JP2013080739A - 永久磁石及び永久磁石の製造方法 - Google Patents

永久磁石及び永久磁石の製造方法 Download PDF

Info

Publication number
JP2013080739A
JP2013080739A JP2011218596A JP2011218596A JP2013080739A JP 2013080739 A JP2013080739 A JP 2013080739A JP 2011218596 A JP2011218596 A JP 2011218596A JP 2011218596 A JP2011218596 A JP 2011218596A JP 2013080739 A JP2013080739 A JP 2013080739A
Authority
JP
Japan
Prior art keywords
magnet
permanent magnet
organometallic compound
sintering
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011218596A
Other languages
English (en)
Other versions
JP5908247B2 (ja
Inventor
Keisuke Taihaku
啓介 太白
Takashi Ozaki
孝志 尾崎
Katsuya Kume
克也 久米
Toshiaki Okuno
利昭 奥野
Izumi Ozeki
出光 尾関
Tomohiro Omure
智弘 大牟礼
Takashi Yamamoto
貴士 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2011218596A priority Critical patent/JP5908247B2/ja
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to EP12835239.0A priority patent/EP2763146A4/en
Priority to KR1020147011140A priority patent/KR20140081843A/ko
Priority to US14/241,524 priority patent/US20140301885A1/en
Priority to CN201280047822.4A priority patent/CN103827988A/zh
Priority to PCT/JP2012/074473 priority patent/WO2013047469A1/ja
Priority to TW101136047A priority patent/TW201330023A/zh
Publication of JP2013080739A publication Critical patent/JP2013080739A/ja
Application granted granted Critical
Publication of JP5908247B2 publication Critical patent/JP5908247B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/107Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/023Hydrogen absorption
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0572Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/086Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

【課題】焼結後の磁石の主相と粒界相との間に空隙を生じさせることなく、また、磁石全体を緻密に焼結することが可能となった永久磁石及び永久磁石の製造方法を提供する。
【解決手段】粉砕されたネオジム磁石の微粉末に対して、M−(OR)(式中、MはCu、Al、Dy、Tb、V、Mo、Zr、Ta、Ti、W又はNbである。Rは炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物が添加された有機金属化合物溶液を加え、ネオジム磁石の粒子表面に対して均一に有機金属化合物を付着させる。その後、乾燥させた磁石粉末を大気圧より高い圧力に加圧した水素雰囲気下において200℃〜900℃で数時間保持することにより水素中仮焼処理を行い、更に、水素中仮焼処理によって仮焼された粉末状の仮焼体を真空雰囲気で200℃〜600℃で数時間保持することにより脱水素処理を行う。
【選択図】図5

Description

本発明は、永久磁石及び永久磁石の製造方法に関する。
近年、ハイブリッドカーやハードディスクドライブ等に使用される永久磁石モータでは、小型軽量化、高出力化、高効率化が要求されている。そして、上記永久磁石モータにおいて小型軽量化、高出力化、高効率化を実現するに当たって、永久磁石モータに埋設される永久磁石について、更なる磁気特性の向上が求められている。尚、永久磁石としてはフェライト磁石、Sm−Co系磁石、Nd−Fe−B系磁石、SmFe17系磁石等があるが、特に残留磁束密度の高いNd−Fe−B系磁石が永久磁石モータ用の永久磁石として用いられる。
ここで、永久磁石の製造方法としては、一般的に粉末焼結法が用いられる。ここで、粉末焼結法は、先ず原材料を粗粉砕し、ジェットミル(乾式粉砕)により微粉砕した磁石粉末を製造する。その後、その磁石粉末を型に入れて、外部から磁場を印加しながら所望の形状にプレス成形する。そして、所望形状に成形された固形状の磁石粉末を所定温度(例えばNd−Fe−B系磁石では800℃〜1150℃)で焼結することにより製造する。
特許第3298219号公報(第4頁、第5頁)
一方、Nd−Fe−B等のNd系磁石は、耐熱温度が低いことが問題であった。従って、Nd系磁石を永久磁石モータに用いる場合には、該モータを連続駆動させると磁石の残留磁束密度が徐々に低下することとなっていた。また、不可逆減磁も生じることとなっていた。そこで、Nd系磁石を永久磁石モータに用いる場合には、Nd系磁石の耐熱性を向上させるために、磁気異方性の高いDy(ジスプロシウム)やTb(テルビウム)を添加し、磁石の保磁力を更に向上させることが図られている。
ここで、DyやTbを添加する方法としては、従来より、焼結磁石の表面にDyやTbを付着させ、拡散させる粒界拡散法と、主相と粒界相に対応する粉末を別々に製造し、混合(ドライブレンド)する2合金法がある。前者は、板状や小片には有効だが、大型の磁石では内部の粒界相までDyやTbの拡散距離を伸ばせない欠点がある。後者は、2つの合金をブレンドしプレスして磁石を作製するため、DyやTbが粒内に拡散してしまい、粒界に偏在させることが出来ない欠点がある。
また、DyやTbは希少金属であり、産出地も限られていることから、Ndに対するDyやTbの使用量は少しでも抑えることが望ましい。更に、DyやTbを多量に添加すると、磁石の強さを示す残留磁束密度が低下してしまう課題もある。そこで、微量のDyやTbを効率よく粒界に偏在させることによって、残留磁束密度を低下させることなく磁石の保磁力を大きく向上させる技術が望まれていた。
また、DyやTbを有機金属化合物の状態でNd系磁石に添加することにより、DyやTbを磁石の粒界に対して偏在配置することも考えられる。しかしながら、一般的に有機金属化合物を磁石に添加するとC含有物が磁石内に残留することとなる。そして、Ndと炭素との反応性が非常に高いため、焼結工程において高温までC含有物が残ると、カーバイドを形成する。その結果、形成されたカーバイドによって焼結後の磁石の主相と粒界相との間に空隙が生じ、磁石全体を緻密に焼結できずに磁気性能が著しく低下する問題があった。また、空隙が生じなかった場合でも、形成されたカーバイドによって焼結後の磁石の主相内にαFeが析出し、磁石特性を大きく低下させる問題があった。
また、上記DyやTb以外にも永久磁石の磁気特性を向上させる為に、VやNb等の高融点金属元素やAl、Cu等を磁石粉末に添加することが行われている。しかしながら、有機金属化合物の状態でこれらの金属元素を添加すると、同様にC含有物が磁石内に残留し、磁石特性を大きく低下させる問題があった。
本発明は前記従来における問題点を解消するためになされたものであり、有機金属化合物が添加された磁石粉末を、焼結前に大気圧より高い圧力に加圧した水素雰囲気下で仮焼することにより、磁石粒子の含有する炭素量を予め低減させることができ、その結果、焼結後の磁石の主相と粒界相との間に空隙を生じさせることなく、また、磁石全体を緻密に焼結することが可能となった永久磁石及び永久磁石の製造方法を提供することを目的とする。
前記目的を達成するため本願の請求項1に係る永久磁石は、磁石原料を磁石粉末に粉砕する工程と、前記粉砕された磁石粉末に以下の構造式M−(OR)(式中、MはCu、Al、Dy、Tb、V、Mo、Zr、Ta、Ti、W又はNbである。Rは炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)で表わされる有機金属化合物を添加することにより、前記磁石粉末の粒子表面に前記有機金属化合物を付着させる工程と、前記有機金属化合物が粒子表面に付着された前記磁石粉末を大気圧より高い圧力に加圧した水素雰囲気下で仮焼して仮焼体を得る工程と、前記仮焼体を成形することにより成形体を形成する工程と、前記成形体を焼結する工程と、により製造されることを特徴とする。
また、請求項2に係る永久磁石は、請求項1に記載の永久磁石において、前記有機金属化合物を形成する金属が、焼結後に前記永久磁石の粒界に偏在していることを特徴とする。
また、請求項3に係る永久磁石は、請求項1又は請求項2に記載の永久磁石において、前記構造式M−(OR)のRが、アルキル基であることを特徴とする。
また、請求項4に係る永久磁石は、請求項3に記載の永久磁石において、前記構造式M−(OR)のRが、炭素数2〜6のアルキル基のいずれかであることを特徴とする。
また、請求項5に係る永久磁石は、請求項1乃至請求項4のいずれかに記載の永久磁石において、焼結後に残存する炭素量が600ppm以下であることを特徴とする。
また、請求項6に係る永久磁石は、請求項1乃至請求項5のいずれかに記載の永久磁石において、前記成形体を仮焼する工程は、200℃〜900℃の温度範囲で前記成形体を所定時間保持することを特徴とする。
また、請求項7に係る永久磁石の製造方法は、磁石原料を磁石粉末に粉砕する工程と、前記粉砕された磁石粉末に以下の構造式M−(OR)(式中、MはCu、Al、Dy、Tb、V、Mo、Zr、Ta、Ti、W又はNbである。Rは炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)で表わされる有機金属化合物を添加することにより、前記磁石粉末の粒子表面に前記有機金属化合物を付着させる工程と、前記有機金属化合物が粒子表面に付着された前記磁石粉末を大気圧より高い圧力に加圧した水素雰囲気下で仮焼して仮焼体を得る工程と、前記仮焼体を成形することにより成形体を形成する工程と、前記成形体を焼結する工程と、を有することを特徴とする。
また、請求項8に係る永久磁石の製造方法は、請求項7に記載の永久磁石の製造方法において、前記構造式M−(OR)のRが、アルキル基であることを特徴とする。
また、請求項9に係る永久磁石の製造方法は、請求項8に記載の永久磁石の製造方法において、前記構造式M−(OR)のRが、炭素数2〜6のアルキル基のいずれかであることを特徴とする。
更に、請求項10に係る永久磁石の製造方法は、請求項7乃至請求項9のいずれかに記載の永久磁石の製造方法において、前記成形体を仮焼する工程は、200℃〜900℃の温度範囲で前記成形体を所定時間保持することを特徴とする。
前記構成を有する請求項1に記載の永久磁石によれば、有機金属化合物に含まれるCu、Al、Dy、Tb、V、Mo、Zr、Ta、Ti、W又はNbを磁石の粒界に対して効率よく偏在させることができる。その結果、永久磁石の磁気性能を向上させることが可能となる。また、Cu、Al、Dy、Tb、V、Mo、Zr、Ta、Ti、W又はNbの添加量を従来に比べて少量にできるので、残留磁束密度の低下を抑制することができる。また、有機金属化合物が添加された磁石を、焼結前に大気圧より高い圧力に加圧した水素雰囲気下で仮焼することにより、磁石粒子の含有する炭素量を予め低減させることができる。その結果、焼結後の磁石の主相と粒界相との間に空隙を生じさせることなく、また、磁石全体を緻密に焼結することが可能となり、保磁力が低下することを防止できる。また、焼結後の磁石の主相内にαFeが多数析出することなく、磁石特性を大きく低下させることがない。
更に、粉末状の磁石粒子に対して仮焼を行うので、成形後の磁石粒子に対して仮焼を行う場合と比較して、有機金属化合物の熱分解を磁石粒子全体に対してより容易に行うことができる。即ち、仮焼体中の炭素量をより確実に低減させることが可能となる。
また、請求項2に記載の永久磁石によれば、高融点金属であるV、Mo、Zr、Ta、Ti、W又はNbが焼結後に磁石の粒界に偏在すれば、粒界に偏在されたV、Mo、Zr、Ta、Ti、W又はNbが焼結時の磁石粒子の粒成長を抑制するとともに、焼結後における磁石粒子間での交換相互作用を分断することによって各磁石粒子の磁化反転を妨げ、磁気性能を向上させることが可能となる。
また、磁気異方性の高いDyやTbが焼結後に磁石の粒界に偏在すれば、粒界に偏在されたDyやTbが粒界の逆磁区の生成を抑制することで、保磁力の向上が可能となる。
また、CuやAlが焼結後に磁石の粒界に偏在すれば、リッチ相を均一に分散することができ、保磁力の向上が可能となる。
また、請求項3に記載の永久磁石によれば、磁石粉末に添加する有機金属化合物として、アルキル基から構成される有機金属化合物を用いるので、水素雰囲気で磁石粉末を仮焼する際に、有機金属化合物の熱分解を容易に行うことが可能となる。その結果、仮焼体中の炭素量をより確実に低減させることが可能となる。
また、請求項4に記載の永久磁石によれば、磁石粉末に添加する有機金属化合物として、炭素数2〜6のアルキル基から構成される有機金属化合物を用いるので、水素雰囲気で磁石粉末を仮焼する際に、低温で有機金属化合物の熱分解を行うことが可能となる。その結果、有機金属化合物の熱分解を磁石粉末全体に対してより容易に行うことができる。即ち、仮焼処理によって、仮焼体中の炭素量をより確実に低減させることが可能となる。
また、請求項5に記載の永久磁石によれば、焼結後に残存する炭素量が600ppm以下であるので、磁石の主相と粒界相との間に空隙が生じることなく、また、磁石全体を緻密に焼結した状態とすることが可能となり、残留磁束密度が低下することを防止できる。また、焼結後の磁石の主相内にαFeが多数析出することなく、磁石特性を大きく低下させることがない。
また、請求項6に記載の永久磁石によれば、磁石粉末を仮焼する工程は、200℃〜900℃の温度範囲で磁石粉末を所定時間保持することにより行うので、有機金属化合物を確実に熱分解させて含有する炭素を必要量以上焼失させることができる。
また、請求項7に記載の永久磁石の製造方法によれば、有機金属化合物に含まれるCu、Al、Dy、Tb、V、Mo、Zr、Ta、Ti、W又はNbを磁石の粒界に対して効率よく偏在させた永久磁石を製造することが可能となる。その結果、永久磁石の磁気性能を向上させることが可能となる。また、Cu、Al、Dy、Tb、V、Mo、Zr、Ta、Ti、W又はNbの添加量を従来に比べて少量にできるので、残留磁束密度の低下を抑制することができる。また、有機金属化合物が添加された磁石を、焼結前に大気圧より高い圧力に加圧した水素雰囲気下で仮焼することにより、磁石粒子の含有する炭素量を予め低減させることができる。その結果、焼結後の磁石の主相と粒界相との間に空隙を生じさせることなく、また、磁石全体を緻密に焼結することが可能となり、保磁力が低下することを防止できる。また、焼結後の磁石の主相内にαFeが多数析出することなく、磁石特性を大きく低下させることがない。
更に、粉末状の磁石粒子に対して仮焼を行うので、成形後の磁石粒子に対して仮焼を行う場合と比較して、有機金属化合物の熱分解を磁石粒子全体に対してより容易に行うことができる。即ち、仮焼体中の炭素量をより確実に低減させることが可能となる。
また、請求項8に記載の永久磁石の製造方法によれば、磁石粉末に添加する有機金属化合物として、アルキル基から構成される有機金属化合物を用いるので、水素雰囲気で磁石粉末を仮焼する際に、有機金属化合物の熱分解を容易に行うことが可能となる。その結果、仮焼体中の炭素量をより確実に低減させることが可能となる。
また、請求項9に記載の永久磁石の製造方法によれば、磁石粉末に添加する有機金属化合物として、炭素数2〜6のアルキル基から構成される有機金属化合物を用いるので、水素雰囲気で磁石粉末を仮焼する際に、低温で有機金属化合物の熱分解を行うことが可能となる。その結果、有機金属化合物の熱分解を磁石粉末全体に対してより容易に行うことができる。即ち、仮焼処理によって、仮焼体中の炭素量をより確実に低減させることが可能となる。
更に、請求項10に記載の永久磁石の製造方法によれば、磁石粉末を仮焼する工程は、200℃〜900℃の温度範囲で磁石粉末を所定時間保持することにより行うので、有機金属化合物を確実に熱分解させて含有する炭素を必要量以上焼失させることができる。
本発明に係る永久磁石を示した全体図である。 本発明に係る永久磁石の粒界付近を拡大して示した模式図である。 本発明に係る永久磁石の粒界付近を拡大して示した模式図である。 本発明に係る永久磁石の第1の製造方法における製造工程を示した説明図である。 本発明に係る永久磁石の第2の製造方法における製造工程を示した説明図である。 水素中仮焼処理を行った場合と行わなかった場合の酸素量の変化を示した図である。 実施例1、2と比較例1の永久磁石の永久磁石中の残存炭素量を示した図である。
以下、本発明に係る永久磁石及び永久磁石の製造方法について具体化した実施形態について以下に図面を参照しつつ詳細に説明する。
[永久磁石の構成]
先ず、本発明に係る永久磁石1の構成について説明する。図1は本発明に係る永久磁石1を示した全体図である。尚、図1に示す永久磁石1は円柱形状を備えるが、永久磁石1の形状は成形に用いるキャビティの形状によって変化する。
本発明に係る永久磁石1としては例えばNd−Fe−B系磁石を用いる。また、永久磁石1を形成する各結晶粒子の界面(粒界)には、永久磁石1の保磁力を高める為のCu、Al、Dy(ジスプロシウム)、Tb(テルビウム)、Nb(ニオブ)、V(バナジウム)、Mo(モリブデン)、Zr(ジルコニウム)、Ta(タンタル)、Ti(チタン)又はW(タングステン)が偏在する。尚、各成分の含有量はNd:25〜37wt%、Cu、Al、Dy、Tb、Nb、V、Mo、Zr、Ta、Ti、Wのいずれか(以下、Nb等という):0.01〜5wt%、B:0.8〜2wt%、Fe(電解鉄):60〜75wt%とする。また、磁気特性向上の為、Co、Si等の他元素を少量含んでも良い。
具体的に、本発明に係る永久磁石1は、図2に示すように永久磁石1を構成するNd結晶粒子10の結晶粒の表面部分(外殻)において、Ndの一部をNb等で置換した層11(以下、金属偏在層11という)を生成することにより、Nb等をNd結晶粒子10の粒界に対して偏在させる。図2は永久磁石1を構成するNd結晶粒子10を拡大して示した図である。尚、金属偏在層11は、非磁性となることが好ましい。
ここで、本発明ではNb等の置換は、後述のように粉砕された磁石粉末を成形する前にNb等を含む有機金属化合物が添加されることにより行われる。具体的には、Nb等を含む有機金属化合物を添加した磁石粉末を焼結する際に、湿式分散によりNd結晶粒子10の粒子表面に均一付着された該有機金属化合物中のNb等が、Nd結晶粒子10の結晶成長領域へと拡散侵入して置換が行われ、図2に示す金属偏在層11を形成する。尚、Nd結晶粒子10は、例えばNdFe14B金属間化合物から構成され、金属偏在層11は例えばNbFeB金属間化合物から構成される。
また、本発明では、特に後述のようにM−(OR)(式中、MはCu、Al、Dy、Tb、V、Mo、Zr、Ta、Ti、W又はNbである。Rは炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)で表わされるNb等を含む有機金属化合物(例えば、ニオブエトキシド、ニオブn−プロポキシド、ニオブn−ブトキシド、ニオブn−ヘキソキシドなど)を有機溶媒に添加し、湿式状態で磁石粉末に混合する。それにより、Nb等を含む有機金属化合物を有機溶媒中で分散させ、Nd結晶粒子10の粒子表面にNb等を含む有機金属化合物を均一付着することが可能となる。
ここで、上記M−(OR)(式中、MはCu、Al、Dy、Tb、V、Mo、Zr、Ta、Ti、W又はNbである。Rは炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)の構造式を満たす有機金属化合物として金属アルコキシドがある。金属アルコキシドとは、一般式M(OR)(M:金属元素、R:有機基、n:金属又は半金属の価数)で表される。また、金属アルコキシドを形成する金属又は半金属としては、W、Mo、V、Nb、Ta、Ti、Zr、Ir、Fe、Co、Ni、Cu、Zn、Cd、Al、Ga、In、Ge、Sb、Y、lanthanideなどが挙げられる。但し、本発明では特に、永久磁石1の磁気性能を向上させる為にCu、Al、Dy、Tb、V、Mo、Zr、Ta、Ti、W又はNbを用いる。
また、アルコキシドの種類は特に限定されることなく、例えば、メトキシド、エトキシド、プロポキシド、イソプロポキシド、ブトキシド、炭素数4以上のアルコキシド等が挙げられる。但し、本発明では後述のように低温分解で残炭を抑制する目的から、低分子量のものを用いる。また、炭素数1のメトキシドについては分解し易く、取扱いが困難であるので、特にRに含まれる炭素数が2〜6のアルコキシドであるエトキシド、メトキシド、イソプロポキシド、プロポキシド、ブトキシドなどを用いることが好ましい。即ち、本発明では、特に磁石粉末に添加する有機金属化合物としてM−(OR)x(式中、MはCu、Al、Dy、Tb、V、Mo、Zr、Ta、Ti、W又はNbである。Rはアルキル基であり、直鎖でも分枝でも良い。xは任意の整数である。)で表わされる有機金属化合物、より好ましくは、M−(OR)x(式中、MはCu、Al、Dy、Tb、V、Mo、Zr、Ta、Ti、W又はNbである。Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で表わされる有機金属化合物を用いることが望ましい。
また、圧粉成形により成形された成形体を適切な焼成条件で焼成すれば、Nb等がNd結晶粒子10内へと拡散浸透(固溶化)することを防止できる。それにより、本発明では、Nb等を添加したとしても焼結後に粒界のみにNb等を偏在させることができる。その結果、結晶粒全体としては(すなわち、焼結磁石全体としては)、コアのNdFe14B金属間化合物相が高い体積割合を占めた状態となる。それにより、その磁石の残留磁束密度(外部磁場の強さを0にしたときの磁束密度)の低下を抑制することができる。
また、一般的に、焼結後の各Nd結晶粒子10が密な状態にあると、各Nd結晶粒子10間で交換相互作用が伝搬することが考えられる。その結果、外部から磁場が加わった場合に各結晶粒子の磁化反転が容易に生じ、仮に焼結後の結晶粒子をそれぞれ単磁区構造とすることができたとしても、保磁力は低下する。しかしながら、本発明では、Nd結晶粒子10の表面にコーティングされた非磁性の金属偏在層11によって、Nd結晶粒子10間での交換相互作用を分断され、外部から磁場が加わった場合でも各結晶粒子の磁化反転を妨げる。
また、金属偏在層11を特に高融点金属であるV、Mo、Zr、Ta、Ti、W又はNbを含む層によって構成すれば、Nd結晶粒子10の表面にコーティングされた金属偏在層11は、永久磁石1の焼結時においてはNd結晶粒子10の平均粒径が増加する所謂粒成長を抑制する手段としても機能する。
一方、金属偏在層11を特に磁気異方性の高いDy又はTbを含む層によって構成すれば、逆磁区の生成を抑制し、保磁力を高める(磁化反転を阻止する)手段としても機能する。
また、金属偏在層11を特にCu又はAlを含む層によって構成すれば、焼結後の永久磁石1中におけるリッチ相を均一に分散させ、保磁力を高める手段としても機能する。
また、Nd結晶粒子10の粒径Dは0.2μm〜1.2μm、好ましくは0.3μm程度とすることが望ましい。また、金属偏在層11の厚さdが2nm程度あれば、金属偏在層11による効果(粒成長抑制、交換相互作用の分断、保磁力向上等)を得ることが可能となる。但し、金属偏在層11の厚さdが大きくなりすぎると、磁性を発現しない非磁性成分の含有率が大きくなるので、残留磁束密度が低下することとなる。
尚、Nb等をNd結晶粒子10の粒界に対して偏在させる構成としては、図3に示すようにNd結晶粒子10の粒界に対してNb等からなる粒12を点在させる構成としても良い。図3に示す構成であっても、同様の効果(粒成長抑制、交換相互作用の分断、保磁力向上等)を得ることが可能となる。尚、Nb等がNd結晶粒子10の粒界に対してどのように偏在しているかは、例えばSEMやTEMや3次元アトムプローブ法により確認することができる。
また、金属偏在層11はCu化合物、Al化合物、Dy化合物、Tb化合物、Nb化合物、V化合物、Mo化合物、Zr化合物、Ta化合物、Ti化合物又はW化合物(以下、Nb等化合物という)のみから構成される層である必要はなく、Nb等化合物とNd化合物との混合体からなる層であっても良い。その場合には、Nd化合物を添加することによって、Nb等化合物とNd化合物との混合体からなる層を形成する。その結果、Nd磁石粉末の焼結時の液相焼結を助長することができる。尚、添加するNd化合物としては、NdH、酢酸ネオジム水和物、ネオジム(III)アセチルアセトナート三水和物、2−エチルヘキサン酸ネオジム(III)、ネオジム(III)ヘキサフルオロアセチルアセトナート二水和物、ネオジムイソプロポキシド、リン酸ネオジニウム(III)n水和物、ネオジムトリフルオロアセチルアセトナート、トリフルオロメタンスルホン酸ネオジム等が望ましい。
[永久磁石の製造方法1]
次に、本発明に係る永久磁石1の第1の製造方法について図4を用いて説明する。図4は本発明に係る永久磁石1の第1の製造方法における製造工程を示した説明図である。
先ず、所定分率のNd−Fe−B(例えばNd:32.7wt%、Fe(電解鉄):65.96wt%、B:1.34wt%)からなる、インゴットを製造する。その後、インゴットをスタンプミルやクラッシャー等によって200μm程度の大きさに粗粉砕する。若しくは、インゴットを溶解し、ストリップキャスト法でフレークを作製し、水素解砕法で粗粉化する。
次いで、粗粉砕した磁石粉末を、(a)酸素含有量が実質的に0%の窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気中、又は(b)酸素含有量が0.0001〜0.5%の窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気中で、ジェットミル41により微粉砕し、所定サイズ以下(例えば0.1μm〜5.0μm)の平均粒径を有する微粉末とする。尚、酸素濃度が実質的に0%とは、酸素濃度が完全に0%である場合に限定されず、微粉の表面にごく僅かに酸化被膜を形成する程度の量の酸素を含有しても良いことを意味する。
一方で、ジェットミル41で微粉砕された微粉末に添加する有機金属化合物溶液を作製する。ここで、有機金属化合物溶液には予めNb等を含む有機金属化合物を添加し、溶解させる。尚、溶解させる有機金属化合物としては、M−(OR)(式中、MはCu、Al、Dy、Tb、V、Mo、Zr、Ta、Ti、W又はNbであり、Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)に該当する有機金属化合物(例えば、ニオブエトキシド、ニオブn−プロポキシド、ニオブn−ブトキシド、ニオブn−ヘキソキシドなど)を用いることが望ましい。また、溶解させるNb等を含む有機金属化合物の量は特に制限されないが、焼結後の磁石に対するNb等の含有量が0.001wt%〜10wt%、好ましくは0.01wt%〜5wt%となる量とするのが好ましい。
続いて、ジェットミル41にて分級された微粉末に対して上記有機金属化合物溶液を添加する。それによって、磁石原料の微粉末と有機金属化合物溶液とが混合されたスラリー42を生成する。尚、有機金属化合物溶液の添加は、窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気で行う。
その後、生成したスラリー42を成形前に真空乾燥などで事前に乾燥させ、乾燥した磁石粉末43を取り出す。その後、乾燥した磁石粉末を成形装置50により所定形状に圧粉成形する。尚、圧粉成形には、上記の乾燥した微粉末をキャビティに充填する乾式法と、溶媒などでスラリー状にしてからキャビティに充填する湿式法があるが、本発明では乾式法を用いる場合を例示する。また、有機金属化合物溶液は成形後の焼成段階で揮発させることも可能である。
図4に示すように、成形装置50は、円筒状のモールド51と、モールド51に対して上下方向に摺動する下パンチ52と、同じくモールド51に対して上下方向に摺動する上パンチ53とを有し、これらに囲まれた空間がキャビティ54を構成する。
また、成形装置50には一対の磁界発生コイル55、56がキャビティ54の上下位置に配置されており、磁力線をキャビティ54に充填された磁石粉末43に印加する。印加させる磁場は例えば1MA/mとする。
そして、圧粉成形を行う際には、先ず乾燥した磁石粉末43をキャビティ54に充填する。その後、下パンチ52及び上パンチ53を駆動し、キャビティ54に充填された磁石粉末43に対して矢印61方向に圧力を加え、成形する。また、加圧と同時にキャビティ54に充填された磁石粉末43に対して、加圧方向と平行な矢印62方向に磁界発生コイル55、56によってパルス磁場を印加する。それによって、所望の方向に磁場を配向させる。尚、磁場を配向させる方向は、磁石粉末43から成形される永久磁石1に求められる磁場方向を考慮して決定する必要がある。
また、湿式法を用いる場合には、キャビティ54に磁場を印加しながらスラリーを注入し、注入途中又は注入終了後に、当初の磁場より強い磁場を印加して湿式成形しても良い。また、加圧方向に対して印加方向が垂直となるように磁界発生コイル55、56を配置しても良い。
また、上記圧粉成形ではなくグリーンシート成形により成形体を成形しても良い。尚、グリーンシート成形により成形体を成形する方法としては例えば以下のような方法がある。第1の方法としては、粉砕された磁石粉末と有機溶媒とバインダー樹脂とを混合してスラリーを生成し、生成したスラリーをドクターブレード方式やダイ方式やコンマ塗工方式等の各種塗工方式によって基材上に所定厚みで塗工することによりグリーンシートに成形する方法である。また、第2の方法としては、磁石粉末とバインダー樹脂とを混合した粉体混合物をホットメルト塗工により基材上に塗工することによりグリーンシートに成形する方法である。また、第1の方法でグリーンシートを成形する場合には、塗工したスラリーが乾燥する前に磁場を印加することによって磁場配向を行う。一方、第2の方法でグリーンシートを成形する場合には、一旦成形されたグリーンシートを加熱した状態で磁場を印加することによって磁場配向を行う。
次に、圧粉成形等により成形された成形体71を大気圧より高い圧力(例えば、0.5MPaや1.0MPa)に加圧した水素雰囲気下において200℃〜900℃、より好ましくは400℃〜900℃(例えば600℃)で数時間(例えば5時間)保持することにより水素中仮焼処理を行う。仮焼中の水素の供給量は5L/minとする。この水素中仮焼処理では、有機金属化合物を熱分解させて、仮焼体中の炭素量を低減させる所謂脱カーボンが行われる。また、水素中仮焼処理は、仮焼体中の炭素量が1000ppm以下、より好ましくは600ppm以下とする条件で行うこととする。それによって、その後の焼結処理で永久磁石1全体を緻密に焼結させることが可能となり、残留磁束密度や保磁力を低下させることが無い。
ここで、上述した水素中仮焼処理によって仮焼された成形体71には、NdHが存在し、酸素と結び付きやすくなる問題があるが、第1の製造方法では、成形体71は水素仮焼後に外気と触れさせることなく後述の焼成に移るため、脱水素工程は不要となる。焼成中に成形体中の水素は抜けることとなる。また、上述した水素中仮焼処理を行う際の加圧条件は大気圧より高い圧力であれば良いが、15MPa以下とすることが望ましい。
続いて、水素中仮焼処理によって仮焼された成形体71を焼結する焼結処理を行う。尚、成形体71の焼結方法としては、一般的な真空焼結以外に成形体71を加圧した状態で焼結する加圧焼結等も用いることが可能である。例えば、真空焼結で焼結を行う場合には、所定の昇温速度で800℃〜1080℃程度まで昇温し、2時間程度保持する。この間は真空焼成となるが真空度としては5Pa以下、好ましくは10−2Pa以下とすることが好ましい。その後冷却し、再び600℃〜1000℃で2時間熱処理を行う。そして、焼結の結果、永久磁石1が製造される。
一方、加圧焼結としては、例えば、ホットプレス焼結、熱間静水圧加圧(HIP)焼結、超高圧合成焼結、ガス加圧焼結、放電プラズマ(SPS)焼結等がある。但し、焼結時の磁石粒子の粒成長を抑制するとともに焼結後の磁石に生じる反りを抑える為に、一軸方向に加圧する一軸加圧焼結であって且つ通電焼結により焼結するSPS焼結を用いることが好ましい。尚、SPS焼結で焼結を行う場合には、加圧値を30MPaとし、数Pa以下の真空雰囲気で940℃まで10℃/分で上昇させ、その後5分保持することが好ましい。その後冷却し、再び600℃〜1000℃で2時間熱処理を行う。そして、焼結の結果、永久磁石1が製造される。
[永久磁石の製造方法2]
次に、本発明に係る永久磁石1の他の製造方法である第2の製造方法について図5を用いて説明する。図5は本発明に係る永久磁石1の第2の製造方法における製造工程を示した説明図である。
尚、スラリー42を生成するまでの工程は、図4を用いて既に説明した第1の製造方法における製造工程と同様であるので説明は省略する。
先ず、生成したスラリー42を成形前に真空乾燥などで事前に乾燥させ、乾燥した磁石粉末43を取り出す。その後、乾燥した磁石粉末43を大気圧より高い圧力(例えば、0.5MPaや1.0MPa)に加圧した水素雰囲気下において200℃〜900℃、より好ましくは400℃〜900℃(例えば600℃)で数時間(例えば5時間)保持することにより水素中仮焼処理を行う。仮焼中の水素の供給量は5L/minとする。この水素中仮焼処理では、残存する有機金属化合物を熱分解させて、仮焼体中の炭素量を低減させる所謂脱カーボンが行われる。また、水素中仮焼処理は、仮焼体中の炭素量が1000ppm以下、より好ましくは600ppm以下とする条件で行うこととする。それによって、その後の焼結処理で永久磁石1全体を緻密に焼結させることが可能となり、残留磁束密度や保磁力を低下させることが無い。
次に、水素中仮焼処理によって仮焼された粉末状の仮焼体82を真空雰囲気で200℃〜600℃、より好ましくは400℃〜600℃で1〜3時間保持することにより脱水素処理を行う。尚、真空度としては0.1Torr以下とすることが好ましい。
ここで、上述した水素中仮焼処理によって仮焼された仮焼体82には、NdHが存在し、酸素と結び付きやすくなる問題がある。
図6は水素中仮焼処理をしたNd磁石粉末と水素中仮焼処理をしていないNd磁石粉末とを、酸素濃度7ppm及び酸素濃度66ppmの雰囲気にそれぞれ暴露した際に、暴露時間に対する磁石粉末内の酸素量を示した図である。図6に示すように水素中仮焼処理した磁石粉末は、高酸素濃度66ppm雰囲気におかれると、約1000secで磁石粉末内の酸素量が0.4%から0.8%まで上昇する。また、低酸素濃度7ppm雰囲気におかれても、約5000secで磁石粉末内の酸素量が0.4%から同じく0.8%まで上昇する。そして、Nd磁石粒子が酸素と結び付くと、残留磁束密度や保磁力の低下の原因となる。
そこで、上記脱水素処理では、水素中仮焼処理によって生成された仮焼体82中のNdH(活性度大)を、NdH(活性度大)→NdH(活性度小)へと段階的に変化させることによって、水素仮焼中処理により活性化された仮焼体82の活性度を低下させる。それによって、水素中仮焼処理によって仮焼された仮焼体82をその後に大気中へと移動させた場合であっても、Nd磁石粒子が酸素と結び付くことを防止し、残留磁束密度や保磁力を低下させることが無い。
その後、脱水素処理が行われた粉末状の仮焼体82を成形装置50により所定形状に圧粉成形する。成形装置50の詳細については図4を用いて既に説明した第1の製造方法における製造工程と同様であるので説明は省略する。
その後、成形された仮焼体82を焼結する焼結処理を行う。尚、焼結処理は、上述した第1の製造方法と同様に、真空焼結や加圧焼結等により行う。焼結条件の詳細については既に説明した第1の製造方法における製造工程と同様であるので説明は省略する。そして、焼結の結果、永久磁石1が製造される。
尚、上述した第2の製造方法では、粉末状の磁石粒子に対して水素中仮焼処理を行うので、成形後の磁石粒子に対して水素中仮焼処理を行う前記第1の製造方法と比較して、有機金属化合物の熱分解を磁石粒子全体に対してより容易に行うことができる利点がある。即ち、前記第1の製造方法と比較して仮焼体中の炭素量をより確実に低減させることが可能となる。
一方、第1の製造方法では、成形体71は水素仮焼後に外気と触れさせることなく焼成に移るため、脱水素工程は不要となる。従って、前記第2の製造方法と比較して製造工程を簡略化することが可能となる。但し、前記第2の製造方法においても、水素仮焼後に外気と触れさせることがなく焼成を行う場合には、脱水素工程は不要となる。
以下に、本発明の実施例について比較例と比較しつつ説明する。
(実施例1)
実施例1のネオジム磁石粉末の合金組成は、化学量論組成に基づく分率(Nd:26.7wt%、Fe(電解鉄):72.3wt%、B:1.0wt%)よりもNdの比率を高くし、例えばwt%でNd/Fe/B=32.7/65.96/1.34とする。また、粉砕したネオジム磁石粉末に有機金属化合物としてニオブn−プロポキシドを5wt%添加した。また、仮焼処理は、成形前の磁石粉末を大気圧(尚、本実施例では特に製造時の大気圧が標準大気圧(約0.1MPa)であると仮定する)より高い0.5MPaに加圧した水素雰囲気下において600℃で5時間保持することにより行った。そして、仮焼中の水素の供給量は5L/minとする。また、成形された仮焼体の焼結は真空焼結により行った。尚、他の工程は上述した[永久磁石の製造方法2]と同様の工程とする。
(比較例1)
添加する有機金属化合物をニオブn−プロポキシドとし、水素中仮焼処理を大気圧(0.1MPa)の水素雰囲気下で行った。他の条件は実施例1と同様である。
(比較例2)
添加する有機金属化合物をニオブエトキシドとし、水素中仮焼処理を行わずに焼結した。他の条件は実施例1と同様である。
(実施例と比較例の残炭素量の比較検討)
図7は実施例1と比較例1、2の永久磁石の永久磁石中の残存炭素量[ppm]をそれぞれ示した図である。
図7に示すように、実施例1と比較例1、2とを比較すると、水素中仮焼処理を行った場合は、水素中仮焼処理を行わない場合と比較して、磁石粒子中の炭素量を大きく低減させることができることが分かる。特に、実施例1では、磁石粒子中に残存する炭素量を600ppm以下とすることができる。即ち、水素中仮焼処理によって有機金属化合物を熱分解させて、仮焼体中の炭素量を低減させる所謂脱カーボンを行うことが可能となることが分かる。その結果として、磁石全体の緻密焼結や保磁力の低下を防止することが可能となる。
また、実施例1と比較例1とを比較すると、同一の有機金属化合物を添加しているにもかかわらず、水素中仮焼処理を大気圧より高い加圧雰囲気下で行った場合は、大気圧下で行った場合と比較して、磁石粒子中の炭素量を更に低減させることができることが分かる。即ち、水素中仮焼処理を行うことによって、有機金属化合物を熱分解させて、仮焼体中の炭素量を低減させる所謂脱カーボンを行うことが可能となるとともに、その水素中仮焼処理を大気圧より高い加圧雰囲気下で行うことにより、水素中仮焼処理において脱カーボンをより容易に行うことが可能となることが分かる。その結果として、磁石全体の緻密焼結や保磁力の低下を防止することが可能となる。
尚、上記実施例1及び比較例1、2は、[永久磁石の製造方法2]の工程で製造された永久磁石を用いたが、[永久磁石の製造方法1]の工程で製造された永久磁石を用いた場合でも同様の結果を得られる。
以上説明したように、本実施形態に係る永久磁石1及び永久磁石1の製造方法では、粉砕されたネオジム磁石の微粉末に対して、M−(OR)(式中、MはCu、Al、Dy、Tb、V、Mo、Zr、Ta、Ti、W又はNbである。Rは炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物が添加された有機金属化合物溶液を加え、ネオジム磁石の粒子表面に対して均一に有機金属化合物を付着させる。その後、圧粉成形した成形体を大気圧より高い圧力に加圧した水素雰囲気下において200℃〜900℃で数時間保持することにより水素中仮焼処理を行う。その後、真空焼結や加圧焼結を行うことによって永久磁石1を製造する。それにより、従来に比べてNb等の添加する量を少量としたとしても、添加されたNb等を磁石の粒界に効率よく偏在させることができる。その結果、永久磁石1の磁気性能を向上させることが可能となる。また、他の有機金属化合物を添加する場合と比較して脱カーボンを容易に行うことが可能であり、焼結後の磁石内に含まれる炭素によって保磁力が低下する虞が無く、また、磁石全体を緻密に焼結することが可能となる。
更に、高融点金属であるV、Mo、Zr、Ta、Ti、W又はNbが焼結後に磁石の粒界に偏在すれば、粒界に偏在されたV、Mo、Zr、Ta、Ti、W又はNbが焼結時の磁石粒子の粒成長を抑制するとともに、焼結後における磁石粒子間での交換相互作用を分断することによって各磁石粒子の磁化反転を妨げ、磁気性能を向上させることが可能となる。
また、磁気異方性の高いDyやTbが焼結後に磁石の粒界に偏在すれば、粒界に偏在されたDyやTbが粒界の逆磁区の生成を抑制することで、保磁力の向上が可能となる。
また、CuやAlが焼結後に磁石の粒界に偏在すれば、リッチ相を均一に分散することができ、保磁力の向上が可能となる。
また、有機金属化合物が添加された磁石を、焼結前に大気圧より高い圧力に加圧した水素雰囲気下で仮焼することにより、有機金属化合物を熱分解させて磁石粒子中に含有する炭素を予め焼失(炭素量を低減)させることができ、焼結工程でカーバイドがほとんど形成されることがない。その結果、焼結後の磁石の主相と粒界相との間に空隙を生じさせることなく、また、磁石全体を緻密に焼結することが可能となり、保磁力が低下することを防止できる。また、焼結後の磁石の主相内にαFeが多数析出することなく、磁石特性を大きく低下させることがない。
また、特に添加する有機金属化合物としてアルキル基から構成される有機金属化合物、より好ましくは炭素数2〜6のアルキル基から構成される有機金属化合物を用いれば、水素雰囲気で磁石粉末や成形体を仮焼する際に、低温で有機金属化合物の熱分解を行うことが可能となる。それによって、有機金属化合物の熱分解を磁石粉末全体や成形体全体に対してより容易に行うことができる。
更に、磁石粉末や成形体を仮焼する工程は、特に200℃〜900℃、より好ましくは400℃〜900℃の温度範囲で成形体を所定時間保持することにより行うので、磁石粒子中に含有する炭素を必要量以上焼失させることができる。
その結果、焼結後に磁石に残存する炭素量が600ppm以下となるので、磁石の主相と粒界相との間に空隙が生じることなく、また、磁石全体を緻密に焼結した状態とすることが可能となり、残留磁束密度が低下することを防止できる。また、焼結後の磁石の主相内にαFeが多数析出することなく、磁石特性を大きく低下させることがない。
また、特に第2の製造方法では、粉末状の磁石粒子に対して仮焼を行うので、成形後の磁石粒子に対して仮焼を行う場合と比較して、有機金属化合物の熱分解を磁石粒子全体に対してより容易に行うことができる。即ち、仮焼体中の炭素量をより確実に低減させることが可能となる。また、仮焼処理後に脱水素処理を行うことによって、仮焼処理により活性化された仮焼体の活性度を低下させることができる。それにより、その後に磁石粒子が酸素と結び付くことを防止し、残留磁束密度や保磁力を低下させることが無い。
また、脱水素処理を行う工程は、200℃〜600℃の温度範囲で磁石粉末を所定時間保持することにより行うので、水素仮焼中処理を行ったNd系磁石中に活性度の高いNdHが生成された場合であっても、残さずに活性度の低いNdHへと移行させることが可能となる。
尚、本発明は前記実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改良、変形が可能であることは勿論である。
また、磁石粉末の粉砕条件、混練条件、仮焼条件、脱水素条件、焼結条件などは上記実施例に記載した条件に限られるものではない。例えば、上記実施例では仮焼処理を0.5MPaに加圧した水素雰囲気下で行っているが、大気圧より高い加圧雰囲気下であれば他の圧力値に設定しても良い。また、実施例では真空焼結により焼結を行っているが、SPS焼結等の加圧焼結により焼結しても良い。
また、上記実施例では磁石粉末に添加するNb等を含む有機金属化合物としてニオブエトキシド、ニオブn−プロポキシド、ニオブn−ブトキシド、ニオブn−ヘキソキシドを用いているが、M−(OR)(式中、MはCu、Al、Dy、Tb、V、Mo、Zr、Ta、Ti、W又はNbである。Rは炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物であれば、他の有機金属化合物であっても良い。例えば、炭素数が7以上のアルキル基から構成される有機金属化合物や、アルキル基以外の炭化水素からなる置換基から構成される有機金属化合物を用いても良い。また、Mとしては上記金属元素以外の元素(例えば、Nd、Ag等)を含む構成としても良い。
1 永久磁石
10 Nd結晶粒子
11 金属偏在層
42 スラリー
43 磁石粉末
71 成形体
82 仮焼体

Claims (10)

  1. 磁石原料を磁石粉末に粉砕する工程と、
    前記粉砕された磁石粉末に以下の構造式
    M−(OR)
    (式中、MはCu、Al、Dy、Tb、V、Mo、Zr、Ta、Ti、W又はNbである。Rは炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)
    で表わされる有機金属化合物を添加することにより、前記磁石粉末の粒子表面に前記有機金属化合物を付着させる工程と、
    前記有機金属化合物が粒子表面に付着された前記磁石粉末を大気圧より高い圧力に加圧した水素雰囲気下で仮焼して仮焼体を得る工程と、
    前記仮焼体を成形することにより成形体を形成する工程と、
    前記成形体を焼結する工程と、
    により製造されることを特徴とする永久磁石。
  2. 前記有機金属化合物を形成する金属が、焼結後に前記永久磁石の粒界に偏在していることを特徴とする請求項1に記載の永久磁石。
  3. 前記構造式中のRは、アルキル基であることを特徴とする請求項1又は請求項2に記載の永久磁石。
  4. 前記構造式中のRは、炭素数2〜6のアルキル基のいずれかであることを特徴とする請求項3に記載の永久磁石。
  5. 焼結後に残存する炭素量が600ppm以下であることを特徴とする請求項1乃至請求項4のいずれかに記載の永久磁石。
  6. 前記磁石粉末を仮焼する工程は、200℃〜900℃の温度範囲で前記磁石粉末を所定時間保持することを特徴とする請求項1乃至請求項5のいずれかに記載の永久磁石。
  7. 磁石原料を磁石粉末に粉砕する工程と、
    前記粉砕された磁石粉末に以下の構造式
    M−(OR)
    (式中、MはCu、Al、Dy、Tb、V、Mo、Zr、Ta、Ti、W又はNbである。Rは炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)
    で表わされる有機金属化合物を添加することにより、前記磁石粉末の粒子表面に前記有機金属化合物を付着させる工程と、
    前記有機金属化合物が粒子表面に付着された前記磁石粉末を大気圧より高い圧力に加圧した水素雰囲気下で仮焼して仮焼体を得る工程と、
    前記仮焼体を成形することにより成形体を形成する工程と、
    前記成形体を焼結する工程と、
    を有することを特徴とする永久磁石の製造方法。
  8. 前記構造式中のRは、アルキル基であることを特徴とする請求項7に記載の永久磁石の製造方法。
  9. 前記構造式中のRは、炭素数2〜6のアルキル基のいずれかであることを特徴とする請求項8に記載の永久磁石の製造方法。
  10. 前記磁石粉末を仮焼する工程は、200℃〜900℃の温度範囲で前記磁石粉末を所定時間保持することを特徴とする請求項7乃至請求項9のいずれかに記載の永久磁石の製造方法。
JP2011218596A 2011-09-30 2011-09-30 永久磁石の製造方法 Expired - Fee Related JP5908247B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2011218596A JP5908247B2 (ja) 2011-09-30 2011-09-30 永久磁石の製造方法
KR1020147011140A KR20140081843A (ko) 2011-09-30 2012-09-25 영구 자석 및 영구 자석의 제조 방법
US14/241,524 US20140301885A1 (en) 2011-09-30 2012-09-25 Permanent magnet and method for manufacturing permanent magnet
CN201280047822.4A CN103827988A (zh) 2011-09-30 2012-09-25 永久磁铁和永久磁铁的制造方法
EP12835239.0A EP2763146A4 (en) 2011-09-30 2012-09-25 PERMANENT MAGNET AND MANUFACTURING METHOD FOR THE PERMANENT MAGNET
PCT/JP2012/074473 WO2013047469A1 (ja) 2011-09-30 2012-09-25 永久磁石及び永久磁石の製造方法
TW101136047A TW201330023A (zh) 2011-09-30 2012-09-28 永久磁石及永久磁石之製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011218596A JP5908247B2 (ja) 2011-09-30 2011-09-30 永久磁石の製造方法

Publications (2)

Publication Number Publication Date
JP2013080739A true JP2013080739A (ja) 2013-05-02
JP5908247B2 JP5908247B2 (ja) 2016-04-26

Family

ID=47995501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011218596A Expired - Fee Related JP5908247B2 (ja) 2011-09-30 2011-09-30 永久磁石の製造方法

Country Status (7)

Country Link
US (1) US20140301885A1 (ja)
EP (1) EP2763146A4 (ja)
JP (1) JP5908247B2 (ja)
KR (1) KR20140081843A (ja)
CN (1) CN103827988A (ja)
TW (1) TW201330023A (ja)
WO (1) WO2013047469A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015098623A (ja) * 2013-11-19 2015-05-28 住友金属鉱山株式会社 希土類−遷移金属−窒素系磁石粉末及びその製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5878325B2 (ja) * 2011-09-30 2016-03-08 日東電工株式会社 永久磁石の製造方法
CN104269238B (zh) * 2014-09-30 2017-02-22 宁波科田磁业有限公司 一种高性能烧结钕铁硼磁体和制备方法
US9963344B2 (en) * 2015-01-21 2018-05-08 National Technology & Engineering Solution of Sandia, LLC Method to synthesize bulk iron nitride

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266038A (ja) * 2006-03-27 2007-10-11 Tdk Corp 希土類永久磁石の製造方法
JP2009259956A (ja) * 2008-04-15 2009-11-05 Nitto Denko Corp 永久磁石及び永久磁石の製造方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320708A (ja) * 1992-01-10 1993-12-03 Kawasaki Steel Corp 焼結性粉末射出成形用バインダおよび組成物
JPH0669009A (ja) * 1992-08-19 1994-03-11 Matsushita Electric Ind Co Ltd 希土類−鉄系磁石の製造方法
JP3298219B2 (ja) 1993-03-17 2002-07-02 日立金属株式会社 希土類―Fe−Co−Al−V−Ga−B系焼結磁石
CN1045680C (zh) * 1993-12-28 1999-10-13 住友金属工业株式会社 稀土铁系永久磁铁的制造用成形材料和制造方法
JPH09283358A (ja) * 1996-04-09 1997-10-31 Hitachi Metals Ltd R−Fe−B系焼結磁石の製造方法
JP3393018B2 (ja) * 1996-08-23 2003-04-07 住友特殊金属株式会社 薄肉R−Fe−B系焼結磁石の製造方法
JP2001176711A (ja) * 1999-12-16 2001-06-29 Ishizuka Glass Co Ltd ボンド磁石の製造方法、ボンド磁石粉末の製造方法、ボンド磁石及びボンド磁石粉末
JP2002363607A (ja) * 2001-06-13 2002-12-18 Sumitomo Metal Mining Co Ltd 希土類系磁性粉末、その製造方法及びこれを用いた磁石
JP2004281873A (ja) * 2003-03-18 2004-10-07 Hitachi Metals Ltd 希土類磁石の製造方法
JP4525072B2 (ja) * 2003-12-22 2010-08-18 日産自動車株式会社 希土類磁石およびその製造方法
JP2005191187A (ja) * 2003-12-25 2005-07-14 Nissan Motor Co Ltd 希土類磁石およびその製造方法
EP1744328B1 (en) * 2005-06-10 2012-07-25 Nissan Motor Co., Ltd. Rare earth magnet having high strength and high electrical resistance
CN101031984B (zh) * 2005-07-15 2011-12-21 日立金属株式会社 稀土类烧结磁体及其制造方法
JP4635832B2 (ja) * 2005-11-08 2011-02-23 日立金属株式会社 希土類焼結磁石の製造方法
JP5417632B2 (ja) * 2008-03-18 2014-02-19 日東電工株式会社 永久磁石及び永久磁石の製造方法
JP4872109B2 (ja) * 2008-03-18 2012-02-08 日東電工株式会社 永久磁石及び永久磁石の製造方法
JP5266522B2 (ja) * 2008-04-15 2013-08-21 日東電工株式会社 永久磁石及び永久磁石の製造方法
JP5261747B2 (ja) * 2008-04-15 2013-08-14 日東電工株式会社 永久磁石及び永久磁石の製造方法
JP5499738B2 (ja) * 2009-02-03 2014-05-21 戸田工業株式会社 表面処理された希土類系磁性粉末、該希土類系磁性粉末を含有するボンド磁石用樹脂組成物並びにボンド磁石
KR101196565B1 (ko) * 2010-03-31 2012-11-01 닛토덴코 가부시키가이샤 영구 자석 및 영구 자석의 제조 방법
JP4923148B2 (ja) * 2010-03-31 2012-04-25 日東電工株式会社 永久磁石及び永久磁石の製造方法
US9005374B2 (en) * 2010-03-31 2015-04-14 Nitto Denko Corporation Permanent magnet and manufacturing method thereof
CN102576602A (zh) * 2010-03-31 2012-07-11 日东电工株式会社 永久磁铁及永久磁铁的制造方法
KR20120049349A (ko) * 2010-03-31 2012-05-16 닛토덴코 가부시키가이샤 영구 자석 및 영구 자석의 제조 방법
WO2011125594A1 (ja) * 2010-03-31 2011-10-13 日東電工株式会社 永久磁石及び永久磁石の製造方法
JP4923152B2 (ja) * 2010-03-31 2012-04-25 日東電工株式会社 永久磁石及び永久磁石の製造方法
US9039920B2 (en) * 2010-03-31 2015-05-26 Nitto Denko Corporation Permanent magnet and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266038A (ja) * 2006-03-27 2007-10-11 Tdk Corp 希土類永久磁石の製造方法
JP2009259956A (ja) * 2008-04-15 2009-11-05 Nitto Denko Corp 永久磁石及び永久磁石の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015098623A (ja) * 2013-11-19 2015-05-28 住友金属鉱山株式会社 希土類−遷移金属−窒素系磁石粉末及びその製造方法

Also Published As

Publication number Publication date
WO2013047469A1 (ja) 2013-04-04
JP5908247B2 (ja) 2016-04-26
US20140301885A1 (en) 2014-10-09
TW201330023A (zh) 2013-07-16
KR20140081843A (ko) 2014-07-01
EP2763146A1 (en) 2014-08-06
EP2763146A4 (en) 2015-08-26
CN103827988A (zh) 2014-05-28

Similar Documents

Publication Publication Date Title
JP4865100B2 (ja) 永久磁石及び永久磁石の製造方法
JP4923163B1 (ja) 永久磁石及び永久磁石の製造方法
JP4923148B2 (ja) 永久磁石及び永久磁石の製造方法
JP4923164B1 (ja) 永久磁石及び永久磁石の製造方法
JP4865098B2 (ja) 永久磁石及び永久磁石の製造方法
JP4865920B2 (ja) 永久磁石及び永久磁石の製造方法
JP4923151B2 (ja) 永久磁石及び永久磁石の製造方法
JP4865919B2 (ja) 永久磁石及び永久磁石の製造方法
JP4923147B2 (ja) 永久磁石及び永久磁石の製造方法
JP4865097B2 (ja) 永久磁石及び永久磁石の製造方法
JP4865099B2 (ja) 永久磁石及び永久磁石の製造方法
JP5908247B2 (ja) 永久磁石の製造方法
JP4923149B2 (ja) 永久磁石及び永久磁石の製造方法
JP4923150B2 (ja) 永久磁石及び永久磁石の製造方法
JP5453154B2 (ja) 永久磁石及び永久磁石の製造方法
JP2011216732A (ja) 永久磁石及び永久磁石の製造方法
JP2011216724A (ja) 永久磁石及び永久磁石の製造方法
JP2011216736A (ja) R−Fe−B系永久磁石

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160323

R150 Certificate of patent or registration of utility model

Ref document number: 5908247

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees