {贝画 «的情况, 如在模具的熔融«过程中, 有些凹陷的型面 部分, 可 单面微型轧辊或微型挤压装置的辅助 j»; 此外, 还可采用 ±¾方法和辅 助的微型 , 进行零件謝骐的修复。
本发明的一种用于所述零件与模具的熔积成形复合制造方法的微型轧辊, 包括 左、 右侧立辊和水平辊, 其特征在于:
所述左、右侧立辊分别通过轴销与左、右旋转臂连接, 左、右旋转臂分别通过轴 销与左、 右垂直臂连接, 左、 右垂直臂固联在第一固定架上;
所述水平辊通过轴销与后旋转臂连接,后旋转臂通过轴销与后垂直臂连接,后垂 直臂固联在第二固定架上。
微型轧辊的第一、第二固定架可以固定于熔积成形焊枪头上,也可以固定于数控 加工头上或机器人手腕上, 数控加工头或机器人手腕与熔积成形焊枪保持同步。
β层熔积成形过程中, 微型轧辊随熔积成形焊枪同步运动, 立 艮随在熔融软化 区侧面,起类«铸结晶器和导辊作用,并能根据制件 »和轮廓 犬,调整间距和角度, 从而约束熔池中熔融材料的流动, 防止无支撑情况下熔融材料因重力产生的流淌、 滴落 / 坍塌、从而保证錄職零件的可麵生, 并改善侧表面精度; 若要进一步改善熔积機 层高精度、表面质量、麵性和泄只性能,让微型带孔型的水 昆始终保持与熔池后方附 近的半凝固软化区域相撤虫, 对该区域施加塑性变形, 从而达到提高熔积层的精度、 表面光洁度, 降低焊道及附近区域附加拉应力, 避免变形与开裂, 并改善组织性能的 目的。
本发明采用气体保护焊(非熔化极的钨极惰性气体保护焊、等离子弧焊;熔化极 的活性气体保护焊和惰性气体保护焊)或大功率激光成形,在将粉末或丝材熔化的无 支撑、无模熔积成形过程中,通过安装在熔池后方的微型轧辊或挤压工具,对该半融 熔 /软化区及其附近区域的材料进行和轧制受迫变形或挤压受迫变形, 产生压缩应变 和压缩应力状态, 避免开裂、减轻或消除残余应力、改善组织性能; 同时通过安装在 熔池两侧的微型立辊或导板约束熔池中熔融材料的流动,即进行约束流变成形,防止 无支撑情况下熔融材料因重力产生的下落、流淌、坍塌等,从而保证复杂形状零件的 成形稳定性, 实现复杂形状(如侧壁带悬角等)零件或模具的直接成形; 该约束还可 有效地减少成形体表面的阶梯效应,提高成形精度和表面质量,从而仅需少量或省去 熔积成形体的铣削加工,而仅采用研磨或抛光加工即可达到零件的尺寸和表面精度的 要求。
本发明保持气体保护焊熔积成形比大功率激光熔积成形和电子束成形技术成形 效率高、成本低、成形体易于达到满密度的优点; 同时鉴于大功率激光熔积成形与等 离子熔积成形类似, 同属无支撑、无模熔积成形技术, 在复杂形状成形、开裂、组织 性能等方面也存在与等离子成形类似的问题,故也可用于大功率激光熔积成形, 以解 决与等离子熔积成形类似的上述问题。 因此, 采用本发明可以高质量、快速、低成本 地获得金属、 金属间化合物、 金属陶瓷、 陶瓷及其复合梯度功能材料的零件或模具。
本发明还可用于零件或模具的表面修复或强化,克服现有方法在修复或强化完后 对急冷硬化的修复和强化层进行后续精加工非常困难的技术瓶颈问题。
【附图说明】
图 1为固定在焊枪上的微型轧辊示意图。
【具体实施方式】 实施例 1:
采用非熔化极气体保护焊的等离子熔积枪,固定在等离子熔积枪上的微型轧辊随 等离子熔积枪同步运动, 侧立 艮随在熔融软化区侧面。 非熔化极气体保护焊的焊接 电流为 60A, 并根据待熔积制造的模具型腔的使用性能要求, 采用铁-镍-铬合金粉 末, 在基板上按照由模具三维 CAD模型得到的数字化成形加工路径, 逐层同步进行 熔积成形与微型受迫成形加工;若模具型腔形状复杂,则需在上述同步成形加工过程 中进行表面精整加工, 因此, 按照与同步成形加工路径复合的研磨、 抛光路径规划, 在同步成形加工过程中逐层或数层分段复合进行研磨、抛光精整加工。该精整加工过 程与同步成形加工过程交替进行,直到模具型腔成形加工结束,尺寸和表面精度达到 要求。对于模具凸模部分,可按与上述过程相同的步骤同步成形加工, 并依次交替进 行精整加工, 直到模具凸模成形加工结束, 尺寸和表面精度达到要求。此外, 根据凸 模形状的复杂程度, 精整加工亦可在同步成形加工完成后进行。
实施例 2:
采用熔化极气体保护焊枪, 固定在该焊枪上的微型挤压装置随之同步运动, 夹板 跟随在爛虫软化区侧面, 熔化极气体保护焊枪的焊接电流为 50A, 对于铝合金零件, 采用铝合金丝材, 在基板上按照由零件三维 CAD模型得到的数字化成形加工路径, 逐层同步进行熔积成形与微型受迫成形加工。 从细化晶粒和提高组织性能的要求出 发,可使该复合场成形加工在振动状态下进行;对于零件复杂形状部分,按照与上述 成形加工路径复合的研磨、抛光路径规划,在该同步成形加工过程中逐层或数层分段 交替进行研磨、抛光精整加工,直到零件成形加工结束,尺寸和表面精度达到零件的 要求。
实施例 3:
采用功率为 lOOOw的固体激光器、 固定在激光头上的微型轧辊随激光头同步运 动, 侧立 艮随在熔融软化区侧面, 带孔型的水平¾¾性跟踪熔池后方附近的 疑固软 化区域, 在基板上按照由零件三维 CAD模型得到的数字化成形加工路径, 逐层同步 进行激光熔积成形与微型受迫成形加工高温合金零件。若零件形状复杂,则需在成形 过程中进行精整加工, 因此, 按照与成形路径复合的研磨、抛光路径规划, 在成形过 程中逐层或数层分段复合研磨、抛光精整加工。该精整加工过程与同步成形加工过程 交替进行, 直到模具成形结束, 尺寸和表面精度达到要求。
实施例 4:
采用梯度功能材料送粉器、 转移弧电流为 70A的等离子熔积枪, 微型轧辊固定 在工业机器人手腕上,工业机器人手腕与熔积成形制造中使用的数控等离子熔积枪保 持同步, 侧立 艮随在熔融软化区侧面, 带孔型的水平¾¾性跟踪熔池后方附近的 疑 固软化区域。将镍铝金属间化合物粉末与镍基高温合金粉末,按照由带有梯度功能材 料成分分布信息的三维 CAD模型得到的数字化熔积成形路径,逐层同步进行等离子 熔积成形与微型挤压成形加工该梯度功能材料零件。根据零件的成形加工精度和表面 质量的要求,可在同步成形加工过程中交替复合进行表面研磨或抛光精整加工,直至 达到零件所需的尺寸和表面质量的要求。
实施例 5:
实施例 1、 3、 4和本实施例所使用的微型轧辊如图 1所示, 包括左侧立辊 9、 右 侧立辊 6和水平辊 11, 所述左侧立辊 9、 右侧立辊 6分别通过轴销与左旋转臂 12、 右旋转臂 5连接, 左、 右旋转臂分别通过轴销与左垂直臂 13、 右垂直臂 2连接, 左、 右垂直臂固联在第一固定架 1上;
所述水平辊 11通过轴销与后旋转臂 4连接, 后旋转臂 4通过轴销与后垂直臂 3 连接, 后垂直臂 3固联在第二固定架 14上。
本实施例采用熔化极气体保护焊枪, 固定在数控焊枪 15上的微型轧辊随悍枪同 步运动, 加工成形件 7置于基座 8上, 带孔型的水平辊 11柔性跟踪熔池后方附近的半 凝固软化区域,熔化极气体保护焊枪的焊接电流为 60A,根据待修复塑料模具的使用 性能要求,采用不锈钢焊丝 10,在模具待修复部位的表面上按照由模具三维 CAD模 型得到的数字化熔积修复路径, 同步进行熔积成形与微型轧制受迫成形加工; 由于模 具型腔的形状复杂, 需在上述同步修复成形加工过程中进行表面精整加工, 因此,按 照与同步修复成形加工路径复合的研磨、抛光路径规划,在同步修复成形加工过程中 交替复合进行研磨、抛光精整加工,直到模具修复成形加工结束,尺寸和表面精度达 到要求。

Claims

权 利 要 求
1. 一种零件与模具的熔积成形复合制造方法, 包括:
一. 模型分层步骤: 根据零件或模具的三维 CAD模型的尺寸精度要求, 对零件 或模具的三维 CAD模型进行分层切片处理;
二. 生成数控代码步骤: 根据零件或模具的三维 CAD模型分层切片数据和各层 尺寸和形状的特点进行成形路径规划, 生成成形加工所需的各层数控代码;
三.熔积成形步骤:采用数控的气体保护焊束或激光束,按照各层数控代码指定 的轨迹, 使用熔积成形焊枪, 在基板上将金属、金属间化合物、 陶瓷及复合梯度功能 材料的粉末或丝材逐层熔积成形;
其特征在于:
在与气体保护焊束和激光束作用下熔融软化的区域相接触处,安装微型轧辊或微 型挤压装置;在进行熔积成形步骤的同时,微型轧辊或微型挤压装置随着熔积区域同 步移动, 对熔积区域作压縮成形与加工;
逐层同步进行熔积成形与加工, 直至达到零件或模具的尺寸和表面精度的要求。
2. 如权利要求 1所述的熔积成形复合制造方法, 其特征在于:
所述熔积成形步骤中,若成形体达不到零件或模具的尺寸和表面精度的要求,则 在成形过程中逐层或多层分段采用研磨、抛光,对成形体进行精整加工,直至达到零 件或模具的尺寸和表面精度要求。
3. 如权利要求 1或 2所述的熔积成形复合制造方法, 其特征在于:
所述熔积成形步骤中,所述熔积成形焊枪为等离子焊枪、气体保护焊枪或者激光 焊头;
所述金属为可用于气体保护焊或激光焊接的金属或合金材料;
所述金属间化合物为可用于表面熔覆的金属间化合物材料;
所述陶瓷为可用于表面熔覆的陶瓷材料;
所述复合或梯度功能材料为由上述金属、金属间化合物、陶瓷复合的材料,或复 合之后材料成分可梯度变化的材料。
4. 如权利要求 1所述的熔积成形复合制造方法, 其特征在于:
所述微型轧辊或微型挤压装置固定于所述熔积成形焊枪头上, 在逐层熔积成形过 程中, 微型轧辊或微型挤压装置随熔积成形焊枪同步运动, 微型轧辊的侧立辊或微型 挤压装置的夹 艮随在纖软化区侧面,微型轧辊的水平辊观敖型挤压装置的压板始终 保持与熔池后方附近的半凝固软化区域相機虫, 对该区域施加塑性变形。
5. 如权利要求 1所述的熔积成形复合制造方法, 其特征在于:
所述微型轧辊或微型挤压装置固定于数控加工头上或机器人手腕上,所述数控加 工头或机器人手腕与熔积成形制造中使用的熔积成形焊枪保持同步,在逐层熔积成形 过程中,微型轧辊或微型挤压装置随熔积成形焊枪运动,微型轧辊的侧立辊或微型挤 压装置的夹 艮随在熔融软化区侧面,微型轧辊的水平辊或微型挤压装置的压«性跟 踪熔池后方附近的半凝固软化区域, 对该区域施加塑性变形。
6. 一种用于权利要求 1所述熔积成形复合制造方法的微型轧辊, 包括左、 右侧 立辊和水平辊, 其特征在于:
所述左、右侧立辊分别通过轴销与左、右旋转臂连接, 左、右旋转臂分别通过轴 销与左、 右垂直臂连接, 左、 右垂直臂固联在第一固定架上;
所述水平辊通过轴销与后旋转臂连接,后旋转臂通过轴销与后垂直臂连接,后垂 直臂固联在第二固定架上。
PCT/CN2011/072524 2010-04-15 2011-04-08 零件与模具的熔积成形复合制造方法及其辅助装置 WO2011127798A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/651,509 US9302338B2 (en) 2010-04-15 2012-10-15 Method for manufacturing metal parts and molds and micro-roller used therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010101476322A CN101817121B (zh) 2010-04-15 2010-04-15 零件与模具的熔积成形复合制造方法及其辅助装置
CN201010147632.2 2010-04-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/651,509 Continuation-In-Part US9302338B2 (en) 2010-04-15 2012-10-15 Method for manufacturing metal parts and molds and micro-roller used therefor

Publications (1)

Publication Number Publication Date
WO2011127798A1 true WO2011127798A1 (zh) 2011-10-20

Family

ID=42652474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072524 WO2011127798A1 (zh) 2010-04-15 2011-04-08 零件与模具的熔积成形复合制造方法及其辅助装置

Country Status (3)

Country Link
US (1) US9302338B2 (zh)
CN (1) CN101817121B (zh)
WO (1) WO2011127798A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015012992A2 (en) * 2013-07-24 2015-01-29 The Boeing Company Additive-manufacturing systems, apparatuses and methods
EP3515690A4 (en) * 2016-09-22 2020-05-13 University of South Alabama METHOD AND APPARATUS FOR 3D PRINTING
CN113399855A (zh) * 2021-06-24 2021-09-17 武汉东海石化重型装备有限公司 一种微型承压容器的增材制造方法

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101817121B (zh) * 2010-04-15 2012-03-28 华中科技大学 零件与模具的熔积成形复合制造方法及其辅助装置
GB2491472B (en) * 2011-06-02 2018-06-06 Univ Cranfield Additive Layer Manufacture
GB201212629D0 (en) 2012-07-16 2012-08-29 Prec Engineering Technologies Ltd A machine tool
CN102896173B (zh) * 2012-09-18 2014-08-27 华中科技大学 一种用于增材制造的变胞成形装置
CN102962451A (zh) * 2012-10-22 2013-03-13 华中科技大学 多功能梯度零件的电磁柔性复合熔积直接制备成形方法
GB201314030D0 (en) * 2013-08-06 2013-09-18 Eads Uk Ltd Extrusion-Based Additive Manufacturing System and Method
GB2521386A (en) 2013-12-18 2015-06-24 Ibm Improvements in 3D printing
JP6576354B2 (ja) * 2014-01-23 2019-09-18 パフォーマンス エスケー8 ホールディング インコーポレイテッド ボード本体の製造のためのシステムと方法
CN103962560B (zh) * 2014-05-20 2016-05-25 上海交通大学 一种熔锻复合的金属增材制造装置
CN105312570B (zh) * 2014-06-05 2017-09-26 华中科技大学 一种用于零件或模具的增量制造方法
JP6548462B2 (ja) * 2014-06-17 2019-07-24 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation 付加製造方法
US9606527B2 (en) 2014-06-30 2017-03-28 Caterpillar Inc. Automated fabrication system implementing 3-D void modeling
EP2998059B1 (en) * 2014-09-17 2020-01-15 IMR Engineering & Technologies S.R.L. Method for the three-dimensional printing of an item made of metallic material and apparatus for performing the method
CN104439884A (zh) * 2014-11-27 2015-03-25 南京先进激光技术研究院 一种基于逆向工程的模具三维快速成形修复方法
GB2533102B (en) * 2014-12-09 2018-10-31 Bae Systems Plc Additive Manufacturing
CN104668564A (zh) * 2015-03-09 2015-06-03 周红 一种3d打印设备及用金属丝为原材料的3d打印成形方法
WO2016149181A1 (en) * 2015-03-19 2016-09-22 Board Of Regents, The University Of Texas System Structurally integrating metal objects into additive manufactured structures
US10220468B2 (en) * 2015-10-15 2019-03-05 Lockheed Martin Corporation Direct manufacturing systems and methods utilizing active guides and passive molds
US10611073B2 (en) 2015-12-28 2020-04-07 Thermwood Corporation Machine and method for forming articles
CN105710371A (zh) * 2016-03-03 2016-06-29 中研智能装备有限公司 一种火车轮等离子3d打印再制造设备及方法
CN105945281B (zh) * 2016-05-09 2019-04-12 华中科技大学 零件与模具的熔积成形加工制造方法
DE102016111047B3 (de) * 2016-06-16 2017-10-26 Brandenburgische Technische Universität Cottbus-Senftenberg Verfahren und Anlage zur kombiniert additiven und umformenden Fertigung
WO2018069246A1 (en) * 2016-10-13 2018-04-19 Philips Lighting Holding B.V. Printer head and extrusion-based additive manufacturing method
CN106799833B (zh) * 2016-11-30 2020-03-24 宁夏共享模具有限公司 一种大型工业级fdm打印机的打印头及其打印方法
JP6765360B2 (ja) * 2017-04-19 2020-10-07 株式会社神戸製鋼所 構造体の製造方法、及び構造体
CN108407279B (zh) * 2017-06-21 2020-04-28 泉州市比邻三维科技有限公司 一种三维打印机
CN107262930B (zh) 2017-06-27 2019-07-23 广东工业大学 一种电弧熔积与激光冲击锻打复合快速成形零件的方法及其装置
CN107570704A (zh) * 2017-07-13 2018-01-12 张家港创博金属科技有限公司 快速成型制备金属零件方法及装置
CN107470628B (zh) * 2017-08-22 2020-01-07 哈尔滨工程大学 改善增材制造金属组织与性能的超声微锻造复合装置与增材制造方法
CN107685149B (zh) * 2017-08-28 2019-12-03 江苏大学 一种提高激光增材制造薄壁件成形质量的方法及装置
CN107414079A (zh) * 2017-09-08 2017-12-01 山东泰利先进制造研究院有限公司 一种激光成形轴类部件用工装
US10786946B2 (en) 2017-09-13 2020-09-29 Thermwood Corporation Apparatus and methods for compressing material during additive manufacturing
GB2566496B (en) * 2017-09-15 2020-01-22 Rolls Royce Plc Cladding
JP6765359B2 (ja) * 2017-10-05 2020-10-07 株式会社神戸製鋼所 構造体の製造方法、及び構造体
JP6792533B2 (ja) * 2017-10-05 2020-11-25 株式会社神戸製鋼所 構造体の製造方法
CN109702127B (zh) 2017-10-26 2021-06-04 通用电气公司 增材制造与锻造结合的复合成形系统和方法
US10500788B2 (en) * 2017-11-07 2019-12-10 Thermwood Corporation Apparatus and methods for additive manufacturing at ambient temperature
WO2019094264A1 (en) * 2017-11-10 2019-05-16 General Electric Company Apparatus and method for angular and rotational additive manufacturing
WO2019094294A1 (en) * 2017-11-10 2019-05-16 General Electric Company Apparatus and method for additive manufacturing
CN107803568B (zh) * 2017-11-13 2020-04-21 山东建筑大学 一种提高丝材电弧增材制造精度及成形效率的方法
CN107598335B (zh) * 2017-11-13 2020-04-21 山东建筑大学 一种实现丝材电弧熔铸增材制造的装置
JP6738789B2 (ja) * 2017-11-29 2020-08-12 株式会社神戸製鋼所 積層造形物の設計方法、製造方法、及び製造装置、並びにプログラム
CN109986011A (zh) 2018-01-02 2019-07-09 通用电气公司 锻造头、锻造装置以及增材制造系统
CN110026649B (zh) 2018-01-12 2022-03-08 通用电气公司 一种用于增材制造的温度控制系统和方法
US10864572B2 (en) 2018-02-07 2020-12-15 MRI. Materials Resources LLC In-situ hot working and heat treatment of additively manufactured metallic alloys
CN108723549A (zh) * 2018-05-28 2018-11-02 河海大学常州校区 一种电弧增材制造方法
CN108655402A (zh) * 2018-05-29 2018-10-16 南京尚吉增材制造研究院有限公司 逐层轧制激光立体成型零件的装置和方法
CN108941557B (zh) * 2018-07-25 2020-10-16 广东大族粤铭激光集团股份有限公司 增等材复合成形设备及其成形方法
US11167375B2 (en) 2018-08-10 2021-11-09 The Research Foundation For The State University Of New York Additive manufacturing processes and additively manufactured products
CN109226933A (zh) * 2018-08-31 2019-01-18 江苏师范大学 一种大厚度低合金高强度钢多层多焊道焊接工艺确定方法
CN109746443A (zh) * 2018-12-29 2019-05-14 华中科技大学 一种增材制造过程中并行控制零件变形和精度的方法
CN109454347B (zh) * 2018-12-29 2024-05-24 桂林电子科技大学 一种吸附式激光加工装置
CN109807558B (zh) * 2019-01-28 2021-09-07 东北大学 一种钛合金的丝材电弧增材制造方法
CN109623180B (zh) * 2019-01-28 2021-06-04 东北大学 一种镁合金的丝材电弧增材制造方法
US11980969B2 (en) * 2019-04-18 2024-05-14 Rtx Corporation Metal additive manufacturing method and article
US11465349B2 (en) * 2019-04-22 2022-10-11 The Boeing Co. Tool head assembly for solid state additive manufacturing
CN110076566A (zh) * 2019-05-13 2019-08-02 华中科技大学 一种微铸锻铣磨原位复合的金属零件制造系统及方法
CN110238399B (zh) * 2019-07-03 2024-06-25 昆山金甲虫机器人技术有限公司 一种金属陶瓷复合材料增材制造装置及其生产方法
CN110370638B (zh) * 2019-07-29 2021-03-09 温州乐发教育科技有限公司 一种增材制造用变胞成形装置
CN110465806B (zh) * 2019-08-07 2021-05-11 上海交通大学 一种熔积成型辊压装置
TR201913134A2 (tr) * 2019-08-29 2021-03-22 Tusas Tuerk Havacilik Ve Uzay Sanayii Anonim Sirketi Bir eklemeli imalat tezgahı.
CN110539080A (zh) * 2019-09-29 2019-12-06 华南理工大学 双机械臂激光-等离子复合铣削增减材制造设备与方法
CN111299579A (zh) * 2020-03-09 2020-06-19 深圳市晶莱新材料科技有限公司 一种提高slm金属打印制品内部质量的方法
CN112265271B (zh) * 2020-09-08 2021-10-08 同济大学 一种建模与切片并行的3d打印路径生成方法
CN112916874A (zh) * 2021-01-23 2021-06-08 大连理工大学 一种增材制造过程中熔池两侧夹持辅助成形装置和方法
CN114798735B (zh) * 2021-01-28 2023-04-07 华中科技大学 一种复合增等量制造方法
CN113102863B (zh) * 2021-05-28 2023-03-21 广西建工集团第一安装工程有限公司 一种高效轧辊轮齿硬质合金堆焊系统及堆焊方法
CN113477927B (zh) * 2021-06-22 2023-04-04 中车工业研究院有限公司 一种钢制零件表面修复方法
US20230047710A1 (en) * 2021-08-10 2023-02-16 International Business Machines Corporation Creating string-based force component from different directions during overhang three-dimensional printing
CN113695595B (zh) * 2021-09-01 2022-06-07 大连理工大学 采用激光金属沉积与随动轧制制备薄壁坯料的方法
CN114083084B (zh) * 2021-11-24 2022-12-06 吉林大学 一种电流辅助电弧增材制造镁合金构件的方法
CN114701160B (zh) * 2021-12-14 2023-12-12 上海航天设备制造总厂有限公司 可实现无支撑成型的增材制造集成装置与方法
CN114833353A (zh) * 2022-04-01 2022-08-02 季华实验室 复合的增材制造方法、装置、ded复合成形设备与介质
IT202200014452A1 (it) * 2022-07-08 2024-01-08 Ge Avio Srl Sistemi di produzione additiva e metodi per la compressione superiore e laterale di materiale durante la deposizione di materiale.
IT202200014431A1 (it) * 2022-07-08 2024-01-08 Ge Avio Srl Dispositivo per applicare un carico di compressione.
IT202200014428A1 (it) * 2022-07-08 2024-01-08 Ge Avio Srl Sistemi di produzione additiva e metodi per la compressione di materiale durante la deposizione di materiale.
CN116037962B (zh) * 2023-02-06 2023-08-11 北京航空航天大学 一种用于电弧增材制造的辊压设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1163807A (zh) * 1996-04-26 1997-11-05 清华大学 可完成多种快速原型制造工艺的多功能设备
CN2421094Y (zh) * 2000-01-14 2001-02-28 鞍山钢铁学院 连铸坯带液芯轧制的轧辊
CN101362272A (zh) * 2008-09-17 2009-02-11 华中科技大学 零件或模具的无模熔融层积制造方法
CN101549404A (zh) * 2008-03-31 2009-10-07 杨云峰 精密喷射成形-逐层碾压修复和制造工艺及其设备
CN101817121A (zh) * 2010-04-15 2010-09-01 华中科技大学 零件与模具的熔积成形复合制造方法及其辅助装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5398193B1 (en) * 1993-08-20 1997-09-16 Alfredo O Deangelis Method of three-dimensional rapid prototyping through controlled layerwise deposition/extraction and apparatus therefor
WO2002040744A1 (en) * 2000-11-16 2002-05-23 Triton Systems, Inc. Laser fabrication of ceramic parts
CN1155449C (zh) * 2002-03-21 2004-06-30 西北工业大学 成分及组织可控的激光立体成形方法
CN1476956A (zh) * 2003-04-30 2004-02-25 华中科技大学 一种快速制造方法及其装置
CN1272142C (zh) * 2003-07-11 2006-08-30 西安交通大学 基于焊接堆积的多金属直接快速成型装置
US7339712B2 (en) * 2005-03-22 2008-03-04 3D Systems, Inc. Laser scanning and power control in a rapid prototyping system
US8014889B2 (en) * 2005-10-13 2011-09-06 Stratasys, Inc. Transactional method for building three-dimensional objects
US7917243B2 (en) * 2008-01-08 2011-03-29 Stratasys, Inc. Method for building three-dimensional objects containing embedded inserts
SG162633A1 (en) * 2008-12-22 2010-07-29 Helios Applied Systems Pte Ltd Integrated system for manufacture of sub-micron 3d structures using 2-d photon lithography and nanoimprinting and process thereof
US9073259B2 (en) * 2011-11-29 2015-07-07 Xerox Corporation Media-based system for forming three-dimensional objects

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1163807A (zh) * 1996-04-26 1997-11-05 清华大学 可完成多种快速原型制造工艺的多功能设备
CN2421094Y (zh) * 2000-01-14 2001-02-28 鞍山钢铁学院 连铸坯带液芯轧制的轧辊
CN101549404A (zh) * 2008-03-31 2009-10-07 杨云峰 精密喷射成形-逐层碾压修复和制造工艺及其设备
CN101362272A (zh) * 2008-09-17 2009-02-11 华中科技大学 零件或模具的无模熔融层积制造方法
CN101817121A (zh) * 2010-04-15 2010-09-01 华中科技大学 零件与模具的熔积成形复合制造方法及其辅助装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015012992A2 (en) * 2013-07-24 2015-01-29 The Boeing Company Additive-manufacturing systems, apparatuses and methods
WO2015012992A3 (en) * 2013-07-24 2015-04-23 The Boeing Company Additive-manufacturing systems, apparatuses and methods
JP2016533923A (ja) * 2013-07-24 2016-11-04 ザ・ボーイング・カンパニーThe Boeing Company 付加製造システム、装置及び方法
US10882291B2 (en) 2013-07-24 2021-01-05 The Boeing Company Additive-manufacturing systems, apparatuses and methods
EP3515690A4 (en) * 2016-09-22 2020-05-13 University of South Alabama METHOD AND APPARATUS FOR 3D PRINTING
EP4049828A1 (en) * 2016-09-22 2022-08-31 University of South Alabama Method for 3d printing
CN113399855A (zh) * 2021-06-24 2021-09-17 武汉东海石化重型装备有限公司 一种微型承压容器的增材制造方法

Also Published As

Publication number Publication date
US20130197683A1 (en) 2013-08-01
CN101817121B (zh) 2012-03-28
CN101817121A (zh) 2010-09-01
US9302338B2 (en) 2016-04-05

Similar Documents

Publication Publication Date Title
WO2011127798A1 (zh) 零件与模具的熔积成形复合制造方法及其辅助装置
RU2745219C1 (ru) Способ параллельного контроля деформации и точности изготовления деталей во время процесса аддитивного производства
EP3756798B1 (en) Additive manufacturing method and device for ceramic and composite thereof
Dezaki et al. A review on additive/subtractive hybrid manufacturing of directed energy deposition (DED) process
Jiménez et al. Powder-based laser hybrid additive manufacturing of metals: a review
US11298792B2 (en) Combined additive manufacturing method applicable to parts and molds
CN105945281B (zh) 零件与模具的熔积成形加工制造方法
US20210402506A1 (en) Wire and arc additive manufacturing method for magnesium alloy
US11951560B2 (en) Wire and arc additive manufacturing method for titanium alloy
Ding et al. Wire-feed additive manufacturing of metal components: technologies, developments and future interests
CN110076566A (zh) 一种微铸锻铣磨原位复合的金属零件制造系统及方法
CN202052935U (zh) 一种激光感应复合熔化直接成形装置
CN102179517A (zh) 一种激光感应复合熔化直接成形方法及装置
RU2674588C2 (ru) Способ аддитивного сварочно-плавильного изготовления трёхмерных изделий и установка для его осуществления
WO2015185001A1 (zh) 一种用于零件或模具的增量制造方法
CN110315082B (zh) 一种微铸激光冲击织构的金属零件制造系统及方法
CN109175367B (zh) 增材、等材复合金属3d激光成形装置及其方法
CN109807560A (zh) 一种铜合金的丝材电弧增材制造方法
Zhang et al. Laser beam build-up welding of AlSi12-powder on AlSi1MgMn-alloy substrate
Balanovsky et al. Research of surface quality of structural components made using additive technology of electric arc welding
Kathirvel et al. 1 A Manufacturing Review on Additive in Industrial Environment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11768410

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11768410

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 11768410

Country of ref document: EP

Kind code of ref document: A1