JP2013194326A - 伸縮性人工皮革 - Google Patents

伸縮性人工皮革 Download PDF

Info

Publication number
JP2013194326A
JP2013194326A JP2012059385A JP2012059385A JP2013194326A JP 2013194326 A JP2013194326 A JP 2013194326A JP 2012059385 A JP2012059385 A JP 2012059385A JP 2012059385 A JP2012059385 A JP 2012059385A JP 2013194326 A JP2013194326 A JP 2013194326A
Authority
JP
Japan
Prior art keywords
artificial leather
fiber
vertical direction
elongation
stretchable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012059385A
Other languages
English (en)
Other versions
JP5903303B2 (ja
Inventor
Michinori Fujisawa
道憲 藤澤
Yukio Maeda
幸男 前田
Kazumasa Inoue
和正 井上
Yasuhisa Nomura
康寿 野村
Tetsuya Ashida
哲哉 芦田
Kyuichi Watanabe
久一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2012059385A priority Critical patent/JP5903303B2/ja
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to KR1020147023474A priority patent/KR101982372B1/ko
Priority to US14/381,072 priority patent/US10465338B2/en
Priority to CN201610457536.5A priority patent/CN105926303B/zh
Priority to KR1020197014112A priority patent/KR102074112B1/ko
Priority to PCT/JP2013/054949 priority patent/WO2013129388A1/ja
Priority to EP13755090.1A priority patent/EP2821545B1/en
Priority to CN201380011648.2A priority patent/CN104145058B/zh
Priority to EP18191768.3A priority patent/EP3428340A1/en
Publication of JP2013194326A publication Critical patent/JP2013194326A/ja
Application granted granted Critical
Publication of JP5903303B2 publication Critical patent/JP5903303B2/ja
Priority to US16/440,117 priority patent/US11268237B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)
  • Treatment Of Fiber Materials (AREA)

Abstract

【課題】機械的強度に優れつつ、タテ方向に適度な伸長性と伸び止まり感を有する伸縮性人工皮革を提供することを目的とする。
【解決手段】本発明の伸縮性人工皮革は、平均単繊維繊度0.9デシテックス以下の極細繊維からなる繊維絡合体で構成される。本発明の伸縮性人工皮革は、見掛け密度が0.40g/cm3以上であるとともに、以下の式(1)で算出される伸び係数が50以下であるものである。
伸び係数=タテ方向の5%円形モジュラス/厚さ ・・・(1)
【選択図】図5

Description

本発明は、機械的強度に優れつつ、タテ方向に適度な伸長性と伸び止まり感を有する伸縮性人工皮革に関するものである。
人工皮革などの皮革様シートは、天然皮革にはない柔軟性や機能性を有していることから、衣料や資材等種々の用途に使用されている。衣料用途における着用感、資材用途における成形加工性、さらには縫製の容易性や仕立て栄え等の観点から、伸縮性が重要な機能として注目されている。
上記背景から、伸縮性を有する皮革様シートが種々検討されている。例えば、主として単繊維繊度0.9デシテックス以下の極細繊維を含む繊維絡合体と高分子弾性体で構成された人工皮革用基体に、タテおよび/またはヨコ方向に15%以上伸張させた弾性体シートを接着した後、弾性体シートの伸張を緩和することにより人工皮革を収縮させ、次いで弾性体シートを除去することを特徴とする伸縮性に優れた人工皮革の製造方法が提案されている(例えば、特許文献1)。しかし、この方法では、人工皮革用基体を収縮させる際に、弾性体シート側に人工皮革用基体がカールしてしまうことがある。また、弾性体シートの収縮力のみで人工皮革用基体を収縮させるため、高密度の人工皮革用基体を強制的に高い収縮率で収縮させることは難しい。さらに、接着剤の使用は人工皮革表面の品位を低下させる。
そこで、弾性体シートを用いない製造方法が提案されている。例えば、特許文献2は、単糸繊度1.1デシテックス以下の極細繊維を主として含む繊維絡合体とポリウレタン樹脂で構成された人工皮革において、該人工皮革に、柔軟剤を付与した後、または、柔軟剤を付与すると同時に、加熱状態で長さ方向に伸張して幅方向に収縮させることを特徴とする幅方向のストレッチ性に優れた人工皮革の製造方法を開示している。しかし、長さ方向に伸長するため、人工皮革の目付斑、厚み斑が助長される。また、柔軟剤を付与して伸長するため、スエード調人工皮革として用いると、表面均一性や耐摩耗性が不十分であった。さらに、提案されている製造方法は人工皮革の幅方向の伸長性を改善するのを目的とするものであり、加熱状態で長さ方向に伸長しているので、得られた人工皮革の長さ方向の伸長性は低く、従って、特許文献2における人工皮革は、タテ方向における伸長性がなんら改善されていない。
無端ゴムベルトが熱シリンダーロールの周面の一部に接触して走行する構成を有する収縮加工装置を用いて布帛をタテ方向に強制圧縮し、これにより布帛の一部に皺を形成する方法、又は、高密度布帛を柔軟にする方法が提案されている(特許文献3及び4)。しかし、特許文献3及び4は、極細繊維の絡合体を有する人工皮革については何も記載しておらず、タテ方向伸長性が改善された人工皮革については何ら開示していない。
このように、上記先行技術文献は、密度を高くして機械的物性を良好にしつつも、タテ方向の伸長性や伸縮性を改善した人工皮革用基を開示していない。
特開2004−197282号公報 特開2005−076151号公報 特開平5−44153号公報 特開平9−31832号公報
本発明は、タテ方向に適度な伸縮性を有しながら、密度を高くして機械的物性を良好にしつつ適度な伸び止まり感がある伸縮性人工皮革を提供することを課題とする。
本発明は、以下の構成を有する伸縮性人工皮革により前記課題を解決する。すなわち、 本発明の伸縮性人工皮革は、平均単繊維繊度0.9デシテックス以下の極細繊維からなる繊維絡合体で構成された伸縮性人工皮革であって、見掛け密度を0.40g/cm3以上であるとともに、以下の式(1)で算出される伸び係数が50以下である。
伸び係数=タテ方向の5%円形モジュラス/厚さ ・・・(1)
好ましい態様においては、本発明の伸縮性人工皮革は、厚み方向とタテ方向に共に平行な断面において、極細繊維より構成されるミクロなうねり構造をタテ方向に有する。また、タテ方向における5%伸長時の荷重に対する30%伸長時の荷重の比を5以上とすることが好ましい。繊維絡合体は、例えば、高分子弾性体を含有し、高分子弾性体は、ポリウレタン水系エマルジョンの固化物である。極細繊維は、好ましくは非弾性繊維であり、非弾性繊維は例えばポリエステル繊維である。本発明の伸縮性人工皮革は、タテ方向に収縮させヒートセットすることにより形成されたものであることが好ましい。
本発明の伸縮性人工皮革は、高い見掛け密度と低い伸び係数により、タテ方向に適度な伸縮性を有するとともに、機械的物性を良好にして適度な伸び止まり感も有することもできる。
本発明の製造方法を実施するための収縮加工装置の一例を示す概略図である。 本発明の製造方法を実施するための収縮加工装置の他の例を示す概略図である。 実施例1で得た伸縮性人工皮革、及び比較例1の未収縮加工処理人工皮革の荷重伸び曲線を示す図である。 実施例1で得た伸縮性人工皮革の厚さ方向及びタテ方向に平行な断面の走査型電子顕微鏡写真である。 実施例1で得た伸縮性人工皮革の厚さ方向及びタテ方向に平行な断面の走査型電子顕微鏡写真であって、図4より倍率を大きくして示した写真である。 比較例1の未収縮加工処理人工皮革の厚さ方向及びタテ方向に平行な断面の走査型電子顕微鏡写真である。 比較例1の未収縮加工処理人工皮革の厚さ方向及びタテ方向に平行な断面の走査型電子顕微鏡写真であって、図6より倍率を大きくして示した写真である。 5%円形モジュラスの測定方法を説明するための概略図である。
本発明の伸縮性人工皮革は、極細繊維からなる繊維絡合体で構成された伸縮性人工皮革であって、見掛け密度を0.40g/cm3以上とするとともに、以下の式(1)で算出される伸び係数を50以下としたものである。本発明の伸縮性人工皮革は、高い見掛け密度と良好な伸び係数により、タテ方向に適度な伸縮性と伸び止まり感を有しつつ、機械的物性も良好なものとなる。
伸び係数=5%円形モジュラス(タテ)/厚さ ・・・(1)
また、本発明の伸縮性人工皮革は、例えば図4、5に示すように、その厚み方向とタテ方向に共に平行な断面において、極細繊維より構成されるミクロなうねり構造をタテ方向に沿って有することが好ましい。本発明では、このミクロなうねり構造により、見掛け密度が高いものであっても、伸び係数を上記のように高いものとすることができる。
詳しくは後述するが、本発明の伸縮性人工皮革は、人工皮革用基体、すなわち機械収縮加工する前の人工皮革をタテ方向に機械的に収縮させ、その収縮状態でヒートセットすることにより得られたものであることが好ましい。このような方法によれば、機械的収縮によりミクロなうねり構造がタテ方向に沿って形成され、ヒートセットによりそのミクロなうねり構造が保持される。
以下、本発明についてさらに詳細に説明する。
[極細繊維]
伸縮性人工皮革において繊維絡合体を構成する極細繊維の平均単繊維繊度は、好ましくは0.9デシテックス以下、さらに好ましくは0.0001〜0.9デシテックス、より好ましくは0.0001〜0.5デシテックス、特に好ましくは0.005〜0.3デシテックスである。平均単繊維繊度が0.0001デシテックス未満であると、伸縮性人工皮革の強度が低下することがある。また平均単繊維繊度が0.9デシテックスを越えると、伸縮性人工皮革の風合いが堅くなり、また、繊維の絡合が不十分になって、伸縮性人工皮革の表面品位が低下したり、耐摩耗性が低下したりする等の問題が生じることがある。
なお、本発明の効果を損なわない範囲で、単繊維繊度が0.0001デシテックス未満の繊維又は単繊維繊度が0.9デシテックスを越える繊維が限られた量含まれていてもよい。単繊維繊度が0.0001デシテックス未満の繊維および単繊維繊度が0.9デシテックスを越える繊維の含有量は、伸縮性人工皮革を構成する全繊維の30%以下(数基準)が好ましく、10%以下(数基準)がより好ましく、全く含まれないことがさらに好ましい。
また、極細繊維が、下記で詳述するように例えば極細化可能繊維から得られ、繊維束の状態で絡合されて繊維絡合体を形成する場合、極細繊維の繊維束の繊度は好ましくは1.0〜4.0デシテックスであり、1本の繊維束中の極細繊維の数は好ましくは9〜500本である。上記範囲内であると、人工皮革用基体やこれから得られるスエード調人工皮革の外観の均一性および発色性と耐磨耗性のバランスが良好である。
極細繊維は、短繊維でも長繊維でもよい。短繊維は高品位な表面を有する人工皮革を製造できる一方、長繊維は製造工程を単純化でき、また、機械的強度などの物性面を良好にできる点で好ましい。さらに、短繊維より長繊維のほうが、うなり構造を形成することにより、伸び係数をより良好にすることが可能である。また、非弾性長繊維を用いてタテ方向に伸縮性を有する人工皮革を製造することは一般に困難であるが、本発明によれば、非弾性長繊維を用いてもタテ方向に伸縮性を有する伸縮性人工皮革を得ることができる。
本発明において、長繊維とは、繊維長が通常3〜80mm程度である短繊維よりも長い繊維長を有する繊維であり、短繊維のように意図的に切断されていない繊維をいう。例えば、長繊維の繊維長は100mm以上が好ましく、技術的に製造可能であり、かつ、物理的に切れない限り、数m、数百m、数kmあるいはそれ以上の繊維長であってもよい。
極細繊維は、非弾性繊維であることが好ましい。具体的には、ポリエステル、ポリアミド、ポリプロピレン、ポリエチレン等からなる繊維が用いられる。これらの中では、後述するヒートセットによって、挫屈構造が保持されやすくなるため、ポリエステルが好ましい。また、ポリエーテルエステル系繊維やいわゆるスパンデックス等のポリウレタン系繊維などの弾性繊維は好ましくない。
ポリエステルとしては繊維化が可能なものであれば特に限定されるものではないが、具体的には、例えば、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリテトラメチレンテレフタレート、ポリシクロヘキシレンジメチレンテレフタレート、ポリエチレン−2,6−ナフタレンジカルボキシレ−ト、ポリエチレン−1,2−ビス(2−クロロフェノキシ)エタン−4,4’−ジカルボキシレート等が挙げられる。中でも最も汎用的に用いられているポリエチレンテレフタレートまたは主としてエチレンテレフタレート単位からなる変性ポリエステル(例えば、イソフタル酸変性ポリエチレンテレフタレート)が好適に使用される。
また、ポリアミドとしては、たとえばナイロン6、ナイロン66、ナイロン610、ナイロン12、等のアミド結合を有するポリマーを挙げることができる。
これらのポリマーには、隠蔽性を向上させるためにポリマー中に酸化チタン粒子等の無機粒子を添加してもよいし、潤滑剤、顔料、熱安定剤、紫外線吸収剤、導電剤、蓄熱材、抗菌剤等、種々目的に応じて添加することもできる。
[繊維絡合体]
本発明における繊維絡合体は、例えば、短繊維もしくは長繊維の極細繊維もしくは極細化可能繊維をウェブ化し、得られたウェブを絡合して絡合不織布とし、その後、極細化可能繊維の場合には極細化処理を行うなどの方法により形成される。
繊維絡合体を形成するための極細繊維もしくは極細化可能繊維は、短繊維の場合、カーディング、抄紙などの乾式法や湿式法によりウェブにするが、乾式法によりウェブにする方が高品位な表面を有する人工皮革を得ることができるので好ましい。
また、繊維絡合体を形成するための極細繊維もしくは極細化可能繊維は、長繊維の場合、スパンボンド法によってウェブにすることができ、連続フィラメントの状態で捕集されウェブを形成していれば、人工皮革とする後の工程において長繊維の一部が切断されていても良い。極細化可能長繊維を用いたウェブの場合、熱プレスして表面繊維を仮融着してもよい。仮融着するとウェブの形態が安定し後の工程での取り扱い性が向上する。
極細繊維もしくは極細化可能繊維からウェブ化したウェブの目付は、10〜100g/m2が好ましい。また、そのウェブは、例えばニードルパンチ、ウォータージェットなどの方法により絡合して絡合不織布とする。例えば、前記ウェブを、必要に応じてクロスラッパー等を用いて複数層重ね合わせた後、両面から同時または交互に少なくとも1つ以上のバーブが貫通する条件でニードルパンチする。パンチング密度は、200〜5000パンチ/cm2の範囲が好ましい。上記範囲内であると、充分な絡合が得られ、極細繊維もしくは極細化可能繊維のニードルによる損傷が少ない。該絡合処理により、極細繊維もしくは極細化可能繊維同士が三次元的に絡合し、極細繊維もしくは極細化可能繊維が極めて緻密に集合した絡合不織布が得られる。
ウェブにはその製造から絡合処理までのいずれかの段階で、針折れ防止油剤、帯電防止油剤、絡合向上油剤などのシリコーン系油剤または鉱物油系油剤を付与してもよい。必要に応じて、70〜100℃の温水に浸漬するなどの収縮処理によって、絡合不織布の絡合状態をより緻密にしてもよい。また、熱プレス処理を行うことで極細繊維もしくは極細化可能繊維同士をさらに緻密に集合させ、絡合不織布の形態を安定にしてもよい。絡合不織布の目付は100〜2000g/m2であるのが好ましい。
極細化可能繊維を使用する場合、極細化処理により極細化可能繊維を極細化して極細繊維束に変換し、該極細繊維束からなる繊維絡合体を形成する。この極細化処理は、極細化可能繊維のウェブを絡合して形成した絡合不織布に対して行われる。なお、極細化処理は、後述する高分子弾性体を含有しない絡合不織布に対して行ってもよいし、高分子弾性体含有不織布に対して行ってもよい。
極細化可能繊維は、少なくとも2種類のポリマーからなる多成分系複合繊維である。極細化可能繊維としては特に限定されないが、混合紡糸方式や複合紡糸方式などの方法を用いて得られる海島型繊維や多層積層型繊維等から適宜選択することができる。海島型繊維は海成分ポリマー中にこれとは異なる種類の島成分ポリマーが分散した断面を有する。極細化可能繊維は、絡合不織布に形成し、さらに必要であれば後述するように高分子弾性体を含有させた後に、ポリマーの一成分(除去成分)を抽出または分解して除去することで、残ったポリマー(繊維形成成分)からなる極細繊維が複数本集まった繊維束に変換されて極細化される。
極細化可能繊維は、海島型繊維の場合、海成分ポリマーを抽出または分解して除去することで、残った島成分ポリマーからなる極細繊維が複数本集まった繊維束に変換される。すなわち、海島型繊維の場合、島成分ポリマーにより極細繊維を形成する。そのため、島成分ポリマーとしては上記したポリエステル、ポリアミド、ポリプロピレン、ポリエチレン等を使用する。以下、極細化可能繊維として海島型繊維を用いた場合について説明するが、海島型繊維以外の極細化可能繊維を用いた場合も同様に本発明を実施することが出来る。
極細化可能繊維の極細化は、海成分ポリマーを溶解性または分解剤によって除去することにより、極細化可能繊維を極細繊維の繊維束に変換して行う。従って、海成分ポリマーは溶剤に対する溶解性または分解剤による分解性が島成分ポリマーよりも大きいことが必要である。海成分ポリマーを除去する方法としては、島成分ポリマーを溶解しないが海成分ポリマーを溶解する溶剤、又は、島成分ポリマーを分解しないが海成分ポリマーを分解する分解剤で、後述する高分子弾性体含有不織布を処理する方法が好ましい。
海成分ポリマーは、海島型繊維の紡糸安定性の点から島成分ポリマーとの親和性が小さく、かつ、紡糸条件において溶融粘度及び/又は表面張力が島成分ポリマーより小さいことが好ましい。このような条件を満たす限り海成分ポリマーは特に限定されず、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、エチレン−プロピレン共重合体、エチレン−酢酸ビニル共重合体、スチレン−エチレン共重合体、スチレン−アクリル共重合体、ポリビニルアルコール系樹脂などが好ましく用いられる。
島成分ポリマーがポリアミド系樹脂やポリエステル系樹脂である場合、海成分ポリマーがポリエチレンであればトルエン、トリクロロエチレン、テトラクロロエチレンなどの有機溶剤が、海成分ポリマーが水溶性熱可塑性ポリビニルアルコール(PVA)もしくは水溶性熱可塑性変性ポリビニルアルコール(変性PVA)であれば温水が、また、海成分ポリマーが易アルカリ分解性の変性ポリエステルであれば水酸化ナトリウム水溶液などのアルカリ性分解剤が使用される。海成分ポリマーの除去は人工皮革分野において従来採用されている方法、条件により行えばよく、特に制限されない。環境負荷が少ない方法が望まれる場合には、海成分ポリマーとして水溶性熱可塑性PVA、もしくは、エチレン変性PVA等の変性PVAを使用し、これを、有機溶媒を使用することなく85〜100℃の熱水中で100〜600秒間処理し、除去率が95質量%以上(100%を含む)になるまで抽出除去し、極細化可能繊維を島成分ポリマーからなる極細繊維の繊維束に変換するのが好ましい。
海島型繊維の平均繊度は1.0〜6.0デシテックスであるのが好ましい。海島型繊維の断面において、海成分ポリマーと島成分ポリマーの質量比は5/95〜70/30が好ましく、島数は5島以上であるのが好ましい。
[高分子弾性体]
本発明の伸縮性人工皮革において、繊維絡合体は、好ましくは高分子弾性体を含有しており、上記したミクロなうねり構造は、極細繊維と繊維絡合体に含有される高分子弾性体によって構成されることが好ましい。
高分子弾性体は、高分子弾性体付与処理により、繊維絡合体に含有される。高分子弾性体付与処理は、例えばウェブを絡合して形成した絡合不織布に高分子弾性体の水性分散液又は有機溶媒溶液を含浸し、固化させて行う。本発明では、極細繊維が長繊維である場合には、高分子弾性体の使用を省略し繊維絡合体が高分子弾性体を含有しなくても、容易にうねり構造を形成できる。また、高分子弾性体付与処理は、上記した繊維極細化処理の前に行っても良いし、後に行っても良い。
高分子弾性体としては、例えば、ポリウレタンエラストマー、ポリウレアエラストマー、ポリウレタン−ポリウレアエラストマー、ポリアクリル酸樹脂、アクリロニトリル−ブタジエンエラストマー、スチレン−ブタジエンエラストマーなどが挙げられるが、中でも、ポリウレタンエラストマー、ポリウレアエラストマー、ポリウレタン−ポリウレアエラストマーなどのポリウレタン系エラストマーが好ましい。例えば、ポリエステルジオール、ポリエーテルジオール、ポリエステルポリエーテルジオール、ポリラクトンジオール、ポリカーボネートジオールなどの平均分子量500〜3500のポリマージオールから選ばれた少なくとも1種を用いて得られるポリウレタン系エラストマーが好ましい。製品の耐久性の観点から、ポリカーボネートジオールを30重量%以上含むポリマージオールを用いて得られたポリウレタンがより好ましい。ポリカーボネートジオールが30重量%未満では、耐久性が低下することがある。
ポリカーボネートジオールとは、ジオール骨格がカーボネート結合を介して連結されて高分子鎖を形成し、その両末端に水酸基を有するものである。該ジオール骨格は、原料として用いるグリコールにより決定されるが、その種類は特に制限されることはなく、例えば、1,6−ヘキサンジオール、1,5−ペンタンジオール、ネオペンチルグリコール、3−メチル−1,5−ペンタンジオールを用いることができる。また、これらのグリコール群から選ばれた少なくとも2種以上のグリコールを原料として用いた共重合ポリカーボネートジオールは、特に柔軟性と外観に優れた人工皮革を得ることができるので好ましい。また、特に柔軟性に優れた人工皮革を得る場合は、耐久性を損なわない範囲でポリマージオール中にカーボネート結合以外の化学結合、例えば、エステル結合、エーテル結合などを導入することが好ましい。
かかる化学結合を導入する方法としては、ポリカーボネートジオールとそれ以外のポリマージオールをそれぞれ単独で重合し、これらを、ポリウレタン製造時に適当な比率で混合して用いる方法を採用することができる。
ポリウレタン系エラストマーはポリマージオール、有機ポリイソシアネ−ト、及び鎖伸長剤を、所定のモル比で反応させることにより得られる。反応条件は特に限定されず、従来公知の方法でポリウレタン系エラストマーを製造することができる。
ポリマージオールとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリ(メチルテトラメチレングリコール)などのポリエーテルポリオールおよびその共重合体;ポリブチレンアジペートジオール、ポリブチレンセバケートジオール、ポリヘキサメチレンアジペートジオール、ポリ(3−メチル−1,5−ペンチレンアジペート)ジオール、ポリ(3−メチル−1,5−ペンチレンセバケート)ジオール、ポリカプロラクトンジオールなどのポリエステルポリオールおよびその共重合体;ポリヘキサメチレンカーボネートジオール、ポリ(3−メチル−1,5−ペンチレンカーボネート)ジオール、ポリペンタメチレンカーボネートジオール、ポリテトラメチレンカーボネートジオールなどのポリカーボネートポリオールおよびその共重合体;ポリエステルカーボネートポリオール等が挙げられる。また、必要に応じて、3官能アルコールや4官能アルコールなどの多官能アルコール、又は、エチレングリコール等の短鎖アルコールを併用してもよい。これらは単独で用いても、2種以上を組み合わせて用いてもよい。特に、非晶性のポリカーボネートポリオール、脂環式ポリカーボネートポリオール、直鎖状ポリカーボネートポリオール共重合体、及び、ポリエーテルポリオール等が、柔軟性と充実感のバランスにより優れた人工皮革が得られる点から好ましい。
有機ポリイソシアネートとしては、例えば、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ノルボルネンジイソシアネート、4,4’−ジシクロヘキシルメタンジイソシアネート等の脂肪族あるいは脂環族ジイソシアネート等の無黄変型ジイソシアネート;2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、キシリレンジイソシアネートポリウレタン等の芳香族ジイソシアネート等が挙げられる。また、必要に応じて、3官能イソシアネートや4官能イソシアネートなどの多官能イソシアネートを併用してもよい。これらは単独で用いても、2種以上を組み合わせて用いてもよい。
これらの中では、4,4’−ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、キシリレンジイソシアネートが、機械的特性に優れることから好ましい。
鎖伸長剤としては、例えば、ヒドラジン、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、ノナメチレンジアミン、キシリレンジアミン、イソホロンジアミン、ピペラジンおよびその誘導体、アジピン酸ジヒドラジド、イソフタル酸ジヒドラジドなどのジアミン類;ジエチレントリアミンなどのトリアミン類;トリエチレンテトラミンなどのテトラミン類;エチレングリコール、プロピレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール、1,4−ビス(β−ヒドロキシエトキシ)ベンゼン、1,4−シクロヘキサンジオールなどのジオール類;トリメチロールプロパンなどのトリオール類;ペンタエリスリトールなどのペンタオール類;アミノエチルアルコール、アミノプロピルアルコールなどのアミノアルコール類等が挙げられる。これらは単独で用いても、2種以上を組み合わせて用いてもよい。
これらの中では、ヒドラジン、ピペラジン、エチレンジアミン、ヘキサメチレンジアミン、イソホロンジアミンおよびその誘導体、ジエチレントリアミンなどのトリアミンの中から2種以上組み合わせて用いることが、力学性能の点から好ましい。また、鎖伸長反応時に、鎖伸長剤とともに、エチルアミン、プロピルアミン、ブチルアミンなどのモノアミン類;4−アミノブタン酸、6−アミノヘキサン酸などのカルボキシル基含有モノアミン化合物;メタノール、エタノール、プロパノール、ブタノールなどのモノオール類を併用してもよい。
高分子弾性体は水溶液、水分散体、又は有機溶媒溶液(例えば、ジメチルホルムアミド、メチルエチルケトン、アセトン、トルエンなどの有機溶媒の溶液)として絡合不織布に含浸させる。含浸させる方法は特に制限されないが、例えば、浸漬などにより絡合不織布内部に均一に含浸する方法、表面と裏面に塗布する方法などが挙げられる。含浸させた高分子弾性体の水溶液、水分散体、又は有機溶媒溶液は、人工皮革製造に従来採用されている条件及び方法(例えば、湿式法又は乾式法)により凝固させればよい。
高分子弾性体の水溶液、水分散体(例えば、水系エマルジョン)、又は有機溶媒溶液の濃度は5〜50重量%であるのが好ましい。
高分子弾性体は水分散体として絡合不織布に含浸させることが好ましく、これにより、繊維絡合体に高分子弾性体の水系エマルジョンの固化物を含有させることになる。本発明では、繊維絡合体に水系エマルジョンの固化物を含有させることにより、後述する機械的収縮処理とヒートセット処理により、うねり構造を形成・保持しやすくすることができる。また、例えば、極細繊維としてヒートセットしにくいポリアミドを使用した場合等には、高分子弾性体を有機溶媒溶液として絡合不織布に含浸させると、機械的収縮及びヒートセット処理によりうねり構造を形成・保持しにくいため好ましくない。
高分子弾性体の付与量は、繊維長(短繊維又は長繊維)、付与方法(水溶液、水分散体、有機溶媒溶液)により異なるが、製品の柔軟性、表面タッチ、染色均一性などから、固形分として極細繊維重量の5〜70重量%の範囲が好ましい。特に、短繊維を使用し、高分子弾性体の有機溶媒溶液を用いて付与する場合には、固形分として極細繊維重量の10〜70重量%が好ましい。付与量が10重量%未満では、耐摩耗性が低下しやすく、付与量が70重量%を越えると風合が硬くなりやすいので好ましくない。
高分子弾性体中に必要に応じて着色剤、酸化防止剤、制電防止剤、分散剤、柔軟剤、凝固調整剤などの添加剤を配合してもよい。
[銀面・立毛加工]
本発明の伸縮性人工皮革は、少なくとも一方の表面に銀面を備えるか、又は、立毛処理により少なくとも一方の表面を立毛表面にして、銀付調人工皮革、半銀付調人工皮革、立毛調人工皮革、又はヌバック調人工皮革とすることが好ましい。銀面層を設ける方法及び立毛処理する方法は、従来人工皮革の製造に用いられている方法を採用すれば良く、本発明では特に限定されない。例えば、離型紙上に形成した銀面層となる層と接着層を人工皮革用基体の少なくとも一方の表面に接着層を介して接着する乾式造面法、人工皮革用基体の少なくとも一方の表面に銀面層となる高分子弾性体の分散液又は溶液を塗布し、乾燥凝固させる方法などにより銀面層を形成することが出来る。また、人工皮革用基体の少なくとも一方の表面を針布、サンドペーパーなどで起毛し、次いで、整毛処理する方法などにより立毛表面を形成することができる。
[人工皮革用基体]
上記したように、本発明の人工皮革用基体、すなわち熱収縮処理前の人工皮革は、好ましくは、短繊維又は長繊維の極細繊維もしくは極細化可能繊維をウェブ化し、得られたウェブを絡合して絡合不織布とし、その後、必要に応じて高分子弾性体付与処理、極細化処理、銀面・立毛加工を行うことにより得られたものである。
人工皮革用基体の見掛け密度は0.35〜0.80g/cm3であるのが好ましく、0.40〜0.70g/cm3であるのがより好ましい。熱収縮処理前の人工皮革の見掛け密度をこれら範囲にすることにより、人工皮革用基体の繊維絡合体中の空隙が少なくなり、後述する熱収縮処理でうねり構造を形成しやすくなるとともに、加工性も良好にすることができる。また、目付は130〜1600g/m2であるのが好ましく、150〜1400g/m2であるのがより好ましく、厚さは0.2〜2.0mmであるのが好ましい。
[伸縮性人工皮革の見掛け密度・目付]
本発明の伸縮性人工皮革の見掛け密度は、0.40g/cm3以上であることを特徴とする。見掛け密度を0.40g/cm3以上とすることにより、繊維絡合体の繊維構造が緻密となり、厚さを低減しても引裂強力、剥離強力等の各種機械的強度が良好になる。また、伸縮性人工皮革に、適度な伸び止まり感を持たせることが可能になるとともに、人工皮革内部の空隙が少なくなり、機械的収縮処理によって容易にうねり構造を形成できる。見掛け密度は、好ましくは0.45g/cm3以上、さらに好ましくは0.50g/cm3以上である。また、好ましくは0.80g/cm3以下であり、より好ましくは0.70g/cm3以下、さらに好ましくは0.65g/cm3以下である。見掛け密度を0.80g/cm3以下とすることにより、種々の用途への加工性を良好にすることができる。
伸縮性人工皮革の目付は、好ましくは150g/m2以上であり、より好ましくは200g/m2以上、さらに好ましくは250g/m2以上である。また、好ましくは1500g/m2以下であり、より好ましくは1200g/m2以下、さらに好ましくは1000g/m2以下である。伸縮性人工皮革の目付が150g/m2以上にすることにより、良好な反発感が得られやすくなるため好ましい。また伸縮性人工皮革の目付が1500g/m2以下の場合、種々の用途への加工性が良好になる傾向にあり好ましい。また、厚さは用途に応じて選ばれるが、人工皮革としての強度と柔軟性を十分に確保できる範囲ならば良く、例えば0.3mm以上、好ましく0.35〜1.5mm程度である。伸縮性人工皮革は、機械的収縮処理・ヒートセット処理が施される場合、その見掛け密度、目付それぞれが、人工皮革用基体、すなわち機械的収縮処理前の人工皮革の見掛け密度、目付よりも大きくなる。
[伸縮性人工皮革の伸び係数及び伸び止まり感]
本発明の伸縮性人工皮革は、上記したように、タテ方向における5%円形モジュラスを厚さで除すことにより得られる伸び係数を50以下とすることを特徴とする。5%円形モジュラスは、低伸長時における伸長率を表す指標であり、伸縮性人工皮革の伸び特性を表すものであるが、厚さが大きくなると大きくなり、厚さが小さくなると小さくなるものである。すなわち、5%円形モジュラスは、同じ構造の繊維絡合体から成る人工皮革であっても、厚さが変化することにより変化するものである。それに対して、本発明における伸び係数は、5%円形モジュラスを厚さで除すことにより、厚さのファクターが無くなっており、厚さによらない伸縮性人工皮革の繊維構造そのものに起因する伸び特性を示すものである。
本発明の伸縮性人工皮革は、上記したように高見掛け密度により機械的強度が良好であるにもかかわらず、伸び係数が上記範囲となることにより低伸長時の伸長性も良好になる。伸び係数は好ましくは5〜40であり、より好ましくは10〜25である。伸び係数をこれら範囲とすることにより、低伸長時の伸長性をより良好にしつつ伸縮性人工皮革の機械的強度もより良好にすることができる。本発明の伸縮性人工皮革は、上記したよう一定値以上の厚さを有しながらも、伸び係数を50以下とすることにより、5%円形モジュラスを例えば40N以下、好ましくは10〜30Nとすることが可能になる。このように、本発明の伸縮性人工皮革は、人工皮革としての強度を十分に確保できる厚さを有しつつも、低伸長時の伸長性も良好になる。
本発明の伸縮性人工皮革は、上記したように5%円形モジュラスの値が良好となり、適度な伸長性を有するので、着用感や製品への加工性が良好になるものである。また、見掛け密度が高い一方で伸び係数が低いことにより、適度な伸び止まり感を持つことが可能なる。本発明の伸縮性人工皮革は、伸び止まり感を有するので着崩れ、型崩れ等を防止することができる。
伸び止まり感は、下記で詳述する方法で作成したタテ方向の荷重伸び曲線(縦軸:荷重、横軸:伸度)により評価することができる。伸び止まり感とは、全く伸びないことを意味するのではなく、伸度が一定値を超えたときに伸びに対する抵抗が著しく大きくなり、更に伸長することが容易ではなくなることを意味し、伸長する際の荷重変化に影響される。本発明では伸び止まり感をタテ方向の荷重伸び曲線(図3参照)における30%伸長時の荷重と5%伸長時の荷重の比(30%伸長時の荷重/5%伸長時の荷重)で表す。5%伸長時の荷重は縫製性、加工性、着用感に大きく影響する。人工皮革を30%を超えて伸長した場合、通常人工皮革を構成する不織布の構造は大きく変化してしまい、このような人工皮革は本発明が意図する着崩れ、型崩れ防止効果を示すことができない。この理由で30%伸長時の荷重を採用した。本発明の伸縮性人工皮革の上記荷重比は5以上であることが好ましく、5〜40であることがより好ましく、特に8〜40であることが好ましい。上記範囲内であるとタテ方向の伸長に対する伸び止まり感があり、着用による型崩れが少なく、着用感や種々の用途への加工性がよい。
なお、この荷重伸び曲線は、5%円形モジュラスと同様に、タテ方向伸長性も評価可能である。例えば、本発明の伸縮性人工皮革は、荷重40N/cmで10〜40%の伸長率((伸長した長さ/伸長前の長さ)×100)を示すことが好ましい。
[うねり構造]
本発明の伸縮性人工皮革におけるミクロなうねり構造は、人工皮革用基体をタテ方向(製造ラインのMD)に機械的に収縮させ、この収縮状態をヒートセットすることにより、極細繊維により構成される繊維絡合体、あるいは、繊維絡合体と該繊維絡合体に含有される高分子弾性体をタテ方向に沿って挫屈させて成形したものである。収縮性人工皮革は、ミクロなうねり構造(挫屈構造)により、見かけ密度を高くしつつ上記範囲の伸び係数を有することとなり、適度な伸縮性と伸び止まり感を持つことが可能になる。さらに、伸縮性人工皮革は、柔軟な風合いと緻密な折り曲げ皺を持つことも可能になる。うねり構造は連続している必要はなく、タテ方向に不連続であっても良い。
本発明においてミクロなうねり構造は、タテ方向1mm中に存在するピッチ数が2.2個以上であり、平均高さ(山と谷の高さ差)は50〜350μm、平均ピッチは450μm以下であるものである。なお、ここで平均ピッチとは、うねり構造の1ピッチ(谷と次の山の間、山と次の谷の間)の距離の平均をいい、ピッチ数とは、1mm中に存在するピッチの数をいう。本発明の伸縮性人工皮革は、繊維自体の伸長性ではなく、このようなうねり構造の変化(伸長)により、タテ方向における伸び係数を低い値とすることが可能になる。
上記ピッチ数は好ましくは2.2〜6.7個、より好ましくは2.5〜5.0個である。また、上記平均ピッチは150〜450μmであることが好ましく、200〜400μmであることがより好ましい。ピッチ数を上記範囲とすることにより、より高い伸び止まり感が得られ、着用による型崩れが起こりにくくなるとともに、タテ方向の伸びが良好となり、着用感や成形性がより良好になる。
また、上記平均高さは、100〜300μmであることがより好ましい。平均高さを100〜300μmとすることにより、タテ方向の伸びや伸び止まり感をより良好にすることができると同時に表面の凹凸が抑制され、平滑性や外観に優れた人工皮革用基体を得ることが可能となる。
本発明の人工皮革用基体は、タテ方向に機械的に収縮される際、ヨコ方向にはタテ方向よりも小さく収縮され、或いは実質的に収縮されない。そのため、ヨコ方向に沿うミクロなうねり構造は、厚み方向とヨコ方向に共に平行な断面において形成されない。あるいは、形成されたとしても、厚み方向とヨコ方向に共に平行な断面におけるうねり構造のうねり量は、厚み方向とタテ方向に共に平行な断面におけるうねり構造のうねり量よりも小さくなる。すなわち、伸縮性人工皮革のタテ方向に沿ううねり構造のピッチ数(1mmあたり)、及び平均高さそれぞれは、ヨコ方向に沿ううねり構造のピッチ数(1mmあたり)、及び平均高さそれぞれよりも大きくなる。
[うねり構造の形成]
タテ方向に沿うミクロなうねり構造は、人工皮革用基体をタテ方向に機械的に収縮して、その収縮状態でヒートセットすることにより得られるものである。
本発明の機械的収縮処理の具体例の一つとして、人工皮革用基体を厚さが数cm以上の厚い弾性体シート(ゴムシート、フェルトなど)のタテ方向に伸長した表面に密着させ、該表面が伸長状態から伸長前の状態に弾性回復させることによって、該人工皮革用基体をタテ方向に収縮させる方法が挙げられる。
図1は、この方法により人工皮革用基体を収縮処理する装置の一例を表す概略図である。厚い弾性体シートからなるベルト3はプレッシャーローラ4(表面の材質:金属製)の表面に接しながら進行する。この間に、ベルト3の外表面はベルトの内外周差によりタテ方向に伸長される。ターンローラ5a、5bより送られてきた人工皮革用基体1をベルト3の伸長した外表面に密着させる。ベルト3とこれに密着した人工皮革用基体1はプレッシャーローラ4とドラム2(表面の材質:金属製)の間隙を通過し、ドラム2の表面に接しながら走行する。この間隙を通過後、ベルト3の人工皮革用基体1側の表面はタテ方向の伸長状態から伸長前の状態に弾性回復することによって進行方向(タテ方向)に追い込まれるように収縮する。
ベルト3の伸長状態から弾性回復状態への変化に対応して人工皮革用基体1は進行方向(タテ方向)に追い込まれるように収縮され、その後、収縮した人工皮革用基体6として引き取られていく。内外周差を利用して弾性シートの外表面を後述する範囲の伸長率で伸長させるためにはプレッシャーローラ4の外径は10〜50cmであることが好ましい。また、弾性シートの外表面の伸長状態を緩和し、伸長前の状態に弾性回復させることで、弾性シートをタテ方向(進行方向)に収縮させるのと同時に人工皮革用基体を後述する範囲の収縮率でタテ方向(進行方向)に収縮させるためには、ドラム2の外径はプレッシャーローラ4の外径よりも大きく、20〜80cmであることが好ましい。ドラム2の径はヒートセット時間を長くし、ヒートセットを効率よく行うためには大きいほど好ましいが、弾性体ベルトの内外収差を利用した収縮率を後述する範囲に設定するためには小さい方がよいので、ドラム2とローラ4の外径はこれらを考慮して決められる。通常は、ヒートセット時間を優先して決めるのが好ましい。プレッシャーローラ4は直接加熱せず、収縮加工前の原反(人工皮革用基体)を予熱する方法が一般的であるが、定常運転状態になったときのローラ4の表面温度は40〜90℃程度であるのが好ましく、ドラム2の表面温度は70〜150℃に加熱されていることが好ましい。
ベルト3はゴムまたはフェルトなどの厚いベルトが好ましく、厚さは通常20mm以上である。また、図1のターンローラ5a、5bによる人工皮革用基体1の搬送速度をベルト3の搬送速度より高くすると、人工皮革用基体1がベルト3の表面上でタテ方向に折り畳まれ、この折り畳まれた人工皮革用基体1が厚いベルト3の表面の伸長状態から弾性回復状態への変化により収縮されるので、人工皮革用基体1の収縮効果を増大することができる。
他の機械的収縮処理方法として、加圧ローラ間でニップして変形させて、弾性体シートが伸長状態から弾性回復する作用を利用して人工皮革用基体をタテ方向(進行方向)に収縮させる方法もある。
図2はこの方法により人工皮革用基体を収縮処理する装置の一例を表す概略図である。金属ローラ11と肉厚ゴム部12を有するゴムローラ13の表面に沿って弾性体シート製のベルト3が循環走行している。ベルト3の外表面はゴムローラ13の表面を走行する際に内外周差によりタテ方向に伸長する。ベルト3の伸長した外表面に人工皮革用基体1を供給する。ベルト3と人工皮革用基体1は金属ローラ11とゴムローラ13のニップ部へ導かれる。ニップの圧力で肉厚ゴム部12はゴムローラ13の中心方向に変形される。この変形によりベルト3は伸長状態から元の状態に弾性回復し、これに伴って人工皮革用基体1は圧縮下でタテ方向(進行方向)に収縮する。収縮した人工皮革用基体14は加熱されている金属ローラ11の表面に沿って走行し、この間に熱処理されて引き取られる。金属ローラ11の表面温度は70〜150℃であることが好ましい。ゴムローラ13は直接加熱せず、収縮加工前の原反(人工皮革用基体)を予熱する方法が一般的であるが、定常運転状態になったときのゴムローラ13の表面温度は40〜90℃であることが好ましい。
上記機械的収縮処理を利用してうねり構造を形成する方法は、弾性体シートの表面をタテ方向に伸長させながら人工皮革用基体を該表面に接着剤などの接着手段を用いることなく密着させ、次いで、伸長状態を緩和させて該弾性体シート表面を伸長前の状態に弾性回復させると共に人工皮革用基体を進行方向(タテ方向)に追い込むように収縮させることを特徴とする。人工皮革用基体を密着させる際の弾性シート表面の伸長率((伸長した長さ/伸長前の長さ)×100)は5〜40%、好ましくは7〜25%、より好ましくは10〜20%である。5%以上であれば、タテ方向にほとんど伸長しない人工皮革用基体を密着させた場合であっても、本方法によりうねり構造を形成して、伸長性や伸び止まり感を良好なものとすることができる。例えば、目付250g/m2以下の短繊維からなる人工皮革用基体は、その製造工程でかかる張力によって伸びが生じ、その結果、タテ方向に伸長し難い。しかし、本方法によれば、短繊維を用いた場合であっても、うねり構造により、容易にタテ方向に伸長する伸縮性人工皮革を得ることができる。また、スパンボンド法によるウェブを用いた場合、一般にタテ方向にフィラメントが並び、タテ方向に伸長し難い人工皮革用基体が得られるが、本方法によれば、うねり構造により、タテ方向に伸長する伸縮性人工皮革を得ることができる。
収縮処理は好ましくは70〜150℃、より好ましくは90〜130℃で行い、好ましくは2〜20%の収縮率、より好ましくは4〜15%の収縮率で人工皮革用基体をタテ方向に収縮させる。
収縮率=[(収縮前の長さ)−(収縮後の長さ)]/収縮前の長さ×100
機械的収縮処理で用いられる弾性体シートは、上述の弾性特性を有するシート状物であればよく、特に限定されないが、天然ゴムまたは合成ゴムのシートを用いるのが好ましい。天然ゴムまたは合成ゴムの弾性シートを用いれば、特に、弾性回復力が高いので、密着した人工皮革用基体と共に収縮する際、人工皮革用基体の抵抗力に逆らってなお充分に人工皮革用基体を収縮させる効果を得ることができる。また、収縮処理時における、加熱、加圧による人工皮革用基体表面の構造変化を防止するためには、弾性体シートのテンションを低くコントロールするとともに、硬度の低い弾性体シートを用いることが好ましい。
弾性体シートの厚さは20〜100mmであるのが好ましく、30〜70mmであるのがより好ましい。上記範囲内であると、内外周差を利用して弾性体シートをタテ方向に効果的に伸長、収縮させることができる。
天然ゴムとしては、ヘベア樹などの樹皮から採取されるシス−1,4−ポリイソプレンを主成分とするゴムなどを用いることができる。
合成ゴムとしては、スチレン−ブタジエンゴム、ブタジエンゴム、イソプレンゴム、ブチルゴム、エチレンプロピレンゴム、クロロプレンゴム、ニトリルゴム、シリコーンゴム、アクリルゴム、エピクロルヒドリンゴム、フッ素ゴム、ウレタンゴム、エチレン−酢酸ビニルゴム、塩素化ポリエチレンゴムなどを用いることができる。
本方法においては、弾性体シートから人工皮革用基体を引き離す前に加熱により人工皮革用基体の収縮状態をヒートセットするため、弾性体シートは耐熱性に優れていることが好ましく、耐熱性を有するシリコーンゴム、フッ素ゴムまたはエチレンプロピレンゴムが好ましい。
本方法においては、人工皮革用基体をタテ方向に収縮させた後、弾性体シートから引き離す前に該人工皮革用基体を加熱し、収縮状態をヒートセットする。これにより適切なうねり構造を形成し、伸縮性を高めた伸縮性人工皮革を得ることができる。該ヒートセットのための加熱温度は、人工皮革用基体に含まれる繊維が製造工程で受けた熱履歴を考慮して100〜150℃の範囲から選択するのがよい。例えば、液流染色機などで湿熱120℃処理した人工皮革用基体の場合には、ヒートセットのための温度は、湿熱処理の場合は120℃以上、乾熱処理の場合は140℃以上が好ましい。ヒートセットの処理時間は、人工皮革用基体に含まれる繊維のポリマー種およびヒートセット温度によって異なり、通常0.1〜5分の範囲から選ばれる。例えばポリエチレンテレフタレート繊維の場合、1〜3分であるのがヒートセット、加工安定性の点で好ましい。一度のヒートセットで不十分な場合は、弾性体シートから人工皮革用基体を引き離した後に、再度ヒートセットすることが好ましい。
ヒートセットする方法は熱風を人工皮革用基体に吹き付けて加熱する方法、赤外線ヒーターを用いて加熱する方法、加熱シリンダーと弾性体シートもしくは不織布シートの間に挟んで熱処理する方法など公知の方法を用いることができるが、低テンションで処理可能な点から、加熱シリンダーとシートの間に挟んで熱処理して、加熱シリンダーのアイロン効果を利用する方法が好ましく用いられる。ヒートセットされた人工皮革用基体は通常2〜15m/分の速度で引き取られる。
本方法では効果的にうねり構造を形成するためには、人工皮革用基体を弾性体シートに密着させる前に、人工皮革用基体を軟化させるための予熱処理及び/又は加湿処理をすることが好ましい。
予熱処理する方法としては、スチーム又は水を吹き付けて加湿しながら加熱する方法、熱風を人工皮革用基体に吹き付けて加熱する方法、赤外線ヒーターを用いて加熱する方法など公知の加熱方法を用いることができる。使用する人工皮革用基体により予熱処理の最適条件が異なるが、予熱温度は40〜100℃が好ましい。収縮処理時に人工皮革用基体が過度に昇温することを防止するためには、スチーム又は水をスプレーして加湿処理することにより人工皮革用基体に水分を付与しておくことが好ましい。水分付与量は人工皮革用基体の極細繊維の量に対して1〜5重量%が好ましい。これにより、人工皮革用基体の温度を100℃以下に容易にコントロールすることが出来る。また、100℃以上に人工皮革用基体を昇温して収縮処理を効果的に行いたい場合には、熱風もしくは赤外線ヒーターを用いることが好ましい。予熱処理と加湿処理は組み合わせてもよい。
本発明では人工皮革用基体を進行方向(タテ方向)に追い込むように収縮させるので、得られる伸縮性人工皮革は、上記したようにミクロな挫屈構造(うねり構造)を有している。また、本発明では、人工皮革が高密度でかつ極細繊維からなる不織布構造を有しているので、ミクロなうねり構造は形成され易い。
なお、本発明においてタテ方向は人工皮革製造ラインの流れ方向(MD)であり、これと直交する方向がヨコ方向である。製品中の人工皮革のタテ方向は、一般に極細繊維の繊維束の配向方向、ニードルパンチや高速流体処理等によるスジ跡や処理跡等の複数の要素から決定することができる。これらの複数の要素により決定したタテ方向が異なる、明確な配向がない、またはスジ跡などがない等の理由でタテ方向を決定することができない場合には、引張強力が最大となる方向をタテ方向、それと直交する方向をヨコ方向とする。
[その他の添加剤]
本発明の伸縮性人工皮革には、本発明の効果を逸脱しない範囲において、上述した添加剤以外に、他の染料、柔軟剤、風合い調整剤、ピリング防止剤、抗菌剤、消臭剤、撥水剤、耐光剤、耐侯剤等の機能性薬剤が含まれていても良い。
以上のように、本発明の伸縮性人工皮革は、見掛け密度を良好にしつつも、伸び係数が低いものであったため、人工皮革として適切な厚みを有するものであっても、機械的強度を十分に持たせつつ、低伸長時におけるタテ方向伸長性を良好にすることができる。また、低い伸び係数と高い見掛け密度により、しなやかで柔軟であり充実感がある風合いを有する人工皮革を得ることができる。そのため、本発明の伸縮性人工皮革は、衣料や家具、カーシート、雑貨等の幅広い用途に好適に使用することができる。また、本発明の伸縮性人工皮革は、ミクロなうねり構造により、見掛け密度を良好にしつつも、伸び係数を低く抑えたものとすることが可能になる。
以下、本発明を実施例で詳細に説明するが、本発明は以下の実施例に限定されるものではない。実施例中の各物性値は下記の方法により測定した。
(1)目付、見掛け密度
目付はJIS L 1096 8.4.2(1999)に記載された方法で測定した。また、厚みをダイヤルシックネスゲージ((株)尾崎製作所製、商品名“ピーコックH”)により測定し、目付の値を厚みの値で割って見掛け密度を求めた。
(2)伸び止まり感
JIS L 1096(1999)8.14.1 A法記載された方法で測定した。幅2.5cmの試験片をつかみ間隔20cmのチャックに固定し、一定速度で試験片を引っ張り、伸びと荷重を求めた。その結果から、横軸が伸長率(%)、縦軸が試験片2.5cm幅あたりの荷重(Kg/2.5cm)である荷重伸び曲線を作成した。この曲線から、30%伸長時の荷重と、5%伸長時の荷重を求め、その比(30%伸長時/5%伸長時)を求めた。3回測定し、その平均値を小数点以下1けたに丸めた。伸び止まり感が良好である場合(前記比が8以上)を“A”とし、伸び止まり感がやや良い場合(前記比が5以上8未満)を“B”とし、それ以外を“C”として評価した。
(3)伸長率
前記荷重伸び曲線から荷重40N/cmのときのタテ方向伸長率を求めた。
(4)平均単繊維繊度
光学顕微鏡にてランダムに選んだ100個の繊維の断面積を測定し、その数平均を求めた。繊維断面積の平均値と繊維の比重から、繊度を計算により求めた。なお、繊維の比重はJIS L 1015 8.14.2(1999)に基づいて測定した。
(5)5%円形モジュラス(N)
図8に示すように、300mmφの円形試験片1片にタテ方向に延びる直線上中央部に200mm間の標点をタテ方向に記し、インストロン型引張試験機でつかみ間隔200mm、引張速度200mm/分で5%伸長時のモジュラスを測定するものである。
(6)うねり構造評価
伸縮性人工皮革の厚み方向とタテ方向に共に平行な断面を走査型電子顕微鏡で撮影し、厚さ方向の任意の位置におけるタテ方向に沿う5.0mmにおいて、うねり構造のピッチ(すなわち、谷から次の山、および山から次の谷)を数えていき、その平均を求めて1mm中に存在するピッチ数とした。また、上記5.0mm中に見られたうねり構造において、隣接する山と谷の高さ差それぞれの平均を求めてうねり構造の平均高さとするとともに、ピッチのタテ方向に沿う平均長さを平均ピッチとした。なお、隣接する山と谷の高さ差は、厚さ方向に沿う山と谷の高さ差を求めた。
実施例1
水溶性熱可塑性のエチレン変性ポリビニルアルコール(変性PVA、海成分、変性度10モル%)と、変性度6モル%のイソフタル酸変性ポリエチレンテレフタレ−ト(変性PET、島成分)を、海成分/島成分が25/75(質量比)となるように260℃で溶融複合紡糸用口金(島数:25島/繊維)より吐出した。紡糸速度が3700m/minとなるようにエジェクター圧力を調整し、平均繊度が2.1デシテックスの海島型長繊維をネット上に捕集した。ついで、表面温度42℃の金属ロールでネット上の海島型長繊維からなるシートを軽く押さえ、表面の毛羽立ちを抑えてネットから剥離し、表面温度75℃の金属ロール(格子柄)とバックロール間で熱プレスして表面繊維が格子状に仮融着した目付34g/m2の長繊維ウェブを得た。
上記長繊維ウェブに油剤および帯電防止剤を付与し、クロスラッピングにより14枚重ねて総目付が480g/m2の重ね合わせウェブを作製し、更に針折れ防止油剤をスプレーした。次いで、針先端から第1バーブまでの距離が3.2mmの6バーブ針を用い、針深度8.3mmにて両面から交互に3300パンチ/cm2でニードルパンチした。このニードルパンチ処理による面積収縮率は68%であり、ニードルパンチ後の絡合不織布の目付は580g/m2であった。
上記絡合不織布に対して10質量%の量の水を付与して、相対湿度95%、70℃の雰囲気下で、熱処理により収縮を生じさせ、不織布の見かけの密度を向上させ、緻密化された不織布を得た。この緻密化処理による面積収縮率は45%であり、また該不織布の目付は1050g/m2、見かけ密度は0.52g/cm3であった。ついで該緻密化不織布を乾熱ロールプレスし、水系ポリウレタンエマルジョンを含浸付与し、150℃で乾燥およびキュアリングを施し、高分子弾性体含有不織布シートを得た。ついで、95℃の熱水中でPVAを溶解除去し、樹脂繊維比率R/F=12/88の人工皮革用基体を得た。
得られた人工皮革用基体を主表面に平行にスライスして2分割し、分割面をサンドペーパーでバフィング処理して厚みを均一にした(厚み:0.75mm)。次いで、表面(分割面の反対面)をサンドペーパーで起毛および整毛処理した。次いで、液流染色機を用いて分散染料で染色加工及び乾燥した後、ブラッシングによる整毛仕上げをして、人工皮革用基体を立毛調人工皮革とした(厚さ0.8mm、目付377/m2、見掛け密度0.471g/cm3)。この立毛調人工皮革のタテ方向の荷重伸び曲線を図3に、厚さ方向及びタテ方向に平行な断面の走査型電子顕微鏡写真を図6、7に示した。
上記立毛調人工皮革(人工皮革用基体)を、加湿部と、加湿部から連続的に送られてくる人工皮革用基体を収縮加工する収縮部と、この収縮部で収縮加工された布帛をヒートセットするヒートセット部とを備えた、収縮加工装置(小松原鉄工株式会社製、サンフォライジング機)を用いて、収縮部のドラム温度120℃、ヒートセット部のドラム温度120℃、搬送速度10m/分で処理してタテ方向(長さ方向)に9.2%収縮させ伸縮性人工皮革を得た。伸縮性人工皮革のタテ方向の荷重伸び曲線を図3に、厚さ方向及びタテ方向に平行な断面の走査型電子顕微鏡写真を図4、5に示した。
実施例2
島成分が変性度6モル%のイソフタル酸変性ポリエチレンテレフタレ−ト、海成分がポリエチレンの海島型複合繊維ステープル(島成分:海成分=60:40(質量比);繊度4.0デシテックス;繊維長51mm;捲縮数12クリンプ/inch)をカード、クロスラッピングしてウェブを作成した。
該ウェブを1200パンチ/cm2のニードルパンチを行って絡合処理し、次いで、90℃の熱水中で収縮させることにより、目付750g/m2の絡合不織布を得た。
得られた絡合不織布にポリエーテル系ポリウレタンの15%ジメチルホルムアミド(DMF)溶液を含浸した後、DMFと水の混合液浴中に浸漬してポリウレタンを湿式凝固した。残存するDMFを水洗除去した後、85℃のトルエン浴中で海成分のポリエチレンを抽出除去し、100℃の熱水浴中で残存するトルエンを共沸除去し、乾燥することにより、目付675g/m2、厚み1.5mmの人工皮革用基体を得た。
得られた人工皮革用基体の表面を180番のサンドペーパーにより2回バフィングして、表面を平滑にしつつ厚みを0.65mmとした。次いで、表面を240番のサンドペーパーで2回および400番のサンドペーパーで2回順次バフィングしてポリエチレンテレフタレート極細繊維からなる立毛面を形成した立毛調人工皮革とした。
次いで、液流染色機を用いて分散染料で染色及び乾燥した後、ブラッシングによる整毛仕上げをして染色立毛調人工皮革とした(厚さ0.65mm、目付304/m2、見掛け密度0.468g/cm3)。
上記染色立毛調人工皮革(人工皮革用基体)を実施例1と同様に収縮加工装置を用いて処理し、タテ方向に3%収縮させ、伸縮性人工皮革を得た。
実施例3
海成分ポリマーであるPVAと島成分ポリマーである変性度6モル%のイソフタル酸変性ポリエチレンテレフタレ−トとを、海成分/島成分が25/75(質量比)となるように260℃の溶融複合紡糸用口金(島数:25島/繊維)から吐出した。そして、紡糸速度が3700m/分となるようにエジェクター圧力を調整し、平均繊度2.1デシテックスの海島型繊維をネット上に堆積したスパンボンドシートを得た。次に、表面温度42℃の金属ロールでネット上のスパンボンドシートを軽く押さえることにより表面の毛羽立ちを抑えた。そしてスパンボンドシートをネットから剥離した。次に、表面温度55℃の格子柄の金属ロールとバックロールとの間でスパンボンドシートを熱プレスすることにより、表層の海島型繊維が格子状に仮融着された目付28g/m2の長繊維ウェブを得た。
上記長繊維ウェブに油剤および帯電防止剤を付与し、クロスラッピングにより8枚重ねて総目付が218g/m2の重ね合わせウェブを作製し、さらに針折れ防止油剤をスプレーした。そして、針先端から第1バーブまでの距離が3.2mmの6バーブ針を用い、重ね合わせウェブを針深度8.3mmで両面から交互に3300パンチ/cm2でニードルパンチすることにより絡合不織布を得た。なお、ニードルパンチ処理による面積収縮率は68%であった。また、得られた絡合不織布の目付は311g/m2であった。
次に、絡合不織布を70℃の熱水中に28秒間浸漬することによる収縮処理を行った。そして、95℃の熱水中でディップニップ処理を繰り返すことにより海成分ポリマーである変性PVAを溶解除去した。変性PVAを溶解除去することにより、平均繊度0.09デシテックスの25本の極細繊維からなる繊維束が3次元的に交絡した極細化不織布を得た。なお、収縮処理による面積収縮率は52%であった。また、極細化不織布の目付は446g/m2、見掛け密度は0.602g/cm3であった。
次に、バフィングにより極細化不織布の厚みを0.9mmに調整した。そして、得られた極細化不織布に対して、固形分濃度60質量%の水系アクリルエマルジョン300質量部、及び顔料90質量部を含む分散液を、パッターを用いて、ライン速度 6m/分で2回のディップニップにより含浸させた。なお、水系エマルジョン中の、アクリル樹脂の固形分濃度は180g/Lであり、顔料の固形分濃度は90g/Lであった。そして、表面側から120℃の熱風を吹き付けて乾燥させることによりアイスグレー色のアクリル系弾性体を表層にマイグレーションさせて凝固させ半銀調人工皮革を得た(厚さ0.88mm、目付437g/m2、見掛け密度0.497g/cm3)。
上記半銀調人工皮革(人工皮革用基体)を実施例1と同様に収縮加工装置を用いて処理し、タテ方向に10.6%収縮させ、伸縮性人工皮革を得た。
実施例4
海成分ポリマーであるPVAと島成分ポリマーである変性度6モル%のイソフタル酸変性ポリエチレンテレフタレ−トとを、海成分/島成分が25/75(質量比)となるように260℃の溶融複合紡糸用口金(島数:25島/繊維)から吐出した。そして、紡糸速度が3700m/分となるようにエジェクター圧力を調整し、平均繊度2.1デシテックスの海島型繊維をネット上に堆積したスパンボンドシートを得た。次に、表面温度42℃の金属ロールでネット上のスパンボンドシートを軽く押さえることにより表面の毛羽立ちを抑えた。そしてスパンボンドシートをネットから剥離した。次に、表面温度55℃の格子柄の金属ロールとバックロールとの間でスパンボンドシートを熱プレスすることにより、表層の海島型繊維が格子状に仮融着された目付32g/m2の長繊維ウェブを得た。
上記長繊維ウェブに油剤および帯電防止剤を付与し、クロスラッピングにより12枚重ねて総目付が370g/m2の重ね合わせウェブを作製し、さらに針折れ防止油剤をスプレーした。そして、針先端から第1バーブまでの距離が3.2mmの6バーブ針を用い、重ね合わせウェブを針深度8.3mmで両面から交互に3300パンチ/cm2でニードルパンチすることにより絡合不織布を得た。なお、ニードルパンチ処理による面積収縮率は70%であった。また、得られた絡合不織布の目付は528g/m2であった。
次に、絡合不織布を70℃の熱水中に28秒間浸漬することによる収縮処理を行った。そして、95℃の熱水中でディップニップ処理を繰り返すことにより海成分ポリマーである変性PVAを溶解除去した。変性PVAを溶解除去することにより、平均繊度0.09デシテックスの25本の極細繊維からなる繊維束が3次元的に交絡した極細化不織布を得た。なお、収縮処理による面積収縮率は50%であった。また、極細化不織布の目付は780g/m2、見掛け密度は0.610g/cm3であった。
次に、バフィングにより極細化不織布の厚みを1.25mmに調整した。そして、得られた極細化不織布に対して、固形分濃度60質量%の水系アクリルエマルジョン300質量部、及び顔料90質量部を含む分散液を、パッターを用いて、ライン速度4m/分で 回のディップニップにより含浸させた。なお、水系エマルジョン中の、アクリル樹脂の固形分濃度は180g/Lであり、顔料の固形分濃度は90g/Lであった。そして、表面側から120℃の熱風を吹き付けて乾燥させることによりアイスグレー色のアクリル系弾性体を表層にマイグレーションさせて凝固させ半銀調人工皮革を得た(厚さ1.26mm、目付744g/m2、見掛け密度0.590g/cm3)。
上記半銀調人工皮革(人工皮革用基体)を実施例1と同様に収縮加工装置を用いて処理し、タテ方向に10.6%収縮させ、伸縮性人工皮革を得た。
実施例5
島成分がポリエチレンテレフタレ−ト、海成分がポリエチレンの海島型複合繊維ステープル(島成分:海成分=65:35(質量比);繊度4.5デシテックス;繊維長51mm)をカード、クロスラッピングしてウェブを作成した。
該ウェブを1500パンチ/cm2のニードルパンチを行って絡合処理し、目付890g/m2の絡合不織布を得た。
得られた絡合不織布にポリエーテル系ポリウレタンの14%DMF溶液を含浸した後、DMFと水の混合液浴中に浸漬してポリウレタンを湿式凝固した。残存するDMFを水洗除去した後、85℃のトルエン浴中で海成分のポリエチレンを抽出除去し、100℃の熱水浴中で残存するトルエンを共沸除去し乾燥し、人工皮革用基体を得た。
得られた人工皮革用基体の表面を180番のサンドペーパーにより2回バフィングして、表面を平滑にしつつ厚みを0.78mmとした。次いで、表面を240番のサンドペーパーで2回および400番のサンドペーパーで2回順次バフィングしてポリエチレンテレフタレート極細繊維からなる立毛面を形成し、人工皮革用基体を立毛調人工皮革とした(厚さ0.78mm、目付340g/m2、見掛け密度0.436g/cm3)。
その立毛調人工皮革(人工皮革用基体)を実施例1と同様に収縮加工装置を用いて処理し、タテ方向に5.4%収縮させ、伸縮性人工皮革を得た。
実施例1〜5で得られた伸縮性人工皮革の評価結果を表に示した。
実施例1〜5で得られた伸縮性人工皮革は、タテ方向に沿うミクロなうねり構造を有し、伸び係数が良好であったため、低伸長時の伸長性に優れ、伸び止まり感も良好なものとなった。そして、高密度で機械的物性に優れていながら、しなやかで柔軟があり充実感がある風合いを有するものであり、屈曲すると細かな皺が均一に生じ、カーシート、スポーツシューズ用の人工皮革として極めて優れた素材であった。
比較例1〜5
収縮加工を施さない以外は実施例1〜5と同様にして人工皮革を得た。評価結果を第1表に示した。比較例1の収縮加工を施さない人工皮革のタテ方向の荷重伸び曲線、及び、厚さ方向及びタテ方向に平行な断面の走査型電子顕微鏡写真は図6,7を参照。
比較例6
島成分がナイロン6、海成分がポリエチレンの海島型複合長繊維(島成分:海成分=50:50(質量比);繊度3.5デシテックス)を用いて長繊維ウェブを作成した。
該ウェブを400パンチ/cm2のニードルパンチを行って絡合処理し、目付780g/m2の絡合不織布を得た。
得られた絡合不織布にポリエーテル系ポリウレタンの22%DMF溶液を含浸した後、DMFと水の混合液浴中に浸漬してポリウレタンを湿式凝固した。残存するDMFを水洗除去した後、85℃のトルエン浴中で海成分のポリエチレンを抽出除去し、100℃の熱水浴中で残存するトルエンを共沸除去し、乾燥、厚み方向に2分割することにより、目付325g/m2、厚み0.77mmの人工皮革用基体を得た。
得られた人工皮革用基体の表面を180番のサンドペーパーにより2回バフィングして、表面を平滑にしつつ厚みを0.7mmとした。次いで、表面を240番のサンドペーパーで2回および400番のサンドペーパーで2回順次バフィングしてナイロン6極細繊維からなる立毛面を形成した立毛調人工皮革とした(厚さ0.61mm、目付261g/m2、見掛け密度0.428g/cm3)。
上記立毛調人工皮革(人工皮革用基体)を実施例1と同様に収縮加工装置を用いて処理し、タテ方向に4.8%収縮させた。
得られた伸縮性人工皮革の評価結果を第1表に示した。
第1表から明らかなように、比較例1〜5の人工皮革は、熱収縮処理及びヒートセット処理が施されていないため、タテ方向の伸長性や伸び止まり感に乏しく、風合いの硬いものであった。また比較例6の人工皮革は、機械的収縮処理及びヒートセット処理を施したがうねり構造が形成されないため、実施例1〜5に比べて、機械的強度及び低伸長時の伸長性や伸び止まり感が良好ではなく、人工皮革としてはやや劣るものとなった。
本発明によれば、伸縮性人工皮革は、高い機械的強度を維持しつつ、タテ方向に適度な伸長性と伸び止まり感を有し、着用感や成形加工性に優れることから、衣料、家具、カーシート、靴、スポーツシューズ、その他の皮革製品に好適に使用することができる。
1 人工皮革用基体
2 ドラム
3 ベルト
4 プレッシャーローラ
5a、5b ターンローラ
6 収縮した人工皮革
11 金属ローラ
12 肉厚ゴム部
13 ゴムローラ
14 収縮した人工皮革

Claims (7)

  1. 平均単繊維繊度0.9デシテックス以下の極細繊維からなる繊維絡合体で構成された伸縮性人工皮革であって、見掛け密度が0.40g/cm3以上であるとともに、以下の式(1)で算出される伸び係数が50以下である伸縮性人工皮革。
    伸び係数=タテ方向の5%円形モジュラス/厚さ (1)
  2. タテ方向における5%伸長時の荷重に対する30%伸長時の荷重の比を5以上とする請求項1に記載の伸縮性人工皮革。
  3. 前記繊維絡合体が高分子弾性体を含有する請求項1又は2に記載の伸縮性人工皮革。
  4. 前記高分子弾性体が、ポリウレタン水系エマルジョンの固化物である請求項3に記載の伸縮性人工皮革。
  5. 前記極細繊維が非弾性繊維である請求項1〜4のいずれか1項に記載の伸縮性人工皮革。
  6. 前記非弾性繊維がポリエステル繊維である請求項5に記載の伸縮性人工皮革。
  7. タテ方向に収縮させヒートセットすることにより形成されたものである請求項1〜6のいずれか1項に記載の伸縮性人工皮革。
JP2012059385A 2012-02-29 2012-03-15 伸縮性人工皮革 Active JP5903303B2 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2012059385A JP5903303B2 (ja) 2012-03-15 2012-03-15 伸縮性人工皮革
EP18191768.3A EP3428340A1 (en) 2012-02-29 2013-02-26 Elastic artificial leather and production method therefor
CN201610457536.5A CN105926303B (zh) 2012-02-29 2013-02-26 伸缩性人造革及其制造方法
KR1020197014112A KR102074112B1 (ko) 2012-02-29 2013-02-26 신축성 인공 피혁 및 그 제조 방법
PCT/JP2013/054949 WO2013129388A1 (ja) 2012-02-29 2013-02-26 伸縮性人工皮革及びその製造方法
EP13755090.1A EP2821545B1 (en) 2012-02-29 2013-02-26 Elastic artificial leather and production method therefor
KR1020147023474A KR101982372B1 (ko) 2012-02-29 2013-02-26 신축성 인공 피혁 및 그 제조 방법
US14/381,072 US10465338B2 (en) 2012-02-29 2013-02-26 Elastic artificial leather and production method therefor
CN201380011648.2A CN104145058B (zh) 2012-02-29 2013-02-26 伸缩性人造革及其制造方法
US16/440,117 US11268237B2 (en) 2012-02-29 2019-06-13 Elastic artificial leather and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012059385A JP5903303B2 (ja) 2012-03-15 2012-03-15 伸縮性人工皮革

Publications (2)

Publication Number Publication Date
JP2013194326A true JP2013194326A (ja) 2013-09-30
JP5903303B2 JP5903303B2 (ja) 2016-04-13

Family

ID=49393627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012059385A Active JP5903303B2 (ja) 2012-02-29 2012-03-15 伸縮性人工皮革

Country Status (1)

Country Link
JP (1) JP5903303B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101827454B1 (ko) * 2015-12-28 2018-02-12 주식회사 휴비스 장섬유형 탄성 부직포를 이용한 합성피혁

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089983A (ja) * 2001-09-20 2003-03-28 Toray Ind Inc 伸縮性に優れた人工皮革とその製造方法
JP2003089984A (ja) * 2001-09-20 2003-03-28 Toray Ind Inc 伸縮性に優れた人工皮革およびその製造方法
JP2003138489A (ja) * 2001-10-31 2003-05-14 Toray Ind Inc 伸縮性に優れた人工皮革及びその製造方法
JP2004197282A (ja) * 2002-12-20 2004-07-15 Toray Ind Inc 伸縮性に優れた人工皮革の製造方法
JP2008138313A (ja) * 2006-12-01 2008-06-19 Toray Ind Inc 皮革様シートおよびその製造方法
JP4116215B2 (ja) * 2000-02-02 2008-07-09 帝人コードレ株式会社 皮革様シート状物およびその製造方法
JP2010248683A (ja) * 2009-03-26 2010-11-04 Toray Ind Inc 皮革様シート状物およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4116215B2 (ja) * 2000-02-02 2008-07-09 帝人コードレ株式会社 皮革様シート状物およびその製造方法
JP2003089983A (ja) * 2001-09-20 2003-03-28 Toray Ind Inc 伸縮性に優れた人工皮革とその製造方法
JP2003089984A (ja) * 2001-09-20 2003-03-28 Toray Ind Inc 伸縮性に優れた人工皮革およびその製造方法
JP2003138489A (ja) * 2001-10-31 2003-05-14 Toray Ind Inc 伸縮性に優れた人工皮革及びその製造方法
JP2004197282A (ja) * 2002-12-20 2004-07-15 Toray Ind Inc 伸縮性に優れた人工皮革の製造方法
JP2008138313A (ja) * 2006-12-01 2008-06-19 Toray Ind Inc 皮革様シートおよびその製造方法
JP2010248683A (ja) * 2009-03-26 2010-11-04 Toray Ind Inc 皮革様シート状物およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101827454B1 (ko) * 2015-12-28 2018-02-12 주식회사 휴비스 장섬유형 탄성 부직포를 이용한 합성피혁

Also Published As

Publication number Publication date
JP5903303B2 (ja) 2016-04-13

Similar Documents

Publication Publication Date Title
US11268237B2 (en) Elastic artificial leather and production method therefor
JP5593379B2 (ja) 皮革様シート
JP5901468B2 (ja) 伸縮性難燃人工皮革
JP5746074B2 (ja) 伸縮性人工皮革の製造方法
KR102337556B1 (ko) 시트상물 및 그의 제조 방법
JP5860737B2 (ja) 伸縮性人工皮革
WO2010098364A1 (ja) 人工皮革、長繊維絡合ウェブおよびそれらの製造方法
JP6583276B2 (ja) シート状物とその製造方法
JP2018003181A (ja) 銀付人工皮革およびその製造方法
JP5903303B2 (ja) 伸縮性人工皮革
JP5903302B2 (ja) 伸縮性人工皮革
JP2013067917A (ja) 皮革様シート
JP2012017541A (ja) 銀付調人工皮革
JP2014163005A (ja) 伸縮性人工皮革の製造方法
JP6354337B2 (ja) シート状物
WO2024009907A1 (ja) 立毛人工皮革及びその製造方法
JP2022119295A (ja) 銀付調人工皮革及びその製造方法
JP2018003191A (ja) シート状物およびその製造方法ならびに銀付人工皮革
JP4429751B2 (ja) 伸縮性を有する皮革様シート基体およびその製造方法
JP2016141903A (ja) 表面加工シート状物の製造方法
JP2024139908A (ja) 人工皮革およびその製造方法
JP2019081976A (ja) シート状物およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160314

R150 Certificate of patent or registration of utility model

Ref document number: 5903303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150