JP2013071916A - 3−アリールオキシクロモン化合物を有効成分とする血小板凝集抑制剤 - Google Patents

3−アリールオキシクロモン化合物を有効成分とする血小板凝集抑制剤 Download PDF

Info

Publication number
JP2013071916A
JP2013071916A JP2011212891A JP2011212891A JP2013071916A JP 2013071916 A JP2013071916 A JP 2013071916A JP 2011212891 A JP2011212891 A JP 2011212891A JP 2011212891 A JP2011212891 A JP 2011212891A JP 2013071916 A JP2013071916 A JP 2013071916A
Authority
JP
Japan
Prior art keywords
substituted
group
unsubstituted
platelet aggregation
heterocyclic group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011212891A
Other languages
English (en)
Inventor
Naoya Fujita
直也 藤田
Satoshi Takagi
聡 高木
Naohisa Ogo
尚久 小郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japanese Foundation for Cancer Research
Pharma Valley Project Supporting Organization ISH
Original Assignee
Japanese Foundation for Cancer Research
Pharma Valley Project Supporting Organization ISH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japanese Foundation for Cancer Research, Pharma Valley Project Supporting Organization ISH filed Critical Japanese Foundation for Cancer Research
Priority to JP2011212891A priority Critical patent/JP2013071916A/ja
Publication of JP2013071916A publication Critical patent/JP2013071916A/ja
Withdrawn legal-status Critical Current

Links

Abstract

【課題】Aggrusを標的とし、3−フェノキシクロモン化合物を有効成分とする血小板凝集抑制剤や、かかる血小板凝集抑制剤を含む血小板凝集抑制やがん腫の予防及び/又は治療のための医薬組成物の提供。
【解決手段】Aggrus依存的な血小板凝集を阻害し、かつAggrusと結合し、CLEC−2との相互作用を阻害する低分子化合物をスクリーニングし、3−フェノキシクロモン化合物群で、特に7位にカルボキシアルキレンオキシ基を有する3−フェノキシクロモン化合物が優れた作用を有することを見出した。該化合物を有効成分として含有する血小板凝集抑制剤や、かかる血小板凝集抑制剤を含む、血小板凝集抑制やがん腫の予防及び/又は治療のための医薬組成物。
【選択図】なし

Description

本願発明は、3−アリールオキシクロモン化合物を有効成分として含有する血小板凝集抑制剤に関する。
血小板凝集誘導因子Aggrus(アグラス;別名ポドプラニン(podoplanin)、gp44としても知られる)は、I型膜貫通タンパク質であり、扁平上皮癌、中皮腫、カポジ肉腫、精巣腫瘍及び脳腫瘍といった様々なタイプの癌で発現増加していることが知られている(非特許文献1〜9)。また、Aggrusタンパク質(gp38P)又はこのタンパク質の発現に関与する物質が血小板凝集促進剤又は血小板凝集抑制剤として使用できることや、gp38Pのホモログタンパク質又はこのホモログタンパク質の発現に関与する物質が血小板凝集促進剤又は血小板凝集抑制剤として使用できることが知られ、かかるタンパク質が血小板凝集作用を有するために必須のアミノ酸が特定されている。さらに、これらの配列にコードされるポリヌクレオチド又はポリペプチドの発現を測定することにより、血小板凝集に関連する物質の探索及び評価、並びに血小板凝集又は血小板機能低下の解析に利用できることなどが知られている(特許文献1)。さらにAggrusの過剰発現は予後不良に関係するとの報告があり、癌進行に対するAggrusの関与が示唆されている(非特許文献10、11)。Aggrusの発現は血小板凝集を引き起こし、マウスを用いた実験において、癌の肺転移を促進することが知られている(非特許文献11、12)。血小板凝集を抑制する点突然変異を導入すると、癌の肺転移は減弱するので、Aggrusの血小板凝集誘導活性は、転移形成に直接関係していると考えられている(非特許文献11、12)。
癌細胞誘導血小板凝集は、大きな癌−血小板凝集を形成し、微小血管系での癌細胞の塞栓形成増大、循環系での免疫学的攻撃からの保護に至ると考えられている。最近、血小板上に発現しているC型レクチン様受容体(CLEC−2)が、Aggrusのカウンターパート受容体の一つとして特定された。腫瘍細胞上で発現しているAggrusにCLEC−2が結合すると、血漿成分がなくとも血小板で活性化シグナルが出され、血小板凝集の引き金となる。AggrusとCLEC−2の相互認識に機能するドメインはすでに明らかになっている(非特許文献13)。また、CLEC−2の生理的リガンドとしてバーシカンが同定され、バーシカンのペプチドを含有している止血疾患治療用の医薬組成物が知られており(特許文献2)、また、CLEC−2の活性を指標に止血疾患の治療薬のスクリーニング方法も知られている(特許文献3)。さらに、癌の成長や転移、血小板凝集の抑制等のためのCLEC−2ポリペプチド又は抗CLEC−2抗体等が報告されている(特許文献4)。
Aggrus(別名、ポドプラニン)に対する抗体、抗ポドプラニンラット抗体及び抗ポドプラニンマウスキメラ抗体がポドプラニン陽性腫瘍細胞において抗体依存性細胞障害活性及び補体依存性細胞障害活性を有することや、抗ポドプラニン抗体を有効成分として含む腫瘍、血栓症及び動脈硬化症の治療剤等が報告されている(特許文献5、非特許文献14)。しかしながら、抗体を有効成分とする医薬組成物は、広く臨床で使用するには製造コストを抑えにくいこと、品質管理に細心の注意を要することなどの問題があった。
その他、クロモン化合物に関連して、以下の報告がある。
下記式[A]で示される7−カルボキシメトキシ−3−フェノキシクロモン化合物が知られている(非特許文献15)。
(式中、Aは、ヒドロキシ基、エトキシ基、アミノ酸残基等を表す)
下記式[B]等で表される3−フェノキシクロモン化合物が、結核菌に対する作用を有することが知られている(非特許文献16)。
また、下記式[C]で表される3−フェノキシクロモン化合物が、抗癌作用を有することが知られている(特許文献6)。
[式中、R及びRは、ヒドロカルビル基、アシル基、ヘテロシクリル基、OR(Rは、H、ヒドロカルビル基、アシル基、ヘテロシクリル基)を表す]
特許4721633号 特開2007−70359号公報 特表2008−539694号公報 WO/2008/134445号公報 WO/2011/040565号公報 WO/2010/134082号公報
Kato Y, Kaneko M, Sata M, Fujita N, Tsuruo T, Osawa M. Enhanced expression of Aggrus (T1α/podoplanin), a platelet-aggregation-inducing factor in lung squamous cell carcinoma. Tumor Biol 2005; 26: 195-200. Martin-Villar E, Scholl FG, Gamallo C et al. Characterization of human PA2.26 antigen (T1α-2, podoplanin), a small membrane mucin induced in oral squamous cell carcinomas. Int J Cancer 2005; 113: 899-910. Yuan P, Tenam S, EI-Naggar A et al. Overexpression of podoplanin in oral cancer and its association with poor clinical outcome. Cancer 2006; 107: 563-569. Wicki A. Lehembre F, Wick N, Hantusch B, Kerjaschki D, Christofori G. Tumor invasion in the absence of epithelial-mesenchymal transition: podoplanin-mediated remodeling of the actin cytoskeleton. Cancer Cell 2006; 9: 261-272. Kimura N, Kimura I. Podoplanin as a marker for mesothelioma. Pathol Int 2005; 55: 83-86. Fukunaga M. Expression of D2-40 in lymphatic endothelium of normal tissues and in vascular tumours. Histopathology 2005; 46: 396-402. Kato Y, Sasagawa I, Kaneko M, Osawa M, Fujita N, Tsuruo T. Aggrus: a diagnostic marker that distinguishes seminoma from embryonal carcinoma in testicular germ cell tumors. Oncogene 2004; 23: 8552-8556. Mishima K, Kato Y, Kaneko MK et al. Podoplanin expression in primary central nervous system germ cell tumors: a useful histological marker for the diagnosis of germinoma. Acta Neuropathol 2006; 111: 563-568. Mishima K, Kato Y, Kaneko MK, Nishikawa R, Hirose T, Matsutani M. Increased expression of podoplanin in malignant astrocytic tumors as a novel molecular marker of malignant progression. Acta Neuropathol 2006; 111: 483-488. Yuan P, Temam S, El-Naggar A, Zhou X, Liu DD, Lee JJ, Mao L. Overexpression of podoplanin in oral cancer and its association with poor clinical outcome. Cancer. 2006; 107: 563-569. Kunita A, Kashima TG, Morishita Y, Fukayama M, Kato Y, Tsuruo T, Fujita N. The platelet aggregation-inducing factor aggrus/podoplanin promotes pulmonary metastasis. Am J Pathol. 2007; 170: 1337-1347. Kato Y, Fujita N, Kunita A, Sato S, Kaneko M, Osawa M, Tsuruo T. Molecular identification of Aggrus/T1alpha as a platelet aggregation-inducing factor expressed in colorectal tumors. J Biol Chem. 2003; 278: 51599-51605. Kato Y, Kaneko MK, Kunita A et al. Molecular analysis of the pathophysiological binding of the platelet aggregation-inducing factor podoplanin to the C-type lectin-like receptor CLEC-2. Cancer Sci 2008; 99: 54-61. Kato Y, Kaneko MK, Kuno A et al. Inhibition of tumor cell-induced platelet aggregation using a novel anti-podoplanin antibody reacting with its platelet-aggregation-stimulating domain. Biochem Biophys Res Commun 2006; 349: 1301-1307. M.M.Garazd, Ya.L.Garazd,and V.P.Khilya, Amino-acid Derivatives of 3-Phenoxychromones, Chemistry of Natural Compounds, 2001; 37: 32-38. S.Aanthan, E.R.Faaleolea et al., Tuberculosis 2009; 89: 334-353
本発明の課題は、Aggrusを標的とし、3−フェノキシクロモン化合物を有効成分とする血小板凝集抑制剤や、かかる血小板凝集抑制剤を含む血小板の凝集抑制やがん腫の予防及び/又は治療のための医薬組成物を提供することにある。
発明者らは、Aggrus依存的な血小板凝集を阻害し、かつAggrusと結合し、CLEC−2との相互作用を阻害する低分子化合物をスクリーニングし、3−フェノキシクロモン化合物群で、特に7位にカルボキシアルキレンオキシ基を有する3−フェノキシクロモン化合物が優れた作用を有することを見いだし、本発明を完成するに至った。
すなわち、本発明は、
(1)式[I]
[式中、R、R、R及びRは、同一又は異なって、水素原子、置換もしくは非置換アルキル基、置換もしくは非置換シクロアルキル基、置換もしくは非置換アルケニル基、置換もしくは非置換脂環式複素環基、置換もしくは非置換アリール基、置換もしくは非置換芳香族複素環基、COR、COOR、CONR、OR、OCOR、S(O)mR(式中、mは、0、1又は2を表す)、SONR、NR、NHCOR、NHSO、ニトロ基、シアノ基又はハロゲン原子を表し、
Xは、置換もしくは非置換のアリール基又は置換もしくは非置換の芳香族複素環基を表し、
Yは、アルキレン基を表し、
Zは、OR又はNRを表し、
ここで、R及びRは、同一又は異なって、水素原子、置換もしくは非置換アルキル基、置換もしくは非置換シクロアルキル基、置換もしくは非置換アルケニル基、置換もしくは非置換脂環式複素環基、置換もしくは非置換アリール基、置換もしくは非置換芳香族複素環基、又はR及びRが一緒になって、窒素原子を含んで形成される置換もしくは非置換の含窒素複素環基を表す]
で表されるクロモン化合物又はその薬理学的に許容される塩を有効成分として含む血小板凝集抑制剤や、
(2)式[I]が、式[Ia]
(式中、Xは、置換もしくは非置換のアリール基を表し、Zは、ヒドロキシ基又はアルコキシ基を表す)
で表されるクロモン化合物であることを特徴とする前記(1)記載の血小板凝集抑制や、
(3)Xが4−クロロフェニル基を表し、Zがヒドロキシ基又はメトキシ基で表されるクロモン化合物であることを特徴とする前記(2)記載の血小板凝集抑制に関する。
また、本発明は、
(4)前記(1)〜(3)のいずれかに記載の血小板凝集抑制剤を含む医薬組成物や、
(5)中皮腫、カポジ肉腫、精巣腫瘍、脳腫瘍、膀胱癌、結腸癌、直腸癌、小腸癌、精巣癌、セミノーマ(Seminoma)、扁平上皮癌、繊維肉腫、癌の転移、肺血栓、脳梗塞、心筋梗塞、動脈硬化、出血傾向、血液凝固障害、血友病、慢性骨髄増殖性疾患の治療もしくは予防のための、又は血管手術の際の血小板凝集を抑制するための、前記(4)記載の医薬組成物や、
(6)式[I]
[式中、R、R、R及びRは、同一又は異なって、水素原子、置換もしくは非置換アルキル基、置換もしくは非置換シクロアルキル基、置換もしくは非置換アルケニル基、置換もしくは非置換脂環式複素環基、置換もしくは非置換アリール基、置換もしくは非置換芳香族複素環基、COR、COOR、CONR、OR、OCOR、S(O)mR(式中、mは、0、1又は2を表す)、SONR、NR、NHCOR、NHSO、ニトロ基、シアノ基又はハロゲン原子を表し、
Xは、置換もしくは非置換のアリール基又は置換もしくは非置換の芳香族複素環基を表し、
Yは、アルキレン基を表し、
Zは、OR又はNRを表し、
ここで、R及びRは、同一又は異なって、水素原子、置換もしくは非置換アルキル基、置換もしくは非置換シクロアルキル基、置換もしくは非置換アルケニル基、置換もしくは非置換脂環式複素環基、置換もしくは非置換アリール基、置換もしくは非置換芳香族複素環基、又はR及びRが一緒になって、窒素原子を含んで形成される置換もしくは非置換の含窒素複素環基を表す]
で表されるクロモン化合物を含むAggrusとCLEC−2との結合阻害剤に関する。
その他の本発明の態様として、式[I]で表されるクロモン化合物を含む医薬組成物や、式[I]で表されるクロモン化合物を血小板凝集抑制として使用する方法や、式[I]で表されるクロモン化合物の、血小板凝集抑制調製のための使用や、式[I]で表されるクロモン化合物を対象に投与する血小板の凝集抑制方法や、式[I]で表されるクロモン化合物を血小板凝集抑制のための医薬組成物として使用する方法や、式[I]で表されるクロモン化合物の、医薬組成物調製のための使用や、式[I]で表されるクロモン化合物を対象に投与するがんの治療方法を挙げることができる。
本発明によれば、AggrusとCLEC−2との相互作用を阻害することができ、血小板凝集を抑制することができる。
ヒトAggrusタンパク質に誘導される血小板凝集と、それを阻害する低分子化合物PVCB9927の同定を示す図である。 PVCB9927が、ヒトAggrus遺伝子導入CHO細胞株(CHO-Aggrus細胞)により誘導される血小板凝集に与える影響を示す図である。 表面プラズモン共鳴を用いたリコンビナントhuman Aggrus-FcとPVCB9927間の結合度測定結果を示す図である。 リコンビナントAggrusとリコンビナントCLEC−2間の結合に与えるPVCB9927の影響を示す図である。 PVCB9927誘導体とその活性評価を示す図である。 PVCB9927が、CHO-Aggrus細胞とリコンビナントhuman CLEC-2-Fcの結合に与える影響を示す図である。 PVCB9927誘導体が、CHO-Aggrus細胞とリコンビナントhuman CLEC-2-Fcの結合に与える影響を示す図である。
以下に、本発明の血小板凝集抑制剤として使用される式[I]等で表される化合物における各基の定義の具体例について説明するが、これらは本発明の好ましい例を示すものであって、勿論これらによって限定されるものではない。
アルキル基及びアルコキシ基のアルキル部分としては、例えば、直鎖もしくは分岐状の炭素数1〜8のアルキル、具体的には、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec−ブチル、tert−ブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル等が挙げられる。
シクロアルキル基は、飽和又は一部不飽和結合が存在してもよい3〜12員のシクロアルキル基であり、単環性あるいは該単環性のシクロアルキル基が複数又はアリール基もしくは芳香族複素環基と縮合した多環性の縮合シクロアルキル基であってもよく、単環性のシクロアルキル基としては、例えば、炭素数3〜8の単環性シクロアルキル、具体的には、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロドデシル、1−シクロヘキセニル等が挙げられ、多環性のシクロアルキル基としては、例えば、炭素数5〜12の多環性シクロアルキル、具体的には、ピナニル、アダマンチル、ビシクロ[3.3.1]オクチル、ビシクロ[3.1.1]ヘプチル等が挙げられる。
アルケニル基は、例えば、直鎖又は分岐状の炭素数2〜8のアルケニル、具体的には、ビニル、アリル、1−プロペニル、イソプロペニル、メタクリル、ブテニル、1,3−ブタジエニル、クロチル、ペンテニル、ヘキセニル、オクテニル等が挙げられる。
脂環式複素環基は、同一又は異なって、少なくとも1以上の異項原子、例えば、窒素、酸素、硫黄等を含み、飽和又は一部不飽和結合が存在してもよい3〜8員の脂環式複素環基であり、単環性あるいは該単環性の複素環基が複数又はアリール基もしくは芳香族複素環基と縮合した多環性の縮合脂環式複素環基であってもよい。単環性の脂環式複素環基としては、例えば、アジリジニル、ピロリジニル、イミダゾリジニル、イミダゾリニル、ピラゾリジニル、ピラゾリニル、ジヒドロチアゾリル、テトラヒドロフラニル、1,3−ジオキソラニル、チオラニル、1,1−ジオキソチオラニル、オキサゾリジル、チアゾリジニル、ピペリジノ、ピペリジル、ピペラジニル、ホモピペリジニル、モルホリノ、モルホリニル、チオモルホリニル、ピラニル、オキサチアニル、オキサジアジニル、チアジアジニル、ジチアジニル、アゼピニル、ジヒドロアゾシニル等が例示され、多環性の縮合脂環式複素環基としては、例えば、インドリニル、イソインドリニル、クロマニル、イソクロマニル、キヌクリジニル、ベンゾ−1,3−ジオキソラニル等を挙げることができる。
アリール基としては、例えば、炭素数6〜14のアリール、具体的には、フェニル、ナフチル、アントリル、フェナントリル等を挙げることができる。
芳香族複素環基は、同一又は異なって、少なくとも1以上の異項原子、例えば、窒素、酸素、硫黄等を含む5員又は6員の芳香族複素環基からなり、該複素環基は、単環性又は該単環性複素環基が複数又はアリール基と縮合した多環性の縮合芳香族複素環基、例えば、二環性もしくは三環性複素環基であってもよい。単環性の芳香族複素環基の具体例としては、フリル、チエニル、ピロリル、イミダゾリル、ピラゾリル、トリアゾリル、テトラゾリル、オキサゾリル、イソオキサゾリル、オキサジアゾリル、チアゾリル、チアジアゾリル、イソチアゾリル、ピリジル、ピリミジニル、ピラジニル、ピリダジニル、トリアジニル等が挙げられ、多環性の縮合芳香族複素環基としては、ベンゾフリル、ベンゾチエニル、インドリル、イソインドリル、インダゾリル、ベンゾイミダゾリル、ベンゾトリアゾリル、ベンゾオキサゾリル、ベンゾチアゾリル、カルバゾリル、プリニル、キノリル、イソキノリル、キナゾリニル、フタラジニル、キノキサリニル、シンノリニル、ナフチリジニル、ピリドピリミジニル、ピリミドピリミジニル、プテリジニル、アクリジニル、チアントレニル、フェノキサチニル、フェノキサジニル、フェノチアジニル、フェナジニル等を挙げることができる。
ハロゲン原子は、フッ素、塩素、臭素、ヨウ素の各原子を意味する。
アルキレン基は、例えば、直鎖又は分岐状の炭素数1〜8のアルキレン、具体的には、メチレン、エチレン、エチリデン、プロピレン、イソプロピリデン、トリメチレン、テトラメチレン、ペンタメチレン、ヘキサメチレン、ヘプタメチレン、オクタメチレン等が挙げられる。
含窒素複素環基としては、前記複素環基のうち、異項原子として少なくとも一つの窒素原子を含む複素環基であり、具体的には、アジリジニル、ピロリジニル、ピペリジノ、ホモピペリジニル、ピペラジニル、ホモピペラジニル、モルホリノ、チオモルホリニル、ピロリル、イミダゾリル、ピラゾリル、トリアゾリル、テトラゾリル、インドリル、インダゾリル、ベンゾイミダゾリル、ベンゾトリアゾリル等を挙げることができる。
アルキル基、シクロアルキル基、アルケニル基、脂環式複素環基、アリール基、芳香族複素環基、含窒素複素環基における置換基としては、アルキル基、シクロアルキル基、アルケニル基、脂環式複素環基、アリール基、芳香族複素環基、COR、COOR、CONR、OR、OCOR、S(O)mR、SONR、NR、NHCOR、NHSO、ニトロ基、シアノ基又はハロゲン原子等から適宜選択される。ここで、アルキル基、シクロアルキル基、アルケニル基、脂環式複素環基、アリール基、芳香族複素環基、R、R、m及びハロゲン原子は、前記と同義である。
また、置換基としてのアルキル基、シクロアルキル基、アルケニル基、脂環式複素環基、アリール基、芳香族複素環基は、さらに置換基を有していてもよく、該置換基としては、前記した置換基と同様のものが挙げられる。
これら置換基の置換数としては、同一又は異なって、最大各基に存在する水素原子の数まで可能であるが、好ましくは1〜10、より好ましくは1〜6である。
化合物[I]の薬理学的に許容される塩としては、酸付加塩、金属塩、アンモニウム塩、有機アミン付加塩等が挙げられ、酸付加塩としては、塩酸、臭化水素酸、硫酸、硝酸、リン酸、ホウ酸等の各無機酸塩、及び、有機酸としてのギ酸、酢酸、プロピオン酸、フマル酸、マロン酸、コハク酸、マレイン酸、酒石酸、安息香酸等のカルボン酸類、メタンスルホン酸、p−トルエンスルホン酸等のスルホン酸類、グルタミン酸、アスパラギン酸等のアミノ酸類が挙げられる。金属塩としては、リチウム、ナトリウム、カリウム等の各アルカリ金属塩、マグネシウム、カルシウム等の各アルカリ土類金属塩、アルミニウム、亜鉛等の各金属塩が、アンモニウム塩としては、アンモニウム、テトラメチルアンモニウム等の各塩が、有機アミン塩としては、トリエチルアミン、ピペリジン、モルホリン、トルイジン等の各塩が挙げられる。
本発明の血小板凝集抑制剤として使用される化合物としては、化合物[I]であれば特に制限されないが、化合物[I]において、下記式[Ia]
(式中、Xは、置換もしくは非置換のアリール基を表し、Zは、ヒドロキシ基又はアルコキシ基を表す)
で表わされるクロモン化合物等を好適に例示することができる。
式[Ia]で表される化合物の中でも、以下の式[Ia−1]で表される化合物PVCB9927や、その類縁化合物や、類縁誘導体の中でも式[Ia−2]で表される化合物PVCB15002を好適に例示することができる。
また、上記化合物PVCB9927や、その類縁化合物や、類縁誘導体の中でも化合物PVCB15002の他、以下の表1から表10に示される化合物等も好適に例示することができる。
次に、化合物[I]の製造法について説明するが、該化合物は、常法もしくは文献(例えば、非特許文献15および日本化学会編「第5版実験化学講座16有機化合物の合成IVカルボン酸・アミノ酸・ペプチド」、丸善株式会社、平成17年3月、p1−69、p118−146、p258−270等)に記載されている方法に準じて製造可能であり、また市販品として購入して入手することもできる。
化合物[I]は、例えば、下記工程に従って製造することができる。
(式中、Halは、塩素、臭素又はヨウ素の各原子を表し、Zは、Zの定義中のアルコキシ基を表し、R〜R、X、Y、R及びRは、前記と同義である)
(工程1)
化合物[Ib](式[I]の化合物において、Zがアルコキシ基である化合物)は、化合物[II]と化合物[III]とを、塩基存在下、適当な不活性溶媒、例えばクロロホルム、ジクロロメタン等のハロゲン化炭化水素、ベンゼン、トルエン等の芳香族炭化水素、ジエチルエーテル、テトラヒドロフラン(THF)、1,4−ジオキサン等のエーテル系溶媒、N,N−ジメチルホルムアミド(DMF)、N−メチルピロリドン(NMP)、ジメチルスルホキシド(DMSO)等の非プロトン性極性溶媒、ピリジン、キノリン等の塩基性溶媒もしくはこれらの混合溶媒中、−78℃〜用いた溶媒の沸点の間の温度で、5分〜48時間反応させることにより得ることができる。塩基としては、例えばトリエチルアミン、ピリジン等の有機塩基、炭酸カリウム、炭酸水素カリウム、リン酸三カリウム、水酸化ナトリウム、水素化ナトリウム等の無機塩基、ナトリウムメトキシド、カリウム tert-ブトキシド等の金属アルコキシド等が挙げられる。
なお、化合物[II]及び化合物[III]は、市販品として入手可能であるか、文献[例えば、化合物[II]に対しては先の非特許文献15およびオーガニックリアクションズ(Organic Reactions)、ホボケン(Hoboken)著、ジョン・ワイリー・アンド・サンズ・インコーポレイテッド(John Wiley & Sons Inc.)(2000年)参照]等に記載されている方法あるいはそれらに準じて得ることができる。
(工程2)
化合物[Ic](式[I]の化合物において、Zがヒドロキシ基である化合物)は、工程1で得られるエステル化合物[Ib]を、常法に従い加水分解、例えば酸存在下、適当な不活性溶媒、例えばクロロホルム、ジクロロメタン等のハロゲン化炭化水素、ベンゼン、トルエン等の芳香族炭化水素、ジエチルエーテル、THF、1,4−ジオキサン等のエーテル系溶媒、メタノール、エタノール、イソプロパノール等の低級アルコール、DMF、NMP、DMSO等の非プロトン性極性溶媒、酢酸、塩酸、水等のプロトン性極性溶媒もしくはこれらの混合溶媒中、−78℃〜用いた溶媒の沸点の間の温度で、5分〜48時間反応させることにより得ることができる。酸としては、例えば塩酸、硫酸、リン酸等の鉱酸、酢酸、メタンスルホン酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、p−トルエンスルホン酸等の有機酸、四塩化チタン、三フッ化ホウ素、塩化アルミニウム等のルイス酸等が挙げられる。また、加水分解反応は、工程1で示した塩基の存在下にも可能である。
(工程3)
化合物[Id](式[I]の化合物において、ZがNR基である化合物)は、工程2で得られるカルボン酸化合物[Ic]と、アミン化合物[IV]とから、ペプチド合成で行われている常法に従い得ることができる。例えば、カルボン酸化合物[Ic]から得られる酸ハロゲン化物や、ペンタフルオロフェノキシ、4−ニトロフェノキシ等のアリールオキシ基や、ピバロイルオキシ等のアルキルカルボニルオキシ基を有する活性エステルとアミン化合物[IV]とを反応することにより得ることができる。また、カルボン酸化合物[Ic]とアミン化合物[IV]とを縮合剤を共存させて反応してもよい。縮合剤としては、例えば、N,N−ジシクロヘキシルカルボジイミド(DCC)、1−エチル−3−(3−ジメチルアミノプロピル)−カルボジイミド(WSCI)等のカルボジイミド系縮合剤、ベンゾトリアゾール−1−イルオキシ−トリスジメチルアミノホスホニウム塩(BOP)等のホスホニウム型縮合剤、O−(7−アザベンゾトリアゾール−1−イル)−N,N,N’,N’−テトラメチルウロニウムヘキサフルオロリン酸塩(HATU)、O−(ベンゾトリアゾール−1−イル)−N,N,N’,N’−テトラメチルウロニウムヘキサフルオロリン酸塩(HBTU)、4−(4,6−ジメトキシ−1,3,5−トリアジン−2−イル)−4−メチルモリホリニウムクロリド(DMT−MM)、カルボニルジイミダゾール(CDI)、ジフェニルホスフィン酸クロリド(DPP−Cl)等を使用することができる。またこの場合、1−ヒドロキシ−7−アザベンゾトリアゾール(HOAt)や1−ヒドロキシベンゾトリアゾール(HOBt)などの縮合補助剤を共存させてもよい。これら反応は、適当な不活性溶媒、例えばクロロホルム、ジクロロメタン等のハロゲン化炭化水素、ベンゼン、トルエン等の芳香族炭化水素、ジエチルエーテル、THF、1,4−ジオキサン等のエーテル系溶媒、DMF、NMP、DMSO等の非プロトン性極性溶媒、ピリジン、キノリン等の塩基性溶媒もしくはこれらの混合溶媒中、−78℃〜用いた溶媒の沸点の間の温度で、5分〜48時間反応させることにより得ることができる。
上記各製造法において、定義した基が実施方法の条件下で変化するか又は方法を実施するのに不適切な場合、有機合成化学で常用される保護基の導入及び脱離方法[例えば、プロテクティブ・グループス・イン・オーガニック・シンセシス(Protective Groups in Organic Synthesis)、グリーン(T. W. Greene)著、ジョン・ワイリー・アンド・サンズ・インコーポレイテッド(JohnWiley & Sons Inc.)(1981年)参照]等を用いることにより目的化合物を得ることができる。
また、化合物[I]の中には、これを合成中間体としてさらに別の誘導体[I]へ導くことができるものもある。
上記各製造法における中間体及び目的化合物は、有機合成化学で常用される精製法、例えば中和、濾過、抽出、洗浄、乾燥、濃縮、再結晶、各種クロマトグラフィー等に付して単離精製することができる。また、中間体においては、特に精製することなく次の反応に供することも可能である。
また、例えば、化合物[Ia−1](PVCB9927;{[3-(4-chlorophenoxy)-4-oxo-4H-chromen-7-yl]oxy}acetic acid)は、化学合成することもできるが、Enamine社(T5512509)やSigmaAldrich社(MFCD02165407)より市販品を購入して入手することもできる。化合物[Ia−1]のメチルエステル化体である化合物[Ia−2](PVCB15002;methyl{[3-(4-chlorophenoxy)-4-oxo-4H-chromen-7-yl]oxy}acetate)は、化学合成することもできるが、SigmaAldrich社(MFCD02165405)より市販品を購入して入手することもできる。表1〜表10記載の化合物についても、化学合成することも市販品を購入して入手することもでき、例えば表1の[I−1]は、Vista-M社(STK629887)より、[I−2]は、Labotest社(LT2709919)より、[I−3]は、OTAVA社(0109350045)より、[I−4]は、OTAVA社(7110950651)より、[I−5]は、Princeton社(OSSK548095)より、[I−6]は、Princeton社(OSSK548169)より、[I−7]は、Enamine社(T05092448)より、[I−8]は、Enamine社(T05141692)より、[I−9]は、OTAVA社(7013941089)より、[I−10]は、OTAVA社(7013941199)より、[I−11]は、OTAVA社(7015150455)より、[I−12]は、Vista-M社(STL034945)より、[I−13]は、Princeton社(OSSK744460)より、[I−14]は、Enamine社(T5690537)より、[I−15]は、Enamine社(T5692612)より、[I−16]は、Enamine社(T5692775)より、[I−17]は、Enamine社(T5707585)より、[I−18]は、OTAVA社(7110950461)より、[I−19]は、Enamine社(T5808392)より、[I−20]は、Enamine社(T5894947)より、[I−21]は、Enamine社(T5500755)よりそれぞれ市販品を購入して入手することもできる。
化合物[I]の中には、異性体が存在し得るものがあるが、本発明は、全ての可能な異性体及びそれらの混合物を血小板凝集抑制剤として使用することができる。
化合物[I]の塩を取得したいとき、化合物[I]が塩の形で得られる場合には、そのまま精製すればよく、また、遊離の形で得られる場合には、適当な有機溶媒に溶解もしくは懸濁させ、酸又は塩基を加えて通常の方法により塩を形成させればよい。
また、化合物[I]及びその薬理学的に許容される塩は、水あるいは各種溶媒との付加物の形で存在することもあるが、これら付加物も本発明の血小板凝集抑制剤として使用することができる。
本発明の血小板凝集抑制剤は、インビトロ及びインビボのいずれにおいても使用することができ、いずれの場合もその投与対象、投与方法、投与形態、投与量等は特に制限されない。本発明の血小板凝集抑制剤をインビトロで使用する場合は、AggrusとCLEC−2との結合や会合、相互作用を阻害する、結合阻害剤として使用することもでき、試料に必要量を添加すればよく、かかる試料としては生体から採取された組織や体液を含む生体試料や、組織試料等を保管する保存液や緩衝液等を挙げることができ、好ましくは血液試料に添加して使用する例を挙げることができる。血液試料としては、他に防カビ剤や防腐剤、他の血液凝固抑制剤等を含んでもよく、血液中の特定の血液成分が取り除かれていてもよい。本発明の血小板凝集抑制剤のインビトロにおける使用濃度としては、効果が得られる範囲であればよく、例えば細胞培養液中に0.001μM〜1,000mM、好ましくは0.01μM〜500mM、さらに好ましくは0.1μM〜100mMの濃度で使用する例を挙げることができる。
本発明の血小板凝集抑制剤の、AggrusとCLEC−2との結合阻害剤としての阻害効果は、常法により、例えばELISA法やフローサイトメーターを用いて適宜調べることができる。Aggrus及びCLEC−2のペプチドは、化学的に、又は無細胞系を用いて合成することもできるが、Aggrus及びCLEC−2のcDNAを組み込んだ発現ベクター導入した大腸菌や培養細胞においてペプチドを発現させて回収する等の遺伝子工学的技術により得ることができる。得られたペプチドを適宜蛍光標識等施し、ELISA法によりAggrusとCLEC−2との相互作用を検出することができる。また、Aggrus又はCLEC−2のいずれか一方を発現させた培養細胞及び、蛍光標識を施した、もう一方のペプチドを用いて、フローサイトメーターを用いてAggrusとCLEC−2との相互作用を検出することができる。
また、本発明の血小板凝集抑制剤は、血管手術の際等の血小板凝集抑制のための医薬組成物とすることもできる。本発明の血小板凝集抑制剤や、血小板凝集抑制のための医薬組成物は、液体、錠剤、顆粒、粉末、徐放剤等いずれの形態とすることもでき、他に適宜の薬学的に許容される担体、例えば、賦形剤、結合剤、溶剤、溶解補助剤、懸濁化剤、乳化剤、等張化剤、緩衝剤、安定化剤、pH調節剤、コロイド安定剤、無痛化剤、防腐剤、抗酸化剤、増粘剤、ゲル化剤、着色剤、滑沢剤、崩壊剤、湿潤剤、吸着剤、甘味剤、希釈剤などの任意成分を配合することができる。なお、本発明の血小板凝集抑制のための医薬組成物は、2種以上の本発明の血小板凝集抑制剤や、他の血小板凝集抑制剤等を含有してもよい。
本発明の血小板凝集抑制剤のインビボにおける使用や血小板凝集抑制のための医薬組成物の使用において、投与対象は動物である限り特に制限されないが、脊椎動物を好適に例示することができ、哺乳類又は鳥類に属する動物をより好適に例示することができ、中でも、哺乳類に属する動物をさらに好適に例示することができ、中でも、ヒト、ラット、マウス、ブタ、ウサギ、イヌ、ネコ、サル、ウマ、ウシ、ヤギ、ヒツジをより好適に例示することができ、中でも、ヒトを特に好適に例示することができる。
これら本発明の血小板凝集抑制剤や、血小板凝集抑制のための医薬組成物は、経口的又は非経口的に投与することができる。すなわち通常用いられる投与形態、例えば粉末、顆粒、錠剤、カプセル剤、シロップ剤、懸濁液等の剤型で経口的に投与することができ、あるいは、例えば溶液、乳剤、懸濁液等の剤型にしたものを注射や点滴の型で非経口投与することができる他、スプレー剤の型で鼻孔内投与することもできる。また、投与量は、本発明の効果が得られる限り特に制限されず、疾病の種類、患者の体重、投与形態等により適宜選定することができ、有効成分の血中濃度がそれぞれ独立に、好ましくは0.001μM〜5,000mMの範囲内、より好ましくは0.01μM〜1,000mM、さらに好ましくは0.1μM〜500mMとする例を挙げることができる。また、本発明の血小板凝集抑制剤や、血小板凝集抑制のための医薬組成物の投与は、他の治療や検査中又は前後に行うことも、他の治療薬等と併用することもできる。
本発明の血小板凝集抑制のための医薬組成物の対象疾患としては、血小板凝集に起因する疾患や血小板凝集によって悪化する疾患、病態として血小板凝集が発生する疾患であればよく、中皮腫、カポジ肉腫、精巣腫瘍、脳腫瘍、膀胱癌、結腸癌、直腸癌、小腸癌、精巣癌、セミノーマ(Seminoma)、扁平上皮癌、繊維肉腫等の癌の治療や癌の転移の予防及び/又は治療に使用できる他、肺血栓、脳梗塞、心筋梗塞、動脈硬化、出血傾向、血液凝固障害、血友病、慢性骨髄増殖性疾患等の予防及び/又は治療に好適に使用することができる。
また、本発明は、式[I]で表されるクロモン化合物又はその薬理学的に許容される塩を、AggrusとCLEC−2との結合阻害剤として使用する方法の他、血小板凝集抑制剤として使用する方法や、血小板凝集抑制のための医薬組成物として使用する方法等を含む。
以下、実施例によって本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。
[ヒトAggrusタンパク質に誘導される血小板凝集を阻害する低分子化合物の同定。]
リコンビナントFc融合ヒトAggrusタンパク質であるhuman Aggrus-Fc(recombinant hAggrus-Fc)を40μg/mlに調整し、終濃度100μg/mlとなるようにanti-human IgG (Fc) CH2 domain抗体を加え氷上で30分間反応させることでrecombinant hAggrus-Fcを多量体化したものを凝集源とした。抗凝固剤としてヘパリンを用いてBALB/cマウスから心臓採血した全血200μlを37度で5分間加温した後、調整した凝集源10μlを全血に添加し37℃で10分間反応させた際の血小板凝集度を血小板凝集計WBA-Carnaで定量することで、ヒトAggrusタンパク質に誘導される血小板凝集度を測定した。この測定系を用いて低分子化合物を混和した凝集源により誘導される血小板凝集度を測定することで、ヒトAggrusタンパク質に誘導される血小板凝集を阻害する低分子化合物の探索を行い、46,000個の化合物ライブラリーを評価した結果、低分子化合物{[3-(4-chlorophenoxy)-4-oxo-4H-chromen-7-yl]oxy}acetic acid(PVCB9927)をヒット化合物として同定した(図1上)。PVCB9927を終濃度が1mM,0.1mM,10μMとなるように凝集源に添加し誘導される血小板凝集度を測定したところ、溶媒コントロールであるDMSOを処理した場合には47.3%の血小板凝集が誘導されたのに対し、PVCB9927を1mM及び0.1mMで処理した場合には血小板凝集が0%にまで抑制され、10μMの処理では0.6%にまで抑制されることが示された(図1グラフ)。このことから、PVCB9927はrecombinant hAggrus-Fcにより誘導されるマウス全血の血小板凝集を抑制することが示された。
[ヒトAggrus遺伝子導入CHO細胞株(CHO-Aggrus細胞)により誘導される血小板凝集に与えるPVCB9927の影響。]
38.5×10cells/mlのCHO-Aggrus細胞に終濃度200μM及び20μMのPVCB9927あるいは溶媒コントロールであるDMSOを加え、氷上で30分間反応させたものを凝集源とした。抗凝固剤としてヘパリンとacid citrate dextrose(ACD)を混合した溶液を用いてBALB/cマウスから心臓採血した全血を110×g,10分間遠心操作した後、上清及び白濁した中間層を回収することで多血小板血漿(PRP)を調整し、PRPを1000×g,10分間遠心操作した沈殿より単離した洗浄血小板にmodified Tyrode buffer(20mM HEPES,150mM NaCl,2.5mM KCl,12mM NaHCO,1mg/ml glucose,1mM MgCl,1mM CaCl,1mg/ml BSA)を加えて懸濁した。37℃に加温した200μlの洗浄血小板溶液に10μlの凝集源を添加し、40分間で進行する血小板凝集の過程を血小板凝集計MCM HEMA TRACER 313Mを用いて測定した。その結果、DMSOコントロールを処理した際には測定開始から約24分で血小板凝集度が50%に到達するのに対し、200μM及び20μMでPVCB9927を処理した際には測定開始から40分の時点においても血小板凝集度が50%に満たないことが示された(図2)。このことから、PVCB9927は細胞膜表面に発現しているAggrusにより誘導されるマウス血小板の血小板凝集を抑制することも示している
[表面プラズモン共鳴を用いたヒトAggrusタンパク質とPVCB9927間の結合度測定。]
recombinant hAggrus-FcとPVCB9927間の結合度測定には、表面プラズモン共鳴解析装置Biacore X100(GE Healthcare社製)を用いた。カルボキシメチルデキストランコート処理が施されたセンサーチップCM7上にアミンカップリング法を用いてrecombinant hAggrus-Fcを固相化し、約10,000RU相当の固定化量を得た。25℃、30μl/minの流速のもと終濃度1%となるようDMSOを加えたHBS-EP+ buffer(10mM HEPES,150mM NaCl,3mM EDTA,0.05% v/v Surfactant P20)を流路に満たして測定を行った。PVCB9927を終濃度6.25,12.5,25,50,100μMとなるようにHBS-EP+ bufferに希釈し、recombinant hAggrus-Fcが固相化されたセンサーチップCM7上に60秒間流すことで結合反応を観察し、引き続き終濃度1%のDMSOを加えたHBS-EP+ bufferを流すことで解離反応を観察した(図3)。測定により得られたセンサーグラムをもとにBiacore X100 evaluation software Steady State Affinity modelを用いて解析を行うことで解離定数K値の算出を行った。なお、本測定では、12.5μM測定時におけるセンサーグラムがノイズを含んでいたために、結合モデルとの照合の際に削除することで解離定数の算出を行った。
[リコンビナントAggrusとリコンビナントCLEC−2間の結合に与えるPVCB9927の影響]
96wellプレートにリコンビナントヒトCLEC−2タンパク質であるhuman CLEC-2(recombinant hCLEC-2)を100ng/wellの濃度で固相化し、PVCB9927を終濃度30,10,3,1,0.3,0.1,0.03μMとなるよう添加したところにrecombinant hAggrus-Fcを12.5ng/wellの濃度で加え室温で2時間反応させた。anti-human IgG(Fc sprecific)peroxidase conjugateを加えて1時間反応させた後にperoxidaseの酵素活性を測定することで、recombinant hAggrus-Fcとrecombinant hCLEC-2間の結合度を定量した。その結果、PVCB9927は、処理濃度依存的にリコンビナントAggrusとリコンビナントCLEC−2間の結合を阻害することが示され、50%阻害濃度は4.82μMであった(図4)。なお、50%阻害濃度の計算は、低分子化合物の溶媒として用いたdimethyl sulfoxide(DMSO)添加時のrecombinant hAggrus-Fcとrecombinant hCLEC-2間の結合度を100%として行った。
[PVCB9927誘導体とその活性評価。]
PVCB9927と構造的に類似している{[3-(4-chlorophenoxy)- 2-methyl-4-oxo-4H-chromen-7-yl]oxy} acetic acid (PVCB15001)、methyl{[3- (4-chlorophenoxy)-4-oxo-4H-chromen-7-yl]oxy} acetate(PVCB15002)、3- (4-chlorophenoxy)-4-oxo-4H-chromen-7-yl acetate(PVCB15003)をSIGMA-ALDRICH社より購入し、AggrusとCLEC−2間の結合に与える影響を実施例4と同様の系で評価した。その結果、PVCB15001(図5左)及びPVCB15003(図5右)はAggrusとCLEC−2間の結合への阻害効果が無いことが示された。また、PVCB15002(図5中央)は僅かながらAggrusとCLEC−2間の結合を阻害する活性を保持しており、処理濃度30μMでAggrusとCLEC−2間の結合度を約70%程度に抑制することが示され、PVCB9927及びその誘導体には、Aggrus−CLEC−2間の結合を抑制する活性があることが確認された(図5)。
[CHO-Aggrus細胞とリコンビナントhuman CLEC-2-Fc(recombinant hCLEC-2-Fc)の結合に与えるPVCB9927の影響。]
コントロールベクター遺伝子導入CHO細胞株(CHO-Mock細胞)及びCHO-Aggrus細胞を1.5x10cells/mlの細胞密度になるようにPBS(−)に懸濁した後、終濃度10,5.0,2.5,1.25,0.63μg/mlとなるようにrecombinant hCLEC-2-Fcを添加し、氷上で30分間反応させた。9,000xg,15秒間の遠心操作で細胞を沈殿させた後に上清を除去し、300μlのPBS(−)で沈殿した細胞を洗浄した。再度9,000xg,15秒間の遠心操作で細胞を沈殿させ上清を除去したところに、PBS(−)で1/1000濃度に希釈したAlexa Fluor 488 goat anti-mouse IgG (H+L)を100μl添加し、氷上で30分間反応させた。9,000xg,15秒間の遠心操作で細胞を沈殿させた後に上清を除去し、300μlのPBS(−)で沈殿した細胞を洗浄することを2度繰り返した後、500μlのPBS(−)に細胞を懸濁した。細胞表面に結合したrecombinant hCLEC-2-Fc量を、Alexa Fluor 488 goat anti-mouse IgG (H+L)の蛍光強度を指標としてフローサイトメーターFC500を用いて定量した。その結果、CHO-Mock細胞にrecombinant hCLEC-2-Fcを処理してもほとんど変化がないのに対し(図6上段左)、CHO-Aggrus細胞にrecombinant hCLEC-2-Fcを処理した場合には処理濃度依存的な蛍光シグナルの増強が観察された(図6上段右)。このことから、CHO-Aggrus細胞の細胞表面にrecombinant hCLEC-2-Fcが結合することが示された。なお、図中のcontrolはrecombinant hCLEC-2-Fcの添加を行わずにAlexa Fluor 488 goat anti-mouse IgG (H+L)処理のみを行った細胞の結果を示している。
また、CHO-Aggrus細胞を22.5x10cells/150μlとなるようPBS(−)に懸濁した後、終濃度30,10,3,1μMとなるようにPVCB9927を添加し、氷上で30分間反応させた。その後、recombinant hCLEC-2-Fcを終濃度5μg/mlとなるように添加し、氷上で30分間反応させた。9,000xg,15秒間の遠心操作で細胞を沈殿させた後に上清を除去し、300μlのPBS(−)で沈殿した細胞を洗浄した。再度9,000xg,15秒間の遠心操作で細胞を沈殿させ上清を除去したところに、PBS(−)で1/1000濃度に希釈したAlexa Fluor 488 goat anti-mouse IgG (H+L)を100μl添加し、氷上で30分間反応させた。9,000xg,15秒間の遠心操作で細胞を沈殿させた後に上清を除去し、300μlのPBS(−)で沈殿した細胞を洗浄することを2度繰り返した後、500μlのPBS(−)に細胞を懸濁した。細胞表面に結合したrecombinant hCLEC-2-Fc量を、Alexa Fluor 488 goat anti-mouse IgG (H+L)の蛍光強度を指標としてフローサイトメーターFC500を用いて定量した(図6下)。なお、図中のDMSOにはPVCB9927の替わりに溶媒コントロールであるDMSO処理を行った細胞を用い、controlはAlexa Fluor 488 goat anti-mouse IgG (H+L)処理のみを行った細胞を用いた結果を示している。その結果、DMSOコントロールで検出されるピークのシフトが、PVCB9927を30μMで処理した場合にはほぼ完全に抑制されることや、10μMで処理した場合には約半分にまで抑制されることが示された。このことから、PVCB9927はCHO-Aggrus細胞の細胞表面に対するrecombinant hCLEC-2-Fcの結合を処理濃度依存的に阻害することが示された。なお、図中のcontrolはrecombinant hCLEC-2-Fcの添加を行わずにAlexa Fluor 488 goat anti-mouse IgG (H+L)処理のみを行った細胞の結果を示している。
以上の結果より、細胞膜表面上に発現しているAggrusに対してPVCB9927は結合し、その結果、AggrusとリコンビナントCLEC−2タンパク質の結合を阻害することが確認された。
[CHO-Aggrus細胞とrecombinant hCLEC-2-Fcの結合に与えるPVCB9927誘導体の影響。]
CHO-Aggrus細胞を22.5x10cells/150μlとなるようPBS(−)に懸濁した後、終濃度10μMとなるようにPVCB15001(図7左),PVCB15002(図7中央)あるいはPVCB15003(図7右)を添加し、氷上で30分間反応させた。その後、recombinant hCLEC-2-Fcを終濃度5μg/mlとなるように添加し、氷上で30分間反応させた。9,000xg,15秒間の遠心操作で細胞を沈殿させた後に上清を除去し、300μlのPBS(−)で沈殿した細胞を洗浄した。再度9,000xg,15秒間の遠心操作で細胞を沈殿させ上清を除去したところに、PBS(−)で1/1000濃度に希釈したAlexa Fluor 488 goat anti-mouse IgG (H+L)を100μl添加し、氷上で30分間反応させた。9,000xg,15秒間の遠心操作で細胞を沈殿させた後に上清を除去し、300μlのPBS(−)で沈殿した細胞を洗浄することを2度繰り返した後、500μlのPBS(−)に細胞を懸濁した。細胞表面に結合したrecombinant hCLEC-2-Fc量を、Alexa Fluor 488 goat anti-mouse IgG (H+L)の蛍光強度を指標としてフローサイトメーターFC500を用いて定量した。なお、図中のDMSOにはPVCB9927の替わりに溶媒コントロールであるDMSO処理を行った細胞を用い、controlにはAlexa Fluor 488 goat anti-mouse IgG (H+L)処理のみを行った細胞(recombinant hCLEC-2-Fcの添加を行わずにAlexa Fluor 488 goat anti-mouse IgG (H+L)処理のみを行った細胞)を用いた。その結果、PVCB15001及びPVCB15003はDMSOコントロールで検出されるピークのシフトをほとんど抑制することはなく、CHO-Aggrus細胞の細胞表面に対するrecombinant hCLEC-2-Fcの結合に大きな影響を与えないことが示された。一方、PVCB15002はDMSOコントロールで検出されるピークのシフトを僅かに抑制することが示され、CHO-Aggrus細胞の細胞表面に対するrecombinant hCLEC-2-Fcの結合を僅かに阻害することが示された。本結果は、上記実施例5におけるリコンビナントタンパク質間同士の結合阻害が、細胞膜表面上に発現しているAggrusとリコンビナントCLEC−2タンパク質との結合検証アッセイでも再現できることを示している。
本発明は、血小板凝集抑制に関する医療、研究分野や、血小板凝集抑制剤やがん腫の予防及び/又は治療のための医薬組成物に関する医薬分野に好適に利用することができる。

Claims (6)

  1. 式[I]

    [式中、R、R、R及びRは、同一又は異なって、水素原子、置換もしくは非置換アルキル基、置換もしくは非置換シクロアルキル基、置換もしくは非置換アルケニル基、置換もしくは非置換脂環式複素環基、置換もしくは非置換アリール基、置換もしくは非置換芳香族複素環基、COR、COOR、CONR、OR、OCOR、S(O)mR(式中、mは、0、1又は2を表す)、SONR、NR、NHCOR、NHSO、ニトロ基、シアノ基又はハロゲン原子を表し、
    Xは、置換若しくは非置換のアリール基又は置換若しくは非置換の芳香族複素環基を表し、
    Yは、アルキレン基を表し、
    Zは、OR又はNRを表し、
    ここで、R及びRは、同一又は異なって、水素原子、置換もしくは非置換アルキル基、置換もしくは非置換シクロアルキル基、置換もしくは非置換アルケニル基、置換もしくは非置換脂環式複素環基、置換もしくは非置換アリール基、置換もしくは非置換芳香族複素環基、又はR及びRが一緒になって、窒素原子を含んで形成される置換若しくは非置換の含窒素複素環基を表す]
    で表されるクロモン化合物又はその薬理学的に許容される塩を有効成分として含む血小板凝集抑制剤。
  2. 式[I]が、式[Ia]

    (式中、Xは、置換若しくは非置換のアリール基を表し、Zは、ヒドロキシ基又はアルコキシ基を表す)
    で表されるクロモン化合物であることを特徴とする請求項1記載の血小板凝集抑制。
  3. が4−クロロフェニル基を表し、Zがヒドロキシ基又はメトキシ基で表されるクロモン化合物であることを特徴とする請求項2記載の血小板凝集抑制。
  4. 請求項1〜3のいずれかに記載の血小板凝集抑制剤を含む血小板凝集抑制のための医薬組成物。
  5. 請求項1〜3のいずれかに記載の血小板凝集抑制剤を含む中皮腫、カポジ肉腫、精巣腫瘍、脳腫瘍、膀胱癌、結腸癌、直腸癌、小腸癌、精巣癌、セミノーマ(Seminoma)、扁平上皮癌、繊維肉腫、癌の転移、肺血栓、脳梗塞、心筋梗塞、動脈硬化、出血傾向、血液凝固障害、血友病、慢性骨髄増殖性疾患の治療若しくは予防のための医薬組成物。
  6. 式[I]

    [式中、R、R、RおよびRは、同一または異なって、水素原子、置換もしくは非置換アルキル基、置換もしくは非置換シクロアルキル基、置換もしくは非置換アルケニル基、置換もしくは非置換脂環式複素環基、置換もしくは非置換アリール基、置換もしくは非置換芳香族複素環基、COR、COOR、CONR、OR、OCOR、S(O)mR(式中、mは、0、1または2を表す)、SONR、NR、NHCOR、NHSO、ニトロ基、シアノ基またはハロゲン原子を表し、
    Xは、置換若しくは非置換のアリール基または置換若しくは非置換の芳香族複素環基を表し、
    Yは、アルキレン基を表し、
    Zは、ORまたはNRを表し、
    ここで、RおよびRは、同一または異なって、水素原子、置換もしくは非置換アルキル基、置換もしくは非置換シクロアルキル基、置換もしくは非置換アルケニル基、置換もしくは非置換脂環式複素環基、置換もしくは非置換アリール基、置換もしくは非置換芳香族複素環基、またはRおよびRが一緒になって、窒素原子を含んで形成される置換若しくは非置換の含窒素複素環基を表す]
    で表されるクロモン化合物を含むAggrusとCLEC−2との結合阻害剤。
JP2011212891A 2011-09-28 2011-09-28 3−アリールオキシクロモン化合物を有効成分とする血小板凝集抑制剤 Withdrawn JP2013071916A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011212891A JP2013071916A (ja) 2011-09-28 2011-09-28 3−アリールオキシクロモン化合物を有効成分とする血小板凝集抑制剤

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011212891A JP2013071916A (ja) 2011-09-28 2011-09-28 3−アリールオキシクロモン化合物を有効成分とする血小板凝集抑制剤

Publications (1)

Publication Number Publication Date
JP2013071916A true JP2013071916A (ja) 2013-04-22

Family

ID=48476686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011212891A Withdrawn JP2013071916A (ja) 2011-09-28 2011-09-28 3−アリールオキシクロモン化合物を有効成分とする血小板凝集抑制剤

Country Status (1)

Country Link
JP (1) JP2013071916A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10730939B2 (en) 2015-07-15 2020-08-04 Japanese Foundation For Cancer Research Anti-Aggrus monoclonal antibody, domain in Aggrus which is required for binding to CLEC-2, and method for screening for Aggrus-CLEC-2 binding inhibitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10730939B2 (en) 2015-07-15 2020-08-04 Japanese Foundation For Cancer Research Anti-Aggrus monoclonal antibody, domain in Aggrus which is required for binding to CLEC-2, and method for screening for Aggrus-CLEC-2 binding inhibitor

Similar Documents

Publication Publication Date Title
JP7228618B2 (ja) Pge2レセプター調節剤としてのn-置換インドール誘導体
JP4914355B2 (ja) C型肝炎インヒビターペプチド類似体
JP7141130B2 (ja) C5a阻害剤としての6-5融合環
CN103002897B (zh) 特定氨基‑哒嗪类,与其组合物,及其使用方法
TWI465434B (zh) C5aR拮抗劑
TW200524928A (en) Substituted naphthyridine derivatives as inhibitors of macrophage migration inhibitory factor and their use in the treatment of human diseases
US11325899B2 (en) Benzofurane and benzothiophene derivatives as PGE2 receptor modulators
JP2021501790A (ja) 統合的ストレス経路の調節剤
JP7141129B2 (ja) C5a阻害剤としての5-5融合環
JP7159214B2 (ja) Pge2レセプター調節剤としてのフェニル誘導体
JP2023515235A (ja) 4-アミノブタ-2-エンアミド誘導体及びその塩
EA010485B1 (ru) Производное n,n'-дифенилмочевины, фармацевтическая композиция (варианты) и способ лечения и предупреждения заболеваний и состояний с его использованием (варианты)
TW201247670A (en) Processes for preparing isoquinolinones and solid forms of isoquinolinones
WO2016208592A1 (ja) 二環性複素環アミド誘導体
KR20090122931A (ko) 오르니틴 유도체
CA2943002A1 (en) Novel compounds
JP2021525728A (ja) Masp−2阻害剤および使用方法
TW201002694A (en) Quinazoline derivatives
JP2021511324A (ja) C5a受容体調節剤
WO2020224652A1 (zh) 一类泛素化特异性蛋白酶抑制剂及其制备方法与应用
KR102325899B1 (ko) 퀴나졸린 유도체 또는 이의 염 및 이를 포함하는 약학 조성물
JPH06503344A (ja) 可溶性の補体受容体と、補体を抑制しかつ/または免疫活性を抑制する化合物との相乗組成物
JP2012502005A (ja) イソqc阻害剤の使用
JP2021511327A (ja) C5a受容体調節剤
JP2013071916A (ja) 3−アリールオキシクロモン化合物を有効成分とする血小板凝集抑制剤

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202