CN101817121B - 零件与模具的熔积成形复合制造方法及其辅助装置 - Google Patents

零件与模具的熔积成形复合制造方法及其辅助装置 Download PDF

Info

Publication number
CN101817121B
CN101817121B CN2010101476322A CN201010147632A CN101817121B CN 101817121 B CN101817121 B CN 101817121B CN 2010101476322 A CN2010101476322 A CN 2010101476322A CN 201010147632 A CN201010147632 A CN 201010147632A CN 101817121 B CN101817121 B CN 101817121B
Authority
CN
China
Prior art keywords
miniature
deposition forming
forming
deposition
roll
Prior art date
Application number
CN2010101476322A
Other languages
English (en)
Other versions
CN101817121A (zh
Inventor
张海鸥
王桂兰
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Priority to CN2010101476322A priority Critical patent/CN101817121B/zh
Publication of CN101817121A publication Critical patent/CN101817121A/zh
Application granted granted Critical
Publication of CN101817121B publication Critical patent/CN101817121B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • B23K9/044Built-up welding on three-dimensional surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/188Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control
    • B29C64/194Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control during lay-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • B23K10/006Control circuits therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3066Fe as the principal constituent with Ni as next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P23/00Machines or arrangements of machines for performing specified combinations of different metal-working operations not covered by a single other subclass
    • B23P23/04Machines or arrangements of machines for performing specified combinations of different metal-working operations not covered by a single other subclass for both machining and other metal-working operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/18Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by using pressure rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/34Coated articles, e.g. plated or painted; Surface treated articles
    • B23K2101/35Surface treated articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/52Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

零件与模具的熔积成形复合制造方法及其辅助装置,属于零件与模具的无模生长制造与再制造方法,解决现有方法中,熔融材料流淌、坍塌,以及成形件易开裂、变形和残余应力大、组织性能不稳定的问题。本发明的方法包括模型分层、生成数控代码和熔积成形步骤,在与熔融软化的区域相接触处,安装微型轧辊或微型挤压装置;在进行熔积成形步骤的同时,微型轧辊或微型挤压装置随着熔积区域同步移动,对熔积区域作压缩成形与加工。本发明的微型轧辊,包括左、右侧立辊和水平辊。本发明防止熔融材料下落、流淌、坍塌,避免成形件开裂、减轻或消除残余应力、改善组织性能,保证零件成形稳定性,还可有效减少成形体表面的阶梯效应,提高成形精度和表面质量。

Description

零件与模具的熔积成形复合制造方法及其辅助装置
技术领域
[0001 ] 本发明属于零件与模具的无模生长制造与再制造方法。 背景技术
[0002] 高致密金属零件或模具的无模熔积成形方法主要有大功率激光熔积成形、电子束自由成形以及等离子熔积成形的方法。大功率激光熔积成形方法是采用大功率激光, 逐层将送到基板上的金属粉末熔化,并快速凝固熔积成形,最终得到近终成形件;该方法成形精度较高,工件的密度远高于选择性激光烧结件,但成形效率、能量和材料的利用率不高、不易达到满密度、设备投资和运行成本高,见A. J. Pinkkerton,L. Li,Effects of Geometry and Composition in Coaxial Laser Deposition of 316L Steel for Rapid Protyping, Annals of the CIRP,Vol. 52,1 (2003),pl81_184。电子束自由成形方法采用大功率的电子束熔化粉末材料,根据计算机模型施加电磁场,控制电子束的运动,逐层扫描直至整个零件成形完成;该方法成形精度较高、成形质量较好,然而其工艺条件要求严格, 整个成形过程需在真空中进行,致使成形尺寸受到限制,设备投资和运行成本很高;且因采用与选择性烧结相同的层层铺粉方式,难以用于梯度功能材料零件的成形,见Matz J.E., Eagar T. W. Carbide formation in Alloy 718during electron-beam solid freeform fabrication. Metallurgical and Materials Transactions A :Physical Metallurgy and Materials Science, 2002, v33 (8) :p2559_2567。等离子熔积成形方法是采用高度压缩、集束性好的等离子束熔化同步供给的金属粉末或丝材,在基板上逐层熔积形成金属零件或模具,该方法比前两种方法成形效率和材料利用率高,易于获得满密度,设备和运行成本低,但因弧柱直径较前两者大,成形的尺寸和表面精度不及前两者,故与大功率激光熔积成形方法相似,大都要在成形完后进行精整加工,见Haiou Zhang, Jipeng Xu, Guilan Wang, Fundamental Study on Plasma Deposition Manufacturing, Surface and Coating Technology, v. 171 (1-3),2003,pp. 112〜118 ;以及张海鸥,吴红军,王桂兰,陈竞,等离子熔积直接成形高温合金件组织结构研究,华中科技大学学报(自然科学版),ν 33, η 11, 2005,ρ 54-56.然而,直接成形的难加工材料零件因急冷凝固使表面硬度增大,导致加工非常困难;形状复杂的零件还需多次装夹,致使加工时间长,有时甚至要占整个制造周期的 60%以上,成为高性能难加工零件低成本短流程生长制造的瓶颈。为此,出现了等离子熔积成形与铣削加工复合无模快速制造方法,即以等离子束为成形热源,在分层或分段熔积成形过程中,依次交叉进行熔积成形与数控铣削精加工,以实现短流程、低成本的直接精确制造,见ZL0013U88. X,直接快速制造模具与零件的方法及其装置;以及张海鸥,熊新红, 王桂兰,等离子熔积/铣削复合直接制造高温合金双螺旋整体叶轮,中国机械工程,2007, Voll8, No. 14 :P1723 〜1725。
[0003] 上述三种方法中,大功率激光熔积成形法和等离子成形法皆为无支撑、无模熔积成形勻质或复合梯度功能材料零件的方法。与电子束成形、选择性激光烧结,以及采用熔点低的纸、树脂、塑料等的LOM(Laminated Object Manufacturing纸叠层成形)、SLA(Stereolithography Apparatus jtM^tS^M ) ,FDM(Fused Deposition Modeling ^έέ 沉积制造)、SLS (Elective Laser Sintering选择性激光烧结)等有支撑的无模堆积成形的方法相比,避免了成形时因需要支撑而须添加和去除支撑材料导致的材料、工艺、设备上的诸多不利,减少了制造时间,降低了成本,并可成形梯度功能材料的零件,但同时也因无支撑而在有悬臂的复杂形状零件的成形过程中,熔融材料在重力作用下,可能产生下落、流淌等现象,导致难以熔积成形。等离子熔积铣削复合制造方法虽通过分层的成形和铣削精整,降低了加工复杂程度,但对于侧面带大倾角尤其是横向悬角部分的复杂形状零件,堆积成形时因重力产生的流淌甚至塌落仍不能避免,以至无法横向生长成形。
[0004] 为此,美国Michigan大学、Southern Methodist大学、新加坡国立大学等一些国外研究机构研究采用变方向切片技术,选择支撑条件最多的方向作为零件成形主方向,或将复杂形状零件分解成若干简单形状的部件依次成形的方法;或开发五轴无模成形加工设备和软件,使熔融成形材料尽可能处于有支撑的条件下,见P. Singh, D. Dutta, Multi-direction slicing for layered manufacturing, Journal of Computing and Information Science and Engineering,2001, 2, pp :129—142 ; Jianzhong Ruan, Todd E. Sparks,Ajay Panackal et. al. Automated Slicing for a Multiaxis Metal Deposition System. Journal of Manufacturing Science and Engineering. APRIL 2007, Vol. 129. pp :303-310 ;R. Dwivedi, R. Kovacevic, An expert system for generation of machine inputs for laser-based multi-directional metal deposition, International Journal of Machine Tools & Manufacture,46 Q006),pp :1811_1822。采用五轴加工技术, 虽然改善了生长成形的支撑条件,避免了材料的下落,但将导致空间干涉检验和成形路径规划复杂,软件编程与加工时间长、难度大,有效工作空间受限,设备投资和运行成本增加, 而且对于复杂形状零件仍难以从根本上解决因重力造成的流淌等问题,致使零件成形精度不高,尺寸规格和形状复杂程度受到限制。
[0005] 此外,航空航天、能源动力等行业对零部件的组织性能及其稳定性的要求很高,现有无模快速制造方法因其急速加热快速凝固和自由生长成形的特点,成形过程中的开裂难以避免,组织性能的稳定性尚不能满足要求。以上诸问题已成为制约高能束直接成形技术能否进一步发展和实现工业化应用所急需解决的关键技术难点和瓶颈问题。因此,制造业急需开发在复杂形状零件的无支撑、无模熔积成形过程中,可有效防止熔融层积材料下落、 流淌、开裂并提高制造精度和改善组织性能的新方法。
[0006] 值得注意的是,连铸直接轧制技术是钢铁工业革命性的新技术,它变革了连铸与轧制分离的传统钢铁工业流程,实现了制坯与成形加工一体化的短流程制造,其中采用的液芯压下技术,不仅大幅度降低了能耗,而且细化了组织。见徐匡迪、刘清友,薄板坯流程连铸连轧过程中的细晶化现象分析,薄板坯连铸连轧技术交流与开发协会第三次技术交流会论文集[C], 2005 ;以及 Gunter Flemming, Karl-Ernst Hensger. Extension of product range and perspectives of CSP technology, MPTInternational,2000, (1) :54。
发明内容
[0007] 本发明提供一种零件与模具的熔积成形复合制造方法,同时提供一种用于该方法的辅助装置,解决现有零件与模具的无模生长制造方法中,熔融材料因重力作用而产生流
5淌、下落、坍塌,以及无模多层熔积生长成形过程中因反复急热急冷导致的成形件易开裂、 变形和残余应力大、组织性能不稳定的问题。
[0008] 本发明的一种零件与模具的熔积成形复合制造方法,包括:
[0009] 一.模型分层步骤:根据零件或模具的三维CAD模型的尺寸精度要求,对零件或模具的三维CAD模型进行分层切片处理;
[0010] 二 .生成数控代码步骤:根据零件或模具的三维CAD模型分层切片数据和各层尺寸和形状的特点进行成形路径规划,生成成形加工所需的各层数控代码;
[0011] 三.熔积成形步骤:采用数控的气体保护焊束或激光束,按照各层数控代码指定的轨迹,使用熔积成形焊枪,在基板上将金属、金属间化合物、陶瓷或复合梯度功能材料的粉末或丝材逐层熔积成形;
[0012] 其特征在于:
[0013] 在与气体保护焊束或激光束作用下熔融软化的区域相接触处,安装微型轧辊或微型挤压装置;在进行熔积成形步骤的同时,微型轧辊或微型挤压装置随着熔积区域同步移动,对熔积区域作压缩成形与加工;
[0014] 逐层同步进行熔积成形与加工,直至达到零件或模具的尺寸和表面精度的要求。
[0015] 所述的熔积成形复合制造方法,其特征在于:
[0016] 所述熔积成形步骤中,若成形体达不到零件或模具的尺寸和表面精度的要求,则在成形过程中逐层或多层分段采用研磨、抛光,对成形体进行精整加工,直至达到零件或模具的尺寸和表面精度要求。
[0017] 所述的熔积成形复合制造方法,其特征在于:
[0018] 所述熔积成形步骤中,所述熔积成形焊枪为等离子焊枪、气体保护焊枪或者激光焊头;
[0019] 所述金属为可用于气体保护焊或激光焊接的金属或合金材料;
[0020] 所述金属间化合物为可用于表面熔覆的金属间化合物材料;
[0021] 所述陶瓷为可用于表面熔覆的陶瓷材料;
[0022] 所述复合或梯度功能材料为由上述金属、金属间化合物、陶瓷复合的材料,或复合之后材料成分可梯度变化的材料。
[0023] 所述微型轧辊或微型挤压装置可以固定于所述熔积成形焊枪头上,在逐层熔积成形过程中,微型轧辊或微型挤压装置随熔积成形焊枪同步运动,微型轧辊的侧立辊或微型挤压装置的夹板跟随在熔融软化区侧面,起类似连铸结晶器和导辊作用,并能根据制件壁厚和轮廓形状,调整间距和角度,从而约束熔池中熔融材料的流动,防止无支撑情况下熔融材料因重力产生的流淌、滴落/坍塌、从而保证复杂形状零件的可成形性,并改善侧表面精度;若要进一步改善熔积层的层高精度、表面质量、成形性和组织性能,让微型轧辊带孔型的水平辊(可以为辊组)或微型挤压装置的压板始终保持与熔池后方附近的半凝固软化区域相接触,对该区域施加塑性变形,从而达到提高熔积层的精度、表面光洁度,降低焊道及附近区域附加拉应力,避免变形与开裂,并改善组织性能的目的。
[0024] 所述微型轧辊或微型挤压装置也可固定于数控加工头上或机器人手腕上,所述数控加工头或机器人手腕与熔积成形制造中使用的熔积成形焊枪保持同步,在逐层熔积成形过程中,微型轧辊或微型挤压装置随熔积成形焊枪运动,微型轧辊的侧立辊或微型挤压装置的夹板跟随在熔融软化区侧面,并能根据制件壁厚和轮廓形状,调整间距和角度,防止复杂形状零件无支撑直接成形情况熔融材料的流淌、滴落/坍塌,从而保证任意复杂形状零件的成形性,并改善侧表面精度;若要进一步改善熔积层的高度的精度、表面质量、成形性和组织性能,微型轧辊的带孔型的水平辊(可以为辊组)或微型挤压装置的压板柔性跟踪熔池后方附近的半凝固软化区域,对该区域施加塑性变形,以降低焊道及附近区域附加拉应力,避免变形与开裂,提高形状尺寸精度,并改善组织性能。
[0025] 对于有些只需单侧面受迫成形的情况,如在模具的熔融成形过程中,有些凹陷的型面部分,可采用单面微型轧辊或微型挤压装置的辅助成形;此外,还可采用上述方法和辅助的微型受迫成形装置,进行零件或模具的修复。
[0026] 本发明的一种用于所述零件与模具的熔积成形复合制造方法的微型轧辊,包括左、右侧立辊和水平辊,其特征在于:
[0027] 所述左、右侧立辊分别通过轴销与左、右旋转臂连接,左、右旋转臂分别通过轴销与左、右垂直臂连接,左、右垂直臂固联在第一固定架上;
[0028] 所述水平辊通过轴销与后旋转臂连接,后旋转臂通过轴销与后垂直臂连接,后垂直臂固联在第二固定架上。
[0029] 微型轧辊的第一、第二固定架可以固定于熔积成形焊枪头上,也可以固定于数控加工头上或机器人手腕上,数控加工头或机器人手腕与熔积成形焊枪保持同步。
[0030] 在逐层熔积成形过程中,微型轧辊随熔积成形焊枪同步运动,立辊跟随在熔融软化区侧面,起类似连铸结晶器和导辊作用,并能根据制件壁厚和轮廓形状,调整间距和角度,从而约束熔池中熔融材料的流动,防止无支撑情况下熔融材料因重力产生的流淌、滴落 /坍塌、从而保证复杂形状零件的可成形性,并改善侧表面精度;若要进一步改善熔积层的层高精度、表面质量、成形性和组织性能,让微型带孔型的水平辊始终保持与熔池后方附近的半凝固软化区域相接触,对该区域施加塑性变形,从而达到提高熔积层的精度、表面光洁度,降低焊道及附近区域附加拉应力,避免变形与开裂,并改善组织性能的目的。
[0031] 本发明采用气体保护焊(非熔化极的钨极惰性气体保护焊、等离子弧焊;熔化极的活性气体保护焊和惰性气体保护焊)或大功率激光成形,在将粉末或丝材熔化的无支撑、无模熔积成形过程中,通过安装在熔池后方的微型轧辊或挤压工具,对该半融熔/软化区及其附近区域的材料进行和轧制受迫变形或挤压受迫变形,产生压缩应变和压缩应力状态,避免开裂、减轻或消除残余应力、改善组织性能;同时通过安装在熔池两侧的微型立辊或导板约束熔池中熔融材料的流动,即进行约束流变成形,防止无支撑情况下熔融材料因重力产生的下落、流淌、坍塌等,从而保证复杂形状零件的成形稳定性,实现复杂形状(如侧壁带悬角等)零件或模具的直接成形;该约束还可有效地减少成形体表面的阶梯效应, 提高成形精度和表面质量,从而仅需少量或省去熔积成形体的铣削加工,而仅采用研磨或抛光加工即可达到零件的尺寸和表面精度的要求。
[0032] 本发明保持气体保护焊熔积成形比大功率激光熔积成形和电子束成形技术成形效率高、成本低、成形体易于达到满密度的优点;同时鉴于大功率激光熔积成形与等离子熔积成形类似,同属无支撑、无模熔积成形技术,在复杂形状成形、开裂、组织性能等方面也存在与等离子成形类似的问题,故也可用于大功率激光熔积成形,以解决与等离子熔积成形类似的上述问题。因此,采用本发明可以高质量、快速、低成本地获得金属、金属间化合物、金属陶瓷、陶瓷及其复合梯度功能材料的零件或模具。
[0033] 本发明还可用于零件或模具的表面修复或强化,克服现有方法在修复或强化完后对急冷硬化的修复和强化层进行后续精加工非常困难的技术瓶颈问题。
附图说明
[0034] 图1为固定在焊枪上的微型轧辊示意图。
具体实施方式
[0035] 实施例1 :
[0036] 采用非熔化极气体保护焊的等离子熔积枪,固定在等离子熔积枪上的微型轧辊随等离子熔积枪同步运动,侧立辊跟随在熔融软化区侧面。非熔化极气体保护焊的焊接电流为60A,并根据待熔积制造的模具型腔的使用性能要求,采用铁-镍-铬合金粉末,在基板上按照由模具三维CAD模型得到的数字化成形加工路径,逐层同步进行熔积成形与微型受迫成形加工;若模具型腔形状复杂,则需在上述同步成形加工过程中进行表面精整加工,因此,按照与同步成形加工路径复合的研磨、抛光路径规划,在同步成形加工过程中逐层或数层分段复合进行研磨、抛光精整加工。该精整加工过程与同步成形加工过程交替进行,直到模具型腔成形加工结束,尺寸和表面精度达到要求。对于模具凸模部分,可按与上述过程相同的步骤同步成形加工,并依次交替进行精整加工,直到模具凸模成形加工结束,尺寸和表面精度达到要求。此外,根据凸模形状的复杂程度,精整加工亦可在同步成形加工完成后进行。
[0037] 实施例2 :
[0038] 采用熔化极气体保护焊枪,固定在该焊枪上的微型挤压装置随之同步运动,夹板跟随在熔融软化区侧面,熔化极气体保护焊枪的焊接电流为50A,对于铝合金零件,采用铝合金丝材,在基板上按照由零件三维CAD模型得到的数字化成形加工路径,逐层同步进行熔积成形与微型受迫成形加工。从细化晶粒和提高组织性能的要求出发,可使该复合场成形加工在振动状态下进行;对于零件复杂形状部分,按照与上述成形加工路径复合的研磨、 抛光路径规划,在该同步成形加工过程中逐层或数层分段交替进行研磨、抛光精整加工,直到零件成形加工结束,尺寸和表面精度达到零件的要求。
[0039] 实施例3 :
[0040] 采用功率为IOOOw的固体激光器、固定在激光头上的微型轧辊随激光头同步运动,侧立辊跟随在熔融软化区侧面,带孔型的水平辊柔性跟踪熔池后方附近的半凝固软化区域,在基板上按照由零件三维CAD模型得到的数字化成形加工路径,逐层同步进行激光熔积成形与微型受迫成形加工高温合金零件。若零件形状复杂,则需在成形过程中进行精整加工,因此,按照与成形路径复合的研磨、抛光路径规划,在成形过程中逐层或数层分段复合研磨、抛光精整加工。该精整加工过程与同步成形加工过程交替进行,直到模具成形结束,尺寸和表面精度达到要求。
[0041] 实施例4:
[0042] 采用梯度功能材料送粉器、转移弧电流为70A的等离子熔积枪,微型轧辊固定在工业机器人手腕上,工业机器人手腕与熔积成形制造中使用的数控等离子熔积枪保持同步,侧立辊跟随在熔融软化区侧面,带孔型的水平辊柔性跟踪熔池后方附近的半凝固软化区域。将镍铝金属间化合物粉末与镍基高温合金粉末,按照由带有梯度功能材料成分分布信息的三维CAD模型得到的数字化熔积成形路径,逐层同步进行等离子熔积成形与微型挤压成形加工该梯度功能材料零件。根据零件的成形加工精度和表面质量的要求,可在同步成形加工过程中交替复合进行表面研磨或抛光精整加工,直至达到零件所需的尺寸和表面质量的要求。
[0043] 实施例5 :
[0044] 实施例1、3、4和本实施例所使用的微型轧辊如图1所示,包括左侧立辊9、右侧立辊6和水平辊11,所述左侧立辊9、右侧立辊6分别通过轴销与左旋转臂12、右旋转臂5连接,左、右旋转臂分别通过轴销与左垂直臂13、右垂直臂2连接,左、右垂直臂固联在第一固定架1上;
[0045] 所述水平辊11通过轴销与后旋转臂4连接,后旋转臂4通过轴销与后垂直臂3连接,后垂直臂3固联在第二固定架14上。
[0046] 本实施例采用熔化极气体保护焊枪,固定在数控焊枪15上的微型轧辊随焊枪同步运动,加工成形件7置于基座8上,带孔型的水平辊11柔性跟踪熔池后方附近的半凝固软化区域,熔化极气体保护焊枪的焊接电流为60A,根据待修复塑料模具的使用性能要求, 采用不锈钢焊丝10,在模具待修复部位的表面上按照由模具三维CAD模型得到的数字化熔积修复路径,同步进行熔积成形与微型轧制受迫成形加工;由于模具型腔的形状复杂,需在上述同步修复成形加工过程中进行表面精整加工,因此,按照与同步修复成形加工路径复合的研磨、抛光路径规划,在同步修复成形加工过程中交替复合进行研磨、抛光精整加工, 直到模具修复成形加工结束,尺寸和表面精度达到要求。

Claims (6)

1. 一种零件与模具的熔积成形复合制造方法,包括:一.模型分层步骤:根据零件或模具的三维CAD模型的尺寸精度要求,对零件或模具的三维CAD模型进行分层切片处理;二 .生成数控代码步骤:根据零件或模具的三维CAD模型分层切片数据和各层尺寸和形状的特点进行成形路径规划,生成成形加工所需的各层数控代码;三.熔积成形步骤:采用数控的气体保护焊束或激光束,按照各层数控代码指定的轨迹,使用熔积成形焊枪,在基板上将金属、金属间化合物、陶瓷或复合梯度功能材料的粉末或丝材逐层熔积成形;其特征在于:在与气体保护焊束或激光束作用下熔融软化的区域相接触处,安装微型轧辊或微型挤压装置;在进行熔积成形步骤的同时,微型轧辊或微型挤压装置随着熔积区域同步移动,对熔积区域作压缩成形与加工;逐层同步进行熔积成形与加工,直至达到零件或模具的尺寸和表面精度的要求。
2.如权利要求1所述的熔积成形复合制造方法,其特征在于:所述熔积成形步骤中,若成形体达不到零件或模具的尺寸和表面精度的要求,则在成形过程中逐层或多层分段采用研磨、抛光,对成形体进行精整加工,直至达到零件或模具的尺寸和表面精度要求。
3.如权利要求1或2所述的熔积成形复合制造方法,其特征在于:所述熔积成形步骤中,所述熔积成形焊枪为等离子焊枪、气体保护焊枪或者激光焊头;所述金属为可用于气体保护焊或激光焊接的金属或合金材料;所述金属间化合物为可用于表面熔覆的金属间化合物材料;所述陶瓷为可用于表面熔覆的陶瓷材料;所述复合或梯度功能材料为由上述金属、金属间化合物、陶瓷复合的材料,或复合之后材料成分可梯度变化的材料。
4.如权利要求1所述的熔积成形复合制造方法,其特征在于:所述微型轧辊或微型挤压装置固定于所述熔积成形焊枪头上,在逐层熔积成形过程中,微型轧辊或微型挤压装置随熔积成形焊枪同步运动,微型轧辊的侧立辊或微型挤压装置的夹板跟随在熔融软化区侧面,微型轧辊的水平辊或微型挤压装置的压板始终保持与熔池后方附近的半凝固软化区域相接触,对该区域施加塑性变形。
5.如权利要求1所述的熔积成形复合制造方法,其特征在于:所述微型轧辊或微型挤压装置固定于数控加工头上或机器人手腕上,所述数控加工头或机器人手腕与熔积成形制造中使用的熔积成形焊枪保持同步,在逐层熔积成形过程中, 微型轧辊或微型挤压装置随熔积成形焊枪运动,微型轧辊的侧立辊或微型挤压装置的夹板跟随在熔融软化区侧面,微型轧辊的水平辊或微型挤压装置的压板柔性跟踪熔池后方附近的半凝固软化区域,对该区域施加塑性变形。
6. 一种用于权利要求1所述熔积成形复合制造方法的微型轧辊,包括左、右侧立辊和水平辊,其特征在于:所述左、右侧立辊分别通过轴销与左、右旋转臂连接,左、右旋转臂分别通过轴销与左、右垂直臂连接,左、右垂直臂固联在第一固定架上;所述水平辊通过轴销与后旋转臂连接,后旋转臂通过轴销与后垂直臂连接,后垂直臂固联在第二固定架上。
CN2010101476322A 2010-04-15 2010-04-15 零件与模具的熔积成形复合制造方法及其辅助装置 CN101817121B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010101476322A CN101817121B (zh) 2010-04-15 2010-04-15 零件与模具的熔积成形复合制造方法及其辅助装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN2010101476322A CN101817121B (zh) 2010-04-15 2010-04-15 零件与模具的熔积成形复合制造方法及其辅助装置
PCT/CN2011/072524 WO2011127798A1 (zh) 2010-04-15 2011-04-08 零件与模具的熔积成形复合制造方法及其辅助装置
US13/651,509 US9302338B2 (en) 2010-04-15 2012-10-15 Method for manufacturing metal parts and molds and micro-roller used therefor

Publications (2)

Publication Number Publication Date
CN101817121A CN101817121A (zh) 2010-09-01
CN101817121B true CN101817121B (zh) 2012-03-28

Family

ID=42652474

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010101476322A CN101817121B (zh) 2010-04-15 2010-04-15 零件与模具的熔积成形复合制造方法及其辅助装置

Country Status (3)

Country Link
US (1) US9302338B2 (zh)
CN (1) CN101817121B (zh)
WO (1) WO2011127798A1 (zh)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101817121B (zh) * 2010-04-15 2012-03-28 华中科技大学 零件与模具的熔积成形复合制造方法及其辅助装置
GB2491472B (en) * 2011-06-02 2018-06-06 Univ Cranfield Additive Layer Manufacture
CN102896173B (zh) * 2012-09-18 2014-08-27 华中科技大学 一种用于增材制造的变胞成形装置
CN102962451A (zh) * 2012-10-22 2013-03-13 华中科技大学 多功能梯度零件的电磁柔性复合熔积直接制备成形方法
US9751260B2 (en) * 2013-07-24 2017-09-05 The Boeing Company Additive-manufacturing systems, apparatuses and methods
GB201314030D0 (en) * 2013-08-06 2013-09-18 Eads Uk Ltd Extrusion-Based Additive Manufacturing System and Method
GB2521386A (en) 2013-12-18 2015-06-24 Ibm Improvements in 3D printing
WO2015112078A1 (en) * 2014-01-23 2015-07-30 Performance Sk8 Holding Inc. System and method for manufacturing a board body
CN103962560B (zh) * 2014-05-20 2016-05-25 上海交通大学 一种熔锻复合的金属增材制造装置
CN105312570B (zh) * 2014-06-05 2017-09-26 华中科技大学 一种用于零件或模具的增量制造方法
JP6548462B2 (ja) * 2014-06-17 2019-07-24 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation 付加製造方法
US9606527B2 (en) 2014-06-30 2017-03-28 Caterpillar Inc. Automated fabrication system implementing 3-D void modeling
EP2998059B1 (en) * 2014-09-17 2020-01-15 IMR Engineering & Technologies S.R.L. Method for the three-dimensional printing of an item made of metallic material and apparatus for performing the method
CN104439884A (zh) * 2014-11-27 2015-03-25 南京先进激光技术研究院 一种基于逆向工程的模具三维快速成形修复方法
GB2533102B (en) * 2014-12-09 2018-10-31 Bae Systems Plc Additive Manufacturing
CN104668564A (zh) * 2015-03-09 2015-06-03 周红 一种3d打印设备及用金属丝为原材料的3d打印成形方法
WO2016149181A1 (en) * 2015-03-19 2016-09-22 Board Of Regents, The University Of Texas System Structurally integrating metal objects into additive manufactured structures
US10220468B2 (en) * 2015-10-15 2019-03-05 Lockheed Martin Corporation Direct manufacturing systems and methods utilizing active guides and passive molds
US10611073B2 (en) * 2015-12-28 2020-04-07 Thermwood Corporation Machine and method for forming articles
CN105710371A (zh) * 2016-03-03 2016-06-29 中研智能装备有限公司 一种火车轮等离子3d打印再制造设备及方法
CN105945281B (zh) * 2016-05-09 2019-04-12 华中科技大学 零件与模具的熔积成形加工制造方法
DE102016111047B3 (de) * 2016-06-16 2017-10-26 Brandenburgische Technische Universität Cottbus-Senftenberg Verfahren und Anlage zur kombiniert additiven und umformenden Fertigung
EP3515690A4 (en) * 2016-09-22 2020-05-13 University of South Alabama METHOD AND APPARATUS FOR 3D PRINTING
WO2018069246A1 (en) * 2016-10-13 2018-04-19 Philips Lighting Holding B.V. Printer head and extrusion-based additive manufacturing method
CN106799833B (zh) * 2016-11-30 2020-03-24 宁夏共享模具有限公司 一种大型工业级fdm打印机的打印头及其打印方法
CN107020742B (zh) * 2017-06-21 2018-04-24 泉州市比邻三维科技有限公司 一种实用性强的三维打印机
CN107262930B (zh) 2017-06-27 2019-07-23 广东工业大学 一种电弧熔积与激光冲击锻打复合快速成形零件的方法及其装置
CN107570704A (zh) * 2017-07-13 2018-01-12 张家港创博金属科技有限公司 快速成型制备金属零件方法及装置
CN107685149B (zh) * 2017-08-28 2019-12-03 江苏大学 一种提高激光增材制造薄壁件成形质量的方法及装置
US10786946B2 (en) 2017-09-13 2020-09-29 Thermwood Corporation Apparatus and methods for compressing material during additive manufacturing
WO2019094294A1 (en) * 2017-11-10 2019-05-16 General Electric Company Apparatus and method for additive manufacturing
US20200254566A1 (en) * 2017-11-10 2020-08-13 General Electric Company Apparatus and method for angular and rotational additive manufacturing
CN107803568B (zh) * 2017-11-13 2020-04-21 山东建筑大学 一种提高丝材电弧增材制造精度及成形效率的方法
CN107598335B (zh) * 2017-11-13 2020-04-21 山东建筑大学 一种实现丝材电弧熔铸增材制造的装置
US10864572B2 (en) 2018-02-07 2020-12-15 MRI. Materials Resources LLC In-situ hot working and heat treatment of additively manufactured metallic alloys
CN108723549A (zh) * 2018-05-28 2018-11-02 河海大学常州校区 一种电弧增材制造方法
CN108655402A (zh) * 2018-05-29 2018-10-16 南京尚吉增材制造研究院有限公司 逐层轧制激光立体成型零件的装置和方法
CN108941557B (zh) * 2018-07-25 2020-10-16 广东大族粤铭激光集团股份有限公司 增等材复合成形设备及其成形方法
CN109226933A (zh) * 2018-08-31 2019-01-18 江苏师范大学 一种大厚度低合金高强度钢多层多焊道焊接工艺确定方法
CN109746443A (zh) * 2018-12-29 2019-05-14 华中科技大学 一种增材制造过程中并行控制零件变形和精度的方法
WO2020156224A1 (zh) * 2019-01-28 2020-08-06 东北大学 一种镁合金的丝材电弧增材制造方法
CN109807558A (zh) * 2019-01-28 2019-05-28 东北大学 一种钛合金的丝材电弧增材制造方法
US20200331099A1 (en) * 2019-04-18 2020-10-22 United Technologies Corporation Metal additive manufacturing method and article
CN110076566A (zh) * 2019-05-13 2019-08-02 华中科技大学 一种微铸锻铣磨原位复合的金属零件制造系统及方法
CN110370638B (zh) * 2019-07-29 2021-03-09 温州乐发教育科技有限公司 一种增材制造用变胞成形装置
CN110465806B (zh) * 2019-08-07 2021-05-11 上海交通大学 一种熔积成型辊压装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002040744A1 (en) * 2000-11-16 2002-05-23 Triton Systems, Inc. Laser fabrication of ceramic parts
CN1411942A (zh) * 2002-03-21 2003-04-23 西北工业大学 成分及组织可控的激光立体成型方法
CN1476956A (zh) * 2003-04-30 2004-02-25 华中科技大学 一种快速制造方法及其装置
CN1481972A (zh) * 2003-07-11 2004-03-17 西安交通大学 基于焊接堆积的多金属直接快速成型方法及装置
EP1705616A1 (en) * 2005-03-22 2006-09-27 3D Systems, Inc. Laser scanning and power control in a rapid prototyping system
CN101362272A (zh) * 2008-09-17 2009-02-11 华中科技大学 零件或模具的无模熔融层积制造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5398193B1 (en) * 1993-08-20 1997-09-16 Alfredo O Deangelis Method of three-dimensional rapid prototyping through controlled layerwise deposition/extraction and apparatus therefor
CN1060698C (zh) * 1996-04-26 2001-01-17 清华大学 可完成多种快速原型制造工艺的多功能设备
CN2421094Y (zh) * 2000-01-14 2001-02-28 鞍山钢铁学院 连铸坯带液芯轧制的轧辊
JP5030962B2 (ja) * 2005-10-13 2012-09-19 ストラタシス・インコーポレイテッドStratasys, Inc. 3次元オブジェクトを構築するための取引方法
US7917243B2 (en) * 2008-01-08 2011-03-29 Stratasys, Inc. Method for building three-dimensional objects containing embedded inserts
CN101549404A (zh) * 2008-03-31 2009-10-07 杨云峰 精密喷射成形-逐层碾压修复和制造工艺及其设备
SG162633A1 (en) * 2008-12-22 2010-07-29 Helios Applied Systems Pte Ltd Integrated system for manufacture of sub-micron 3d structures using 2-d photon lithography and nanoimprinting and process thereof
CN101817121B (zh) * 2010-04-15 2012-03-28 华中科技大学 零件与模具的熔积成形复合制造方法及其辅助装置
US9073259B2 (en) * 2011-11-29 2015-07-07 Xerox Corporation Media-based system for forming three-dimensional objects

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002040744A1 (en) * 2000-11-16 2002-05-23 Triton Systems, Inc. Laser fabrication of ceramic parts
CN1411942A (zh) * 2002-03-21 2003-04-23 西北工业大学 成分及组织可控的激光立体成型方法
CN1476956A (zh) * 2003-04-30 2004-02-25 华中科技大学 一种快速制造方法及其装置
CN1481972A (zh) * 2003-07-11 2004-03-17 西安交通大学 基于焊接堆积的多金属直接快速成型方法及装置
EP1705616A1 (en) * 2005-03-22 2006-09-27 3D Systems, Inc. Laser scanning and power control in a rapid prototyping system
CN101362272A (zh) * 2008-09-17 2009-02-11 华中科技大学 零件或模具的无模熔融层积制造方法

Also Published As

Publication number Publication date
US9302338B2 (en) 2016-04-05
CN101817121A (zh) 2010-09-01
WO2011127798A1 (zh) 2011-10-20
US20130197683A1 (en) 2013-08-01

Similar Documents

Publication Publication Date Title
DebRoy et al. Additive manufacturing of metallic components–process, structure and properties
US10766802B2 (en) Flexible 3D freeform techniques
Bhavar et al. A review on powder bed fusion technology of metal additive manufacturing
US9952572B2 (en) Object production using an additive manufacturing process
Calignano et al. Influence of process parameters on surface roughness of aluminum parts produced by DMLS
KR102126243B1 (ko) 3차원 형상 조형물의 제조 방법 및 그 제조 장치
Yusuf et al. Influence of energy density on metallurgy and properties in metal additive manufacturing
CN107130124B (zh) 一种增材制造技术成形高熵合金的方法
KR101614860B1 (ko) 아크 및 합금금속분말 코어 와이어를 이용한 ded 아크 3차원 합금금속분말 프린팅 방법 및 그 장치
Wang et al. Research on the fabricating quality optimization of the overhanging surface in SLM process
Yang et al. Forming characteristics of thin-wall steel parts by double electrode GMAW based additive manufacturing
CN103495731B (zh) 一种选择性激光熔化制备纯钛多孔结构的方法
CN105574254B (zh) 增减材复合加工系统及方法
Xiong et al. Fabrication of inclined thin-walled parts in multi-layer single-pass GMAW-based additive manufacturing with flat position deposition
US5746844A (en) Method and apparatus for creating a free-form three-dimensional article using a layer-by-layer deposition of molten metal and using a stress-reducing annealing process on the deposited metal
CA2224984C (en) Free form article by layer deposition
Milewski et al. Directed light fabrication of a solid metal hemisphere using 5-axis powder deposition
CN104404509B (zh) 一种金属激光熔化增材制造方法
JP5568090B2 (ja) 砂型のデジタル加工方法及びその設備
Lee et al. Development of a hybrid rapid prototyping system using low-cost fused deposition modeling and five-axis machining
US5960853A (en) Apparatus for creating a free-form three-dimensional article using a layer-by-layer deposition of a molten metal and deposition of a powdered metal as a support material
CN201300207Y (zh) 一种金属零件选区激光熔化快速成型设备
US5669433A (en) Method for creating a free-form metal three-dimensional article using a layer-by-layer deposition of a molten metal
Gibson et al. Directed energy deposition processes
US5207371A (en) Method and apparatus for fabrication of three-dimensional metal articles by weld deposition

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
LICC Enforcement, change and cancellation of record of contracts on the licence for exploitation of a patent or utility model
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20100901

Assignee: Wuhan Tianyu Intelligent Manufacturing Co., Ltd.

Assignor: Huazhong University of Science and Technology

Contract record no.: 2015420000126

Denomination of invention: Deposition forming composite manufacturing method of part and mold and auxiliary device thereof

Granted publication date: 20120328

License type: Common License

Record date: 20150701