JP2013198177A - 電力系統制御装置及び電力系統制御方法 - Google Patents

電力系統制御装置及び電力系統制御方法 Download PDF

Info

Publication number
JP2013198177A
JP2013198177A JP2012059309A JP2012059309A JP2013198177A JP 2013198177 A JP2013198177 A JP 2013198177A JP 2012059309 A JP2012059309 A JP 2012059309A JP 2012059309 A JP2012059309 A JP 2012059309A JP 2013198177 A JP2013198177 A JP 2013198177A
Authority
JP
Japan
Prior art keywords
generator
output
power system
power
constraint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012059309A
Other languages
English (en)
Other versions
JP5616385B2 (ja
Inventor
Eisuke Kuroda
英佑 黒田
Yasuo Sato
康生 佐藤
Taiichiro Kawahara
大一郎 河原
Koichi Hara
弘一 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012059309A priority Critical patent/JP5616385B2/ja
Priority to PCT/JP2013/051027 priority patent/WO2013136839A1/ja
Publication of JP2013198177A publication Critical patent/JP2013198177A/ja
Application granted granted Critical
Publication of JP5616385B2 publication Critical patent/JP5616385B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/10The dispersed energy generation being of fossil origin, e.g. diesel generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/04Circuit arrangements for ac mains or ac distribution networks for connecting networks of the same frequency but supplied from different sources
    • H02J3/06Controlling transfer of power between connected networks; Controlling sharing of load between connected networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/20Information technology specific aspects, e.g. CAD, simulation, modelling, system security

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Public Health (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

【課題】潮流制約もしくは電圧制約違反に応じ、電力系統内の適切な複数の電気機器の特性を集約する技術を提供する。
【解決手段】電力系統制御装置は、特定部と生成部とを備える。特定部は、電力系統内で潮流制約もしくは電圧制約を違反する系統設備を示す違反設備情報をデータベースから取得し、違反設備情報に基づいて、電力系統の一部である部分系統を特定する。生成部は、電力系統内の複数の電気機器の夫々の地点を示す機器地点情報をデータベースから取得し、機器地点情報に基づいて、部分系統内の複数の電気機器のグループを特定し、グループに属する複数の電気機器の夫々について、出力の調整に対するコストの特性を示す機器特性情報をデータベースから取得し、グループに属する複数の電気機器の機器特性情報を合成することにより、グループの出力の調整に対するコストの特性を示すグループ特性情報を生成する。
【選択図】図1

Description

本発明は、電力系統全体の需給バランスとコストを考慮して、複数の発電機の出力配分を決定する技術に関する。
電力系統全体に安定した電力供給を実施するためには、需要と供給のバランスを保つ必要がある。需要は時々刻々と変化するため、供給を担う電源の中でも有効電力の出力調整が容易な火力発電機の出力を調整することによって、需給バランスを保っている。即ち、電力系統全体の需要変動は、複数の火力発電機によって分担されている。また、複数の火力発電機の合計燃料費が最安になるように各火力発電機の出力分担を決定することで、電力供給の安定性と経済性を両立している。この経済性を考慮した出力分担は、経済負荷配分(ELD:Economic Load Dispatch)と呼ばれている。
従来の系統制御システムでは、経済負荷配分を決定する方法として、例えばネットワークを考慮しない最適潮流計算(OPF:Optimal Power Flow)である、等増分燃料費則(等λ則)が知られている。
また、電力系統過渡安定度の予防制御方法として、発電コストを最小とする経済負荷配分(ELD)計算により発電機出力指令値を算出し、この発電機出力指令値からの変更分の2乗和に、負荷の総需要により変動する重み係数を乗じた関数をペナルティ項とし、事故中の加速エネルギーの発電機間のアンバランス分AE値を最小とする目的関数にペナルティ項を追加することが知られている(例えば、特許文献1)。
また、性能、出力、燃料等の異なる多種の発電ユニットで構成される発電所に対し、給電指令所からの一括指令である給電指令が発行された場合に、発電所負荷調整装置がこの給電指令を受け、各発電ユニットの運転情報や発電ユニットの特性等の情報に基づいて、発電所が電力系統の安定度を向上させるように、各発電ユニットに出力配分して出力要求指令を与えることが知られている(例えば、特許文献2)。
また、計測値に基づいて状態を推定する方法が知られている(例えば、非特許文献1)。
特開平7−15876号公報 特開平3−195327号公報
LarsHolten, Anders Gjelsvlk, Sverre Adam, F. F. Wu, and Wen-Hs Iung E. Liu,Comparison of Different Methods for State Estimation, IEEE Transaction on PowerSystems, Vol. 3 (1988), p.1798-1806
電力系統や各発電機には、需給バランス制約と発電機有効電力出力の上下限制約などがあるため、制約によって経済負荷配分が効率の悪い発電機の出力配分を増加する場合があり、燃料費が増加する恐れがある。
電力系統の安定度確保のために過渡安定度制約を考慮した発電機出力調整を実施すると、燃料費が増加する恐れがある。また、電圧安定度を考慮したOPFや過渡安定度制約付きOPFの場合も、安定度制約の考慮に必要なコストが増加する恐れがある。
一方、複数の分散型電源の特性の捉え方や出力指令の与え方については、考慮されていない。
本発明の目的は、潮流制約もしくは電圧制約の違反に応じ、電力系統内の適切な複数の電気機器の特性を集約する技術を提供することにある。
上記目的を達成するために、本発明の一態様である電力系統制御装置は、特定部と生成部とを備える。特定部は、電力系統内で潮流制約もしくは電圧制約を違反する系統設備を示す違反設備情報をデータベースから取得し、違反設備情報に基づいて、電力系統の一部である部分系統を特定する。生成部は、電力系統内の複数の電気機器の夫々の地点を示す機器地点情報をデータベースから取得し、機器地点情報に基づいて、部分系統内の複数の電気機器のグループを特定し、グループに属する複数の電気機器の夫々について、出力の調整に対するコストの特性を示す機器特性情報をデータベースから取得し、グループに属する複数の電気機器の機器特性情報を合成することにより、グループの出力の調整に対するコストの特性を示すグループ特性情報を生成する。
本発明によれば、潮流制約もしくは電圧制約の違反に応じ、電力系統内の適切な複数の電気機器の特性を集約することができる。
図1は、実施例1に係る分散型電源合成部26の機能構成を示す。 図2は、実施例1に係る系統制御システム10の機能構成を示す。 図3は、電力系統100と系統制御システム10のハードウェア構成を示す。 図4は、部分系統101の構成を示す。 図5は、メッセージ310R、310Sの構成を示す。 図6は、プログラムデータベース28に記憶される内容を示す。 図7は、系統データベース21に格納されているブランチ定数データの一例を示す。 図8は、系統データベース21に格納されている変圧器定数データの一例を示す。 図9は、系統データベース21に格納されているノード定数データの一例を示す。 図10は、系統データベース21に格納されている発電機制約データの一例を示す。 図11は、系統データベース21に格納されている計測データの一例を示す。 図12は、制約データベース22に格納されている制約データの一例を示す。 図13は、分散型電源データベース23に格納されているブランチ定数データの一例を示す。 図14は、分散型電源データベース23に格納されている変圧器定数データの一例を示す。 図15は、分散型電源データベース23に格納されているノード定数データの一例を示す。 図16は、分散型電源データベース23に格納されている機器特性データの一例を示す。 図17は、機器特性データにより示されている出力調整費特性の一例を示す。 図18は、分散型電源データベース23に格納されている電気機器の電源出力制約の一例を示す。 図19は、分散型電源データベース23に格納されている計測データの一例を示す。 図20は、発電機データベース24に格納されている発電機特性データの一例を示す。 図21は、需要予測値の時間変化の一例を示す。 図22は、発電機出力計画値の時間変化の一例を示す。 図23は、発電機データベース24に格納されている増分燃料費特性を示す。 図24は、仮想発電機データベース25に格納されている仮想発電機特性データの一例を示す。 図25は、仮想発電機データベース25に格納されている電源出力制約の一例を示す。 図26は、系統制御処理を示す。 図27は、分散型電源データ設定画面を示す。 図28は、実施例1に係る分散型電源合成計算を示す。 図29は、地域分割の一例を示す。 図30は、出力調整費特性の合成の一例を示す。 図31は、制御結果データ表示画面の一例を示す。 図32は、発電機出力配分データとの一例を示す。 図33は、発電機の増分燃料費特性と仮想発電機の出力調整費特性の一例を示す。 図34は、仮想発電機を用いない場合と仮想発電機を用いる場合との出力指令値の比較結果の一例を示す。 図35は、仮想発電機を用いない場合と仮想発電機を用いる場合とのコストの比較結果の一例を示す。 図36は、電力系統の第1変形例を示す。 図37は、電力系統の第1変形例における発電機及び仮想発電機の特性を示す。 図38は、電力系統の第2変形例を示す。 図39は、電力系統の第2変形例における発電機及び仮想発電機の特性を示す。 図40は、実施例2に係る系統制御システム10bの機能構成を示す。 図41は、実施例2に係る分散型電源合成計算を示す。
以下、本発明の実施例を、図面を用いて説明する。
本実施例では、本発明の電力系統制御装置の適用例である系統制御システム10について説明する。系統制御システム10は、潮流制約もしくは電圧制約に基づいて電力系統内の範囲を特定し、その範囲に属する複数の電気機器を集約して一つのグループとして扱う。ここで系統制御システム10は、複数の電気機器の特性を合成することにより一つのグループの特性を算出する。以下の説明において、電気機器は、分散型電源やバッテリー等の電力を供給する機器であっても良いし、電力を消費する負荷であっても良い。また、電気機器グループを一つの発電機と見なして仮想発電機(Virtual Generator)と呼ぶ。また、系統制御システム10は、発電機と仮想発電機の出力配分計算を実施し、計算結果に応じた制御指令を出す。
以下、系統制御システム10における分散型電源合成部26の構成について説明する。
図1は、実施例1に係る分散型電源合成部26の機能構成を示す。分散型電源合成部26は、系統データD1を格納する系統データベース21と、制約データD2を格納する制約データベース22と、分散型電源データD3を格納する分散型電源データベース23と、仮想発電機データD5を格納する仮想発電機データベース25とに接続されている。ここで、系統データD1は、電力系統内の複数の電気機器の夫々の地点を示す機器地点情報と、電力系統内の発電機の地点を示す発電機地点情報とを含む。また、制約データD2は、電力系統内で潮流制約もしくは電圧制約を違反する系統設備を示す違反設備情報と潮流制約もしくは電圧制約の違反量を示す制約違反情報を含む。また、分散型電源データD3は、機器地点に基づいて、部分系統内の複数の電気機器のグループを特定し、グループに属する複数の電気機器の夫々について、出力の調整に対するコストの特性を示す機器特性情報と、電気機器の電源出力制約とを含む。
分散型電源合成部26は、特定部32と生成部33とを有する。特定部32は、系統データD1と制約データD2と分散型電源データD3を用いて、電力系統100内の複数の電気機器を特定する。生成部33は、特定された複数の電気機器の特性を集約して一つの発電機の特性と見なすことにより仮想発電機の特性を生成する。また、分散型電源合成部26は、この仮想発電機を示す仮想発電機データD5を作成する。ここで、仮想発電機データD5は、グループに属する複数の電気機器の機器特性情報を合成することにより、グループの出力の調整に対するコストの特性を示すグループ特性情報と、仮想発電機の電源出力制約とを含む。以下の説明において、潮流制約と電圧制約のうち、潮流制約についてのみ説明するが、潮流を電圧に置き換えて考えてもよい。
以下、系統制御システム10の構成について説明する。
図2は、実施例1に係る系統制御システム10の機能構成を示す。系統制御システム10は、系統データD1を格納する系統データベース21と、制約データD2を格納する制約データベース22と、分散型電源データD3を格納する分散型電源データベース23と、発電機データD4を格納する発電機データベース24と、分散型電源合成部26と、仮想発電機データD5を格納する仮想発電機データベース25と、発電機出力配分計算部27とを有する。発電機データD4は、発電機の出力の調整に対するコストの特性を示す発電機特性情報と、発電機の出力制約とを含む。
発電機出力配分計算部27は、系統データD1と制約データD2と分散型電源データD3と発電機データD4と仮想発電機データD5とを用いて、発電機110と制御システム210への制御指令を作成する。制御指令は、定期的に発電機110と制御システム210に送信される。制御システム210は、仮想発電機に属する複数の電気機器を管理する。
制御指令を受けた発電機110と制御システム210は、制御指令に従い、電力系統へ電力を供給する。ここで、発電機110は、系統制御システム10からの制御指令により直接制御することができる電源であり、主に大規模な発電機である。また、制御システム210は、電気機器を管理するシステムであり、例えばCEMS(Community Energy Management System)等のエネルギー管理システムである。制御システム210は、制御指令を受信し、制御指令に応じて電気機器を制御したり、制御指令に応じて電気機器の管理者に指示したりすることにより、電気機器を管理する。これにより、制御システム210は、系統制御システム10からの制御指令により直接制御することができない電気機器を管理することができる。
図3は、電力系統100と系統制御システム10のハードウェア構成を示す。電力系統100は、発電機110aと、これに接続されているノード(母線)120aと、これに接続されている変圧器130aと、これに接続されているノード120bと、これに接続されているブランチ(線路)140aと、これに接続されているノード120cと、これに接続されているブランチ140bと、これに接続されているノード120dと、これに接続されている変圧器130bと、これに接続されているノード120eと、これに接続されている発電機110bとを有する。電力系統100は更に、ノード120cに接続されている変圧器130cと、これに接続されているノード120fと、これに接続されている負荷160aとを有する。電力系統100は更に、ノード120dに接続されている部分系統101を有する。部分系統101は、ノード120dに接続されている変圧器130dと、これに接続されているノード120gと、これに接続されている需要家220とを有する。需要家220は、管理装置と、それにより管理される電気機器とを有し、電力の供給又は消費を行う。
発電機110a、110bの夫々は、通信ネットワーク300を介して系統制御システム10の通信部13に接続され、通信部13との間でメッセージを送受信する。需要家220は、制御システム210及び通信ネットワーク300を介して系統制御システム10の通信部13に接続され、通信部13との間でメッセージを送受信する。
図4は、部分系統101の構成を示す。部分系統101は、前述のノード120dに接続されている変圧器130dと、これに接続されているノード120gと、これに接続されているブランチ140cと、これに接続されているノード120hと、これに接続されているブランチ140dと、これに接続されているノード120iと、これに接続されているブランチ140eと、これに接続されているノード120jと、これに接続されているブランチ140fと、これに接続されているノード120kとを有する。変圧器130dは例えば、配電変電所に設けられている。
部分系統101は更に、ノード120hに接続されている需要家200と、ノード120iに接続されている需要家201と、ノード120jに接続されている需要家202と、ノード120kに接続されている需要家203とを有する。
需要家200は、ノード120hに接続されている変圧器130eと、これに接続されているノード120lと、これに接続されている管理装置170aと、これに接続されている負荷160bとを有する。
需要家201は、ノード120iに接続されている変圧器130fと、これに接続されているノード120mと、これに接続されている管理装置170bと、これに接続されているバッテリー(充放電装置)180aとを有する。
需要家202は、ノード120jに接続されている変圧器130gと、これに接続されているノード120nと、これに接続されている管理装置170cと、これに接続されているバッテリー180b、負荷160c、及び電源(分散型電源)190aとを有する。
需要家203は、ノード120kに接続されている変圧器130hと、これに接続されているノード120oと、これに接続されている管理装置170dと、これに接続されている負荷160d及び電源190bとを有する。
需要家200、201、202、203において、負荷、バッテリー、電源等の電気機器の組み合わせは、この例に限定されない。管理装置170a、170b、170c、170dの夫々は、通信ネットワーク301を介して、制御システム210に接続されている。制御システム210は、系統制御システム10に接続されている。
ここで、制御システム210は、或るブランチに沿って接続されている各需要家を一括管理するシステムであり、例えば、地域エネルギー管理システム(CEMS:Community Energy Management System)である。この例において、制御システム210は、部分系統101内の需要家200、201、202、203を管理する。制御システム210により管理される複数の需要家は、一つの事業者が管理する複数の店舗であっても良いし、一つの事業者が管理する複数の電気機器や設備であっても良いし、複数の一般家庭であっても良い。
管理装置170a〜170eは、通信ネットワーク301を介して制御システム210に接続され、制御システム210との間でメッセージを送受信する。制御システム210は、系統制御システム10との間でメッセージを送受信する。
負荷160b、160c、160dは、夫々需要家200、202、203内の制御不可能な負荷と制御可能な負荷とを含む。制御不可能な負荷は、管理装置により制御されることを前提とせず、電力消費するだけのエアーコンディショナーあるいは冷蔵庫あるいは洗濯機等の家電製品等である。制御可能な負荷は、管理装置により制御されることを前提とする給湯器やヒートポンプ等である。ただし、制御不可能な負荷も、宅内エネルギー管理システム(HEMS:Home Energy Management System)などの電気機器の管理を行うホームサーバを介して、制御されてもよい。バッテリー180a、180bは例えば、充放電可能な二次電池、EVの蓄電池、フライホイール等である。電源190a、190bは例えば、太陽光発電や風力発電等の自然エネルギーを利用した発電装置のように、電力変換装置に接続する必要がある分散型電源であっても良い。また、電源190a、190bは例えば、ガスタービンあるいはディーゼル発電機等の小型発電機のように、電力変換装置を必要としない分散型電源であっても良い。なお、電力変換装置を介さない分散型電源は、分電盤に接続される。また、電力変換装置は、インバータ及びコンバータを有し、電源190a、190bで発生した電力の電圧V及び電流Iの位相や大きさを変換し、変換後の電力を分電盤へ送る。
管理装置170a、170b、170c、170dの夫々は、系統制御システム10との間で直接、メッセージを送受信してもよい。
図5は、メッセージ310R、310Sの構成を示す。電力系統100内の管理装置やセンサは、メッセージ310Rを系統制御システム10へ送信する。このセンサは、管理装置と、電力系統100の状態把握のための潮流計算に必要なノード、変圧器、及びブランチとに設けられている。メッセージ310Rは、例えば、系統データD1と分散型電源データD3と発電機データD4からなるデータ311と、対象の機器や地点を識別するための固有番号(図中ではIDと呼ぶ)312と、タイムスタンプ313を含む。
系統制御システム10の通信部13は、制御指令のメッセージ310Sを電力系統100内の発電機及び管理装置へ送信する。メッセージ310Sは、例えば、電源の出力指令値314である。メッセージ310Sは、例えば、発電機及び管理装置に対する制御指令を識別するための固有情報315と、タイムスタンプ316とを含む。発電機及び管理装置の夫々には、事前に固有番号が設定されており、系統制御システム10は、発電機110、制御システム210、管理装置等の固有番号を予め把握している。なお、各センサ及び系統制御システム10の夫々は、通信ネットワーク300を介して、図示されていないタイムサーバに接続されている。従って、各センサの内部時刻と系統制御システム10内の時刻とは同期している。
ここで図3の系統制御システム10のハードウェア構成の説明に戻る。
系統制御システム10は、表示部11、キーボードやマウス等の入力部12、通信部13、コンピュータや計算機サーバ等のCPU(Central Processing Unit)14、メモリ15、IF(Interface)16、記憶デバイス17を有する。系統制御システム10内のこれらの要素は、バス線41に接続されている。表示部11は、例えば、ディスプレイ装置として構成される。また、表示部11は、例えば、ディスプレイ装置に代えて、またはディスプレイ装置と共に、プリンタ装置または音声出力装置等を用いる構成でもよい。入力部12は、例えば、キーボードスイッチ、マウス等のポインティング装置、タッチパネル、音声指示装置等のいずれかを有しても良い。通信部13は、通信ネットワーク300に接続するための回路及び通信プロトコルを備える。CPU14は、プログラムデータベース28から所定のコンピュータプログラムを読み込んで実行する。CPU14は、一つまたは複数の半導体チップとして構成されてもよいし、または、計算機サーバのようなコンピュータ装置として構成されてもよい。メモリ15は、例えば、RAM(Random Access Memory)として構成され、プログラムデータベース28から読み出されたコンピュータプログラムを記憶したり、各処理に必要な計算結果データ及び画像データ等を記憶したりする。メモリ15に格納された画面データは、表示部11に送られて表示される。表示される画面の例は後述する。
記憶デバイス17は、データベースを格納する。データベースは、系統データベース21、制約データベース22、分散型電源データベース23、発電機データベース24、仮想発電機データベース25、プログラムデータベース28を有する。CPU14は、IF16を介して、記憶デバイス17からデータを読み出し、データを記憶デバイス17へ書き込む。なお、記憶デバイス17は、系統制御システム10の外部に設けられていても良い。この場合、記憶デバイス17は、通信ネットワークを介して系統制御システム10に接続されていても良い。
CPU14は、プログラムデータベース28からメモリ15へ読み出された計算プログラムを実行して、電気機器の設定、出力配分の計算、電力系統100のネットワークの潮流状態の計算、表示すべき画像データの指示、各種データベース内のデータの検索等を行う。メモリ15は表示用の画像データ、制御感度データ、制御データ、制御結果データ、清算データ等の計算一時データ及び計算結果データを一旦格納する。また、CPU14は、計算プログラムより画像データを生成して表示部11(例えば表示ディスプレイ画面)に表示する。
以下、系統制御システム10内の各データベースについて説明する。
図6は、プログラムデータベース28に記憶される内容を示す。プログラムデータベース28には、計算プログラムとして、例えば、分散型電源合成プログラムP10と、発電機出力配分プログラムP20と、潮流計算プログラムP30とが格納されている。これらの計算プログラムは必要に応じてCPU14によりメモリ15へ読み出され、計算実行される。分散型電源合成部26及び発電機出力配分計算部27は、CPU14がこれらの計算プログラムを実行することにより実現される。
系統データベース21には、電力系統100のネットワーク構成と発電機の出力制約と各センサの計測値が記憶されている。
図7は、系統データベース21に格納されているブランチ定数データの一例を示す。このブランチ定数データは、電力系統100のうち部分系統101外のブランチに関する定数であり、ブランチ毎のエントリを有する。各エントリは例えば、ブランチのブランチ番号、そのブランチのブランチ名、そのブランチの開始端のノード名、そのブランチの終了端のノード名、正相抵抗、正相リアクタンス、正相キャパシタンスを含む。図8は、系統データベース21に格納されている変圧器定数データの一例を示す。この変圧器定数データは、電力系統100のうち部分系統101外の変圧器に関する定数であり、変圧器毎のエントリを有する。各エントリは例えば、変圧器の変圧器番号、その変圧器の変圧器名、その変圧器の開始端のノード名、その変圧器の終了端のノード名、バンク数、正相抵抗、正相リアクタンス、タップ比を含む。図9は、系統データベース21に格納されているノード定数データの一例を示す。このノード定数データは、電力系統100のうち部分系統101外のノードに関する定数であり、ノード毎のエントリを有する。各エントリは例えば、そのノードのノード番号、そのノードのノード名、そのノードに接続された電源、そのノードに接続された負荷、そのノードに接続されたバッテリーを含む。これらのブランチ定数データと変圧器定数データとノード定数データとにより、電力系統100内のブランチと変圧器とノードの接続関係及び、ノードと電源と負荷とバッテリーの接続関係が分かる。
ブランチ名、ノード名、変圧器名、及び以下の説明における各部の名称は、他の識別子であっても良い。
図10は、系統データベース21に格納されている発電機制約データの一例を示す。この発電機制約データは、各発電機の発電機出力制約と発電機出力変化速度制約を含む。発電機出力制約は、例えば発電機出力の上下限を定義し、発電機の出力配分(静的経済負荷配分)計算の際に必要となる。発電機出力変化速度制約は、例えば発電機出力変化(速度)の上下限を定義し、動的経済負荷配分計算の際に必要となる。ここで、動的経済負荷配分計算とは、静的経済負荷配分計算に必要な需給バランス制約と発電機出力制約に、時々刻々と変化する負荷需要に応じてある期間の間に変化できる発電機出力の速度の制約を加えて経済負荷配分計算を実施することである。動的経済負荷配分計算は、一般に多断面で発電機の出力配分を計算したい場合に用いられるが、本実施例では、発電機出力を変更する期間が十分に長く、発電機出力の速度の制約を無視できると仮定する。また、発電機制約データは、発電機出力制約と発電機出力変化速度制約の何れか一つを含まなくても良い。
図11は、系統データベース21に格納されている計測データの一例を示す。この計測データは、電力系統100のうち部分系統101外の各センサにより、時間断面毎に計測されたデータを含む。この計測データに示されているセンサ150a、150b、150c、150d、150e、150f、150gは、夫々ノード120a、120b、120c、120d、120e、120f、120gに設けられている。計測データは、センサ番号、センサ名、そのセンサが設けられている計測箇所、電圧V、電流I、力率、そのセンサが正常か否かを示す状態を含む。また、計測データは例えば、図示されていない中央給電指令所に設けられた系統管理サーバから受信されてもよい。また、センサで計測できない場合は、計画値を予め入力し使用してもかまわない。計測データは、力率の代わりに有効電力P及び無効電力Qを含んでも良い。
制約データベース22には、制約データが記憶されている。
図12は、制約データベース22に格納されている制約データD2の一例を示す。制約データD2は、電力系統100内の変圧器及びブランチの夫々の潮流制約として、潮流の上下限を時間断面毎に格納している。系統制御システム10は、予め入力された潮流制約の計算値を制約データベース22へ保存しても良いし、系統管理サーバから受信した計算値を制約データベース22へ保存しても良い。この計算値は、電力系統100の運用計画、設備の点検等の作業計画に基づいて、時間断面として計算される。時間断面の間隔は、例えば30分である。例えば、この計算値は、変圧器とブランチの設備データから計算される熱容量制約によって、計算される。例えば、系統構成が変わり、ブランチ140bが12:30に2回線から1回線に変更される場合、ブランチ140bの熱容量が小さくなるので、ブランチ140bの潮流制約における上下限の幅が小さくなるように変更される。また、系統管理サーバは、電圧安定度や過渡安定度などを考慮して最適潮流計算を実施することにより、想定する断面のボトルネックとなる箇所の潮流制約を見つけることが可能である。この場合、制約データベース22は、ボトルネックとなる潮流制約のみを記憶しておくことにより、系統運用に即した潮流制約を用いることができる。
分散型電源データベース23には、部分系統101のネットワーク構成と、需要家内の電気機器の系統連系地点と、その電気機器の出力調整費と、その電気機器の現在出力と、各センサの計測値等が記憶されている。出力調整費は、電気機器の出力を調整するためのコストを示す。
図13は、分散型電源データベース23に格納されているブランチ定数データの一例を示す。このブランチ定数データは、部分系統101内のブランチに関する定数を示し、各エントリの項目は系統データベース21内のブランチ定数データと同様である。図14は、分散型電源データベース23に格納されている変圧器定数データの一例を示す。この変圧器定数データは、部分系統101内の変圧器に関する定数を示し、各エントリの項目は系統データベース21内の変圧器定数データと同様である。図15は、分散型電源データベース23に格納されているノード定数データの一例を示す。このノード定数データは、部分系統101内のノードに関する定数を示し、各エントリの項目は系統データベース21内のノード定数データと同様である。これらのブランチ定数データと変圧器定数データとノード定数データとにより、部分系統101内のブランチと変圧器とノードの接続関係及び、ノードと電源と負荷とバッテリーの接続関係が分かる。
図16は、分散型電源データベース23に格納されている機器特性データの一例を示す。この機器特性データは、需要家内の電気機器に関する情報を示す。機器特性データは、電気機器毎のエントリを有する。各エントリは例えば、その電気機器を管轄するCEMS名、電気機器の機器名、その電気機器が部分系統101に連系しているノード名である系統連系地点、その電気機器の種類、その電気機器の出力調整費特性、その電気機器の定格容量[kVA]、その電気機器の定格出力[kW]、その電気機器の現在出力[kW]を含む。ここで、電気機器の出力に対する出力調整費の特性を出力調整費特性と呼ぶ。
図17は、機器特性データにより示されている出力調整費特性の一例を示す。この図に示されている3つの例は夫々、ディーゼル発電機(DG:Diesel Generator)、太陽光発電(PV:Photovoltaic power generation)、電動輸送機器(EV:Electric Vehicle)における出力調整費特性である。出力調整費特性は、需要家との契約によって予め決められる。例えば、電気機器がディーゼル発電機である場合、増分燃料費と依頼に応じて出力を調整することに対する報奨金(インセンティブとも呼ばれる)とを合わせたコストが、出力調整費となる。電気機器がPVである場合、燃料費がかからない為、契約は、依頼に応じて宅内電力を抑え出力増加させることや、依頼に応じて出力を抑制することにより、報奨金を与えることを示す。この報奨金が出力調整費となる。また、電気機器が負荷である場合、負荷を抑制することや使用することにより報奨金を与えることを示す。この報奨金が出力調整費となる。また、電気機器がバッテリーである場合、契約は、依頼に応じて充放電することにより報奨金を与えることを示す。この報奨金が出力調整費となる。なお、それぞれの報奨金は、例えば、HEMSやCEMSの運用者を介して支払われてもよいし、電気料金の割引に利用されてもよいし、商品券として提供されてもよい。
図18は、分散型電源データベース23に格納されている電気機器の電源出力制約の一例を示す。電源出力制約は、電気機器を用いる出力配分計算の際に必要となる。この電源出力制約は、電気機器の電源出力の上下限により定義される。
図19は、分散型電源データベース23に格納されている計測データの一例を示す。この計測データは、部分系統101内の各センサにより、時間断面毎に計測されたデータを含む。この計測データの項目は、系統データベース21の計測データの項目と同様である。また、計測データは例えば、中央給電指令所に設けられた系統管理サーバから受信されてもよい。また、センサで計測できない場合は、計画値を予め入力し使用してもかまわない。
発電機データベース24には、発電機の系統連系地点、その発電機の増分燃料費、その発電機の現在出力、各センサの計測値または計画値等が記憶されている。
図20は、発電機データベース24に格納されている発電機特性データの一例を示す。この発電機特性データは、発電機に関する情報を示す。発電機特性データは、発電機毎のエントリを有する。各エントリは例えば、発電機の番号、その発電機名、その発電機が電力系統100に連系しているノード名である系統連系地点、その発電機の増分燃料費特性、その発電機の定格容量、その発電機の定格出力、その発電機の現在出力を含む。ここで、発電機の出力に対する増分燃料費の特性を増分燃料費特性と呼ぶ。
図21は、需要予測値の時間変化の一例を示し、図22は、発電機出力計画値の時間変化の一例を示す。需要予測値の時間変化の図に示されているように、電力系統100内の需要が取得されている場合、発電機出力計画値の時間変化の図に示されているように、時間断面毎の発電機110a及び発電機110bの出力を組み合わせた計画値が算出されても良い。この場合、需要予測値の時間変化と発電機出力計画値の時間変化とが発電機データベース24に記憶されていてもよい。
図23は、発電機データベース24に格納されている増分燃料費特性を示す。この図に示されている2つの例は夫々、発電機110aと発電機110bにおける増分燃料費特性である。即ち、増分燃料費特性は、発電機によって個々に決まる。この実施例において、発電機110aのコストは、発電機110bのコストより低い。言い換えれば、発電機110aの発電効率は、発電機110bの発電効率より高い。また、この実施例において、発電機110aの増分燃料費特性の傾きは、発電機110bの増分燃料費特性の傾きより小さい。言い換えれば、発電機110aの効率は、発電機110bの効率より高い。
仮想発電機データベース25には、分散型電源合成プログラムP10の計算結果である、仮想発電機データD5が記憶されている。
図24は、仮想発電機データベース25に格納されている仮想発電機特性データの一例を示す。この仮想発電機特性データは、仮想発電機に関する情報を示す。仮想発電機特性データは、仮想発電機毎のエントリを有する。各エントリは例えば、仮想発電機を管轄しているCEMS名、その仮想発電機名、その仮想発電機が電力系統100に連系しているノード名である系統連系地点、その仮想発電機の出力調整費、その仮想発電機の定格容量、その仮想発電機の定格出力、その仮想発電機の現在出力を含む。仮想発電機の出力調整費は、指定された地域内の複数の電気機器の出力調整費を合成した出力調整費である。
図25は、仮想発電機データベース25に格納されている電源出力制約の一例を示す。仮想発電機の電源出力制約は、仮想発電機を含んだ出力配分計算に必要となる。この電源出力制約は、仮想発電機の電源出力の上下限により定義される。
以下、系統制御システム10による系統制御処理について説明する。
図26は、系統制御処理を示す。この系統制御処理において、分散型電源合成部26は、分散型電源合成プログラムP10により、手動で入力された、或いは受信された分散型電源データD3に基づいて仮想発電機を生成する。また、発電機出力配分計算部27は、発電機出力配分プログラムP20により、発電機と仮想発電機の出力配分を計算する。また、発電機出力配分計算部27は、潮流計算プログラムP30により潮流計算をすることで、潮流制約条件を満たすまで、系統データD1と分散型電源データD3の出力制約を修正する。潮流制約条件を満たした場合、発電機出力配分計算部27は、発電機と仮想発電機を制御する管理装置とへ制御指令を送信する。また、発電機出力配分計算部27は、系統データD1、分散型電源データD3を受信し、制御指令の効果を表示部11の画面に表示する。
系統制御処理が開始されると、S1において、分散型電源合成部26は、分散型電源合成計算と発電機出力配分計算と潮流計算に必要なデータを取得する。ここで分散型電源合成部26は、電力系統100のネットワーク構成と発電機の出力制約と各センサの計測値を取得し、系統データベース21へ格納する。また、分散型電源合成部26は、制約データD2を取得し、制約データベース22へ格納する。また、分散型電源合成部26は、部分系統101のネットワーク構成と電気機器の系統連系地点と出力調整費と現在出力と各センサの計測値を取得し、分散型電源データベース23へ格納する。また、分散型電源合成部26は、発電機の系統連系地点と増分燃料費と現在出力と各センサの計測値または計画値を取得し、発電機データベース24へ格納する。なお、分散型電源合成部26は、各データベースへ格納する情報を、中央給電指令所に設けられた系統管理サーバやCEMSから受信しても良いし、系統制御システム10の運用者からの入力により取得しても良い。なお、分散型電源合成部26が運用者からの入力を受け付ける場合、CPU14により設定画面を生成して表示部11に表示する。
設定画面のために、系統制御システム10は、電力系統100及び部分系統101に接続し、制御可能な電気機器の情報を取得し、系統制御システム10へ設定する。系統制御システム10は、これらのデータを、各需要家と契約を結ぶアグリゲータや電力会社や仲介業者から受信してもよい。また、系統制御システム10は、CEMSから受信してもよい。
ここで分散型電源データ設定画面について説明する。
図27は、分散型電源データ設定画面を示す。分散型電源データ設定画面は、分散型電源データベース23へ分散型電源データD3を入力するための画面である。分散型電源データ設定画面は、基本情報入力部410と、出力調整費特性入力部420と、機器定数入力部430と、系統図表示部440とを有する。基本情報入力部410は、対象の電気機器を管轄するCEMS名の入力欄と、対象の電気機器の機器名の入力欄と、分散型電源データ設定画面へ入力された情報を分散型電源データベース23へ保存するか否かを入力するためのボタンとを有する。出力調整費特性入力部420は、出力調整費特性を示す曲線のグラフを複数表示する。複数のグラフは、複数の電気機器の種類に夫々対応している。運用者は、出力調整費特性入力部420内の一つのグラフを選択することにより、電気機器の種類を選択する。機器定数入力部430は、機器特性データのための対象の電気機器の定数の入力欄を有する。出力調整費特性入力部420及び機器定数入力部430は、選択された方がアクティブになる。系統図表示部440は、部分系統101の系統図を示し、対象の電気機器の位置を系統図上に示す。また、運用者は、系統図表示部440の系統図上で対象の電気機器を選択しても良い。
この分散型電源データ設定画面によれば、制御可能な電気機器の種類、出力調整費特性のタイプ、機器定数等の選択肢を用意することにより、運用者の設定の労力を減らすことができる。なお、系統制御システム10は、制御可能な電気機器を持たない需要家に対し、簡易的負荷量のデータを分散型電源データベース23へ入力することが可能である。なお、電気機器の現在出力が計測できない場合、系統制御システム10は、出力予測部を有しても良い。この出力予測部は、電気機器の現在出力を予測し、分散型電源データベース23へ入力する。出力予測部は、例えば、PVであれば、PV発電量と、日射量と気温と湿度と航空画像情報等のいずれかの実績値を基に、回帰分析やニューラルネットワークなどにより学習し、電気機器の現在出力を予測する。
S2において、分散型電源合成部26は、分散型電源合成計算を行い、計算結果を仮想発電機データベース25へ格納する。ここで分散型電源合成部26は、系統データD1と制約データD2と分散型電源データD3と発電機データD4を用いて、分散型電源合成プログラムP10の計算により、電気機器を合成した仮想発電機の出力調整費と定格容量と定格出力と現在出力と電源出力制約とを計算する。
図28は、実施例1に係る分散型電源合成計算を示す。分散型電源合成計算が開始されると、S10において、特定部32は、系統データベース21から、電力系統100のネットワーク構成と、各センサの計測値とをメモリ15へ読み出し、制約データベース22から、潮流の上下限を示す潮流制約をメモリ15へ読み出す。
S20において、特定部32は、各センサの計測値と潮流の上下限を比較することにより、全ての計測値が潮流制約を満たすか否かを判定する。S20の結果がYes、即ち全ての計測値が潮流制約を満たす場合、特定部32は、処理をS10へ戻し、計測刻み時間後の次のデータを読み出す。一方、S20の結果がNo、即ち計測値の何れかが潮流制約を満たさない場合、特定部32は、処理をS30に進める。なお、各センサの計測値が通信エラー等で正常ではない場合、特定部32は、状態推定計算により、電力系統100の状態を推定した結果と潮流制約値を比較してもよい。なお、状態推定計算は、変電所、発電所、送電線等の電力送配電機器の観測データならびに接続データをもとに、観測データ中の異常データの有無を判定し、異常データの除去を行い、特定の時間断面における尤もらしい系統状態を推定する。ここで、状態推定計算は、例えば、非特許文献1に示されている方法を用いることができる。
S30において、特定部32は、潮流制約違反の計測値が複数個であるか否かを判定する。S30の結果がNo、即ち潮流制約違反の計測値が複数個でない場合、特定部32は、処理をS50に進める。一方、S30の結果がYes、即ち潮流制約違反の計測値が複数個である場合、特定部32は、処理をS40に進める。S40において、特定部32は、潮流制約違反した複数の計測値の夫々について、潮流制約値との差分を違反量として計算し、最も違反量が大きい潮流制約違反を選択し、選択された潮流制約違反が発生した地点を潮流制約違反地点として制約データベース22へ保存し、処理をS50に進める。
S50において、特定部32は、電力系統100のネットワーク構成と潮流制約違反地点とに基づいて、電力系統100の地域分割を行う。地域分割は、潮流制約違反地点を境界として、電力系統100を送電側(上流)の地域(系統)と受電側(下流)の地域(系統)とに分割する。
ここで地域分割について説明する。
図29は、地域分割の一例を示す。この図において、ノード間に付された矢印は、定常状態の潮流の向きを示す。この図に示されるように、潮流制約違反地点がブランチ140aであると決定された場合、特定部32は、ブランチ140aを境界として、電力系統100を電力系統102と電力系統103に分割する。ここで、電力系統100内の潮流の向きによれば、大まかには、発電機110aと発電機110bから負荷160aへ電力が供給されている。部分系統101は、基本的には発電機110bから電力を供給されているが、需要家220内の分散型電源から負荷160aへ電力を供給する場合もある。
電力系統102内の発電機110aは出力を増加させることは、ブランチ140aの潮流量を増加させるため、ブランチ140bにおける潮流制約違反を悪化させる。また、電力系統103内の発電機110bや需要家220の出力を増加させることは、ブランチ140bの潮流量を増加させるが、ブランチ140aの潮流量を増加させないため、ブランチ140aの潮流制約違反を悪化させない。
この例では、分割された電力系統102と電力系統103のうち、電力系統103内に仮想発電機が生成されるが、分割された電力系統の両方に仮想発電機が生成されても良い。
ここで分散型電源合成計算のフローの説明に戻る。
S60において、生成部33は、分散型電源データベース23から、分割された各地域のネットワーク構成と、各地域の制御可能な複数の電気機器の特性とを、メモリ15へ読み出す。ここでの電気機器の特性は、系統連系地点、出力調整費、定格容量、定格出力、現在出力、各センサの計測値の何れかを含む。
S70において、生成部33は、各地域の制御可能な複数の電気機器の特性を合成し、仮想発電機の特性として、仮想発電機データベース25へ保存する。ここで生成部33は例えば、複数の電気機器の出力調整費特性を合成することにより、仮想発電機の出力調整費特性を算出する。
図30は、出力調整費特性の合成の一例を示す。電気機器の特性として出力調整費特性を用いる場合、生成部33は例えば、複数の電気機器の出力調整費特性を合算することにより、仮想発電機の出力調整費特性を算出する。この例において、生成部33は、DGの出力調整費特性とPVの出力調整費特性とEVの出力調整費特性とを用い、これらの出力調整費を合算することにより、合成された曲線を仮想発電機の出力調整費特性としている。
また、電気機器の特性として電源出力制約を用いる場合、生成部33は例えば、複数の電気機器の電源出力制約の上下限値を合算することにより、仮想発電機の電源出力制約を算出する。
以上が分散型電源合成計算の説明である。
この分散型電源合成計算によれば、地域内の電気機器の特性を合成して、一つの発電機として扱うことができる。
ここで系統制御処理の説明に戻る。
S3において、発電機出力配分計算部27は、発電機出力配分計算を行い、計算結果を発電機出力配分データとしてメモリ15へ保存する。
以下、等λ則を使った発電機出力配分計算の一例について説明する。
ここでの発電機は、仮想発電機を含む。電力系統100の総燃料費FTは下記の(1)式により表され、需給バランス制約は下記の(2)式により表わされる。仮想発電機を含む各発電機の有効電力出力をPiとする。なお、計測値の代わりに、予め設定された値や予測された値が用いられてもよい。各発電機の燃料費特性Fi(Pi)は、発電機データベース24における発電機の増分燃料費特性、又は仮想発電機データベース25における仮想発電機の出力調整費特性である。負荷の合計は、PDは系統データベース21のデータのうち負荷量を合算して計算する。但し、PDは、仮想発電機に合成された部分系統101の負荷量を含まない。
Figure 2013198177
ここで、FTは総燃料費、Piは各発電機の有効電力出力、Fi(Pi)は時間当たりのコスト(貨幣単位/h)で換算された各発電機の燃料費を示す燃料費特性、mは発電機の台数、である。
Figure 2013198177
ここで、PDは全ての負荷の合計である。
経済負荷配分(ELD)計算は、(2)式の需給バランス制約を満たしつつ、(1)式の総燃料費FTを最小化する各発電機のPiを決定するものであり、下記の(3)式及び(4)式のように定式化できる。
Figure 2013198177
Figure 2013198177
この問題は、等式制約付きの最適化問題であり、Lagrange未定乗数法を適用して解く事ができる。(2)式に対するLagrange乗数λを用いると、ELDのLagrange関数は、下記の(5)式で定義できる。
Figure 2013198177
この時、最適性の一次の必要条件は、下記の(6)式となる。
Figure 2013198177
すなわち、仮想発電機を含む複数の発電機において最も経済的な運用状態が存在する必要条件は、全ての発電機の増分燃料費がLagrange乗数λに等しいことである。ここで、需給バランス制約を満足するλを決定する必要があり、各発電機出力は、最小出力以上、最大出力以下に制限する必要がある。この制限には、系統データベース21内の各発電機の発電機出力制約と、仮想発電機データベース25内の電源出力制約とを用いる。これらの条件は、下記の(7)式と(8)式と上記の(2)式にまとめることができる。
Figure 2013198177
Figure 2013198177
発電機iの燃料費特性関数Fiが有効電力出力Piに関する2次関数で下記の(9)式のように与えられるとする。
Figure 2013198177
(7)式と(9)式により、下記の(10)式を得る。
Figure 2013198177
(8)式を満足するようなλは、下記の(11)式で与えられる。
Figure 2013198177
したがって、発電機iの最適発電量は、下記の(12)式で計算できる。
Figure 2013198177
λは、発電機の増分燃料費及び仮想発電機の出力調整費である。
以上のように、発電機出力配分計算部27は、発電機出力配分計算を実施し、算出された発電機出力配分データをメモリ15へ保存する。なお、発電機出力配分計算部27は、送電損失を考慮したELD計算、発電機出力変化率制約を考慮した動的経済負荷配分計算を行っても良い。
S3〜S6の処理ループの1巡目のS3において、発電機出力配分計算部27は、仮想発電機を用いない場合の発電機出力配分データを算出する。即ち、この発電機出力配分データは、電力系統100内の発電機101a、101bの出力配分を示す。
S4において、発電機出力配分計算部27は、発電機出力配分データを用いて潮流計算を行い、計算結果を潮流データとしてメモリ15へ保存する。
処理ループの1巡目のS4において、発電機出力配分計算部27は、仮想発電機を用いない場合の発電機出力配分データにおける発電機101a、101bの有効電力の出力指令値Pと、その出力指令値について事前に設定された無効電力分Qと、系統データベース21から得られ、潮流計算に必要な各ノードの電圧Vと、電力系統100内の負荷の出力指令値Pと、その出力指令値について事前に設定された無効電力分Qとを用いる。
次に発電機出力配分計算部27は、電力系統100内の発電機と同期調相機と無効電力補償装置にP及びVを指定し、電力系統100内の変電所と負荷にP及びQを指定し、電力系統100内に予め設定されたスラックノードに対し、予め設定されたノード電圧V及び位相角θを指定する。次に発電機出力配分計算部27は、系統データベース21からアドミタンス行列Yijを作成し、ニュートンラプソン法を用いて、潮流計算を実施し、計算結果を潮流データとしてメモリ15へ保存する。潮流計算は、基本として交流法を用いるが、直流法やフロー法等を用いても良い。また、発電機出力配分計算部27は、各センサにより計測された現在の潮流状態に基づいて、潮流計算を行うことができる。この場合、発電機出力配分計算部27は、各センサにより計測された電圧Vと電流Iと力率cosφから、PとQを求める。
S5において、発電機出力配分計算部27は、算出された潮流データが制約データベース22内の潮流制約を満たすか否かを判定する。
S5の結果がNo、即ち潮流データが潮流制約を満たさない場合、発電機出力配分計算部27は、潮流制約違反が生じた地点を示す情報をメモリ15へ保存し、処理をS6へ進める。
S6において、発電機出力配分計算部27は、潮流制約違反が生じた地点を示す情報に基づいて、発電機又は仮想発電機の出力制約が潮流制約を満たすように修正し、処理をS3へ戻す。ここでの出力制約は、発電機出力制約又は電源出力制約である。
処理ループの1巡目以降のS6において、発電機出力配分計算部27は、系統データベース21内の発電機出力制約が潮流制約を満たすように修正し、修正結果を系統データベース21へ保存する。
処理ループの2巡目以降において、発電機出力配分計算部27は、S2で作成された仮想発電機を用いてS3の発電機出力配分計算を行い、S4の潮流計算を行い、S5において潮流データが潮流制約を満たすまで処理ループを繰り返す。
処理ループの2巡目以降のS6において、発電機出力配分計算部27は、仮想発電機データベース25内の仮想発電機の電源出力制約が潮流制約を満たすように修正し、修正結果を仮想発電機データベース25へ保存する。
なお、処理ループが無限ループに陥ることを防ぐために、発電機出力配分計算部27は、所定回数の処理ループが実行された場合、分散型電源合成計算のフローを終了し、メモリ15を初期化し、再度、分散型電源合成計算のフローを開始する。
S5の結果がYes、即ち潮流データが潮流制約を満たす場合、発電機出力配分計算部27は、処理をS7へ進める。S7において、発電機出力配分計算部27は、潮流制約を満たすと判定された発電機と仮想発電機の出力指令値を含む制御指令のメッセージ310Sを、発電機と仮想発電機に対応する管理装置とへ送信し、出力指令値をメモリ15へ保存する。なお、メッセージ310Sの送信先は、発電機を制御する発電機制御装置、中央給電指令所に設けられた系統管理サーバ、CEMS等の制御システム210、制御可能な電気機器であっても良い。また、仮想発電機に属する電気機器が複数の管理装置により管理されている場合、各管理装置に管理される電気機器の出力調整費特性に基づいて、仮想発電機の出力指令値を複数の管理装置へ配分しても良い。
S8において、発電機出力配分計算部27は、各センサによる計測値を受信することにより、出力指令値に応じた発電機や仮想発電機の出力を示す出力実績値を取得する。次に発電機出力配分計算部27は、取得された出力実績値を示す制御結果データを生成して表示部11に表示する。制御結果データを表示する制御結果データ表示画面は、コストがどのように変化したかを示しても良い。
図31は、制御結果データ表示画面の一例を示す。制御結果データ表示画面は、系統状況表示部510と、コスト表示部520と、電源出力表示部530とを有する。系統状況表示部510は、制御指令が送信された時刻や、制御指令に基づく状態変化が発生した時刻を示す。コスト表示部520は、総コストの時間変化を示すグラフである。電源出力表示部530は、発電機や仮想発電機毎の電源出力の時間変化を示すグラフである。このように、いつ制御指令が出され、発電機や仮想発電機がどのように出力を変化させたかを、時系列で表示することにより、運用者は、制御結果のタイミングを簡単に確認することができる。また、このように、電力系統100全体のコストがどれだけ削減できたかを時系列で表示することにより、コスト削減効果が直感的に分かり易くなる。ここでは、画面への出力の例を示したが、発電機出力配分計算部27は、書類等に印刷可能なフォーマットに従って、制御結果データをユーザに提供してもよい。
以上が系統制御処理の説明である。
以下、仮想発電機を用いた発電機出力配分計算の効果について説明する。
図32は、発電機出力配分データとの一例を示す。この発電機出力配分データは、処理ループの1巡目のS3で計算された仮想発電機を用いない場合の発電機出力配分データと、処理ループの2巡目以降のS3で計算された仮想発電機を用いる場合の発電機出力配分データとを有する。これらの発電機出力配分データは、発電機名と、その発電機が電力系統100に連系する地点である系統連系地点名と、その発電機への制御指令に示された出力指令値[kW]と、その制御指令を実行するためのコスト[円/kWh]とを含む。コストは、燃料費と出力調整費を含む。
また、発電機出力配分計算部27は、算出された発電機出力配分データに基づいて、仮想発電機を用いない場合と仮想発電機を用いる場合とを比較するための情報を表示部11に表示しても良い。
図33は、発電機の増分燃料費特性と仮想発電機の出力調整費特性の一例を示す。この図は、発電機110aの増分燃料費特性と、部分系統101の仮想発電機の出力調整費特性と、発電機110bの増分燃料費特性とを示す。この実施例において、発電機110aの出力をΔPだけ増加させた時の増分燃料費の増加量ΔCaと、部分系統101の仮想発電機の出力をΔPだけ増加させた時の出力調整費の増加量ΔCcと、発電機110bの出力をΔPだけ増加させた時の増分燃料費の増加量ΔCbとを比較すると、ΔCa<ΔCc<ΔCbの関係がある。
図34は、仮想発電機を用いない場合と仮想発電機を用いる場合との出力指令値の比較結果の一例を示す。この実施例において、仮想発電機を用いない場合、発電機110bの出力指令値は、発電機110aの出力指令値より大きい。一方、仮想発電機を用いる場合、部分系統101の仮想発電機の出力指令値は、発電機110aの出力指令値より大きく、発電機110aの出力指令値は、発電機110bの出力指令値より大きい。また、仮想発電機を用いる場合の発電機110aの出力指令値は、仮想発電機を用いない場合の発電機110aの出力指令値と変わらない。一方、仮想発電機を用いない場合の発電機110bの出力指令値の大部分は、仮想発電機を用いる場合の部分系統101の仮想発電機の出力指令値に割り当てられる。これは前述の部分系統101の仮想発電機の出力調整費特性と発電機110bの増分燃料費特性との関係に起因する。即ち、仮想発電機を用いる場合、ΔCc<ΔCbの関係と発電機出力配分計算により、部分系統101の仮想発電機の出力指令値は、発電機110bの出力指令値により多く割り当てられる。
図35は、仮想発電機を用いない場合と仮想発電機を用いる場合とのコストの比較結果の一例を示す。この実施例において、仮想発電機を用いる場合の総コストは、仮想発電機を用いない場合の総コストより小さい。発電機出力配分計算により、仮想発電機を用いない場合の発電機110bの出力指令値の大部分が、仮想発電機を用いる場合の部分系統101の仮想発電機の出力指令値に割り当てられることにより、総コストを削減することができる。
以下、電力系統100の幾つかの変形例における系統制御システム10の動作について説明する。
図36は、電力系統の第1変形例を示す。電力系統100pは、電力系統100の第1変形例である。電力系統100pは、発電機110qと、これに接続されているノード120qと、これに接続されている変圧器130qと、これに接続されているノード120rと、これに接続されているブランチ140sと、これに接続されているノード120tと、これに接続されている変圧器130uと、これに接続されているノード120uと、これに接続されている負荷160uとを有する。電力系統100pは更に、ノード120rに接続されている部分系統101pを有する。部分系統101pは、ノード120rに接続されている変圧器130pと、これに接続されているノード120pと、これに接続されている管理装置170pと、これに接続されている負荷160p及び電源190pとを有する。
電力系統100pにおいて、変圧器130qにおける潮流は、発電機110qからノード120rへの方向であり、変圧器130pにおける潮流は、管理装置170pからノード120rへの方向である。また、ブランチ140s及び変圧器130uにおける潮流は、ノード120rから負荷160uへの方向である。
この状態で、ブランチ140sにおいて潮流制約違反が発生し、潮流制約を満たすためにブランチ140sの潮流をΔPだけ減少させる必要があるとする。
これに応じて分散型電源合成部26は、潮流制約違反が発生しているブランチ140sを境界として、電力系統100pを送電側の電力系統103pと受電側の電力系統102pとへ地域分割を行う。次に発電機出力配分計算部27は、発電機110qの増分燃料費特性と、部分系統101pの仮想発電機の出力調整費特性とに基づいて、発電機出力配分計算を行う。ブランチ140sの潮流をΔPだけ減少させるためには、発電機110qの出力をΔPだけ減少させるプランと、部分系統101pの仮想発電機の出力をΔPだけ減少させるプランとが考えられる。
図37は、電力系統の第1変形例における発電機及び仮想発電機の特性を示す。この図は、発電機110qの増分燃料費特性と、部分系統101pの仮想発電機の出力調整費特性とを示す。発電機110qの出力をΔPだけ減少させた時の増分燃料費の減少量ΔCqと、部分系統101pの仮想発電機の出力をΔPだけ減少させた時の出力調整費の減少量ΔCpとを比較すると、ΔCq<ΔCpである。これにより、部分系統101pの仮想発電機の出力をΔPだけ減少させる場合の総コストは、発電機110qの出力をΔPだけ減少させる場合の総コストより低くなる。従って、発電機出力配分計算部27は、発電機出力配分計算の結果、部分系統101pの仮想発電機の出力を減少させることにより、ブランチ140sの潮流を減少させる。
この時、部分系統101pの管理装置170pへの制御指令は、電源190pの出力抑制、負荷160pの出力増加(消費電力増加)等である。出力調整費は、制御指令に応じるための燃料費やインセンティブ等である。
図38は、電力系統の第2変形例を示す。電力系統100qは、電力系統100の第2変形例である。電力系統100qにおいて、電力系統100pの要素と同一の符号が付された要素は、電力系統100pの要素と同一又は相当物を示す。電力系統100pと比較すると、電力系統100qは、負荷160uの代わりに発電機110uを有し、発電機110qの代わりに発電機110wを有する。電力系統100pは更に、ノード120rに接続されている変圧器130vと、これに接続されているノード120vと、これに接続されている負荷160vとを有する。
電力系統100qにおいて、変圧器130u及びブランチ140sにおける潮流は、発電機110uからノード120rへの方向である。また、変圧器130qにおける潮流は、発電機110uからノード120rへの方向である。また、変圧器130pにおける潮流は、ノード120rから管理装置170pへの方向である。また、変圧器130vにおける潮流は、ノード120rから負荷160vへの方向である。
この状態で、ブランチ140sにおいて潮流制約違反が発生し、潮流制約を満たすためにブランチ140sの潮流をΔPだけ減少させる必要があるとする。
これに応じて分散型電源合成部26は、潮流制約違反が発生しているブランチ140sを境界として、電力系統100qを送電側の電力系統102qと受電側の電力系統103qとへ地域分割を行う。次に発電機出力配分計算部27は、発電機110uの増分燃料費特性と、部分系統101pの仮想発電機の出力調整費特性と、発電機110wの増分燃料費特性とに基づいて、発電機出力配分計算を行う。ブランチ140sの潮流をΔPだけ減少させるためには、発電機110uの出力をΔPだけ減少させ、且つ発電機110wの出力をΔPだけ増加させるプランと、発電機110uの出力をΔPだけ減少させ、且つ部分系統101pの仮想発電機の出力をΔPだけ減少させるプランとが考えられる。
図39は、電力系統の第2変形例における発電機及び仮想発電機の特性を示す。この図は、発電機110uの増分燃料費特性と、部分系統101pの仮想発電機の出力調整費特性と、発電機110wの増分燃料費特性とを示す。発電機110wの出力をΔPだけ増加させた時の増分燃料費の増加量ΔCwと、部分系統101pの仮想発電機の出力をΔPだけ減少させた時の出力調整費の増加量−ΔCp(増加量で比較するために負の値とする)とを比較すると、−ΔCp<ΔCwである。これにより、部分系統101pの仮想発電機の出力をΔPだけ減少させる場合の総コストは、発電機110wの出力をΔPだけ増加させる場合の総コストより低くなる。従って、発電機出力配分計算部27は、発電機出力配分計算の結果、部分系統101pの仮想発電機の出力を減少させることにより、ブランチ140sの潮流を減少させる。
なお、潮流の代わりに、過渡安定度(想定事故に対する同期安定度)、周波数安定度、定態安定度、電圧安定度等、他の安定度を示す情報が用いられても良い。この場合、潮流制約の代わりに安定度制約が設定されても良いし、他の安定度制約が潮流制約により表されても良い。
例えば、安定度の監視にPMU(Phasor Measurement Unit:同期位相計測装置)を用いる場合について説明する。この場合、電力系統100内の各部に位相角θを計測するPMUが設けられ、通信ネットワーク300を介して系統制御システム10に接続される。PMUは、計測データとしてP、Q、V、I、θ等を系統制御システム10へ送信する。系統制御システム10は、発電機と仮想発電機に属する電気機器を制御する管理装置とへ制御指令を送信する。発電機出力配分計算部27は、潮流計算の代わりに、各PMUから受信したθを用いて安定度計算を行う。この安定度計算は、想定事故について、電力系統100が不安定になるコストが予防制御するコストより大きくなる場合の、事故前のθの閾値を算出する。発電機出力配分計算部27は、算出された閾値を、制約データD2の代わりに安定度制約データとして制約データベース22へ保存する。
本実施例によれば、地理的に分散されて配置された複数の分散型電源を制御対象とし、複数の分散型電源の特性を考慮して制御指令を与えることができる。また、潮流制約違反が発生した場合、発電機の特性と、分割された地域内の複数の電気機器の特性を集約した仮想発電機の特性とを用いて、潮流制約を満たすための出力配分を計算することができる。これにより、その仮想発電機の出力を調整するコストが或る発電機の出力を調整するコストより低い場合、潮流制約を満たすための総コストを削減することができる。
本実施例では、制御指令を受けた電気機器が動作することについての不確定さを示す確度を用いる分散型電源合成計算について説明する。
図40は、実施例2に係る系統制御システム10bの機能構成を示す。本実施例の系統制御システム10bにおいて、系統制御システム10の要素と同一の符号が付された要素は、系統制御システム10の要素と同一又は相当物を示す。系統制御システム10と比較すると、系統制御システム10bは更に、分散型電源確度データD6を格納する分散型電源確度データベース29を有する。記憶デバイス17は、実施例1の要素に加えて、分散型電源確度データベース29を有する。
電気機器の出力調整費は、各需要家とアグリゲータや電力会社や仲介業者等との間の契約によって様々な形態がある。例えば、需要家が制御指令を受けたくない時に契約を停止できる場合、系統制御システム10bが電気機器の出力を制御する確度は下がるため、実際に仮想発電機が制御指令に示された出力を出せるとは限らない。そこで、分散型電源合成部26が、各需要家の確度を予め設定する、もしくは各需要家の実績値に基づく学習により各需要家の確度を設定する。これにより、発電機出力配分計算部27は、確度を考慮した発電機出力配分計算を実施することができる。需要家の確度は例えば、その需要家が制御指令を実行した確率の実績であっても良いし、その需要家が制御指令を実行する確率を予測した結果であっても良い。なお、確度は、電気機器毎に設定されても良い。
図41は、実施例2に係る分散型電源合成計算を示す。本実施例の分散型電源合成計算において、実施例1の分散型電源合成計算の要素と同一の符号が付された要素は、実施例1の分散型電源合成計算の要素と同一又は相当処理を示す。
まず分散型電源合成部26は、実施例1と同様のS10からS50までの処理の後、処理をS61へ進める。
S61において、分散型電源合成部26は、分散型電源データベース23と分散型電源確度データベース29から、分割された各地域のネットワーク構成と、各地域の制御可能な電気機器の特性と、分散型電源確度とを読み出す。ここでの電気機器の特性は、系統連系地点、出力調整費、定格容量、定格出力、現在出力、各センサの計測値の何れかを含む。
S71において、分散型電源合成部26は、各地域の制御可能な複数の電気機器の特性を合成し、仮想発電機の特性として、仮想発電機データベース25へ保存し、このフローを終了する。ここで分散型電源合成部26は例えば、複数の電気機器の出力調整費特性を夫々の確度で重み付けをして合成することにより、仮想発電機の出力調整費特性を算出する。即ち、分散型電源合成部26は、複数の電気機器の出力調整費特性に、対応する確度を夫々乗じ、乗算結果を合計して、仮想発電機の出力調整費特性とする。
このように、仮想発電機の特性の算出に確度を用いることにより、制御指令の実行の不確定さや信頼度を考慮して出力指令値を算出することができる。
ただし、確度を用いて出力指令値を算出すると、出力指令値の合計が過大になる可能性がある。そこで、発電機出力配分計算部27は、確度を用いた出力指令値と、確度を用いない出力指令値とを算出し、仮想発電機に属する複数の電気機器のうち一部ずつへ、確度を用いた出力指令値の制御指令を出し、各センサの測定値により電力系統100への影響を確認する。次に発電機出力配分計算部27は、送信した出力指令値の合計が確度を用いない出力指令値の合計に達した時に制御指令の送信を終了する。ここで発電機出力配分計算部27は、需要家毎に制御指令を送信しても良いし、管理装置毎に制御指令を送信しても良いし、CEMS毎に制御指令を送信しても良い。
このように、制御指令の影響を確認しながら、少しずつ制御指令を送信することにより、確度を用いて出力指令値を算出する場合に出力指令値の合計が過大になることを防ぐことができる。
以上の実施例で説明された技術は、次のように表現することもできる。
(表現1)
電力系統内で潮流制約もしくは電圧制約を違反する系統設備を示す違反設備情報をデータベースから取得し、前記違反設備情報に基づいて、前記電力系統の一部である部分系統を特定する特定部と、
前記電力系統内の複数の電気機器の夫々の地点を示す機器地点情報を前記データベースから取得し、前記機器地点情報に基づいて、前記部分系統内の複数の電気機器のグループを特定し、前記グループに属する複数の電気機器の夫々について、出力の調整に対するコストの特性を示す機器特性情報を前記データベースから取得し、前記グループに属する複数の電気機器の機器特性情報を合成することにより、前記グループの出力の調整に対するコストの特性を示すグループ特性情報を生成する生成部と
を備える電力系統制御装置。
以上の実施例で説明された技術は、次のように表現することもできる。
(表現2)
電力系統内で潮流制約もしくは電圧制約を違反する系統設備を示す違反設備情報をデータベースから取得し、前記違反設備情報に基づいて、前記電力系統の一部である部分系統を特定し、
前記電力系統内の複数の電気機器の夫々の地点を示す機器地点情報を前記データベースから取得し、前記機器地点情報に基づいて、前記電力系統内の複数の電気機器の中から前記部分系統内の複数の電気機器のグループを特定し、
前記グループに属する複数の電気機器の夫々について、出力の調整に対するコストの特性を示す機器特性情報を前記データベースから取得し、前記グループに属する複数の電気機器の機器特性情報を合成することにより、前記グループの出力の調整に対するコストの特性を示すグループ特性情報を生成する
ことをコンピュータに実行させる電力系統制御プログラム。
このような表現において、違反設備情報は例えば、潮流制約違反地点に対応する。機器地点情報は例えば、電気機器の系統連系地点に対応する。機器特性情報は例えば、電気機器の出力調整費特性に対応する。グループは例えば、仮想発電機に対応する。グループ特性情報は例えば、仮想発電機の出力調整費特性に対応する。発電機特性情報は例えば、発電機の増分燃料費特性に対応する。調整量は例えば、出力指令値に対応する。算出部は例えば、発電機出力配分計算部27に対応する。
10、10b:系統制御システム
21:系統データベース
22:制約データベース
23:分散型電源データベース
24:発電機データベース
25:仮想発電機データベース
26:分散型電源合成部
27:発電機出力配分計算部
28:プログラムデータベース
29:分散型電源確度データベース
32:特定部
33:生成部
41:バス線
100:電力系統
101:部分系統
110、110a、110b:発電機
160a、160b、160c、160d、160p、160u、160v:負荷
170a、170b、170c、170d、170p:管理装置
180a、180b:バッテリー
190a、190b、190p:電源
200、201、202、203、220:需要家
210:制御システム
300:通信ネットワーク

Claims (12)

  1. 電力系統内で潮流制約もしくは電圧制約を違反する系統設備を示す違反設備情報をデータベースから取得し、前記違反設備情報に基づいて、前記電力系統の一部である部分系統を特定する特定部と、
    前記電力系統内の複数の電気機器の夫々の地点を示す機器地点情報を前記データベースから取得し、前記機器地点情報に基づいて、前記部分系統内の複数の電気機器のグループを特定し、前記グループに属する複数の電気機器の夫々について、出力の調整に対するコストの特性を示す機器特性情報を前記データベースから取得し、前記グループに属する複数の電気機器の機器特性情報を合成することにより、前記グループの出力の調整に対するコストの特性を示すグループ特性情報を生成する生成部と
    を備える電力系統制御装置。
  2. 前記特定部は、前記潮流制約もしくは電圧制約を違反する系統設備を境界として、前記電力系統を上流の系統と下流の系統とに分割し、分割された二つの系統の一つを前記部分系統として特定する、
    請求項1に記載の電力系統制御装置。
  3. 前記電力系統内の発電機の地点を示す発電機地点情報と、前記発電機の出力の調整に対するコストの特性を示す発電機特性情報と、前記潮流制約もしくは電圧制約の違反量を示す制約違反情報とを前記データベースから取得し、前記発電機地点情報と前記発電機特性情報と前記機器地点情報と前記グループ特性情報と前記制約違反情報に基づいて、前記違反を解消するための、前記発電機の出力の調整量である発電機調整量と前記グループの出力の調整量であるグループ調整量とを算出する算出部を更に備える、
    請求項2に記載の電力系統制御装置。
  4. 前記算出部は、前記グループを一つの発電機と見なし、前記発電機特性情報と前記グループ特性情報とを用いる等λ則により、前記発電機調整量と前記グループ調整量とを算出する、
    請求項3に記載の電力系統制御装置。
  5. 前記生成部は、前記制約違反情報を前記データベースから取得し、前記制約違反情報に基づいて、前記潮流制約もしくは電圧制約を違反する系統設備を決定し、前記違反設備情報として前記データベースへ保存する、
    請求項2に記載の電力系統制御装置。
  6. 前記制約違反情報は、前記電力系統内の複数の地点の夫々における複数の時点の潮流制約もしくは電圧制約を示し、
    前記違反設備情報は、前記複数の系統設備の一つまたは複数を示す、
    請求項5に記載の電力系統制御装置。
  7. 前記機器特性情報により示されるコストは、電気機器の出力の調整のための燃料費及びインセンティブを含む、
    請求項1乃至6の何れか一項に記載の電力系統制御装置。
  8. 前記電力系統内の複数の電気機器は、電源を含む、
    請求項1乃至7の何れか一項に記載の電力系統制御装置。
  9. 前記電力系統内の複数の電気機器は、負荷を含む、
    請求項1乃至8の何れか一項に記載の電力系統制御装置。
  10. 前記生成部は、前記グループ調整量に基づく調整を指示が実行される確度を取得し、前記確度に基づいて、前記グループ調整量を算出する、
    請求項1乃至9の何れか一項に記載の電力系統制御装置。
  11. 前記算出部は、前記発電機調整量に基づく調整を指示する制御指令を前記発電機へ送信し、前記グループ調整量に基づく調整を指示する制御指令を前記グループ内の電気機器の制御装置へ送信する、
    請求項2に記載の電力系統制御装置。
  12. 電力系統内で潮流制約もしくは電圧制約を違反する系統設備を示す違反設備情報をデータベースから取得し、前記違反設備情報に基づいて、前記電力系統の一部である部分系統を特定し、
    前記電力系統内の複数の電気機器の夫々の地点を示す機器地点情報を前記データベースから取得し、前記機器地点情報に基づいて、前記電力系統内の複数の電気機器の中から前記部分系統内の複数の電気機器のグループを特定し、
    前記グループに属する複数の電気機器の夫々について、出力の調整に対するコストの特性を示す機器特性情報を前記データベースから取得し、前記グループに属する複数の電気機器の機器特性情報を合成することにより、前記グループの出力の調整に対するコストの特性を示すグループ特性情報を生成する
    ことを備える電力系統制御方法。
JP2012059309A 2012-03-15 2012-03-15 電力系統制御装置及び電力系統制御方法 Active JP5616385B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012059309A JP5616385B2 (ja) 2012-03-15 2012-03-15 電力系統制御装置及び電力系統制御方法
PCT/JP2013/051027 WO2013136839A1 (ja) 2012-03-15 2013-01-21 電力系統制御装置及び電力系統制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012059309A JP5616385B2 (ja) 2012-03-15 2012-03-15 電力系統制御装置及び電力系統制御方法

Publications (2)

Publication Number Publication Date
JP2013198177A true JP2013198177A (ja) 2013-09-30
JP5616385B2 JP5616385B2 (ja) 2014-10-29

Family

ID=49160761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012059309A Active JP5616385B2 (ja) 2012-03-15 2012-03-15 電力系統制御装置及び電力系統制御方法

Country Status (2)

Country Link
JP (1) JP5616385B2 (ja)
WO (1) WO2013136839A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150055409A (ko) * 2013-11-13 2015-05-21 한국전기연구원 상정고장 해석 기반의 전력계통 안전도 개선 방법
CN105634004A (zh) * 2015-05-26 2016-06-01 华北电力大学 一种基于虚拟同步发电机控制的电压源换流器等值方法
WO2016143021A1 (ja) * 2015-03-09 2016-09-15 株式会社日立製作所 電力系統安定化システム
JP2016189664A (ja) * 2015-03-30 2016-11-04 株式会社日立製作所 系統安定化制御装置および電力系統制御システム
WO2017018395A1 (ja) * 2015-07-29 2017-02-02 京セラ株式会社 管理サーバ及び管理方法
WO2018139043A1 (ja) * 2017-01-30 2018-08-02 株式会社日立製作所 分散制御システム、分散制御方法、電力系統の分散制御システムおよび電力資源の制御方法
WO2019054033A1 (ja) * 2017-09-12 2019-03-21 九州電力株式会社 ダム運用管理システム、プログラム送信装置、ダム運用管理方法及びプログラム
WO2019074192A1 (ko) * 2017-10-11 2019-04-18 성균관대학교 산학협력단 분산 전원이 연계된 배전계통의 분산 전원의 출력 제어 방법, 이를 수행하기 위한 제어 동작을 수행하는 주 제어장치 및 지역 제어 장치
KR20190076371A (ko) * 2017-12-22 2019-07-02 한국전력공사 직류 배전망 운영 시스템, 이의 방법, 그리고 이 방법을 저장한 컴퓨터 판독 가능 저장매체
JP2021040484A (ja) * 2017-02-28 2021-03-11 株式会社ダイヘン バーチャルパワープラント
JP2021136839A (ja) * 2020-02-28 2021-09-13 公立大学法人会津大学 仮想発電所制御システム

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012147576A (ja) * 2011-01-12 2012-08-02 Chugoku Electric Power Co Inc:The 配電系統運用方法、配電系統運用装置、配電系統運用システム及びプログラム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4574985B2 (ja) * 2001-09-28 2010-11-04 三菱電機株式会社 電力供給計画立案支援方法
JP2007259545A (ja) * 2006-03-22 2007-10-04 Tokyo Electric Power Co Inc:The 需給制御システムの系統周波数緊急補正方式
JP2012029389A (ja) * 2010-07-21 2012-02-09 Toshiba Corp 電力需給制御システムおよび電力需給制御方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012147576A (ja) * 2011-01-12 2012-08-02 Chugoku Electric Power Co Inc:The 配電系統運用方法、配電系統運用装置、配電系統運用システム及びプログラム

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101593212B1 (ko) * 2013-11-13 2016-02-11 한국전기연구원 상정고장 해석 기반의 전력계통 안전도 개선 방법
KR20150055409A (ko) * 2013-11-13 2015-05-21 한국전기연구원 상정고장 해석 기반의 전력계통 안전도 개선 방법
US10389127B2 (en) 2015-03-09 2019-08-20 Hitachi, Ltd. Power system stabilization system
WO2016143021A1 (ja) * 2015-03-09 2016-09-15 株式会社日立製作所 電力系統安定化システム
JPWO2016143021A1 (ja) * 2015-03-09 2017-10-19 株式会社日立製作所 電力系統安定化システム
JP2016189664A (ja) * 2015-03-30 2016-11-04 株式会社日立製作所 系統安定化制御装置および電力系統制御システム
CN105634004A (zh) * 2015-05-26 2016-06-01 华北电力大学 一种基于虚拟同步发电机控制的电压源换流器等值方法
WO2017018395A1 (ja) * 2015-07-29 2017-02-02 京セラ株式会社 管理サーバ及び管理方法
JPWO2017018395A1 (ja) * 2015-07-29 2018-05-24 京セラ株式会社 管理サーバ及び管理方法
WO2018139043A1 (ja) * 2017-01-30 2018-08-02 株式会社日立製作所 分散制御システム、分散制御方法、電力系統の分散制御システムおよび電力資源の制御方法
JP2018125907A (ja) * 2017-01-30 2018-08-09 株式会社日立製作所 分散制御システム、分散制御方法、電力系統の分散制御システムおよび電力資源の制御方法
JP2021040484A (ja) * 2017-02-28 2021-03-11 株式会社ダイヘン バーチャルパワープラント
WO2019054033A1 (ja) * 2017-09-12 2019-03-21 九州電力株式会社 ダム運用管理システム、プログラム送信装置、ダム運用管理方法及びプログラム
JP6559379B1 (ja) * 2017-09-12 2019-08-14 九州電力株式会社 ダム運用管理システム、プログラム送信装置、ダム運用管理方法及びプログラム
KR102008262B1 (ko) * 2017-10-11 2019-08-07 성균관대학교산학협력단 분산 전원이 연계된 배전계통의 분산 전원의 출력 제어 방법, 이를 수행하기 위한 제어 동작을 수행하는 주 제어장치 및 지역 제어 장치
KR20190040543A (ko) * 2017-10-11 2019-04-19 성균관대학교산학협력단 분산 전원이 연계된 배전계통의 분산 전원의 출력 제어 방법, 이를 수행하기 위한 제어 동작을 수행하는 주 제어장치 및 지역 제어 장치
WO2019074192A1 (ko) * 2017-10-11 2019-04-18 성균관대학교 산학협력단 분산 전원이 연계된 배전계통의 분산 전원의 출력 제어 방법, 이를 수행하기 위한 제어 동작을 수행하는 주 제어장치 및 지역 제어 장치
KR20190076371A (ko) * 2017-12-22 2019-07-02 한국전력공사 직류 배전망 운영 시스템, 이의 방법, 그리고 이 방법을 저장한 컴퓨터 판독 가능 저장매체
KR20210126535A (ko) * 2017-12-22 2021-10-20 한국전력공사 직류 배전망 운영 시스템, 및 그 방법,
KR102314992B1 (ko) 2017-12-22 2021-10-21 한국전력공사 직류 배전망 운영 시스템, 이의 방법, 그리고 이 방법을 저장한 컴퓨터 판독 가능 저장매체
KR102413512B1 (ko) 2017-12-22 2022-06-28 한국전력공사 직류 배전망 운영 시스템, 및 그 방법,
JP2021136839A (ja) * 2020-02-28 2021-09-13 公立大学法人会津大学 仮想発電所制御システム

Also Published As

Publication number Publication date
WO2013136839A1 (ja) 2013-09-19
JP5616385B2 (ja) 2014-10-29

Similar Documents

Publication Publication Date Title
JP5616385B2 (ja) 電力系統制御装置及び電力系統制御方法
Jiang et al. Optimal economic scheduling of microgrids considering renewable energy sources based on energy hub model using demand response and improved water wave optimization algorithm
Jayasekara et al. Optimal operation of distributed energy storage systems to improve distribution network load and generation hosting capability
Salinas et al. Dynamic energy management for the smart grid with distributed energy resources
JP5984601B2 (ja) 系統制御装置および系統制御方法
Samarakoon et al. Reporting available demand response
EP2953230A1 (en) Energy management system, energy management method, program and server
Ufa et al. Algorithm for optimal pairing of res and hydrogen energy storage systems
US20140214219A1 (en) Energy management system, energy management method, medium, and server
WO2014115556A1 (ja) 電力系統の制御システム
JP5921390B2 (ja) エネルギー管理システム、エネルギー管理方法、プログラムおよびサーバ装置
JP2017229233A (ja) エネルギー管理システム、エネルギー管理方法、プログラム、サーバおよびクライアント装置
Chen et al. Operational flexibility of active distribution networks with the potential from data centers
WO2010098455A1 (ja) 排出係数算定器および排出係数算定方法
Huo et al. Chance-constrained optimization for integrated local energy systems operation considering correlated wind generation
JP2004056996A (ja) 地域電力情報監視システムおよびその運用方法
JP2014228948A (ja) 電気料金管理システム
Xiao et al. New modeling framework considering economy, uncertainty, and security for estimating the dynamic interchange capability of multi-microgrids
JP6616556B1 (ja) 電力情報管理システム、管理方法、プログラム、電力情報管理サーバ、通信端末、及び、電力システム
JP2014128140A (ja) 電力抑制制御システムおよび電力抑制制御方法
Pippi et al. A unified control strategy for voltage regulation and congestion management in active distribution networks
JP2017060230A (ja) 電力管理システム、電力管理方法及びプログラム
JP7102182B2 (ja) 電力システム、制御装置、電力管理方法、プログラム、及び、電力管理サーバ
TW202008704A (zh) 用於基於負載形狀控制電力的能量控制和儲存系統
JP2023020479A (ja) 電力管理システム、充電設備、サーバおよび電力需給バランスの調整方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140911

R150 Certificate of patent or registration of utility model

Ref document number: 5616385

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150