JP2013178198A - 厚み測定装置 - Google Patents

厚み測定装置 Download PDF

Info

Publication number
JP2013178198A
JP2013178198A JP2012042986A JP2012042986A JP2013178198A JP 2013178198 A JP2013178198 A JP 2013178198A JP 2012042986 A JP2012042986 A JP 2012042986A JP 2012042986 A JP2012042986 A JP 2012042986A JP 2013178198 A JP2013178198 A JP 2013178198A
Authority
JP
Japan
Prior art keywords
measured
measurement
sheet
measuring
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012042986A
Other languages
English (en)
Inventor
Tetsuro Nogata
鉄郎 野方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nogata Tetsuro
Original Assignee
Nogata Tetsuro
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nogata Tetsuro filed Critical Nogata Tetsuro
Priority to JP2012042986A priority Critical patent/JP2013178198A/ja
Priority to PCT/JP2013/051397 priority patent/WO2013128988A1/ja
Priority to KR20147021342A priority patent/KR20140140013A/ko
Priority to CN201380011424.1A priority patent/CN104160238A/zh
Publication of JP2013178198A publication Critical patent/JP2013178198A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/06Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F7/00Other details of machines for making continuous webs of paper
    • D21F7/06Indicating or regulating the thickness of the layer; Signal devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/14Measuring arrangements characterised by the use of electric or magnetic techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/40Caliper-like sensors
    • G01B2210/44Caliper-like sensors with detectors on both sides of the object to be measured

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

【課題】シート状の被測定物の表面に液体が付着している状態であっても厚みを高精度に測定すること。
【解決手段】シート状の被測定物Pの両面を挟み込む測定ヘッド12と、測定ヘッド12を被測定物の幅方向に移動させる測定ヘッド移動手段14とを備え、測定ヘッド12は、被測定物の一面側に当接した状態で配置された第1測定ヘッド部120と、被測定物を挟んで測定ヘッド部120に対向し、被測定物の他面側に当接した状態で配置された第2測定ヘッド部121とを有し、各測定ヘッド部120,121は、所定の押圧状態で被測定物を挟持し、この状態を維持しながら被測定物の幅方向に沿って往復移動する。測定ヘッド部12は第1,第2測定ヘッド部120,121間の距離を測定する渦電流センサ121bを有する。
【選択図】図3

Description

本発明は、厚み測定装置に関し、特にシート、フィルム、或いは布等のシート状の被測定物の厚みを測定する厚み測定装置に関する。
従来、ポリオレフィン微多孔膜は、電池や電解コンデンサ等の材料であるセパレータとして使用されてきた。そのようなセパレータとして用いられるポリオレフィン微多孔膜にあっては、その製造工程においてシート状に成形されるが、シートの厚みを一定にすることがポリオレフィン微多孔膜の品質管理上重要である。
そのため、シートの厚みを正確に測定する必要があり、従来、マイクロメータを用いて直接シートに接触して測定する方式(接触式)、或いはレーザや放射線等を用いて測定する方式(非接触式)などが採用されていた。
前記マイクロメータを用いた接触式の方法にあっては、被測定物(ポリオレフィンシート)をベースとなる台に載せ、マイクロメータのゲージヘッドを一方向から押し当てて測定するものである。しかしながら、ポリオレフィンシートは柔軟で、製造過程で使用した溶媒が表面に付着しているために、前記ベースとなる台に密着し難く、測定誤差の原因となる隙間が生じ易いなどの課題があった。
また、前記のようにポリオレフィンシートの表面には溶媒が付着しているために、非接触式の方法においても測定誤差が避けられず、正確な測定が不可能であった。
そのような課題に対し、特許文献1には、マイクロメーターゲージヘッドを向かい合わせに複数個、シート幅方向に配置し、シートを前記マイクロメーターゲージヘッドで挟み込み、シート厚を測定する方法が開示されている。
前記特許文献1に開示の測定方法では、前記マイクロメーターゲージヘッド(測定点)の前後にガイドローラを設け、シートのうねりを補正している。また、ゲージヘッドを球体とすることによりシートと点接触させ、シートに付着している溶媒をゲージヘッドで退け、シートの沈み込みを防いでシートの厚みを正確に測定するようにしている。
特開平08−122007号公報
ところで、特許文献1に開示されるシート厚の測定方法においては、シート全体の厚みを正確に測定するために、シート幅方向に、より多数のマイクロメーターゲージヘッドを精度よく配列する必要がある。
しかしながら、ゲージヘッド間のピッチは、個々のゲージヘッドの物理的な幅があるために、20mm以下とするのは困難であり、シート幅方向の厚みのばらつきを細かく検査するのは不可能であった。
特に、シート状のポリオレフィン微多孔膜は、電池等のセパレータとして使用される際、シート幅方向に所定倍(例えば5?7倍)延伸されるが、前記ピッチが長いと、延伸によって非測定の領域幅がより長くなり(例えば100mm以上となり)、製品として要求される幅単位での厚みのばらつきを検査することができなかった。
また、シート幅方向に多数のマイクロメーターゲージヘッドを配列した場合、多数のゲージヘッドが個別に、機械的、或いは電気的にドリフトするため、厚み分布が不明確になる上、配列された多数のマイクロメーターゲージヘッドを校正することは現実的に不可能であった。
更に、シート幅方向に配列された複数のマイクロメーターゲージヘッドを個々にメンテナンスするのに手間を要する上、装置にかかるコストが嵩張るという課題があった。
また、上記した多数のマイクロメーターゲージヘッドを配列した際の課題を解決するには、1つのマイクロメーターゲージヘッドをシート幅方向に移動させながら、シート全体の厚みの測定を行うことが考えられる。
しかしながら、マイクロメーターゲージヘッドは、幅方向の移動に伴い、これを支持するフレームの微少な変形、及びベアリングのクリアランス等により、相対するマイクロメーターゲージヘッド支持部の間隔が変化し、それが測定精度に悪影響を及ぼす。そのため、1つのマイクロメーターゲージヘッドをシート幅方向に移動させながら連続的に高精度の測定を行うことは不可能であった。
言い換えれば、マイクロメーターゲージヘッドによる測定において精度を上げるには、相対するマイクロメーターゲージヘッド支持部の間隔の変化が生じないように構成しなければならないが、マイクロメーターゲージヘッドを幅方向に移動させる機構において、相対するマイクロメーターゲージヘッド支持部の間隔の変化が無い構成を実現するのは現実的に不可能であった。
本発明は、前記した点に着目してなされたものであり、シート状の被測定物の厚みを測定する厚み測定装置において、被測定物の表面に液体が付着した状態であっても、前記被測定物の厚みを高精度に測定することができる厚み測定装置を提供することを目的とする。
前記目的を達成するため、本発明は、シート状被測定物の表裏面に液状異物が付着している状態で、当該被測定物の厚みを測定する厚み測定装置であって、前記被測定物の両側に配置される測定ヘッドと、前記測定ヘッドを前記被測定物の幅方向に移動させる測定ヘッド移動手段とを備え、前記測定ヘッドは、前記被測定物を挟んで対向配置される一対の第1および第2測定ヘッド部を備え、前記第1,第2測定ヘッド部を前記被測定物の表裏面に当接するように押圧する押圧手段と、前記第1,第2測定ヘッド部を前記被測定物に押圧した状態で、当該ヘッド部間の距離を測定するセンサとを有し、前記測定ヘッド移動手段は、前記第1および第2測定ヘッド部が前記被測物を押圧挟持した状態を維持しながら、前記被測定物の表裏面に沿って往復移動させるようにした。
前記第1および第2測定ヘッド部は、前記被測定物との接触部を凸曲面に形成することができる。
前記測定ヘッド移動手段は、前記第1および第2測定ヘッド部を先端側に保持し、前記被測定物を中央に挿通させるコ字形アームと、前記コ字形アームを前記被測定物の幅方向に沿って移動自在に支持するスライダーと、前記コ字形アームを前記被測定物の幅方向に往復移動させる駆動手段とで構成することができる。
なお、前記センサが、渦電流センサ、若しくは磁気センサであることが望ましい。
また、前記センサが渦電流センサである場合、前記測定ヘッド部の一方は、使用温度での体積抵抗率が10μΩ・cm以下の金属により形成され、渦電流が発生するような構成とすることが望ましい。
また、前記センサが磁気センサである場合、前記測定ヘッド部の一方は、磁気発生源とし、他方を磁気検出手段とすることが望ましい。
以上のような構成によれば、製造過程で使用した溶媒などの液体異物が付着した被測定物であっても、第1,第2測定ヘッド部を前記被測定物の表裏面に当接するように押圧する押圧手段を有しているので、液体異物の厚みを含むことなく高精度に測定することができる。また、測定ヘッド部を幅方向に往復移動させながら測定することにより、任意の間隔(ピッチ)で測定のサンプリングを行うことができ、後でシート状の被測定物が幅方向に延伸された場合であっても、製品として使用される幅単位での厚みのばらつきを検査することができる。また、一対の測定ヘッド部で、被測定物の全幅に亘り厚み測定が可能となるため、校正が容易となり、且つ装置にかかるコストを抑制することができる。
また、前記センサは、被測定物を挟んで対向するターゲット部材との間の距離を常に測定するものである。そのため、測定ヘッド部を幅方向に移動させる間、測定ヘッド部間の相互の位置関係が維持されておれば、測定ヘッド部を支持する構成(レールとの係合部など)にガタ付きが生じても、それが測定結果に反映されることがなく、常に高精度に測定を行うことができる。
また、被測定物に当接する部位が凸曲面に形成されることによって、被測定物表面に液体異物が付着している場合でも、確実に測定ヘッド部をシートに接触させることができる、更に、摩擦の発生が抑制され、被測定物への傷付けを防止し、且つ、測定ヘッド部の摩耗を大幅に軽減することができる。
本発明によれば、被測定物の表面に液体異物が付着した状態であっても、前記被測定物の厚みを高精度に測定することができる。
図1は、本発明に係る厚み測定装置をシート状被測定物の製造工程中に適用した場合の一例を示す説明図である。 図2は、図1に示した厚み測定装置の全体を示す正面図である。 図3は、図2の厚み測定装置を側方から見た断面図である。 図4は、図3を一部拡大した断面図である。 図5は、図4のA部拡大図である。 図6は、図1に示した厚み測定装置の上面図である。 図7は、図1の厚み測定装置が有する測定ヘッドの、ポリオレフィンシートにおける測定軌跡を示す図である。 図8は、図1の厚み測定装置に適用できる測定ヘッド部の変形例を示す断面図である。
以下、本発明の実施の形態を図面に基づき説明する。図1は、本発明に係る厚み測定装置が適用される製造工程の要部を示しており、この例に示した製造工程では、所定幅で微多孔が多数形成されるポリオレフィンシートPが製造される。この種のシートPは、濾過膜やバッテリーのセパレーターとして用いられる。ポリオレフィンシートPは、ポリオレフィン樹脂と可塑剤(例えば、流動パラフィン)とを溶融混練して、ダイ1から所定の厚みで押出し、押出された成形物を、複数の冷却ロール2の外周面上に接触させながら搬送することで、樹脂を冷却固化し、その後に、複数の延伸ロール3によって所定の倍率で延伸し、可塑剤の除去、乾燥を経て製造される。
本実施例の厚み測定装置10は、冷却ロール2と延伸ロール3との間において、上下方向に所定の間隔を隔てて配置された一対の下,上方向転換ロール4,5との間に設置されている。図1に示した例では、ポリオレフィンシートPは、下方から上方に向けて所定の速度で走行している。
なお、本発明に係る厚み測定装置10によって厚み測定されるシート状の被測定物は、微多孔膜のポリオレフィンシートPだけでなく、例えば、シートまたはフィルム、或いは繊維からなる布、不織布、紙などに適用することができる。
また、本発明に係る厚み測定装置10による測定時において、例えば、図1に示したポリオレフィンシートPの製造過程では、可塑剤として常温で液体となる流動パラフィンを用いているので、厚み測定装置10の近傍では、この流動パラフィンが流出して、被測定物の表面に、液体異物として付着しているが、このような被測定物でも正確な厚み測定が可能になる。
本実施例の厚み測定装置10は、下方から上方に向けて搬送される帯状のポリオレフィンシートPに対して厚みの測定を行うものであり、ポリオレフィンシートPは、図2に示すように軸方向に所定の長さを有する一対の下,上方向転換ロール4,5との間に張架され、所定の張力が加えられた状態で搬送されている。下方向転換ロール4は、回転軸6によって軸支され、回転軸6は、支持フレーム8に回転自在に支持されている。上方向転換ロール5は、回転軸7によって軸支され、回転軸7は、支持フレーム9に回転自在に支持されている。
本実施例の厚み測定装置10は、ポリオレフィンシートPの両側に配置される測定ヘッド12と、測定ヘッド12をポリオレフィンシートPの幅方向に移動させる測定ヘッド移動手段14と、制御部16とを備えている。
測定ヘッド12は、図3,4に示すように、被測定物であるポリオレフィンシートPの両側に対向配置される一対の第1および第2測定ヘッド部120,121を備えている。測定ヘッド12は、図4に示すように、各測定ヘッド部120,121をポリオレフィンシートPの表裏面に押圧する押圧手段120a,121aを有している。なお、この押圧手段120a,121aは、例えばスプリング、或いはシリンダ等を用いて構成することができる。シリンダを採用した場合には、その駆動が制御部16により行われる。
第1測定ヘッド部120は、本実施例の場合、第2測定ヘッド部121側に設けられた渦電流センサ121bから送出される高周波電流を受けて渦電流を発生させるターゲットとなっており、例えば、使用温度での体積抵抗率が10μΩ・cm以下の金属、具体的にはアルミニウム、銅などの渦電流の発生可能な金属から形成され、ポリオレフィンシートPの表面に対して、近接離間自在に設置されている。第1測定ヘッド部120に付設された押圧手段120aは、図3に示すように、箱形のケーシング120d内に収容されている。
第2測定ヘッド部121は、例えば、ジュラコンなどの合成樹脂により形成されたセンサ保持部121cに支持されており、センサ保持部121c内には、渦電流センサ121bが内蔵されている。センサ保持部121cは、ポリオレフィンシートPの側面に対して、近接、離間可能に設けられている。第2測定ヘッド部121の押圧手段121a、センサ保持部121cは、図3に示す箱型のケーシング121d内に設けられている。
第2測定ヘッド部121に設けられた渦電流センサ121bは、円柱状に形成された非接触式のセンサであって、この渦電流センサ121bは、その軸方向がポリオレフィンシートPのシート面に対して直交するように(即ち円形の一端面がシート面に向けて)配置されている。また、渦電流センサ121bは、制御部16により駆動が制御され、内蔵するセンサコイルのインピーダンス値が制御部16において解析されるようになっている。なお、図示する渦電流センサ121bにあっては、前記センサコイルを内蔵するセンサヘッド部の後方に、前記センサコイルのインピーダンス値を検出するセンサ本体が一体的に設けられた構成となっている。また、本発明の実施は、この構成に限定されることはなく、例えば、ケーブルルートの変化によるノイズを避けるために、渦電流センサ121bの検出部は、ケーシング121d内に設置し、制御部16では、厚みに換算するための計算を行うようにしてもよい。
本実施例の場合、第1および第2測定ヘッド部120,121の先端は、凸曲面(本実施の形態では、凸球面)になっている。この構成により、第1および第2測定ヘッド部120,121が、各押圧手段120a,121aの作動により、ポリオレフィンシートPの表裏面に押出されると、先端の凸曲面がポリオレフィンシートPに所定の押圧力で当接するようになる。
本実施例の形態においては、好ましい構成として、凸曲面の曲率半径は20mm、そのときの押圧力は、比較的弱い押圧力である、例えば10N(ニュートン)以下(より好ましくは5N以下)である。第2測定ヘッド部のセンサ前面の部材121は、高硬度絶縁材料、具体的にはガラス、セラミック等とする。なお、第1測定ヘッド部120のシートとの接触面には、耐摩擦性を持たせるために高硬度化処理、具体的にはセラミックコーティング(或いは、金属のコーティング)を施してもよい。
また、本実施例の場合、第1測定ヘッド部120の先端に形成された凸曲面の極率半径は、対向する第2測定ヘッド部121の凸曲面の曲率半径より大きく形成されている(例えば、150mmになっている)。
本実施例に係る厚み測定装置10の測定ヘッド移動手段14の詳細構成を図6に示している。同図に示した測定ヘッド移動手段14は、コ字形アーム14aと、スライダー14bと、駆動手段としての駆動モータ14cとを有している。コ字形アーム14aは、基部140aの両端から平行に伸びる一対のアーム部141aとを備え、各アーム部141aの先端側には、ケーシング120d,121dが対向するように固設されている。また、アーム部141aの対向中心には、被測定物である所定幅WのポリオレフィンシートPが挿通されており、ケーシング120d,121dをアーム部141aに対向固設すると、第1および第2測定ヘッド部120,121がシートPを挟んで対向するように配置される。
スライダー14bは、図3にその断面構造を示すように、凹状のガイド溝140bと、このガイド溝140bに嵌合するガイドレール141bとから構成され、ガイド溝140bは、コ字形アーム14aの各アーム部141aの下面に、長手方向に沿って、全長に亘って形成されている。一方、ガイドレール141bは、支持フレーム8の上端に設けられた支持台8aの上端面に固設されている。なお、支持台8a上には、駆動モータ14cも載置固定されている。
固字形アーム14の基部140aには、中心軸上にネジ孔14dが貫通形成され、このネジ孔14dには、ネジロッド14eが螺着されており、ネジロッド14eの端部は、駆動モータ14cの回転軸に連結されている。このように構成された駆動手段によれば、制御部16で駆動モータ14cの回転制御を行い、ネジロッド14eを駆動モータ14cで回転させると、ネジロッド14eとネジ孔14dとの螺合により、コ字形アーム14aがガイドレール141bに沿って、前後方向に直線的に移動する。この場合、コ字形アーム14aのアーム部141aがポリオレフィンシートPの幅方向に沿って伸びているので、アーム部141aに設けられている一対の第1,第2測定ヘッド部120,121は、シートPの幅方向に沿って移動することになる。なお、本実例の駆動モータ14cは、例えば、パルス電圧で駆動されるステップモータを好適に用いることができる。
続いて、このように構成された厚み測定装置10によるポリオレフィンシートPの厚み測定動作について説明する。
先ず、厚み測定装置10が設置された室内の温度が所定温度に一定に管理され、渦電流センサ121bにおける測定誤差の発生が抑制される。
また、定期的にキャリブレーションを実施することにより、更に測定誤差の発生が抑制される。或いは、厚み測定装置10が設置された室内の温度が所定温度に一定に管理されていない場合でも、キャリブレーションを実施することにより、測定誤差の発生が抑制される。
ポリオレフィンシートPの製造が開始され、金属製方向転換ロール4,5に張架された帯状のポリオレフィンシートPが、垂直上方への搬送移動が開始されると、制御部16は、駆動モータ14cを駆動し、ガイドレール141bに沿って測定ヘッド12をシートPの幅方向に所定速度で移動開始させる。
この際に、測定ヘッド12は、図4に示すように、押圧手段120a,121aを有しているので、第1および第2測定ヘッド部120,121は、この押圧力を受けて、ポリオレフィンシートPの表裏面にそれぞれ当接し、その状態を維持しながらシートPの幅方向に往復移動を繰り返すことになる。なお、この場合、第1測定ヘッド部120のシート面への当接点と第2測定ヘッド部121のシート面への当接点とは、同軸上にあって、これらの点間を結ぶ線は、シート面に直交するように調整されている。
測定ヘッド12がポリオレフィンシートPの幅方向に移動されるときには、渦電流センサ121bのセンサコイルには高周波電流が流され、高周波磁界が発生される。そして、その磁界内にある第1測定ヘッド部120の表面には渦電流が流れ、これに伴って、センサコイルのインピーダンスが変化する。
制御部16においては、このインピーダンスの値をサンプリングして発振状態の変化を検出し、第1測定ヘッド部120のシート面への当接点と第2測定ヘッド部121のシート面への当接点との距離、即ちポリオレフィンシートPの厚みを測定する。測定されたシートPの厚み値は、所定値以内に収まっていない場合には、測定値がダイ1の制御部に送られ、ダイ1の押出し状態にフィードバックされる。
なお、垂直上方に移動するポリオレフィンシートPに対し、測定ヘッド12はその幅方向に往復移動されるため、測定のサンプリングポイントは、図7の破線で示す測定軌跡L上となる。測定ヘッド12の移動速度により、この測定軌跡Lの傾斜を変化させることができる。
以上のように本発明に係る実施の形態によれば、垂直上方に移動されるポリオレフィンシートPの表裏面を測定ヘッド部120,121により所定の押圧状態で挟み込み、この状態を維持しながら、測定ヘッド部120,121を幅方向に往復移動(走査)させる。
これにより、製造過程で使用した溶媒が付着したポリオレフィンシートPであっても、溶媒の厚みをシート厚として含むことなく高精度に測定することができる。
この場合、各測定ヘッド部120,121のポリオレフィンシートPの当接面が凸曲面となっているので、図5に一部拡大図に示すように、シートPの表裏面に液状異物X(流動性パラフィン)が付着していても、測定ヘッド部120,121の移動に伴って、液状異物Xが当接面から外方に押しやられるので、測定ヘッド部120,121の当接点間に、液状異物Xが介在することが排除され、より高精度の測定を可能にする。
また、測定ヘッド部120,121を幅方向に往復移動させながら測定するため、任意の間隔(ピッチ)で測定のサンプリングを行うことができ、後で幅方向に延伸される場合であっても、製品として要求される幅単位での厚みのばらつきを検査することができる。
また、一対の測定ヘッド部120,121により、ポリオレフィンシートPの全幅に亘り厚み測定が可能となり、装置にかかるコストを抑制することができる。さらに、シートPの無い部分に測定ヘッド部120,121を移動させることで、生産中の校正も容易となる。
また、測定ヘッド部121に設けられた渦電流センサ121bは、ポリオレフィンシートPを挟んで対向する測定ヘッド部120との間の距離を直接的に測定するものであり、測定ヘッド部120,121を幅方向に移動させる間、測定ヘッド部120,121間の押圧挟持状態が維持されるので、測定ヘッド12を支持する構成(スライダー14bの係合部など)の機械的精度が測定結果に影響することが殆どなく、常に高精度に測定を行うことができる。
また、上記実施例で示したように、測定ヘッド部120,121のシートPへの当接面が凸曲面になっており、これがポリオレフィンシートPに当接しても、摩擦の発生が抑制され、シートPへの傷付けを防止し、且つ、測定ヘッド部120,121の摩耗を大幅に軽減することができる。
なお、本実施例においては、測定ヘッド部121が有するセンサとして、渦電流センサ121bを用いるものとして説明したが、本発明の実施は、渦電流センサ121bに限定されるものではない。
例えば、センサとして、磁気センサを用いてもよく、その場合、第2測定ヘッド部121側に、渦電流センサ121bに替えて、磁気発生源(例えば、永久磁石又は電磁石)設け、この発生源から一定の磁気を発生させ、第1測定ヘッド部120側に磁気センサを設けて、磁場の変化を検出し、測定ヘッド部120,121間の距離(シート厚)を測定すればよい。
また、上記実施例においては、垂直上方に搬送されるポリオレフィンシートPに対し、その幅方向に測定ヘッド部120,121を走査させるものとして説明したが、本発明にあっては、シートの搬送方向は限定されるものではない。例えば、水平方向に搬送されるポリオレフィンシートPに対し、その幅方向に測定ヘッド部120,121を走査させる構成であってもよい。
また、一対の測定ヘッド部120,121をポリオレフィンシートPの幅方向に沿って往復移動する手段は、上記実施例に示したコ字形アーム14aを用いる構成に替えて、測定ヘッド部120,121を個別移動可能な棒状アームに配置し、各アームを個別に移動させる構成であってもよい。この場合、移動手段として上記実施例と同様なモータとボールスクリューの組合せを採用する場合には、一対のモータを同期駆動させて、測定ヘッド部120,121の押圧挟持状態が維持されるようにすればよい。
また、コ字形アーム14aの直線移動させる手段は、上記実施例に示した駆動モータ14cとボールスクリュー(ネジ孔14dとネジロッド14eの螺合)に替えて、ラックピニオンによる直線移動手段、タイミングベルトによる直線移動手段、チェーンによる直線移動手段、リニアモータによる直線移動手段などであってもよい。
さらに、上記実施例では、一対の測定ヘッド部120,121をコ字形アーム14a二配置して、水平方向に移動させる場合を示したが、例えば、移動手段で高速移動が可能であって、ポリオレフィンシートPの移動速度と同程度以上にできるのであれば、コ字形アーム14aを所定角度で傾斜状態に設置すると、図7に示した測定軌跡Lが、シートPとは幅方向と直交するようになり、ダイ1から押出された同じ面上での厚み測定が可能になる。
図8は、本発明の厚み測定装置に採用することができる測定ヘッドの他の例を示している。同図に示した測定ヘッド12aは、上記実施例と同様に、所定の押圧力pでシートPに押圧される一対の第1および第2測定ヘッド部122,123を有している。各測定ヘッド部122,123は、先端が凸曲面に形成されていて、ポリオレフィンシートPにそれぞれ当接する。各測定ヘッド部122,123は、平板状のホルダ124,125の前面側に一体に設けられている。第2の測定ヘッド部123が設けられたホルダ125には、一対の渦電流センサ126,127が設けられている。
同図に示した例では、測定ヘッド部123の上下に所定の間隔を隔てて、渦電流センサ126,127が配置されている。渦電流センサ126,127のターゲットなるのは、ポリオレフィンシートPを挟んで、対向配置される第1測定ヘッド部122のホルダ124の面であって、本実施例の場合には、第1測定ヘッド部122の上下に平坦なターゲット面128,129が設けられている。
また、図8に示すように、渦電流センサ126,127とターゲット面128,129とは、ポリオレフィンシートPに接触することなく所定の距離dが設けられている。渦電流センサ126,127では、それらの間の距離dが測定されるが、渦電流センサ126,127の先端から第2測定ヘッド部123の凸曲面の先端までの距離、及びターゲット面128,129から第1測定ヘッド部122の凸曲面の先端までの距離は既知であるため、シート厚を精度よく求めることができる。
また、この構成によれば、渦電流センサ126,127に対向するターゲット面128,129を(曲面ではなく)平面状に形成しているので、渦電流センサ126,127とターゲット面128,129との距離を、それらがシート面に接触しない限り近づけることができるため、測定精度を向上させることができる。さらに、複数の渦電流センサ126,127を設けているので、広い範囲での高精度な厚み測定を行うことが可能となる。
本発明に係る厚み測定装置によれば、液状異物が付着しているシートの厚みを高精度に測定することができるので、電池や電解コンデンサ等のセパレータとして使用されるポリオレフィン微多孔膜の製造に適用することができる。
10 厚み測定装置
12 測定ヘッド
120 第1測定ヘッド部
121 第2測定ヘッド部
121b 渦電流センサ
14 測定ヘッド移動手段
14a コ字形アーム
14b スライダー
14c 駆動モータ
14d ネジ孔
14e ネジロッド
16 制御部
P ポリオレフィンシート(被測定物)

Claims (3)

  1. シート状被測定物の表裏面に液状異物が付着している状態で、当該被測定物の厚みを測定する厚み測定装置であって、
    前記被測定物の両側に配置される測定ヘッドと、前記測定ヘッドを前記被測定物の幅方向に移動させる測定ヘッド移動手段とを備え、
    前記測定ヘッドは、前記被測定物を挟んで対向配置される一対の第1および第2測定ヘッド部を備え、前記第1,第2測定ヘッド部を前記被測定物の表裏面に当接するように押圧する押圧手段と、前記第1,第2測定ヘッド部を前記被測定物に押圧した状態で、当該ヘッド部間の距離を測定するセンサとを有し、
    前記測定ヘッド移動手段は、前記第1および第2測定ヘッド部が前記被測物を押圧挟持した状態を維持しながら、前記被測定物の表裏面に沿って往復移動させることを特徴とする厚み測定装置。
  2. 前記第1および第2測定ヘッド部は、前記被測定物との接触部が凸曲面に形成されていることを特徴とする請求項1記載の厚み測定装置。
  3. 前記測定ヘッド移動手段は、前記第1および第2測定ヘッド部を先端側に保持し、前記被測定物を中央に挿通させるコ字形アームと、前記コ字形アームを前記被測定物の幅方向に沿って移動自在に支持するスライダーと、前記コ字形アームを前記被測定物の幅方向に往復移動させる駆動手段とを有することを特徴とする請求項1または2記載の厚み測定装置。
JP2012042986A 2012-02-29 2012-02-29 厚み測定装置 Pending JP2013178198A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012042986A JP2013178198A (ja) 2012-02-29 2012-02-29 厚み測定装置
PCT/JP2013/051397 WO2013128988A1 (ja) 2012-02-29 2013-01-24 厚み測定装置
KR20147021342A KR20140140013A (ko) 2012-02-29 2013-01-24 두께 측정 장치
CN201380011424.1A CN104160238A (zh) 2012-02-29 2013-01-24 厚度测定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012042986A JP2013178198A (ja) 2012-02-29 2012-02-29 厚み測定装置

Publications (1)

Publication Number Publication Date
JP2013178198A true JP2013178198A (ja) 2013-09-09

Family

ID=49082193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012042986A Pending JP2013178198A (ja) 2012-02-29 2012-02-29 厚み測定装置

Country Status (4)

Country Link
JP (1) JP2013178198A (ja)
KR (1) KR20140140013A (ja)
CN (1) CN104160238A (ja)
WO (1) WO2013128988A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102095358B1 (ko) * 2017-02-24 2020-03-31 주식회사 엘지화학 전지 재료의 두께 측정기
CN114812473B (zh) * 2022-06-28 2022-11-04 江苏卓高新材料科技有限公司 隔膜厚度自动测试装置及其测试方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01257204A (ja) * 1987-07-15 1989-10-13 Impact Syst Inc 移動するシート材料のための接触型厚さゲージ
JPH01314907A (ja) * 1988-06-16 1989-12-20 Yokohama Rubber Co Ltd:The 厚み測定方法に於けるゼロ点補正方法及びその装置
JPH08122007A (ja) * 1994-10-24 1996-05-17 Tonen Chem Corp 溶媒混練ポリオレフィンシートの厚み測定方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1332177C (zh) * 2005-04-13 2007-08-15 嘉兴学院 一种用于测量光洁面板材厚度的在线监测系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01257204A (ja) * 1987-07-15 1989-10-13 Impact Syst Inc 移動するシート材料のための接触型厚さゲージ
JPH01314907A (ja) * 1988-06-16 1989-12-20 Yokohama Rubber Co Ltd:The 厚み測定方法に於けるゼロ点補正方法及びその装置
JPH08122007A (ja) * 1994-10-24 1996-05-17 Tonen Chem Corp 溶媒混練ポリオレフィンシートの厚み測定方法

Also Published As

Publication number Publication date
WO2013128988A1 (ja) 2013-09-06
CN104160238A (zh) 2014-11-19
KR20140140013A (ko) 2014-12-08

Similar Documents

Publication Publication Date Title
JP2016511410A5 (ja)
US6275032B1 (en) Surface flatness measuring apparatus
CN103234666A (zh) 钢轨残余应力测试方法
WO2013128988A1 (ja) 厚み測定装置
JP2015098053A (ja) 曲げ加工機におけるワークの曲げ半径及び送りの測定のための測定ユニット
KR20200135958A (ko) 저항 측정 장치, 필름 제조 장치 및 도전성 필름의 제조 방법
KR100660794B1 (ko) Vcm을 이용한 휠의 마모 측정장치 및 측정방법
CN102564385A (zh) 滚珠丝杠副内循环螺母检测装置
CN208443350U (zh) 检测设备
JP3876704B2 (ja) 寸法測定装置
JP2014194377A (ja) 圧電特性の測定装置
CN103398687A (zh) 一种大幅面精密薄板厚度接触式测量流水线装置
JP2001221819A (ja) 導電性繊維の電気抵抗測定方法及びその測定装置
JP2007240418A (ja) 硬さ計
CN210513082U (zh) 一种流延膜厚度在线检测装置
CN209783494U (zh) 橡胶辊轴加工槽的槽径检具
US11384424B2 (en) Film manufacturing apparatus and manufacturing method of double-sided laminated film
CN204142159U (zh) 圆锥滚子轴承内圈滚道凸度检测仪
JP5705164B2 (ja) スパークテスタ
CN105423853A (zh) 用于大跨距龙门机床两立柱前导轨共面的检测装置
CN104819688A (zh) 高速磁振荡装置
CN214842997U (zh) 一种吹膜厚度测量装置
JP2000292109A (ja) 側面形状測定方法及びその装置
CN210198356U (zh) 一种胶辊用径向测量组件
CN102353594B (zh) Pet塑钢带横向韧性检测仪

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160112