JP2013191739A - 不揮発性半導体記憶装置およびその製造方法 - Google Patents

不揮発性半導体記憶装置およびその製造方法 Download PDF

Info

Publication number
JP2013191739A
JP2013191739A JP2012057218A JP2012057218A JP2013191739A JP 2013191739 A JP2013191739 A JP 2013191739A JP 2012057218 A JP2012057218 A JP 2012057218A JP 2012057218 A JP2012057218 A JP 2012057218A JP 2013191739 A JP2013191739 A JP 2013191739A
Authority
JP
Japan
Prior art keywords
wiring layer
memory cell
insulating film
embedded
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012057218A
Other languages
English (en)
Inventor
Hidehito Takekida
秀人 武木田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012057218A priority Critical patent/JP2013191739A/ja
Priority to US13/784,621 priority patent/US20130248963A1/en
Publication of JP2013191739A publication Critical patent/JP2013191739A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/764Air gaps
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/10Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the top-view layout
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • H10B41/35Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region with a cell select transistor, e.g. NAND

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

【課題】エアギャップを設ける構成で上層配線のCMP処理で不具合を防止できる構成にする。
【解決手段】実施形態によれば、複数個のメモリセルトランジスタを列方向に直列接続し、その両端部に第1および第2の選択ゲートトランジスタが接続されたメモリセルユニットをマトリクス状に配置したメモリセルアレイを設ける。メモリセルアレイの同一行に並ぶメモリトランジスタの制御ゲート電極を共通に接続してワード線とする。メモリセルアレイの上面の第1の絶縁膜に第1の選択ゲートトランジスタのソースに共通に接続される第1の埋め込み配線層を埋め込み形成する。第1の埋め込み配線層を、ワード線を横切る方向に形成される部分がワード線と直交する方向を除いた傾斜パターンで構成する。
【選択図】図2

Description

本発明の実施形態は、不揮発性半導体記憶装置およびその製造方法に関する。
不揮発性半導体記憶装置として、微細化の進むNAND型フラッシュメモリ装置では、隣接するメモリセル間の電気的な干渉が大きな問題となっている。隣接するメモリセル間の干渉は、メモリセルの容量が大きいことに起因して、書き込まれたメモリセルが隣接するセルの閾値を持ち上げてしまうことにより閾値が増加して見えてしまう現象である。隣接するメモリセル間の酸化膜を介したカップリングにより閾値が増加してしまうため、絶縁膜の誘電率はなるべく低い方が良い。誘電率は真空の誘電率と比誘電率の掛け合せで表されるので隣接セル間干渉を抑制するには空隙(エアギャップ)としておくことがもっとも誘電率を低くすることができる。
しかし、エアギャップ構造はメモリセル特性に対しては効果を発揮するが何も無い空間が出来てしまうため、この後の絶縁層や配線層の平坦化処理においてCMP(chemical mechanical polishing)処理プロセスを用いた際に圧縮及びせん断応力がかかることにより、パターンが倒壊する可能性がある。この場合、配線層のCMP処理では金属の方が層間絶縁膜よりも削れるレートが低いため最終的にはどうしても層間膜側がやや凹んだ形状になる。このため凹んだ層間絶縁膜部分にスラリーが溜まり、応力が発生してしまうことがある。ここで、最も応力がかかるのは金属配線層と層間絶縁膜が同時に露出した状態のときに、抜け残りを防止するためにCMP処理のオーバー処理をかけている時である。せん断応力は金属と絶縁層の摩擦力の差及びスラリーがパターンに対して直交したパターンで溜まることにより生じる。
米国特許出願公開第2011/0147937号明細書
そこで、メモリセルトランジスタのゲート電極間にエアギャップを設ける構成において、上部にCMP処理により平坦化処理をする埋め込み配線層を有する不揮発性半導体記憶装置およびその製造方法を提供することを目的とする。
本実施形態の不揮発性半導体記憶装置は、電気的なデータの書き込み及び消去が可能な複数個のメモリセルトランジスタが列方向に直列接続され、その両端部に第1および第2の選択ゲートトランジスタが接続されたメモリセルユニットをマトリクス状に配置してなるメモリセルアレイと、前記メモリセルアレイの同一行に並ぶメモリトランジスタの制御ゲート電極を共通に接続するワード線と、前記メモリセルアレイの上面に形成された第1の絶縁膜に埋め込み形成され前記第1の選択ゲートトランジスタのソースに共通に接続される第1の埋め込み配線層とを備え、前記第1の埋め込み配線層は、前記ワード線を横切る方向に形成される部分が前記ワード線と直交する方向を除いた傾斜パターンで構成されていることを特徴とする。
また、本実施形態の不揮発性半導体記憶装置の製造方法は、電気的なデータの書き込み及び消去が可能な複数個のメモリセルトランジスタが列方向に直列接続され、その両端部に第1および第2の選択ゲートトランジスタが接続されたメモリセルユニットをマトリクス状に配置してなり、前記メモリセルアレイの同一行に並ぶメモリトランジスタの制御ゲート電極間をワード線により共通接続したメモリセルアレイを形成する工程と、前記メモリセルアレイの上面に第1の絶縁膜を形成する工程と、前記第1の絶縁膜に配線層形成用の溝であって前記ワード線を横切る方向に形成される部分が前記ワード線と直交する方向を除いた傾斜パターンとなる溝を形成する工程と、前記第1の絶縁膜上に配線層形成用の金属膜を形成する工程と、前記第1の絶縁膜上に形成した金属膜のうち前記溝内の部分を残して他の部分を化学的機械的研磨により除去して第1の配線層を形成する工程とを有することを特徴とする。
一実施形態におけるNAND型フラッシュメモリ装置のメモリセル領域の一部の電気的構成を概略的に示す図 (a)メモリセル領域の一部構造を概略的に示す平面図、(b)第1の埋め込み配線層のパターンを示す図 図2中A−A線に沿った模式的な縦断面図 製造工程の一段階の図2中A−A線に沿って模式的に示す図(その1) 製造工程の一段階の図2中A−A線に沿って模式的に示す図(その2) 製造工程の一段階の図2中A−A線に沿って模式的に示す図(その3) 製造工程の一段階の図2中A−A線に沿って模式的に示す図(その4) 製造工程の一段階の図2中A−A線に沿って模式的に示す図(その5)
以下、一実施形態について、NAND型フラッシュメモリ装置に適用したものを図1ないし図8を参照して説明する。尚、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは必ずしも一致しない。また、上下左右の方向についても、後述する半導体基板における回路形成面側を上とした場合の相対的な方向を示し、必ずしも重力加速度方向を基準としたものとは一致しない。
まず、本実施形態のNAND型フラッシュメモリ装置の電気的構成について説明する。図1は、NAND型のフラッシュメモリ装置1のメモリセル領域に形成されるメモリセルアレイの一部の等価回路図を示している。
NAND型フラッシュメモリ装置1は、そのメモリセルアレイ内に、第1および第2の選択ゲートトランジスタTrs1、Trs2と、これら選択ゲートトランジスタTrs1、Trs2間に直列接続された複数個(例えば64個)のメモリセルトランジスタTrmとを有するメモリセルユニットであるNANDセルユニットSUが行列状に形成されている。NANDセルユニットSU内において、複数個のメモリセルトランジスタTrmは隣接するもの同士でソース/ドレイン領域を共用している。
図1中のX方向(ワード線方向)に配列されたメモリセルトランジスタTrmは、制御ゲート電極を連結したワード線WLにより共通接続されている。また、図1中のX方向に配列された第1の選択ゲートトランジスタTrs1は選択ゲート線SGL1で共通接続され、第2の選択ゲートトランジスタTrs2は選択ゲート線SGL2で共通接続されている。第1の選択ゲートトランジスタTrs1はソース領域を介して図1中X方向に延びるソース線SLに接続されている。このソース線SLは第1の埋め込み配線層として形成されるものである。第2の選択ゲートトランジスタTrs2のドレイン領域にはビット線コンタクトCBが接続されている。このビット線コンタクトCBは、図1中X方向に直交するY方向(ビット線方向)に延びるビット線BLに接続されている。
図2(a)は、メモリセル領域の一部のレイアウトパターンである。図2(a)において、半導体基板としてのシリコン基板2のメモリセル領域には、トレンチ内に絶縁膜を埋め込むSTI(shallow trench isolation)構造の素子分離領域Sbが図中Y方向に沿って延伸して形成される。この素子分離領域Sbは、図中X方向に所定間隔で複数形成される。これにより、素子領域SaがY方向に沿って延伸形成されることになり、シリコン基板2の表層部に複数の素子領域SaがX方向に分離して形成される。
ワード線WLは、素子領域Saと直交して交差する方向(図2(a)中X方向)に沿って延伸形成される。ワード線WLは、図中Y方向に所定間隔で複数本形成されている。ワード線WLと交差する素子領域Sa上方には、メモリセルトランジスタTrmのゲート電極MG(図3(a)参照)が形成されている。
Y方向に隣接した複数のメモリセルトランジスタTrmはNAND列(メモリセルストリング)の一部となる。第1の選択ゲートトランジスタTrs1は、NAND列の端部のメモリセルトランジスタTrmのY方向両外側に隣接して設けられる。第1の選択ゲートトランジスタTrs1はX方向に複数設けられており、複数の第1の選択ゲートトランジスタTrs1のゲート電極SGSは選択ゲート線SGL1により電気的に接続されている。ゲート電極SGSは選択ゲート線SGL1と素子領域Saが交差する部分に形成されている。
同様に、第2の選択ゲートトランジスタTrs2は、図中X方向に複数設けられており、複数の第2の選択ゲートトランジスタTrs2のゲート電極SGDは選択ゲート線SGL2によって電気的に接続されている。ゲート電極SGDは選択ゲート線SGL2と素子領域Saが交差する部分に形成されている。
ビット線コンタクトCBa、CBbは、それぞれ隣接するゲート電極SGD−SGD間の素子領域Sa上に形成されている。また、ビット線コンタクトCBaは一方のゲート電極SGDに近接し、ビット線コンタクトCBbは他方のゲート電極SGDに近接するように、ジグザグ状に配置されている。隣接するビット線コンタクトCBa、CBb間の距離が大きくなるように、ビット線コンタクトCBa、CBbを配置することができ、ビット線コンタクトCBa、CBb間のショート不良を低減することができる。
図3はメモリセル領域内の図2(a)中A−A線に沿う部分の断面構造を簡略的に示している。図3において、シリコン基板2の上面にゲート絶縁膜3を介してメモリセルトランジスタTrmおよび第1および第2の選択ゲートトランジスタTrs1、Trs2の各ゲート電極MGおよびSGS、SGDが形成されている。ゲート絶縁膜3は例えばシリコン酸化膜である。メモリセルトランジスタTrmは、ゲート絶縁膜3上に形成されたゲート電極MGとソース/ドレイン領域2aとを含む構成である。メモリセルトランジスタTrmはY方向に複数隣接して形成されている。これらメモリセルトランジスタTrmの端部のものに隣接して一対の第1の選択ゲートトランジスタTrs1が一端側に形成され、一対の第2の選択ゲートトランジスタTrs2が他端側に形成されている。
メモリセルトランジスタTrmのゲート電極MGは、ゲート絶縁膜3上に、電荷蓄積層(浮遊ゲート電極)としての多結晶シリコン膜4、電極間絶縁膜5、制御ゲート電極としての多結晶シリコン膜6を備えている。多結晶シリコン膜6の上部に抵抗値の低いシリサイド膜などを備える構成としても良い。電極間絶縁膜5は、ONO(oxide-nitride-oxide)膜やNONON(nitride-oxide-nitride-oxide-nitride)膜あるいは高誘電率を有する絶縁膜などが用いられる。
ゲート電極MG−MG間、ゲート電極SGS(SGD)−MG間に位置するシリコン基板2の表層にはソース/ドレイン領域2aが設けられ、ゲート電極SGS−SGS間、SGD−SGD間に位置するシリコン基板2の表層にはドレイン領域に対応するLDD(lightly doped drain)領域2bが設けられる。ソース/ドレイン領域2aおよびLDD領域2bは、シリコン基板2の表層に不純物を導入して形成することができる。また、ゲート電極SGS−SGS間、SGD−SGD間に位置するシリコン基板2の表層には高濃度で不純物を導入したソース領域2cあるいはドレイン領域2c(図4参照)が形成され、これによりLDD構造とされている。
第1および第2の選択ゲートトランジスタTrs1、Trs2のゲート電極SGS、SGDは、図3では簡略的に示しているが、メモリセルトランジスタTrmのゲート電極MGとほぼ同様の構造でありゲート絶縁膜3上に、多結晶シリコン膜4、電極間絶縁膜5、多結晶シリコン膜6が積層されている。ゲート電極SGにおいては、電極間絶縁膜5の中央部は図4に示す開口5a(図4参照)を形成することで多結晶シリコン膜4と6とが接触して電気的に導通した状態とされ、これにより浮遊ゲート電極を持たない通常のトランジスタのゲート電極として機能する。
上記構成の各ゲート電極MG、SGS、SGDの上部にはシリコン酸化膜などの絶縁膜7を層間絶縁膜として形成することで各ゲート電極間の絶縁を図っている。なお、この図3では示していないが、ゲート電極MG−MG間、MG−SGS間、MG−SGD間には絶縁膜7を埋め込まないでエアギャップ(空隙部)AGを設けて絶縁するエアギャップ構造(図4参照)を採用している。
ゲート電極SGS−SGS間のシリコン基板2のソース領域2cに接触するように絶縁膜7を貫通してソースコンタクト8が設けられている。ソースコンタクト8は、図2(a)に示したソース線SLと接続されるもので、素子分離領域Sbを隔てて隣接する選択ゲートトランジスタTrs1のソース領域2c間にまたがるように連結した状態に形成されている。また、ゲート電極SGD−SGD間のシリコン基板2のドレイン領域2cに接触するように絶縁膜7を貫通してビット線コンタクト9が設けられている。ビット線コンタクト9は、図2(a)に示したビット線コンタクトCBa、CBbに対応している。
絶縁膜7には第1の埋め込み配線層10および第2の埋め込み配線層11が2層に分けて埋め込み形成されている。第1の埋め込み配線層10は、ゲート電極MG、SGS、SGDの上部に絶縁膜7を介して形成されている。第2の埋め込み配線層11は、第1の埋め込み配線層10の上部に絶縁膜7を介して形成されている。
第1の埋め込み配線層10は、図2(b)に示すように、ソース線10a、配線パターン部10b、ダミーパターン部10cおよび連結部10dの各部を備えている。ソース線10aは、ソースコンタクト8の上部に位置して電気的に接続された状態で形成されており、下層に位置するワード線WLとほぼ同じ方向に形成されている。
配線パターン部10bは、ソース線10aに隣接する所定幅の領域に複数本が形成されている。配線パターン部10bは、下層に位置するワード線WLとほぼ同じ方向に形成されているが、部分的に斜めに形成された枝部10bbを有している。枝部10bbは、ワード線WLの形成方向に対して約45°傾いた方向に形成されており、ワード線WLの形成方向とは直交しない方向に形成されている。
また、配線パターン10bは、枝部10bbと同様の方向に形成された連結部10dを有していて、ソース線10aと電気的に連結したパターンとして形成されている。配線パターン10bがワード線WLと平行な方向に形成されている部分同士を連結する連結部10dは、ワード線WLと直交する方向に連結した状態に形成されるが、パターンは円弧状をなしていて、ワード線WLと直交する直線成分は存在しない。さらに、配線パターン10bには、下層のNANDセルユニットSUがダミーパターンとして設けられる部分に対応してコンタクト部10eが複数個配置されている。第2の埋め込み配線層11よりも上部に設けられる配線層から給電を受けるようにコンタクトパターンが接続される。
また、ダミーパターン部10cは、ビット線コンタクト9の部分を除いてその両側の所定範囲に所定幅で形成されている。これらダミーパターン部10cは、ワード線WLの形成方向と平行する方向に設けられていて、部分的にワード線WLを横切る方向に形成される連結部分10ccを有する。この連結部分10ccは、ワード線WLの形成方向に対して約45°の傾斜を有する傾斜パターンとして形成されている。また、ダミーパターン部10cは、全体として、電気的に接続される部分は設けておらず、電気的にフローティングな状態である。
これにより、第1の埋め込み配線層10は、絶縁膜7上面の全体に対して被覆状態をほぼ均一となるようなパターンとして形成される。ソース線10aについては、抵抗値を下げるためにソース線10aを中心として一定幅の領域まで配線パターン10bを設け、これらを連結部10dにより電気的に接続して配線抵抗を低減させている。また、ダミーパターン部10cとして、ビット線コンタクト9の形成部を中心として配線パターン部10bの形成領域との境界部まで形成されている。
第2の埋め込み配線層11は、図3に示しているように、Y方向すなわち素子形成領域SaあるいはNANDセルユニットSUの形成方向と同じ方向に形成され、ビット線コンタクト9(CBa、CBb)毎に並べて設けられている。第2の埋め込み配線層11は、ビット線BLとして機能するもので、第1の埋め込み配線層10のソース線10aとは直交する方向に形成されている。また、第2の埋め込み配線層11には、NANDセルユニットSUが形成されない部分にはビット線BLが形成されず、この部分を介して上層の配線層と下層の第1の埋め込み配線層10の配線パターン10bに設けたコンタクト部10eとが接続プラグにより接続される。
上記のように構成しているので、微細化の進むNAND型フラッシュメモリ装置において、隣接するセル間の干渉を低減させるためにゲート電極MG-MG間にエアギャップAGを設ける構成としながら、その製造工程において、後述するようにエアギャップAGを形成した部分に応力が作用して倒壊するのを極力抑制することができる。
また、第1の埋め込み配線層10の配線パターン10bに対してコンタクト部10eにより給電することができるので、低抵抗化を図れると共に抵抗成分に起因した動作遅延の発生を抑制することができる。
次に、上記構成の製造方法の一例について図4〜図8を参照しながら説明する。なお、本実施形態の説明では特徴部分を中心に説明するが、一般的な工程であれば各工程間に他の工程を追加しても良いし、工程を削除することもできる。また、各工程は実用的に可能であれば、適宜入れ替えても良い。
まず、図4に示す状態となるまでの工程を説明する。半導体基板であるシリコン基板2上にゲート絶縁膜3、浮遊ゲート電極用の材料となる多結晶シリコン膜4を成膜する。この後、多結晶シリコン膜4およびシリコン基板2の上部をフォトリソグラフィ技術でパターニングし、エッチングにより図2で説明した素子分離溝を形成する。この後、溝内部に素子分離絶縁膜(図示せず)を埋込むことで素子領域Saおよび素子分離領域Sbを形成する。
次に、多結晶シリコン膜4上にONO(oxide-nitride-oxide)膜などを用いた電極間絶縁膜5を形成する。次に、電極間絶縁膜5上に制御ゲート電極の材料となる多結晶シリコン膜6を形成する。このとき、第1および第2の選択ゲートトランジスタTrs1およびTrs2の各ゲート電極SGS、SGDのトランジスタのゲート電極を形成する部分では、電極間絶縁膜5に開口5aを形成していて、多結晶シリコン膜4と6とが接触した状態に形成される。この多結晶シリコン膜6上に加工用絶縁膜12を形成する。
次に、フォトリソグラフィ技術によりメモリセル領域においてはラインアンドスペースのパターン、周辺回路領域においては所定のレジストパターンを形成し、これをマスクとして加工用絶縁膜12をパターニング加工してハードマスクを形成する。次いで、多結晶シリコン膜6、電極間絶縁膜5、多結晶シリコン膜4、ゲート絶縁膜3を異方性エッチングにより加工することで、ゲート電極MGおよびゲート電極SGS、SGDを分離形成する。この後、ゲート電極MG、SGS、SGDのシリコン窒化膜12をマスクとしてシリコン基板2の表層に一般的なイオン注入法によりn型の不純物(例えばリン)を導入し、熱処理を行うことでソース/ドレイン領域2aおよびLDD領域2b(ソース領域も同様)を形成する。
次に、ゲート電極MG−MG間およびゲート電極MG−SGS、MG−SGD間に犠牲膜を埋め込み形成し、さらに、ゲート電極SGS−SGS間、SDS−SDS間の各ケート電極SGS、SGDの側壁にスペーサ13を形成する。このスペーサ13をマスクとしてゲート電極SGS−SGS間、SGD−SGD間のシリコン基板2表層に高濃度の不純物を導入してソース領域(ドレイン領域)2cを形成しLDD構造とする。
次に、犠牲膜を除去してゲート電極MG-MG間およびゲート電極MG−SGS、MG−SGD間の空隙をエアギャップAGとして残し、その上面を塞ぐようにライナー膜としてのシリコン酸化膜14およびシリコン窒化膜15を形成する。この後、ゲート電極SGS−SGS間、SGD−SGD間の凹部を埋め込むように層間絶縁膜となる流動性の高いシリコン酸化膜を絶縁膜7として埋め込み形成する。これにより、図4に示す構成が得られる。
さて、上記のようにして形成された構成の絶縁膜7の上面に第1の埋め込み配線層10を形成する工程について説明する。まず、図5に示すように、絶縁膜7にフォトリソグラフィ技術によりソースコンタクト8用のコンタクト溝7aおよび第1の埋め込み配線層10の各パターンを形成するためのパターン溝部7b〜7dを形成する。コンタクト溝7aは、ゲート電極SGS−SGS間、SGD−SGD間の絶縁膜7の上面からシリコン基板2のソース領域(ドレイン領域)2c上面まで貫通するようにエッチングして形成する。また、パターン溝部7b〜7dは、絶縁膜7を上面から所定深さまでエッチングして形成する。
次に、図6に示すように、第1の埋め込み配線層10用の例えばタングステン(W)などの金属膜16を全面に形成する。この場合、金属膜16は、ソースコンタクト8用のコンタクト溝7aおよび第1の埋め込み配線層10の各パターンを形成するためのパターン溝部7b〜7d内に充填されると共に、絶縁膜7の他の部分の上面を覆うように形成される。
続いて図7に示すように、絶縁膜7の上面に形成された金属膜16をCMP処理により除去する。CMP処理では、金属膜16を研磨により除去する際に、金属膜16と絶縁膜7とでは研磨時のトルクの違いがあり、その変化を検出することでCMP処理の終了を検知するようにしている。具体的には、シリコン酸化膜などの絶縁膜7では、金属膜16よりもトルクが小さくなるのでこれによって研磨終了を検知する。しかし、実際には、多数の半導体装置を形成する大口径のウエハではウエハ中における場所によって研磨の程度に差が発生することがあり、研磨の終了が検出された場合でもそのばらつきの度合いによって、例えば図7に示しているように、絶縁膜7上に金属膜16が部分的に研磨残り16aとして残ることがある。なお、図示の場合は、便宜的に1つの半導体装置内において研磨のばらつきが発生しているように示したが、実際には、ウエハ上の離れた位置でこのような状況が発生することが一般的である。
そして、上記のようにCMP処理の研磨のばらつきが発生することを考慮して、研磨終了の検知の後、オーバー処理を行うことで研磨残り16aを確実に研磨することが行われる。このとき、金属膜16の方が絶縁膜7よりも削れるレートが低いため最終的にはどうしても絶縁膜7側がやや凹んだ形状になる。このため凹んだ絶縁膜7部分にCMP処理のスラリーが溜まり、応力が発生してしまう。すなわち、CMP処理の過程で、最も応力がかかるのは金属膜16と絶縁膜7が同時に露出して抜け残りを防止するためにCMPのオーバーをかけている時である。
そして、発明者らは、ここで発生するせん断応力のうち特に強いせん断応力が、金属膜16と絶縁膜7との摩擦力の差およびスラリーがパターンに対して直交したパターンで溜まることにより生じることを見出した。そして、絶縁膜7の下層に形成しているゲート電極MG-MG間にエアギャップAGを形成していることから、金属膜16により形成する配線層のパターンとしてワード線WLに直交するパターンが存在すると、CMP処理で下層に圧縮及びせん断応力が強くかかることにより、エアギャップAGを形成しているゲート電極MGのパターン構造が倒壊する可能性がある。
これに対して、この実施形態においては第1の埋め込み配線層10として、ワード線WLに直交するパターンが極力存在しないように図2(b)に示したような平面パターンを有する構成としている。これにより、CMP処理時に使用するスラリーが第1の埋め込み配線層10のパターン部分から排出させることができ、部分的に溜まりにくいようにすることができる。この結果、スラリーの溜まりを抑制し、せん断応力の増加を抑制することが出来、ひいてはエアギャップAGを形成しているゲート電極MGのパターンの倒壊発生を防止することができる。
以上のようにして、図8に示すように、第1の埋め込み配線層10として、ソース線10a、配線パターン10b、ダミーパターン部10c、連結部10dおよび枝部10bbを設けることで、CMP処理において第1の埋め込み配線層10のパターン内でのスラリーの溜まりを抑制し、せん断応力の増加を抑制することができ、下層部のパターン倒壊を抑制することができる。
この後、第1の埋め込み配線層10の上面にさらに層間絶縁膜として絶縁膜7が形成され、ゲート電極SGD−SGD間の上面からシリコン基板2のドレイン領域2cの表面に達するコンタクトホールが形成され、さらに、ビット線となる第2の埋め込み配線層11を形成するための配線溝部が形成される。この後、前述同様にして金属膜が全面に形成され、これをCMP処理により研磨して配線溝部内およびコンタクトホール内に金属膜を残した状態とすることで、第2の埋め込み配線層11およびコンタクトプラグ9を形成する。この後さらに上層に多層配線構造を形成し、これにより、NAND型フラッシュメモリ装置1を得る。
このような本実施形態によれば、第1の埋め込み配線層10のパターンを、ワード線WLと直交する部分が極力少なくなるように形成しているので、形成工程でCMP処理をする場合に、下層に設けているエアギャップAGの構成に対してせん断応力の悪影響を及ぼすのを極力抑制でき、パターンの倒壊などが発生するのを抑制できる。
また、配線パターン10bをソース線10aの両側に一定幅で設けて連結部10dにより接続しているので、ソース線10aの電圧降下による配線遅延を低減して電気的特性の向上を図ることができる。
(他の実施形態)
上記実施形態で説明したもの以外に次のような変形をすることができる。
エアギャップAGを素子形成領域Saの素子分離にも適用した構成のものでも良い。
第1の埋め込み配線層10のパターンは、ワード線WLと直交する成分を設けないようにすることで、適宜設計変更することができる。また、傾斜パターンの傾斜角度を45°としているが、ワード線WLと直交する部分を形成しなければ適宜の角度に設定することができる。
第1の埋め込み配線層10の配線パターン10bとダミーパターン10cの配置割合は適宜の割合で変更設定できる。
NAND型のフラッシュメモリ装置1に適用したが、NOR型のフラッシュメモリ装置、EEPROM等の不揮発性半導体記憶装置にも適用できる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
図面中、1はNAND型フラッシュメモリ装置(不揮発性半導体記憶装置)、2はシリコン基板(半導体基板)、3はゲート絶縁膜、4は多結晶シリコン膜、5は電極間絶縁膜、6は多結晶シリコン膜、7は絶縁膜、8はソースコンタクト、9はビット線コンタクト、10は第1の埋め込み配線層、10aはソース線、10bは配線パターン、10cはダミーパターン、10dは連結部、11は第2の埋め込み配線層、16は金属膜、AGはエアギャップ、WLはワード線、SLはソース線、Trmはメモリセルトランジスタ、Trs1、Trs2は選択ゲートトランジスタ、MG、SGS、SGDはゲート電極である。

Claims (5)

  1. 電気的なデータの書き込み及び消去が可能な複数個のメモリセルトランジスタが列方向に直列接続され、その両端部に第1および第2の選択ゲートトランジスタが接続されたメモリセルユニットをマトリクス状に配置してなるメモリセルアレイと、
    前記メモリセルアレイの同一行に並ぶメモリトランジスタの制御ゲート電極を共通に接続するワード線と、
    前記メモリセルアレイの上面に形成された第1の絶縁膜に埋め込み形成され前記第1の選択ゲートトランジスタのソースに共通に接続される第1の埋め込み配線層と、
    前記第1の埋め込み配線層の上面に形成された第2の絶縁膜に埋め込み形成され前記第2の選択ゲートトランジスタのドレインにそれぞれ接続されるビット線コンタクトと接続された第2の埋め込み配線層とを備え、
    前記第1の埋め込み配線層は、前記ワード線を横切る方向に形成される部分が前記ワード線と直交する方向を除いた傾斜パターンで構成され、
    前記第1の埋め込み配線層は、
    前記第1の選択ゲートトランジスタのソース上部を中心として所定幅の領域に電気的に接続された状態に形成された配線パターン部と、
    前記第2の選択ゲートトランジスタのドレイン上部を中心として所定幅の領域に電気的にフローティングな状態に形成されたダミーパターン部とを有し、
    前記第1の埋め込み配線層の配線パターン部は、前記第2の埋め込み配線層のパターン非形成領域を通じて上層の配線層から給電を受けるためのコンタクトが形成されており、
    前記第1の埋め込み配線層の前記傾斜パターンは、円弧状パターンとして形成されていることを特徴とする不揮発性半導体記憶装置。
  2. 電気的なデータの書き込み及び消去が可能な複数個のメモリセルトランジスタが列方向に直列接続され、その両端部に第1および第2の選択ゲートトランジスタが接続されたメモリセルユニットをマトリクス状に配置してなるメモリセルアレイと、
    前記メモリセルアレイの同一行に並ぶメモリトランジスタの制御ゲート電極を共通に接続するワード線と、
    前記メモリセルアレイの上面に形成された第1の絶縁膜に埋め込み形成され前記第1の選択ゲートトランジスタのソースに共通に接続される第1の埋め込み配線層とを備え、
    前記第1の埋め込み配線層は、前記ワード線を横切る方向に形成される部分が前記ワード線と直交する方向を除いた傾斜パターンで構成されていることを特徴とする不揮発性半導体記憶装置。
  3. 請求項2に記載の不揮発性半導体記憶装置において、
    前記第1の埋め込み配線層は、
    前記第1の選択ゲートトランジスタのソース上部を中心として所定幅の領域に電気的に接続された状態に形成された配線パターン部と、
    前記第2の選択ゲートトランジスタのドレイン上部を中心として所定幅の領域に電気的にフローティングな状態に形成されたダミーパターン部と
    を有することを特徴とする不揮発性半導体記憶装置。
  4. 請求項3に記載の不揮発性半導体記憶装置において、
    前記第1の埋め込み配線層の上面に形成された第2の絶縁膜に埋め込み形成され前記第2の選択ゲートトランジスタのドレインにそれぞれ接続されるビット線コンタクトと接続された第2の埋め込み配線層をさらに備え、
    前記第1の埋め込み配線層の配線パターン部は、前記第2の埋め込み配線層のパターン非形成領域を通じて上層の配線層から給電を受けるためのコンタクトが形成されていることを特徴とする不揮発性半導体記憶装置。
  5. 電気的なデータの書き込み及び消去が可能な複数個のメモリセルトランジスタが列方向に直列接続され、その両端部に第1および第2の選択ゲートトランジスタが接続されたメモリセルユニットをマトリクス状に配置してなり、前記メモリセルアレイの同一行に並ぶメモリトランジスタの制御ゲート電極間をワード線により共通接続したメモリセルアレイを形成する工程と、
    前記メモリセルアレイの上面に第1の絶縁膜を形成する工程と、
    前記第1の絶縁膜に配線層形成用の溝であって前記ワード線を横切る方向に形成される部分が前記ワード線と直交する方向を除いた傾斜パターンとなる溝を形成する工程と、
    前記第1の絶縁膜上に配線層形成用の金属膜を形成する工程と、
    前記第1の絶縁膜上に形成した金属膜のうち前記溝内の部分を残して他の部分を化学的機械的研磨により除去して第1の配線層を形成する工程と
    を有することを特徴とする不揮発性半導体記憶装置の製造方法。
JP2012057218A 2012-03-14 2012-03-14 不揮発性半導体記憶装置およびその製造方法 Pending JP2013191739A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012057218A JP2013191739A (ja) 2012-03-14 2012-03-14 不揮発性半導体記憶装置およびその製造方法
US13/784,621 US20130248963A1 (en) 2012-03-14 2013-03-04 Nonvolatile semiconductor memory device and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012057218A JP2013191739A (ja) 2012-03-14 2012-03-14 不揮発性半導体記憶装置およびその製造方法

Publications (1)

Publication Number Publication Date
JP2013191739A true JP2013191739A (ja) 2013-09-26

Family

ID=49210973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012057218A Pending JP2013191739A (ja) 2012-03-14 2012-03-14 不揮発性半導体記憶装置およびその製造方法

Country Status (2)

Country Link
US (1) US20130248963A1 (ja)
JP (1) JP2013191739A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107039450B (zh) * 2016-02-02 2019-11-01 中芯国际集成电路制造(上海)有限公司 半导体装置及其制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6353242B1 (en) * 1998-03-30 2002-03-05 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory
JP4455017B2 (ja) * 2003-11-10 2010-04-21 株式会社東芝 不揮発性半導体記憶装置
JP4127711B2 (ja) * 2006-05-31 2008-07-30 株式会社東芝 半導体メモリ
JP2012109450A (ja) * 2010-11-18 2012-06-07 Toshiba Corp 不揮発性半導体記憶装置及びその製造方法

Also Published As

Publication number Publication date
US20130248963A1 (en) 2013-09-26

Similar Documents

Publication Publication Date Title
JP2014160757A (ja) 不揮発性半導体記憶装置およびその製造方法
JP2010087160A (ja) 不揮発性半導体記憶装置の製造方法および不揮発性半導体記憶装置
JP2009010011A (ja) 半導体装置およびその製造方法
JP5059204B2 (ja) 半導体記憶装置の製造方法
JP2010080853A (ja) 不揮発性半導体記憶装置およびその製造方法
JP2010040753A (ja) 不揮発性半導体記憶装置の製造方法
JP2010114260A (ja) 不揮発性半導体記憶装置及びその製造方法
US20120241867A1 (en) Non-volatile semiconductor memory device and a manufacturing method thereof
JP2006278967A (ja) 半導体装置およびその製造方法
US20130270623A1 (en) Semiconductor memory device and manufacturing method of semiconductor memory device
JP2010087159A (ja) 不揮発性半導体記憶装置およびその製造方法
JP2011199199A (ja) 半導体装置および半導体装置の製造方法。
JP2012199313A (ja) 不揮発性半導体記憶装置
JP2013191739A (ja) 不揮発性半導体記憶装置およびその製造方法
JP2011171475A (ja) 不揮発性半導体記憶装置
JP2009164349A (ja) 不揮発性半導体記憶装置及びその製造方法
JP2008098503A (ja) 半導体装置およびその製造方法
JP2008177223A (ja) 半導体装置およびその製造方法
JP2008016777A (ja) 半導体装置およびその製造方法
JP4649265B2 (ja) 不揮発性半導体記憶装置の製造方法
JP2013026331A (ja) 不揮発性半導体記憶装置の製造方法
JP2012129453A (ja) 半導体装置および半導体装置の製造方法
JP2010219099A (ja) 不揮発性半導体記憶装置及びその製造方法
JP2009252773A (ja) 不揮発性半導体記憶装置およびその製造方法
US20210066315A1 (en) Semiconductor memory device