JP2013157269A - ターゲット構造体及びそれを備える放射線発生装置 - Google Patents

ターゲット構造体及びそれを備える放射線発生装置 Download PDF

Info

Publication number
JP2013157269A
JP2013157269A JP2012018561A JP2012018561A JP2013157269A JP 2013157269 A JP2013157269 A JP 2013157269A JP 2012018561 A JP2012018561 A JP 2012018561A JP 2012018561 A JP2012018561 A JP 2012018561A JP 2013157269 A JP2013157269 A JP 2013157269A
Authority
JP
Japan
Prior art keywords
radiation
target
target layer
layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012018561A
Other languages
English (en)
Other versions
JP5984403B2 (ja
JP2013157269A5 (ja
Inventor
Miki Tamura
美樹 田村
Yasue Sato
安栄 佐藤
Koji Yamazaki
康二 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2012018561A priority Critical patent/JP5984403B2/ja
Priority to US13/751,965 priority patent/US20130195246A1/en
Publication of JP2013157269A publication Critical patent/JP2013157269A/ja
Publication of JP2013157269A5 publication Critical patent/JP2013157269A5/ja
Application granted granted Critical
Publication of JP5984403B2 publication Critical patent/JP5984403B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/12Cooling non-rotary anodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/08Targets (anodes) and X-ray converters
    • H01J2235/083Bonding or fixing with the support or substrate
    • H01J2235/084Target-substrate interlayers or structures, e.g. to control or prevent diffusion or improve adhesion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/112Non-rotating anodes
    • H01J35/116Transmissive anodes

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • X-Ray Techniques (AREA)
  • Measurement Of Radiation (AREA)

Abstract

【課題】ターゲット層とそれを支持する基板を有し、基板とターゲット層との界面におけるターゲット層の剥がれを抑制できる放射線透過型のターゲット構造体、及びそれを備える放射線発生装置並びに放射線撮影システムを提供する。
【解決手段】基板2の上に、電子の照射により放射線を発生するターゲット層3が20μm以下の厚さで形成された放射線透過型のターゲット構造体であって、ターゲット層3の表面には凹凸が形成され、凹部はターゲット層3の厚さの半分以上の深さを有することを特徴とするターゲット構造体。
【選択図】図1

Description

本発明は、医療機器及び産業機器分野における非破壊X線撮影等に適用できるターゲット構造体、及びそれを備える放射線発生装置並びに放射線撮影システムに関する。
一般に放射線発生装置は、電子放出源から放出される電子を高電圧で加速し、タングステン等の金属で構成されるターゲットに照射してX線等の放射線を発生させている。放射線を発生するターゲットには、ターゲット表面で反射した放射線を取り出す反射型ターゲットと、ターゲットを透過した放射線を取り出す透過型ターゲットがある。いずれも電子放出源から放出された電子線がターゲットに入射した際には、入射したエネルギーのほとんどが熱に変換されるため、ターゲット表面の温度が高温となる。
一般に透過型ターゲットでは、発生した放射線の吸収を小さくするために薄膜のターゲット層を用いる。そのため電子線照射時にはターゲット表面付近のみならず、ターゲット層と支持基板の界面付近も高温となり、両者の熱膨張率の違いから熱応力が生じ、ターゲット層と支持基板との界面において、ターゲット層の剥がれが生じる場合があった。ターゲット層の剥がれが生じると、放射線線量が低下し信頼性が著しく低下する。この対策として、特許文献1には、タングステンからなるターゲット層とベリリウム製のX線透過窓板との間に、銅、クロム、鉄、ニッケル等の中間薄膜を形成することで、ターゲット層の剥がれを抑制する技術が開示されている。
一方反射型ターゲットの場合、電子線照射によりターゲット表面の温度が高温になると、照射時の熱応力によりターゲット表面に凹凸が生じ、放出された放射線の一部がターゲット表面の凸部に吸収されて放射線線量が減少するという問題がある(特許文献2参照)。この対策として、特許文献2には、ターゲット表面にマイクロスリットを形成し、熱によるターゲット表面の変形を抑制する技術が開示されている。
特開2000−306533号公報 米国第7079625号明細書
特許文献1に記載の技術は、上述のように、ターゲット層と支持基板との間に中間薄膜を形成した構成を有している。しかしながら、この構成でも、ターゲット層、支持基板及び中間薄膜を構成する材料のそれぞれの熱膨張率の違いが大きいと、高温になったときにターゲット層又は中間薄膜に剥がれが生じる場合があった。また、ターゲット層、支持基板及び中間薄膜を構成する材料の熱膨張率を合わせようとすると、使用する材料の組合せが極めて限定されてしまうという問題があった。このため、使用する材料の組合せが限定されることなく、ターゲット層の剥がれを抑制することが求められていた。
一方特許文献2に記載の技術は、スリットの深さを30μm以上100μm以下とし、ターゲット層の厚さをそれよりも厚くしており、ターゲット層の厚さが厚いがゆえに生じるターゲット層の変形の抑制を目的とするものである。このため、特許文献2に記載の技術を透過型のターゲットにそのまま適用することはできなかった。
そこで、本発明は、ターゲット層とそれを支持する基板を有し、基板とターゲット層との界面におけるターゲット層の剥がれを抑制できる放射線透過型のターゲット構造体、及びそれを備える放射線発生装置並びに放射線撮影システムの提供を目的とする。
上記課題を解決するために、本発明は、基板の上に、電子の照射により放射線を発生するターゲット層が20μm以下の厚さで形成された放射線透過型のターゲット構造体であって、
前記ターゲット層の表面には凹凸が形成され、凹部は前記ターゲット層の厚さの半分以上の深さを有することを特徴とするターゲット構造体を提供するものである。
本発明によれば、放射線透過型のターゲット構造体において、基板上にターゲット層が形成され、ターゲット層の表面には凹凸が形成され、凹部はターゲット層の厚さの半分以上の深さを有する。この凹部を設けることにより、ターゲット層と基板の熱膨張率差によって生じる熱応力を低減し、基板とターゲット層との界面におけるターゲット層の剥がれを抑制することができる。従って、長時間の駆動においても放射線線量の低下を抑制することができ、信頼性に優れた放射線透過型のターゲットを提供することができる。また、本発明のターゲット構造体を適用することにより、信頼性に優れた放射線発生装置及び放射線撮影システムを提供することができる。
本発明のターゲット構造体の例を示す模式図である。 本発明のターゲット構造体の他の例を示す模式図である。 基板とターゲット層の間に中間層が形成されたターゲット構造体の模式図である。 ターゲット層が保護層に覆われたターゲット構造体の模式図である。 本発明のターゲット構造体を備える放射線発生装置の断面模式図である。 本発明の放射線発生装置を用いた放射線撮影システムの構成図である。
以下、図面を用いて本発明の実施形態を説明するが、本発明は下記実施形態に限定されない。なお、本明細書で特に図示又は記載されない部分に関しては、当該技術分野の周知又は公知技術を適用する。
〔第1の実施形態〕
まず、図1を用いて本発明のターゲット構造体について説明する。図1は本実施形態の放射線透過型のターゲット構造体の模式図であり、図1(a)は上面図、図1(b)は図1(a)における領域30の拡大図、図1(c)(d)は図1(b)のA−A’線における断面図である。
本実施形態のターゲット構造体1は、基板2の上に、電子の照射により放射線を発生するターゲット層3が形成されている。ターゲット層3に電子線を入射すると放射線が発生し、発生した放射線の一部は基板2を透過して、ターゲット層3の反対側に放出され、放射線撮影等に使用される。
基板2は、ターゲット層3を支持し、ターゲット層3で発生する放射線の少なくとも一部を透過するものである。基板2を構成する材料は、ターゲット層3を支持できる強度を有し、ターゲット層3で発生した放射線の吸収が少なく、かつターゲット層3で発生した熱をすばやく放熱できるよう熱伝導率の高いものが好ましい。例えばダイヤモンド、炭化シリコン、窒化シリコン、窒化アルミニウム等を用いることができる。基板2の厚みは、基板2への前記要求事項を満たすため、0.1mm以上10mm以下が適当である。
ターゲット層3は、基板2の表面に形成されている。ターゲット層3を構成する材料は、融点が高く、放射線発生効率の高いものが好ましい。例えばタングステン、タンタル、モリブデン、又はこれらの金属を含む合金等を用いることができる。ターゲット層3の厚みは、発生した放射線がターゲット層3を透過する際に生じる吸収を少なくするため20μm以下が好ましく、2μm以上20μm以下が適当である。
図1(a)の領域30において、ターゲット層3の表面には凹凸が形成されている。図1(c)はターゲット層3が表面の凹凸の凹部4によって複数に分割された例である。図1(d)はターゲット層3が表面の凹凸の凹部4によって完全に分割されていない例である。本発明は図1(c)、図1(d)のいずれの構成でも良い。凹部4の深さは、深い程、熱応力低減の効果が大きい。このため、凹部4の深さはターゲット層3の厚さの半分以上とするのが良い。好ましくは、ターゲット層3の厚さの2/3以上の深さである。ここで、図1(a)の領域30は電子線が照射される範囲を含む領域であれば良く、ターゲット層3の表面の全領域であっても良い。
凹部4の幅L1は、狭すぎると熱応力低減の効果が小さく、また製造も困難である。また広すぎると線量の低下や画質の悪化を生じる。そのため、L1の平均は0.1μm以上20μm以下が好ましい。また凸部31の幅L2は、狭すぎると製造が困難であり、広すぎると熱応力低減の効果が小さい。そのため、L2の平均は1μm以上100μm以下が好ましい。
ターゲット層3にこのような凹部4を設けると、ターゲット層3と基板2の熱膨張率差によって生じる熱応力を低減し、基板2とターゲット層3との界面におけるターゲット層3の剥がれを抑制することができる。そのため、長時間の駆動においても放射線線量の低下を抑制することができる。
凹部4及び凸部31の形状は、前記L1、L2の条件を満たすものであれば良く、図1の形状に限られるものではない。図2に、本発明に適用可能なターゲット層3の別の形状の例を示すが、本発明はこれらに限定されない。ターゲット層3を構成する材料、ターゲット層3の厚みは図1と同じである。
図2(a)は図1と同様に、碁盤目状の凹部4を有するものであるが、凹部4で分割されたターゲット層3の凸部31の一部が連結部32で連結されているものである。基板2がダイヤモンド、窒化シリコン、窒化アルミニウムのような絶縁性基板の場合、このように凸部31の一部を互いに連結することでターゲット層3の導通をとることができる。
図2(b)は、凹部4で分割されたターゲット層3の凸部31が六角形の形状を有するものである。図2(c)は、凹部4で分割されたターゲット層3の凸部31が長方形の形状を有するものである。図2(d)は、凹部4で分割されたターゲット層3の凸部31が同心円の形状を有するものである。図2(b)〜図2(d)においても、図2(a)と同様に、凹部4で分割されたターゲット層3の凸部31の一部が不図示の連結部32で連結されていても良い。
尚、図2(a)〜図2(d)においても、図1(d)と同様に、ターゲット層3が凹部4によって完全に分割されていなくても良い。また、凹部4の形状は図2(a)〜図2(d)のいずれかの形状を組み合わせたものであっても良い。
基板2上にターゲット層3を形成する方法としては、スパッタリング法、蒸着法、イオンプレーティング法、CVD法等の成膜方法を用いることができる。凹部4を形成する方法としては、ターゲット層3を成膜する時に、凹部4を形成する部分を遮蔽したマスクを基板2上に配置して成膜する方法を用いることができる。また、基板2上にターゲット層3を成膜した後、凹部4を形成する部分以外をフォトレジストでマスクし、凹部4を形成する部分のターゲット層3をエッチング除去する方法を用いることができる。
以上、本実施形態によれば、図1の構成のみならず、図2の構成においても、ターゲット層3に凹部4が設けられているため、ターゲット層3と基板2の熱膨張率差によって生じる熱応力を低減することができる。このため、基板2とターゲット層3の間に中間層を設けなくても、基板2とターゲット層3との界面におけるターゲット層3の剥がれを抑制することができ、材料の選択の範囲を広くすることができる。従って、長時間の駆動においても放射線線量の低下が少なく、信頼性に優れた放射線放出ターゲットを提供することができる。
〔第2の実施形態〕
次に、図3を用いて本発明のターゲット構造体について説明する。図3(a)(b)は本実施形態の放射線透過型のターゲット構造体の断面図である。本実施形態は、基板2とターゲット層3の間に中間層5を備えたものであり、その他については第1の実施形態と同様とすることができる。
図3において、中間層5は基板2とターゲット層3との密着性を更に改善するためのものである。中間層5を構成する材料は、基板2及びターゲット層3を構成する材料との密着性が良い材料が好ましい。このような材料としては、チタン、クロム、バナジウム、タンタル、又はこれらの金属を含む合金や化合物等を挙げることができる。また、中間層5は、ターゲット層3で発生する熱を基板2に伝導しやすくさせる機能も持つことができる。
中間層5の厚みは、基板2及びターゲット層3との密着性を確保でき、かつターゲット層3で発生した放射線の吸収を少なくできる厚みであることが望ましく、0.01μm以上0.1μm以下が好ましい。
また、本実施形態においても、第1の実施形態と同様にターゲット層3に凹部4が設けられている。図3(a)は、ターゲット層3が凹部4によって複数に分割され、中間層5は分割されていない例である。図3(b)は、ターゲット層3が凹部4によって複数に分割され、中間層5の表面にも凹凸が設けられ、ターゲット層3の凸部31の下に位置する領域を凹部とし、中間層5がその凹部によって複数に分割された例である。
尚、図1(d)と同様に、ターゲット層3は凹部4によって完全に分割されていなくても良い。また、ターゲット層3が凹部4によって複数に分割されている場合でも、中間層5は複数に分割されていなくても良い。
基板2上に中間層5及びターゲット層3を形成する方法としては、スパッタリング法、蒸着法、イオンプレーティング法、CVD法等の成膜方法を用いることができる。凹部を形成する方法としては、成膜時に、凹部を形成する部分を遮蔽したマスクを基板上に配置して成膜する方法を用いることができる。この時、ターゲット層3を成膜する時にマスクを配置すれば、図3(a)のように、ターゲット層3のみに凹部4が形成される。また、中間層5及びターゲット層3を成膜する時にマスクを配置すれば、図3(b)のように、ターゲット層3及び中間層5に凹部が形成される。また、基板2上に中間層5及びターゲット層3を成膜した後、凹部を形成する部分以外をフォトレジストでマスクし、凹部を形成する部分のターゲット層3、又はターゲット層3と中間層5をエッチング除去する方法を用いることができる。
以上、本実施形態によれば、ターゲット層3に凹部4が設けられているため、基板2と中間層5及びターゲット層3の熱膨張率の差が大きくても各界面における剥がれが生じにくく、材料の選択の範囲を広くすることができる。また、基板2とターゲット層3との間に密着性を改善する中間層5が形成されている。そのため、基板2とターゲット層3との密着性をより強固にし、より長時間の駆動、又はより高出力の駆動においても、ターゲット層3の剥がれを抑制し、放射線線量の低下を抑制することができる。
〔第3の実施形態〕
次に、図4を用いて本発明のターゲット構造体について説明する。図4は本実施形態の放射線透過型のターゲット構造体の断面図である。本実施形態は、ターゲット層3の凹部4を塞ぐことなく、ターゲット層3を覆う保護層6を備えたものであり、その他については第1の実施形態と同様とすることができる。
図4において、保護層6はターゲット層3の剥がれや浮きを抑制するためのものであり、保護層6を構成する材料は、基板2及びターゲット層3を構成する材料と密着性が良く、熱膨張率が近いものが好ましい。また、保護層6における電子線の吸収が小さくなるように電子侵入長の長い比較的原子番号の小さい材料が望ましい。例えばチタン、ニッケル、ジルコニウム、クロム、ニオブ、シリコン、又はこれらの金属を含む合金や化合物等から選択することができる。また保護層6は、ターゲット層3及び凹部4を覆うように連続的に形成されることが望ましく、厚みは1μm以上20μm以下が好ましい。
基板2上にターゲット層3を形成し、ターゲット層3に凹部4を形成する方法としては、第1の実施形態と同様の方法を用いることができる。ターゲット層3上に保護層6を形成する方法としては、スパッタリング法、蒸着法、イオンプレーティング法、CVD法等の成膜方法を用いることができる。
以上、本実施形態によれば、ターゲット層3に凹部4が設けられ、ターゲット層3の凹部4が塞がれていないため、ターゲット層3と基板2の熱膨張率差によって生じる熱応力を低減することができる。このため、基板2とターゲット層3との界面におけるターゲット層3の剥がれを抑制することができる。また、保護層6がターゲット層3を覆って形成されているため、基板2とターゲット層3との密着性をより強固にし、より長時間の駆動、又はより高出力の駆動においても、ターゲット層3の剥がれを抑制し、放射線線量の低下を抑制することができる。
〔第4の実施形態〕
次に、図5を用いて、本発明の放射線透過型のターゲット構造体を備える放射線発生装置について説明する。本実施形態の放射線発生装置は、放射線発生管10を備えており、この放射線発生管10は収納容器17の内部に収納されている。
放射線発生管10は、真空容器15、電子放出源11、ターゲット構造体1、及び放射線遮蔽部材14を備えている。ターゲット構造体1には、第1〜第3の実施形態に記載のいずれかのターゲット構造体を適用することができる。
収納容器17の内部に放射線発生管10を収納した余空間には絶縁性媒体16が充填されている。収納容器17の内部には、本実施形態のように不図示の回路基板及び絶縁トランス等から構成される高圧回路基板19を設けても良い。高圧回路基板19を設けた場合、例えば高圧回路基板19から放射線発生管10に電圧信号が印加され放射線の発生を制御することができる。
収納容器17は、容器としての十分な強度を有し、かつ放熱性に優れたものが望ましく、真鍮、鉄、ステンレス等の金属材料が好適に用いられる。
絶縁性媒体16は、電気絶縁性を有していれば良く、例えば絶縁媒体及び放射線発生管10の冷却媒体としての役割を有する電気絶縁油を用いるのが好ましい。電気絶縁油としては、鉱油、シリコーン油等が好適に用いられる。その他に使用可能な絶縁性媒体16としては、フッ素系電気絶縁液体が挙げられる。
収納容器17には、収納容器外部に放射線を取り出すための放射線透過窓18が設けられている。放射線発生管10から放出された放射線はこの放射線透過窓18を通して外部に放出される。放射線透過窓18には、ガラス、アルミニウム、ベリリウム、ポリカーボネート等が用いられる。
放射線発生管10には、本実施形態のように引出し電極12とレンズ電極13を設けても良い。これらを設けた場合、引出し電極12によって形成される電界によって電子放出源11から電子が放出され、放出された電子はレンズ電極13で収束され、ターゲット構造体1のターゲット層に入射し放射線が発生する。
真空容器15は、放射線発生管10の内部を真空に保つためのもので、ガラスやセラミクス材料等が用いられる。真空容器15内の真空度は10-4Pa〜10-8Pa程度であれば良い。また、真空容器15には不図示の排気管を設けても良い。排気管を設けた場合、例えば排気管を通じて真空容器15内を真空に排気した後、排気管の一部を封止することで真空容器15の内部を真空にすることができる。真空容器15の内部には真空度を保つために、不図示のゲッターを配置しても良い。また、真空容器15は、開口部を有しており、その開口部には放射線遮蔽部材14が接合されている。この放射線遮蔽部材14は真空容器15の開口部に連通する通路を有しており、その通路にターゲット構造体1が接合されることにより真空容器15が密閉される。
電子放出源11は、真空容器15の内部に、真空容器15の開口部に対向して配置されている。電子放出源11にはタングステンフィラメントや、含浸型カソードのような熱陰極、又はカーボンナノチューブ等の冷陰極を用いることができる。電子放出源11の近傍には引出し電極12が配置され、引出し電極12によって形成される電界によって放出された電子は、レンズ電極13で収束され、ターゲット構造体1に入射し放射線が発生する。このとき、電子放出源11とターゲット構造体1のターゲット層との間に印加される電圧Vaは、放射線の使用用途によって異なるものの、概ね40kV〜150kV程度である。
放射線遮蔽部材14は、ターゲット構造体1のターゲット層から放出された放射線のうち、不要な放射線を遮るものであり、真空容器15の開口部に接合されている。電子放出源11から放出された電子は、真空容器15の開口部に連通する放射線遮蔽部材14の通路を通過してターゲット層に照射される。このときターゲット層の電子放出源側に散乱した不要な放射線は、放射線遮蔽部材14で遮蔽される。また、ターゲット層を透過した放射線は、真空容器15の開口部に連通する放射線遮蔽部材14の通路を通過し、不要な放射線は放射線遮蔽部材14で遮蔽される。
放射線遮蔽部材14を構成する材料は、放射線の吸収率が高く、かつ熱伝導率の高いものが好ましい。例えばタングステン、タンタル等の金属材料を用いることができる。不要な放射線を遮蔽するため、放射線遮蔽部材14の厚みは3mm以上が適当である。
放射線遮蔽部材14の形状は、図5のように放射線の通路の開口面積が、ターゲット構造体1側から収納容器17側に向けて徐々に大きくなっていても良い。これは、ターゲット構造体1のターゲット層を透過した放射線が放射状の拡がりをもつからである。
以上、本実施形態によれば、本発明のターゲット構造体を適用することにより、信頼性に優れた放射線発生装置を提供することができる。
〔第5の実施形態〕
次に、第4の実施形態の放射線発生装置を用いた放射線撮影システムについて説明する。図6は本実施形態の放射線撮影システムの構成図である。
システム制御装置62は、放射線発生装置60と放射線検出装置61とを連携制御する。制御部64は、システム制御装置62による制御の下に、放射線発生管10に各種の制御信号を出力する。制御信号により、放射線発生装置60から放出される放射線の放出状態が制御される。放射線発生装置60から放出された放射線は、被検体65を透過して検出器68で検出される。検出器68は、検出した放射線を画像信号に変換して信号処理部67に出力する。信号処理部67は、システム制御装置62による制御の下に、画像信号に所定の信号処理を施し、処理された画像信号をシステム制御装置62に出力する。システム制御装置62は、処理された画像信号に基づいて、表示装置63に画像を表示させるための表示信号を表示装置63に出力する。表示装置63は、表示信号に基づく画像を、被検体65の撮影画像としてスクリーンに表示する。
1:ターゲット構造体、2:基板、3:ターゲット層、4:凹部、5:中間層、6:保護層、10:放射線発生管、11:電子放出源、12:引出し電極、13:レンズ電極、14:放射線遮蔽部材、15:真空容器、16:絶縁性媒体、17:収納容器、18:放射線透過窓、19:高圧回路基板、31:凸部、32:連結部、60:放射線発生装置、61:放射線検出装置、62:システム制御装置、63:表示装置、64:制御部、65:被検体、67:信号処理部、68:検出器

Claims (8)

  1. 基板の上に、電子の照射により放射線を発生するターゲット層が20μm以下の厚さで形成された放射線透過型のターゲット構造体であって、
    前記ターゲット層の表面には凹凸が形成され、凹部は前記ターゲット層の厚さの半分以上の深さを有することを特徴とするターゲット構造体。
  2. 前記ターゲット層は、前記凹部によって複数に分割されていることを特徴とするターゲット構造体。
  3. 前記凹部は平均の幅が0.1μm以上20μm以下であることを特徴とする請求項1又は2に記載のターゲット構造体。
  4. 前記凸部は平均の幅が1μm以上100μm以下であることを特徴とする請求項1乃至3のいずれか1項に記載のターゲット構造体。
  5. 前記基板と前記ターゲット層の間に中間層が形成されていることを特徴とする請求項1乃至4のいずれか1項に記載のターゲット構造体。
  6. 保護層が、前記凹部を塞ぐことなく、かつ前記ターゲット層を覆って形成されていることを特徴とする請求項1乃至4のいずれか1項に記載のターゲット構造体。
  7. 請求項1乃至6のいずれか1項に記載のターゲット構造体と、電子を放出する電子放出源とを備えることを特徴とする放射線発生装置。
  8. 請求項7に記載の放射線発生装置と、該放射線発生装置から放出され、被検体を透過した放射線を検出する放射線検出装置とを備えることを特徴とする放射線撮影システム。
JP2012018561A 2012-01-31 2012-01-31 ターゲット構造体及びそれを備える放射線発生装置 Expired - Fee Related JP5984403B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012018561A JP5984403B2 (ja) 2012-01-31 2012-01-31 ターゲット構造体及びそれを備える放射線発生装置
US13/751,965 US20130195246A1 (en) 2012-01-31 2013-01-28 Target structure and radiation generating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012018561A JP5984403B2 (ja) 2012-01-31 2012-01-31 ターゲット構造体及びそれを備える放射線発生装置

Publications (3)

Publication Number Publication Date
JP2013157269A true JP2013157269A (ja) 2013-08-15
JP2013157269A5 JP2013157269A5 (ja) 2015-03-12
JP5984403B2 JP5984403B2 (ja) 2016-09-06

Family

ID=48870224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012018561A Expired - Fee Related JP5984403B2 (ja) 2012-01-31 2012-01-31 ターゲット構造体及びそれを備える放射線発生装置

Country Status (2)

Country Link
US (1) US20130195246A1 (ja)
JP (1) JP5984403B2 (ja)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015050184A (ja) * 2013-09-03 2015-03-16 韓國電子通信研究院Electronics and Telecommunications Research Institute アノード電極を具備するx線チューブ
US9448190B2 (en) 2014-06-06 2016-09-20 Sigray, Inc. High brightness X-ray absorption spectroscopy system
JP2016533020A (ja) * 2013-09-18 2016-10-20 同方威視技術股▲フン▼有限公司 X線装置及び該x線装置を有するctデバイス
JP2017022054A (ja) * 2015-07-14 2017-01-26 株式会社ニコン X線発生装置、x線装置、構造物の製造方法、及び構造物製造システム
US9594036B2 (en) 2014-02-28 2017-03-14 Sigray, Inc. X-ray surface analysis and measurement apparatus
KR101754277B1 (ko) * 2013-09-03 2017-07-06 한국전자통신연구원 아노드 전극을 구비하는 엑스선 튜브
US10247683B2 (en) 2016-12-03 2019-04-02 Sigray, Inc. Material measurement techniques using multiple X-ray micro-beams
US10269528B2 (en) 2013-09-19 2019-04-23 Sigray, Inc. Diverging X-ray sources using linear accumulation
US10295486B2 (en) 2015-08-18 2019-05-21 Sigray, Inc. Detector for X-rays with high spatial and high spectral resolution
US10297359B2 (en) 2013-09-19 2019-05-21 Sigray, Inc. X-ray illumination system with multiple target microstructures
US10295485B2 (en) 2013-12-05 2019-05-21 Sigray, Inc. X-ray transmission spectrometer system
US10304580B2 (en) 2013-10-31 2019-05-28 Sigray, Inc. Talbot X-ray microscope
US10352880B2 (en) 2015-04-29 2019-07-16 Sigray, Inc. Method and apparatus for x-ray microscopy
US10349908B2 (en) 2013-10-31 2019-07-16 Sigray, Inc. X-ray interferometric imaging system
US10401309B2 (en) 2014-05-15 2019-09-03 Sigray, Inc. X-ray techniques using structured illumination
US10416099B2 (en) 2013-09-19 2019-09-17 Sigray, Inc. Method of performing X-ray spectroscopy and X-ray absorption spectrometer system
US10578566B2 (en) 2018-04-03 2020-03-03 Sigray, Inc. X-ray emission spectrometer system
US10658145B2 (en) 2018-07-26 2020-05-19 Sigray, Inc. High brightness x-ray reflection source
US10656105B2 (en) 2018-08-06 2020-05-19 Sigray, Inc. Talbot-lau x-ray source and interferometric system
US10845491B2 (en) 2018-06-04 2020-11-24 Sigray, Inc. Energy-resolving x-ray detection system
US10962491B2 (en) 2018-09-04 2021-03-30 Sigray, Inc. System and method for x-ray fluorescence with filtering
USRE48612E1 (en) 2013-10-31 2021-06-29 Sigray, Inc. X-ray interferometric imaging system
US11056308B2 (en) 2018-09-07 2021-07-06 Sigray, Inc. System and method for depth-selectable x-ray analysis
US11152183B2 (en) 2019-07-15 2021-10-19 Sigray, Inc. X-ray source with rotating anode at atmospheric pressure
JP7567177B2 (ja) 2019-03-20 2024-10-16 株式会社プロテリアル ソレノイドチューブの製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8831179B2 (en) 2011-04-21 2014-09-09 Carl Zeiss X-ray Microscopy, Inc. X-ray source with selective beam repositioning
JP6207246B2 (ja) * 2013-06-14 2017-10-04 キヤノン株式会社 透過型ターゲットおよび該透過型ターゲットを備える放射線発生管、放射線発生装置、及び、放射線撮影装置
US20150092924A1 (en) * 2013-09-04 2015-04-02 Wenbing Yun Structured targets for x-ray generation
US9570265B1 (en) 2013-12-05 2017-02-14 Sigray, Inc. X-ray fluorescence system with high flux and high flux density
CN105556637B (zh) * 2013-09-19 2019-12-10 斯格瑞公司 使用线性累加的x射线源
US9390881B2 (en) * 2013-09-19 2016-07-12 Sigray, Inc. X-ray sources using linear accumulation
US9449781B2 (en) 2013-12-05 2016-09-20 Sigray, Inc. X-ray illuminators with high flux and high flux density
US9823203B2 (en) 2014-02-28 2017-11-21 Sigray, Inc. X-ray surface analysis and measurement apparatus
FR3022683B1 (fr) * 2014-06-19 2018-03-09 Commissariat A L'energie Atomique Et Aux Energies Alternatives Anode structuree en multiples sites de generation de photons x, tube de rayons x et utilisation pour imagerie de source codee
US9715989B2 (en) * 2015-04-09 2017-07-25 General Electric Company Multilayer X-ray source target with high thermal conductivity
US9646801B2 (en) * 2015-04-09 2017-05-09 General Electric Company Multilayer X-ray source target with high thermal conductivity

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52127089A (en) * 1976-04-16 1977-10-25 Toshiba Corp X-ray tube
JPH02297850A (ja) * 1989-02-20 1990-12-10 Hamamatsu Photonics Kk X線発生管用ターゲットおよびx線発生管
JPH07260713A (ja) * 1994-03-18 1995-10-13 Hitachi Ltd X線撮像装置
JP2000306533A (ja) * 1999-02-19 2000-11-02 Toshiba Corp 透過放射型x線管およびその製造方法
JP2002195961A (ja) * 2000-12-25 2002-07-10 Shimadzu Corp X線撮像装置
JP2002352754A (ja) * 2001-05-29 2002-12-06 Shimadzu Corp 透過型x線ターゲット
JP2005276760A (ja) * 2004-03-26 2005-10-06 Shimadzu Corp X線発生装置
JP2008157702A (ja) * 2006-12-22 2008-07-10 Stanley Electric Co Ltd 電子線・x線源装置およびエアロゾル分析装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011106433A1 (en) * 2010-02-24 2011-09-01 Accuray Incorporated Gantry image guided radiotherapy system and related treatment delivery methods
JP5645449B2 (ja) * 2010-04-14 2014-12-24 キヤノン株式会社 X線源及びx線撮影装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52127089A (en) * 1976-04-16 1977-10-25 Toshiba Corp X-ray tube
JPH02297850A (ja) * 1989-02-20 1990-12-10 Hamamatsu Photonics Kk X線発生管用ターゲットおよびx線発生管
JPH07260713A (ja) * 1994-03-18 1995-10-13 Hitachi Ltd X線撮像装置
JP2000306533A (ja) * 1999-02-19 2000-11-02 Toshiba Corp 透過放射型x線管およびその製造方法
JP2002195961A (ja) * 2000-12-25 2002-07-10 Shimadzu Corp X線撮像装置
JP2002352754A (ja) * 2001-05-29 2002-12-06 Shimadzu Corp 透過型x線ターゲット
JP2005276760A (ja) * 2004-03-26 2005-10-06 Shimadzu Corp X線発生装置
JP2008157702A (ja) * 2006-12-22 2008-07-10 Stanley Electric Co Ltd 電子線・x線源装置およびエアロゾル分析装置

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101754277B1 (ko) * 2013-09-03 2017-07-06 한국전자통신연구원 아노드 전극을 구비하는 엑스선 튜브
US9368316B2 (en) 2013-09-03 2016-06-14 Electronics And Telecommunications Research Institute X-ray tube having anode electrode
JP2015050184A (ja) * 2013-09-03 2015-03-16 韓國電子通信研究院Electronics and Telecommunications Research Institute アノード電極を具備するx線チューブ
JP2016533020A (ja) * 2013-09-18 2016-10-20 同方威視技術股▲フン▼有限公司 X線装置及び該x線装置を有するctデバイス
US10416099B2 (en) 2013-09-19 2019-09-17 Sigray, Inc. Method of performing X-ray spectroscopy and X-ray absorption spectrometer system
US10269528B2 (en) 2013-09-19 2019-04-23 Sigray, Inc. Diverging X-ray sources using linear accumulation
US10976273B2 (en) 2013-09-19 2021-04-13 Sigray, Inc. X-ray spectrometer system
US10297359B2 (en) 2013-09-19 2019-05-21 Sigray, Inc. X-ray illumination system with multiple target microstructures
US10653376B2 (en) 2013-10-31 2020-05-19 Sigray, Inc. X-ray imaging system
US10349908B2 (en) 2013-10-31 2019-07-16 Sigray, Inc. X-ray interferometric imaging system
USRE48612E1 (en) 2013-10-31 2021-06-29 Sigray, Inc. X-ray interferometric imaging system
US10304580B2 (en) 2013-10-31 2019-05-28 Sigray, Inc. Talbot X-ray microscope
US10295485B2 (en) 2013-12-05 2019-05-21 Sigray, Inc. X-ray transmission spectrometer system
US9594036B2 (en) 2014-02-28 2017-03-14 Sigray, Inc. X-ray surface analysis and measurement apparatus
US10401309B2 (en) 2014-05-15 2019-09-03 Sigray, Inc. X-ray techniques using structured illumination
US9448190B2 (en) 2014-06-06 2016-09-20 Sigray, Inc. High brightness X-ray absorption spectroscopy system
US10352880B2 (en) 2015-04-29 2019-07-16 Sigray, Inc. Method and apparatus for x-ray microscopy
JP2017022054A (ja) * 2015-07-14 2017-01-26 株式会社ニコン X線発生装置、x線装置、構造物の製造方法、及び構造物製造システム
US10295486B2 (en) 2015-08-18 2019-05-21 Sigray, Inc. Detector for X-rays with high spatial and high spectral resolution
US10247683B2 (en) 2016-12-03 2019-04-02 Sigray, Inc. Material measurement techniques using multiple X-ray micro-beams
US10466185B2 (en) 2016-12-03 2019-11-05 Sigray, Inc. X-ray interrogation system using multiple x-ray beams
US10578566B2 (en) 2018-04-03 2020-03-03 Sigray, Inc. X-ray emission spectrometer system
US10845491B2 (en) 2018-06-04 2020-11-24 Sigray, Inc. Energy-resolving x-ray detection system
US10989822B2 (en) 2018-06-04 2021-04-27 Sigray, Inc. Wavelength dispersive x-ray spectrometer
JP2021532547A (ja) * 2018-07-26 2021-11-25 シグレイ、インコーポレイテッド 高輝度x線反射源
US10658145B2 (en) 2018-07-26 2020-05-19 Sigray, Inc. High brightness x-ray reflection source
US10991538B2 (en) 2018-07-26 2021-04-27 Sigray, Inc. High brightness x-ray reflection source
JP7117452B2 (ja) 2018-07-26 2022-08-12 シグレイ、インコーポレイテッド 高輝度反射型x線源
US10656105B2 (en) 2018-08-06 2020-05-19 Sigray, Inc. Talbot-lau x-ray source and interferometric system
US10962491B2 (en) 2018-09-04 2021-03-30 Sigray, Inc. System and method for x-ray fluorescence with filtering
US11056308B2 (en) 2018-09-07 2021-07-06 Sigray, Inc. System and method for depth-selectable x-ray analysis
JP7567177B2 (ja) 2019-03-20 2024-10-16 株式会社プロテリアル ソレノイドチューブの製造方法
US11152183B2 (en) 2019-07-15 2021-10-19 Sigray, Inc. X-ray source with rotating anode at atmospheric pressure

Also Published As

Publication number Publication date
JP5984403B2 (ja) 2016-09-06
US20130195246A1 (en) 2013-08-01

Similar Documents

Publication Publication Date Title
JP5984403B2 (ja) ターゲット構造体及びそれを備える放射線発生装置
JP2013239317A (ja) 放射線発生ターゲット、放射線発生装置および放射線撮影システム
JP5791401B2 (ja) 放射線発生装置及びそれを用いた放射線撮影装置
JP6039283B2 (ja) 放射線発生装置及び放射線撮影装置
US9373478B2 (en) Radiation generating apparatus and radiation imaging apparatus
JP6039282B2 (ja) 放射線発生装置及び放射線撮影装置
JP5455880B2 (ja) 放射線発生管、放射線発生装置ならびに放射線撮影装置
US9818571B2 (en) X-ray generation tube, X-ray generation apparatus, and radiography system
JP6272043B2 (ja) X線発生管及びこれを用いたx線発生装置、x線撮影システム
JP2013051153A (ja) 放射線発生装置及びそれを用いた放射線撮影装置
WO2013032019A1 (en) X-ray generator and x-ray imaging apparatus
WO2013032014A1 (en) X-ray generation apparatus and x-ray radiographic apparatus
US20140362972A1 (en) X-ray generator and x-ray imaging apparatus
US9715989B2 (en) Multilayer X-ray source target with high thermal conductivity
JP2013109902A (ja) 透過型放射線発生装置及びそれを用いた放射線撮影装置
US20160300686A1 (en) Multilayer x-ray source target with high thermal conductivity
JP2014086147A (ja) 放射線発生管、放射線発生ユニット及び放射線撮影システム
JP6153314B2 (ja) X線透過型ターゲット及びその製造方法
US20130266119A1 (en) Micro-focus x-ray generation apparatus and x-ray imaging apparatus
JP2015005337A (ja) 放射線発生ターゲット及びこれを用いた放射線発生管、放射線発生装置、放射線撮影システム
JP5725827B2 (ja) 放射線発生装置および放射線撮影システム
JP2015060731A (ja) 放射線発生管及びこれを用いた放射線発生装置、放射線撮影システム
JP5449118B2 (ja) 透過型放射線管、放射線発生装置および放射線撮影装置
JP2015138593A (ja) 放射線管及び放射線発生装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160802

R151 Written notification of patent or utility model registration

Ref document number: 5984403

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees