JP2013064326A - バルブタイミング調整装置 - Google Patents

バルブタイミング調整装置 Download PDF

Info

Publication number
JP2013064326A
JP2013064326A JP2011201747A JP2011201747A JP2013064326A JP 2013064326 A JP2013064326 A JP 2013064326A JP 2011201747 A JP2011201747 A JP 2011201747A JP 2011201747 A JP2011201747 A JP 2011201747A JP 2013064326 A JP2013064326 A JP 2013064326A
Authority
JP
Japan
Prior art keywords
spool
check valve
valve
advance
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011201747A
Other languages
English (en)
Other versions
JP5360173B2 (ja
Inventor
Kenji Tada
賢司 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2011201747A priority Critical patent/JP5360173B2/ja
Priority to US13/604,823 priority patent/US8851032B2/en
Priority to CN201210337994.7A priority patent/CN102996195B/zh
Priority to DE102012216432A priority patent/DE102012216432A1/de
Publication of JP2013064326A publication Critical patent/JP2013064326A/ja
Application granted granted Critical
Publication of JP5360173B2 publication Critical patent/JP5360173B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34426Oil control valves
    • F01L2001/3443Solenoid driven oil control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34426Oil control valves
    • F01L2001/34433Location oil control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • F01L2001/34469Lock movement parallel to camshaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2250/00Camshaft drives characterised by their transmission means
    • F01L2250/02Camshaft drives characterised by their transmission means the camshaft being driven by chains
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2250/00Camshaft drives characterised by their transmission means
    • F01L2250/04Camshaft drives characterised by their transmission means the camshaft being driven by belts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2301/00Using particular materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

【課題】作動油の順流時には逆止弁による圧力損失を抑え、作動油の逆流時には逆流する作動油の推力を活用して逆止弁の閉弁応答性を高める。
【解決手段】VCTは、スプール8内に配置される逆止弁として、バネ材が軸方向で接するように巻回された渦巻型逆止弁18を用いる。渦巻型逆止弁18を用いることにより、作動油の順流時には、開いた渦巻線によって多くの流路隙間を確保することができ、作動油が逆止弁18を通過する際の圧力損失を小さくできる。また、作動油に逆流が生じると、作動油の逆流を長いバネ材において軸方向(閉弁方向)に受けるため、作動油の逆流を閉弁方向の推力として活用することができ、作動油の逆流時における逆止弁18の閉弁応答性を高めることができる。
【選択図】 図3

Description

本発明は、エンジン(内燃機関)によって駆動されるカムシャフト(吸気バルブ用、排気バルブ用、吸排気兼用カムシャフトのいずれか)の進角量を、油圧を用いて可変させるバルブタイミング調整装置(バリアブル・バルブ・タイミング:以下、VVTと称す)に関する。
カムシャフトの進角量を調整して吸気バルブ等(カムシャフトが駆動するバルブ)の開閉タイミングを可変させるVVTは、
・進角室と遅角室の油圧差によってカムシャフトの進角量の可変を行なう可変カムシャフトタイミング機構(バリアブル・カムシャフト・タイミング:以下、VCTと称す)と、・進角室と遅角室の油圧差をコントロールするオイルフローコントロールバルブ(以下、OCVと称す)と、
・このOCVを駆動する電動アクチュエータ(一般的には、電磁アクチュエータ)と、
を用いて構成される。
電動アクチュエータは、エンジン制御装置(エンジン・コントロール・ユニット:以下、ECUと称す)によって通電制御されるものであり、ECUによって電動アクチュエータが制御されることでOCVの作動状態が制御され、その結果、進角室と遅角室の油圧がコントロールされて、カムシャフトの進角量が調整される。
ここで、エンジンの運転中、VVTのベーンロータは、カムシャフトに伝わるトルク変動(吸気バルブ等を閉弁させるスプリングの反力等)を受ける。このため、進角室および遅角室の油圧は、カムシャフトからベーンロータに伝わるトルク変動により上下変動する。
その結果、カムシャフトからベーンロータに伝わるトルク変動により、進角室および遅角室の油圧が上下に交番変動する。
そこで、作動油(ポンプ油圧)の供給途中に逆止弁を設けて、交番変動する油圧によって作動油がオイルポンプ側(油圧源側)へ逆流するのを防いで、VVTの応答性の劣化等を防いでいる。
逆止弁の配置技術として、
・スプールの内部にスプール内通路を設け、
・進角室および遅角室に供給される作動油がスプール内通路を通るように設け、
・スプール内通路の内部に逆止弁を配置する技術が知られている(例えば、特許文献1参照)。
特許文献1に開示される逆止弁は、
・スプール内通路の途中の開閉を行うボールと、
・弁座から離座したボールに閉弁力(着座力)を付与するコイルスプリングと、
を用いて構成されている。
(順流時における問題点)
特許文献1に開示される逆止弁は、開弁時にはボールがバルブシートから離座するものであるため、開弁による流路隙間が少ない。
このため、作動油の順流時には、少ない流路隙間を作動油が流れることになるため、作動油が逆止弁を通過する際の圧力損失が大きくなってしまい、VVTの応答性の劣化を招いてしまう。
(逆流時における問題点)
特許文献1に開示される逆止弁は、作動油の逆流をボールで受けるものであるが、ボールでは逆流する作動油の流れを利用した推力がでない。
このため、作動油の逆流時における逆止弁の閉弁応答性が劣ってしまい、VVTの応答性の劣化を招いてしまう。
なお、逆止弁の閉弁応答性を高める目的でコイルスプリングのバネ力を強くすると、作動油の順流時には強化したバネ力が圧力損失として作用するため、VVTの応答性の劣化を招いてしまう。
特開2005−325841号公報
本発明は、上記問題点に鑑みてなされたものであり、その目的は、
・作動油の順流時には逆止弁による圧力損失を抑えるとともに、
・作動油の逆流時には逆流する作動油の推力を活用して逆止弁の閉弁応答性を高めて、
VVTの応答性を向上できるVCTの提供にある。
[請求項1の手段]
請求項1のVCTは、スプール内に配置される逆止弁として渦巻型逆止弁を用いる。
渦巻型逆止弁は、バネ材が軸方向で接するように巻回されたものであるため、ボールを用いた従来技術とは異なり、開弁時には渦巻線の離間によって多くの流路隙間を確保することができる。
このため、作動油の順流時には、作動油が逆止弁を通過する際の圧力損失を小さくすることができ、VVTの応答性を高めることができる。
また、渦巻型逆止弁は、上述したように、バネ材が軸方向で接するように巻回されたものであるため、ボールを用いた従来技術とは異なり、逆止弁の開弁状態で作動油に逆流が生じた際、作動油の逆流を、渦巻型逆止弁の広範囲で受けることができる。
このため、作動油の逆流を閉弁方向の推力として活用することができ、作動油の逆流時における逆止弁の閉弁応答性を高めることができるため、VVTの応答性を高めることができる。
一方、スプールに固定される摺動プラグには、ポンプポートから内径方向に供給される作動油の流れを軸方向に変換してスプール内通路に導く流方向変換部が設けられる。このため、作動油の順流時において、流方向変換部から渦巻型逆止弁に向かう作動油の流れを軸方向に変換することができる。
このように、作動油の順流時に、渦巻型逆止弁に向かう作動油の流れを軸方向に変換することにより、作動油の流れ方向と、渦巻型逆止弁の開弁方向を一致させることができる。このため、作動油の順流時における逆止弁の開弁性を高めることができ、VVTの応答性を高めることができる。
[請求項2の手段]
渦巻型逆止弁を成すバネ材は、軸方向に対して直交する方向に板面を有する断面が矩形を呈する。
これにより、逆止弁の開弁状態で作動油に逆流が生じた際、作動油の逆流を、作動油の流れ方向(軸方向)に対して直交する板面(平面)で受けることができる。このため、作動油の逆流を閉弁方向の推力として効率的に得ることができ、作動油の逆流時における逆止弁の閉弁応答性を高めることができる。
[請求項3の手段]
スプール内通路の内部に組付けられた渦巻型逆止弁は、摺動プラグから離反する方向に縮径する円錐形状を呈する。
これにより、逆止弁の開弁状態で作動油に逆流が生じた際、軸方向に向かって流れる作動油の逆流を、効率的に渦巻型逆止弁の全巻線(円錐状に巻回されたバネ材)に当てることができる。このため、作動油の逆流を閉弁方向の推力として効率的に得ることができ、作動油の逆流時における逆止弁の閉弁応答性を高めることができる。
[請求項4の手段]
渦巻型逆止弁は、スプール内通路の内壁に形成された環状段差と、摺動プラグに設けられる流方向変換部とに挟まれて固定される。
このため、渦巻型逆止弁をスプール内に固定するコストを抑えることができる。これによって、OCVのコストを抑えることができ、結果的にVCTのコストを抑えることができる。即ち、応答性の優れたVCTを、コストを抑えて提供することができる。
VVTおよびOCVの軸方向に沿う断面図である。 (a)略円錐形状を呈する渦巻型逆止弁の断面図、(b)略円錐形状を呈する渦巻型逆止弁を頂部方向から見た図である。 (a)渦巻型逆止弁が閉じた状態を示すスプール弁の断面図、(b)渦巻型逆止弁が開いた状態を示すスプール弁の断面図である。
図面を参照して[発明を実施するための形態]を説明する。
VVTは、
・進角室と遅角室の油圧差によってシューハウジング1とベーンロータ2を回転方向に相対的に回動変移させることで、ベーンロータ2に結合されるカムシャフト3の進角量の可変を行なうVCT4と、
・進角室と遅角室の油圧制御を行なうOCV5と、
・このOCV5を駆動する電動アクチュエータ6と、
・エンジンの運転状態に応じて電動アクチュエータ6の作動を制御するECU(図示しない)と、
を備える。
OCV5は、スプール弁によって構成されるものであり、
・カムシャフト3(または、カムシャフト3に結合される部材)に挿入固定されるスリーブ7と、
・このスリーブ7の内部において軸方向へ摺動自在に支持され、各ポートの連通状態を調整するスプール8と、
・このスプール8を軸方向の一方(電動アクチュエータ6の駆動方向とは異なる方向)に付勢するリターンスプリング9と、
を備える。
スリーブ7は、内部に円筒状の摺動空間が形成された略円筒形状を呈するものであり、加圧された油圧が供給されるポンプポート(入力ポート)11、ドレン空間(排出オイルがドレンパンに導かれる空間)に通じるドレンポート12a、12b、進角室に通じる進角ポート13、遅角室に通じる遅角ポート14が設けられている。
ポンプポート11、進角ポート13、遅角ポート14は、スリーブ7の径方向(半径方向)を貫通して設けられる。なお、ドレンポート12a、12bは、スリーブ7の径方向を貫通して設けられても良いし、スリーブ7の軸方向に設けられても良いし、スリーブ7の径方向と軸方向の両方に設けても良い。
スプール8の内部には、進角ポート13および遅角ポート14へ導かれる作動油が通過するスプール内通路15が設けられる。
また、スプール8には、このスプール8に固定されてスプール内通路15の一端を閉塞するとともに、電動アクチュエータ6の駆動軸6aに接して駆動力を受ける摺動プラグ16(図3参照)が設けられる。
この摺動プラグ16には、ポンプポート11から内径方向に供給される作動油の流れを軸方向に変換してスプール内通路15に導く流方向変換部17が設けられる。
スプール内通路15の内部には、流方向変換部17からスプール内通路15へのオイルの流れを許容し、逆にスプール内通路15から流方向変換部17へのオイルの流れを遮断する逆止弁18(図3参照)が配置される。
この逆止弁18は、スプール内通路15の内壁に形成された環状段差19(図3参照)と、摺動プラグ16に設けられる流方向変換部17とに挟まれて固定されるものであり、バネ材が軸方向で接するように巻回された渦巻型逆止弁である。
以下において本発明が適用された具体的な一例(実施例)を図面を参照して説明する。以下の実施例は具体的な一例であって、本発明が実施例に限定されないことは言うまでもない。なお、以下の実施例において、上記[発明を実施するための形態]と同一符号は、同一機能物を示すものである。
以下の説明において、図1の左側を「前」、図1の右側を「後」と称して説明するが、この前後は実施例説明のための前後であって、実際の搭載方向とは関係がなく、限定されるものではない。
また、以下の実施例では、吸気バルブのバルブタイミングを調整する例を示すが、具体的な一例であって、限定されないことは言うまでもない。
(VVTの構成)
VVTは、車両走行用のエンジンに搭載されるものであり、
・吸気バルブ駆動用のカムシャフト3に取り付けられてカムシャフト3の進角量を連続的に可変することで吸気バルブの開閉タイミングを連続的に可変可能なVCT4と、
・このVCT4を油圧制御するOCV5と、
・このOCV5の発生油圧を制御する電磁アクチュエータ6(電動アクチュエータ6の一例)と、
・この電磁アクチュエータ6を電気的に制御するECUと、
を用いて構成されている。
(VCT4の説明)
VCT4は、エンジンのクランクシャフトに同期して回転駆動されるシューハウジング1と、このシューハウジング1に対して相対回転可能に設けられ、カムシャフト3と一体に回転するベーンロータ2とを備えるものであり、シューハウジング1内に構成される油圧アクチュエータによってシューハウジング1に対してベーンロータ2を相対的に回転駆動して、カムシャフト3を進角側あるいは遅角側へ変化させるものである。
シューハウジング1は、エンジンのクランクシャフトに駆動される入力側の回転体であり、具体的な一例として図1では、タイミングベルトやタイミングチェーン等を介して回転駆動されるスプロケット21、このスプロケット21の前後に組付けられるフロントプレート22およびリヤプレート23で構成され、内部にベーンロータ2を組み入れた状態でボルト24により締結固定されている。そして、ベーンロータ2を収容するシューハウジング1の内部には、略扇状の凹部が回転方向に複数形成されている。
一方、ベーンロータ2は、カムシャフト3の外周に位置決め固定されて、カムシャフト3と一体に回転する出力側の回転体である。
ベーンロータ2は、シューハウジング1の凹部内を、反回転側の進角室と、回転側の遅角室とに区画するベーン2aを備えるものであり、ベーンロータ2はシューハウジング1に対して所定角度内で回動可能に設けられている。
進角室は、遅角室に対する相対的な油圧上昇によって、ベーン2aを進角側へ駆動するための油圧室であって、ベーン2aの反回転方向側の凹部内に形成されるものである。
同様に、遅角室は、進角室に対する相対的な油圧上昇によって、ベーン2aを遅角側へ駆動するための油圧室であって、ベーン2aの回転方向側の凹部内に形成されるものである。
なお、図1に示す符合25は、エンジンの停止時にシューハウジング1に対するベーンロータ2の進角量(位相量)を、エンジン始動に適した進角量に保持するためのロック装置である。
このロック装置は、一つのベーン2aに設けられたロックピン26と、このロックピン26が係合するロック孔27と、ロックピン26をロック孔27の方向(後方)に向けて付勢するロックピン付勢バネ28と、ロック孔27に係合したロックピン26をロック孔27から油圧を用いて離脱(ロック解除)させるロック解除手段29とを用いて構成される。
ロックピン26は、1つのベーン2aの内部で軸方向に摺動可能に支持されるものであり、先端(後端)がベーン2aの後面より所定量だけ突出可能に設けられている。
ロック孔27は、前面に設けられた凹部であり、ロックピン26の係合部位が硬質リング27aで補強されている。
ロックピン付勢バネ28は、ロックピン26を後方へ付勢する圧縮コイルスプリングである。なお、ロックピン付勢バネ28が配置される背圧室は、呼吸孔を介してドレン空間(ドレンパンに通じる空間)に連通している。
ロック解除手段29は、ロックピン26とロック孔27の底の間に、「進角室または遅角室の一方の油圧」、あるいは「進角室および遅角室の両方の油圧」を供給する手段であり、供給油圧が所定油圧より高まることで、ロックピン付勢バネ28の付勢力に抗してロックピン26を前方へ移動させて、ロックピン26とロック孔27の係合解除を実行するものである。
(OCV5の説明)
OCV5は、進角室および遅角室のオイルを給排して、進角室と遅角室に油圧差を発生させてベーンロータ2をシューハウジング1に対して相対回転させるための手段であり、クランクシャフト等によって駆動されるオイルポンプから圧送される作動油を進角室または遅角室の一方に調量供給するとともに、進角室または遅角室の油圧を調量排圧するものである。
このOCV5は、
・カムシャフト3に組付けられるスリーブ7と、
・このスリーブ7内で軸方向に摺動可能に支持されるスプール8と、
・このスプール8を前方(電磁アクチュエータ6の駆動方向とは逆方向)へ付勢するリターンスプリング9と、
を備える。
(スリーブ7の説明)
スリーブ7は、略円筒形状を呈するものであり、カムシャフト3の内側に形成された軸穴の内部に挿入され、カムシャフト3に螺合等により固定されてベーンロータ2およびカムシャフト3と一体に回転する。
スリーブ7の内部には、スプール8を軸方向へ摺動自在に支持するための円筒状の摺動空間が形成されている。
スリーブ7の径方向には、複数の入出力ポートが形成されている。
具体的にスリーブ7の径方向には、前側から後側に順に、オイルポンプが圧送した油圧が供給されるポンプポート11、ドレン空間(ドレン空間)に作動油を戻すフロントドレンポート12a、進角室に連通する進角ポート13、遅角室に連通する遅角ポート14が形成されている。
また、スリーブ7の後端には、カムシャフト3内に形成された軸穴を介してドレン空間に通じるリヤドレンポート12bが形成されている。
さらに具体的に説明する。
ポンプポート11は、図1に示すように、スリーブ7の軸方向中、後述する摺動プラグ16の後端に最も近い箇所に設けられるものであり、ポンプポート11の外径側開口部は、カムシャフト3に形成された第1ゲート31と、カムシャフト3の軸受(エンジン側の固定部材)に形成されたポンプ油路を介してオイルポンプの吐出側に接続され、オイルポンプが吐出した作動油がポンプポート11に供給される。
フロントドレンポート12aの外径側開口部は、カムシャフト3に形成された第2ゲート32を介してドレン空間に接続され、フロントドレンポート12aに導かれた作動油をドレン空間内に排出する。
進角ポート13の外径側開口部は、カムシャフト3に形成された第3ゲート33と、ベーンロータ2内に形成された進角油路34を介して進角室に接続される。
遅角ポート14の外径側開口部は、カムシャフト3に形成された第4ゲート35と、ベーンロータ2内に形成された遅角油路36を介して遅角室に接続される。
(スプール8の説明)
スプール8は、略円筒形状を呈するものであり、スプール8の内部には、軸方向に伸びるスプール内通路15が形成されている。
このスプール内通路15は、その内部に供給される作動油を進角ポート13および遅角ポート14へ導くための内部通路である。
スプール8の外形形状は、略円柱形状を呈するものであり、外周面がスリーブ7の内周面に対して微細なクリアランスを介して挿入配置されるものである。そして、スプール8が前方から後方へスライド変位することで、進角状態(カムシャフト3を進角側へ駆動する状態)、保持状態(カムシャフト3の進角量を保持する状態)および遅角状態(カムシャフト3を遅角側へ駆動する状態)を達成する。
この各状態を達成する手段として、スプール8には、前方より後方に向かって、第1内外貫通孔41、全周溝42、第2内外貫通孔43、排出用連通部44、油穴閉塞壁45が設けられている。
なお、排出用連通部44の一例として、図1では「内外連通用スリット+後方開口部」を示し、図3では「後方に向けて小径となる先端小径部」を示す。
第1内外貫通孔41は、ポンプポート11と常に連通するものであり、ポンプポート11に供給されるオイルポンプの吐出した作動油を、スプール8内(後述する流方向変換部17)に導くためのものである。
全周溝42は、フロントドレンポート12aと常に連通するものであり、スプール8が後方へ移動した時のみフロントドレンポート12aと進角ポート13を連通するものである。
第2内外貫通孔43は、スプール8が前方へ移動した際に進角ポート13と連通し、スプール8が後方へ移動した際に遅角ポート14と連通するものであり、スプール内通路15の内部に供給された作動油を、進角ポート13または遅角ポート14に切替調整するものである。
排出用連通部44は、スプール8が前方へ移動した時のみ遅角ポート14とリヤドレンポート12bを連通するものである。
油穴閉塞壁45は、スプール内通路15が軸穴に連通するのを遮る隔壁である。
なお、第1内外貫通孔41より前側におけるスプール8の外周壁は、ポンプポート11に供給された作動油が軸穴の前方へ漏れるのを防ぐシール部(ランド部)として機能する。
第1内外貫通孔41と全周溝42の間の外周壁は、ポンプポート11に供給された作動油がフロントドレンポート12aへ漏れるのを防ぐシール部(ランド部)として機能する。
全周溝42と第2内外貫通孔43の間の外周壁は、スプール8の軸方向位置に応じて進角ポート13を閉塞可能な進角室閉塞部(ランド部)として機能する。
第2内外貫通孔43と排出用連通部44の間の外周壁は、スプール8の軸方向位置に応じて遅角ポート14を閉塞可能な遅角室閉塞部(ランド部)として機能する。
(摺動プラグ16の説明)
スプール8には、図1に示すように、電磁アクチュエータ6の駆動力を受けるとともに、スプール内通路15の前側を閉塞する摺動プラグ16が、圧入固定されている。
この摺動プラグ16は、エンジン側の固定部材に固定支持される電磁アクチュエータ6における駆動軸6aと常に摺接する耐摩耗性に優れた部材であり、電磁アクチュエータ6の駆動軸6aとの接触部は面積を減らすべく前方に膨出して設けられている。
摺動プラグ16の後部には、図3に示すように、ポンプポート11および第1内外貫通孔41を介して内径方向に供給される作動油の流れを軸方向(後方)に変換してスプール内通路15に導く流方向変換部17が設けられている。
この流方向変換部17は、摺動プラグ16の後部において摺動プラグ16と一体に設けられたものであり、スプール内通路15の内径寸法に略一致する外径部を有するリング部17aと、摺動プラグ16とリング部17aの間に軸方向の隙間を隔てて摺動プラグ16とリング部17aを結合する複数の橋絡部17bとを備える。
摺動プラグ16とリング部17aの間の空間は、第1内外貫通孔41と常に連通するとともに、リング部17aの内側の軸方向の貫通穴と常に連通する。
このように設けられることにより、ポンプポート11および第1内外貫通孔41を通過した内径方向に向かう作動油の流れが、図3(b)の矢印Xに示すように、「摺動プラグ16とリング部17aの間の空間」でリング部17aの内側に向かう流れ(軸方向に向かう流れ)に変換される。
(逆止弁18の説明)
ここで、エンジンの運転中、VVTのベーンロータ2は、カムシャフト3に伝わるトルク変動(吸気バルブを閉弁させるスプリングの反力)等を受けるため、進角室および遅角室の油圧は、カムシャフト3からベーンロータ2に伝わるトルク変動により上下変動する。その結果、カムシャフト3からベーンロータ2に伝わるトルク変動により、進角室および遅角室の油圧が上下に交番変動する。
油圧が交番変動する際、進角室および遅角室の油圧が、オイルポンプから供給される作動油の油圧に打ち勝つと、作動油の逆流が生じてVVTの応答性が劣化するなどの不具合が発生するため、作動油の供給途中に逆止弁18を設けて、交番変動する油圧によって作動油がオイルポンプ側へ逆流するのを防いで、VVTの応答性の劣化等の不具合を防ぐように設けられている。
この実施例では、逆止弁18を、図3に示すように、スプール内通路15の内部に配置している。
スプール内通路15の内部に配置された逆止弁18は、
・流方向変換部17(具体的にはリング部17aの内側)からスプール内通路15へのオイルの流れ(後方へ向かう流れ)を許容し、
・逆にスプール内通路15から流方向変換部17(具体的にはリング部17aの内側)へのオイルの流れ(前方への流れ)を遮断する。
具体的にこの実施例の逆止弁18は、バネ材が軸方向から見て「重なり代」を有して接するように巻回された渦巻型逆止弁18である。
この渦巻型逆止弁18は、図3に示すように、スプール内通路15の内壁に形成された環状段差19と、摺動プラグ16の後側に設けられる流方向変換部17(具体的にはリング部17a)の後端との間に挟まれて固定される。
渦巻型逆止弁18の具体的な一例を、図2を参照して説明する。
この実施例において渦巻型逆止弁18を成すバネ材は、軸方向(巻回軸方向)に対して直交する方向に板面(平面)を有する断面が矩形を呈する矩形線であり、負荷が加えられていないフリー状態において、「バネ材の板面」が隣接する「バネ材の板面」に軸方向で接触するものである。
なお、渦巻型逆止弁18のバネ力は小さく設定されるものであり、バネに伸び方向の外力を加えると容易に軸方向に伸びて、軸方向に接していたバネ材が軸方向に離間するものである。
また、この実施例の渦巻型逆止弁18は、略円錐状に設けられており、外周縁18aが環状段差19と流方向変換部17との間に挟まれることで、渦巻型逆止弁18がスプール内通路15の内部に固定される。
さらに、略円錐状の頂部(小径部)には、閉弁時(軸方向に縮んだ時)に頂部を閉塞する蓋部18bが巻回されたバネ材と一体に設けられている。この蓋部18bは、巻回されるバネ材(矩形線)と同様、軸方向に対して直交する方向に板面を有する円板形状を呈するものである。
(リターンスプリング9の説明)
リターンスプリング9は、スプール8を前方へ向けて付勢する圧縮コイルスプリングである。リターンスプリング9の配置位置は限定されるものではないが、具体的な一例として、この実施例では、スリーブ7の後端に設けられた垂直壁(中心にリヤドレンポート12bが形成される壁)と、スプール8の後端(油穴閉塞壁45の後面)との間のバネ室46において、軸方向に圧縮された状態で組付けられるものである。
(電磁アクチュエータ6の説明)
電磁アクチュエータ6は、エンジン側の固定部材に固定され、スプール8に設けられた摺動プラグ16を、リターンスプリング9の付勢力に抗して後方に駆動することで、スプール8の軸方向位置の駆動制御を実施するものであり、通電により磁力を発生するコイル、コイルの発生した磁束路を形成するステータ、ステータに磁気吸引されるプランジャ(ムービングコア)など、周知の構成を採用する。
なお、摺動プラグ16を駆動する駆動軸6aは、プランジャの一部であっても良いし、プランジャによって駆動されるシャフトであっても良い。
(ECUの説明)
ECUは、エンジンの運転状態に応じたカムシャフト3の進角量(進角位相)を求め、求めた進角量が得られるように電磁アクチュエータ6(具体的にはコイル)を通電制御してVCT4におけるカムシャフト3の進角量を可変制御するプログラムが設けられている。
ECUは、デューティ比制御等の電流量制御技術により電磁アクチュエータ6へ供給する電流量を制御するものであり、供給電流量を制御することで、スプール8の軸方向の位置をリニアにスライド変移させ、エンジン運転状態に応じた作動油圧を進角室および遅角室に発生させてカムシャフト3の進角量を可変制御する。
(進角作動の説明)
車両の運転状態に応じてECUがカムシャフト3を進角させる際、ECUは電磁アクチュエータ6への供給電流量を増加させる。すると、電磁アクチュエータ6の駆動軸6aが後方へ移動し、スプール8も後方へ移動する。
これにより、
・ポンプポート11と進角ポート13が、第1内外貫通孔41→スプール内通路15→第2内外貫通孔43を介して連通するとともに、
・遅角ポート14とリヤドレンポート12bが、排出用連通部44→バネ室46を介して連通する。
この連通が達成されることにより、進角室の油圧が高まるとともに、遅角室の油圧が低下して、進角室の油圧が増加し、逆に遅角室の油圧が減少して、ベーンロータ2がシューハウジング1に対して相対的に進角側へ変位し、カムシャフト3が進角側へ変位する。
この進角作動をより具体的に説明する。
上記進角時の接続状態において、カムシャフト3からベーンロータ2に伝わるトルク変動等により、進角室の容積を拡大させる負トルクが作用するなど、ポンプ油圧が進角室の油圧より高い状態では、図3(b)に示すように、逆止弁18が開弁して、進角室へ向かう「作動油の順流」が許容される。その結果、ベーンロータ2がシューハウジング1に対して相対的に進角側へ変位し、カムシャフト3が進角側へ変位する。
上記進角時の接続状態において、カムシャフト3からベーンロータ2に伝わるトルク変動により、進角室の容積を縮小させる正トルクが作用して、進角室の油圧がポンプ油圧より高まると、図3(a)に示すように、逆止弁18が閉弁して、オイルポンプ側へ向かう「作動油の逆流」が規制される。その結果、作動油の逆流によるベーンロータ2の回転位相の戻りが抑制される。
(進角量保持の説明)
車両の運転状態に応じてECUがカムシャフト3の進角量を保持する際、ECUは、電磁アクチュエータ6への供給電流量を制御して、
・全周溝42と第2内外貫通孔43の間のスプール8の外周壁面(進角室閉塞部)で進角ポート13を閉塞するとともに、
・第2内外貫通孔43と排出用連通部44の間のスプール8の外周壁面(遅角室閉塞部)で遅角ポート14を閉塞する位置に、スプール8をスライドさせる。
このように、進角ポート13と遅角ポート14が閉塞されることで、進角室の油圧と遅角室の油圧が一定に保たれ、カムシャフト3の進角量が保持される。
(遅角作動の説明)
車両の運転状態に応じてECUがカムシャフト3を遅角させる際、ECUは電磁アクチュエータ6への供給電流量を減少させる。すると、電磁アクチュエータ6の駆動軸6aが前方へ移動し、スプール8も前方へ移動する。
これにより、
・ポンプポート11と遅角ポート14が、第1内外貫通孔41→スプール内通路15→第2内外貫通孔43を介して連通するとともに、
・進角ポート13とフロントドレンポート12aが、全周溝42を介して連通する。
この連通が達成されることにより、遅角室の油圧が高まるとともに、進角室の油圧が低下して、遅角室の油圧が増加し、逆に進角室の油圧が減少して、ベーンロータ2がシューハウジング1に対して相対的に遅角側へ変位し、カムシャフト3が遅角側へ変位する。
この遅角作動をより具体的に説明する。
上記遅角時の接続状態において、カムシャフト3からベーンロータ2に伝わるトルク変動等により、遅角室の容積を拡大させる正トルクが作用するなど、ポンプ油圧が遅角室の油圧より高い状態では、逆止弁18が開弁して、遅角室へ向かう「作動油の順流」が許容される。その結果、ベーンロータ2がシューハウジング1に対して相対的に遅角側へ変位し、カムシャフト3が遅角側へ変位する。
上記進角時の接続状態において、カムシャフト3からベーンロータ2に伝わるトルク変動により、遅角室の容積を縮小させる負トルクが作用して、遅角室の油圧がポンプ油圧より高まると、逆止弁18が閉弁して、オイルポンプ側へ向かう「作動油の逆流」が規制される。その結果、作動油の逆流によるベーンロータ2の回転位相の戻りが抑制される。
(実施例の効果1)
この実施例のVCT4は、上述したように、スプール内通路15に渦巻型逆止弁18を配置して作動油の逆流を防いでいる。
渦巻型逆止弁18は、図2に示すように、バネ材が軸方向で接するように巻回されたものであるため、ボールを用いた従来技術とは異なり、開弁した際には、図3(b)に示すように、開いた渦巻線によって多くの流路隙間を確保することができる。
このため、作動油の順流時には、作動油が逆止弁18を通過する際の圧力損失を小さくすることができ、VVTの応答性を高めることができる。
(実施例の効果2)
渦巻型逆止弁18は、上述したように、バネ材が軸方向で接するように巻回されたものであるため、ボールを用いた従来技術とは異なり、逆止弁18の開弁状態で作動油に逆流が生じた際、図3(a)に示すように、作動油の逆流(閉弁方向の力)を、渦巻型逆止弁18の広範囲で受けることができる。
このため、作動油の逆流を閉弁方向の推力として活用することができ、作動油の逆流時における逆止弁18の閉弁応答性を高めることができ、VVTの応答性を高めることができる。
(実施例の効果3)
この実施例の摺動プラグ16には、上述したように、ポンプポート11から内径方向に供給される作動油の流れを軸方向に変換してスプール内通路15に導く流方向変換部17を設けている。このため、作動油の順流時において、図3(b)の矢印Xに示すように、流方向変換部17から渦巻型逆止弁18に向かう作動油の流れを軸方向に変換する。
このように、作動油の順流時に、渦巻型逆止弁18に向かう作動油の流れを軸方向に変換することにより、作動油の流れ方向と、渦巻型逆止弁18の開弁方向を一致させることができる。このため、作動油の順流時における逆止弁18の開弁性を高めることができ、VVTの応答性を高めることができる。
(実施例の効果4)
渦巻型逆止弁18は、上述したように、スプール内通路15の内壁に形成された環状段差19と、スプール8内に圧入される摺動プラグ16の流方向変換部17とに挟まれて固定される。
これによって、渦巻型逆止弁18をスプール8内に固定するためのコストを抑えることができる。このため、OCV5のコストを抑えることができ、結果的にVCT4のコストを抑えることができる。即ち、応答性の優れたVCT4を、コストを抑えて提供することができる。
(実施例の効果5)
渦巻型逆止弁18を成すバネ材は、上述したように、軸方向に対して直交する方向に板面を有する断面が矩形を呈する矩形線である。
これにより、逆止弁18の開弁状態で作動油に逆流が生じた際、作動油の逆流を、作動油の流れ方向(軸方向)に対して直交する板面(平面)で受けることができる。このため、作動油の逆流を閉弁方向の推力として効率的に得ることができ、作動油の逆流時における逆止弁18の閉弁応答性を高めることができる。
(実施例の効果6)
スプール内通路15の内部に組付けられた渦巻型逆止弁18は、上述したように、摺動プラグ16から離反する方向に縮径する円錐形状を呈する。
これにより、逆止弁18の開弁状態で作動油に逆流が生じた際、軸方向に向かって流れる作動油の逆流を、効率的に渦巻型逆止弁18の全巻線(円錐状に巻回されたバネ材)に当てることができる。このため、作動油の逆流を閉弁方向の推力として効率的に得ることができ、作動油の逆流時における逆止弁18の閉弁応答性を高めることができる。
上記の実施例では、渦巻型逆止弁18のバネ材を矩形線で設ける例を示したが、断面が円や楕円など他の断面形状のバネ材を用いて渦巻型逆止弁18を設けても良い。
上記の実施例では、渦巻型逆止弁18を円錐形状に設ける例を示したが、円筒状に形成した引張コイルバネを用いるなど、他のバネ形状を採用しても良い。
上記の実施例では、摺動プラグ16をスプール8に圧入によって固定する例を示したが、圧入に限定されるものではなく、螺合や溶接など、他の結合技術を用いて摺動プラグ16をスプール8に固定しても良い。
上記の実施例では、スプール8を駆動する電動アクチュエータの一例として電磁アクチュエータ6(リニアソレノイド)を用いる例を示したが、電動モータと回転力を軸方向の力に変換する減速機を用いたアクチュエータを用いたり、油圧等の流体圧を電気的に調整して軸力を生じさせる流体アクチュエータを用いるなど、他の形式の電動アクチュエータを用いてスプール8を駆動しても良い。
上記の実施例では、具体的な一例として吸気バルブを駆動するカムシャフト3の進角量を調整する例を示したが、駆動対象となるカムシャフト3は限定されるものではなく、排気バルブを駆動するカムシャフト3の進角量を調整するように設けたり、吸気バルブと排気バルブの両方の開閉駆動を行うカムシャフト3の進角量を調整するように設けても良い。
1 シューハウジング
2 ベーンロータ
3 カムシャフト
4 VCT(可変カムシャフトタイミング機構)
5 OCV(オイルフローコントロールバルブ)
6 電磁アクチュエータ(電動アクチュエータ)
6a 駆動軸
7 スリーブ
8 スプール
9 リターンスプリング
11 ポンプポート
12a フロントドレンポート
12b リヤドレンポート
13 進角ポート
14 遅角ポート
15 スプール内通路
16 摺動プラグ
17 流方向変換部
18 渦巻型逆止弁
19 環状段差

Claims (4)

  1. 進角室と遅角室の油圧差によってカムシャフト(3)の進角量の可変を行なう可変カムシャフトタイミング機構(4)と、
    前記進角室と前記遅角室の油圧差を調整するオイルフローコントロールバルブ(5)と、
    このオイルフローコントロールバルブ(5)を駆動する電動アクチュエータ(6)と、を具備するバルブタイミング調整装置において、
    (a)前記オイルフローコントロールバルブ(5)は、
    加圧された油圧が供給されるポンプポート(11)、ドレン空間に通じるドレンポート(12a、12b)、前記進角室に通じる進角ポート(13)、前記遅角室に通じる遅角ポート(14)を有するスリーブ(7)と、
    このスリーブ(7)の内部において軸方向へ摺動自在に支持され、各ポートの連通状態を調整するスプール(8)と、を備え、
    (b)前記スプール(8)の内部には、前記進角ポート(13)および前記遅角ポート(14)へ導かれる作動油が通過するスプール内通路(15)が設けられ、
    前記スプール(8)は、このスプール(8)に固定されて前記スプール内通路(15)の一端を閉塞するとともに、前記電動アクチュエータ(6)の駆動軸(6a)に接する摺動プラグ(16)を備え、
    この摺動プラグ(16)は、前記ポンプポート(11)から内径方向に供給される作動油の流れを軸方向に変換して前記スプール内通路(15)に導く流方向変換部(17)を備え、
    (c)前記スプール内通路(15)の内部には、前記流方向変換部(17)から前記スプール内通路(15)へのオイルの流れを許容し、逆に前記スプール内通路(15)から前記流方向変換部(17)へのオイルの流れを遮断する逆止弁(18)が配置され、
    この逆止弁(18)は、バネ材が軸方向で接するように巻回された渦巻型逆止弁(18)であることを特徴とするバルブタイミング調整装置。
  2. 請求項1に記載のバルブタイミング調整装置において、
    前記渦巻型逆止弁(18)を成す前記バネ材は、軸方向に対して直交する方向に板面を有する断面が矩形を呈することを特徴とするバルブタイミング調整装置。
  3. 請求項1または請求項2に記載のバルブタイミング調整装置において、
    前記スプール内通路(15)の内部に組付けられた前記渦巻型逆止弁(18)は、前記摺動プラグ(16)から離反する方向に縮径する円錐形状を呈することを特徴とするバルブタイミング調整装置。
  4. 請求項1〜請求項3のいずれかに記載のバルブタイミング調整装置において、
    前記渦巻型逆止弁(18)は、前記スプール内通路(15)の内壁に形成された環状段差(19)と、摺動プラグ(16)に設けられる流方向変換部(17)とに挟まれて固定されることを特徴とするバルブタイミング調整装置。
JP2011201747A 2011-09-15 2011-09-15 バルブタイミング調整装置 Expired - Fee Related JP5360173B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011201747A JP5360173B2 (ja) 2011-09-15 2011-09-15 バルブタイミング調整装置
US13/604,823 US8851032B2 (en) 2011-09-15 2012-09-06 Valve timing controller
CN201210337994.7A CN102996195B (zh) 2011-09-15 2012-09-13 气门正时控制器
DE102012216432A DE102012216432A1 (de) 2011-09-15 2012-09-14 Ventilsteuerzeitsteuervorrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011201747A JP5360173B2 (ja) 2011-09-15 2011-09-15 バルブタイミング調整装置

Publications (2)

Publication Number Publication Date
JP2013064326A true JP2013064326A (ja) 2013-04-11
JP5360173B2 JP5360173B2 (ja) 2013-12-04

Family

ID=47751549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011201747A Expired - Fee Related JP5360173B2 (ja) 2011-09-15 2011-09-15 バルブタイミング調整装置

Country Status (4)

Country Link
US (1) US8851032B2 (ja)
JP (1) JP5360173B2 (ja)
CN (1) CN102996195B (ja)
DE (1) DE102012216432A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015158194A (ja) * 2014-02-25 2015-09-03 株式会社デンソー バルブ特性調整用リニアソレノイド及びバルブ特性調整装置
JP2015175310A (ja) * 2014-03-17 2015-10-05 株式会社デンソー バルブタイミング調整装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009035632B3 (de) * 2009-07-31 2011-03-17 Thyssenkrupp Presta Teccenter Ag Nockenwelle mit Nockenwellenversteller
JP5839239B2 (ja) * 2013-05-14 2016-01-06 株式会社デンソー バルブタイミング調整装置
JP2015028308A (ja) 2013-07-30 2015-02-12 アイシン精機株式会社 弁開閉時期制御装置
JP5850280B2 (ja) * 2013-11-22 2016-02-03 株式会社デンソー バルブタイミング調整装置
JP5904254B2 (ja) * 2013-12-17 2016-04-13 株式会社デンソー 油圧制御弁及びバルブタイミング調整装置
US9410453B2 (en) * 2014-10-21 2016-08-09 Ford Global Technologies, Llc Method and system for variable cam timing device
KR101655688B1 (ko) * 2015-06-26 2016-09-08 현대자동차주식회사 Cvvt 시스템
KR101655690B1 (ko) * 2015-06-26 2016-09-08 현대자동차주식회사 Cvvt의 락핀 제어방법
CN112682122B (zh) * 2016-10-06 2022-09-09 博格华纳公司 用于可变凸轮正时系统的双瓣阀
JP2018080594A (ja) * 2016-11-14 2018-05-24 アイシン精機株式会社 弁開閉時期制御装置
JP2018135842A (ja) * 2017-02-23 2018-08-30 アイシン精機株式会社 弁開閉時期制御装置
JP2020076357A (ja) * 2018-11-07 2020-05-21 アイシン精機株式会社 弁開閉時期制御装置
JP2020076356A (ja) * 2018-11-07 2020-05-21 アイシン精機株式会社 逆止弁および弁開閉時期制御装置
CN109538323A (zh) * 2019-01-21 2019-03-29 绵阳富临精工机械股份有限公司 一种凸轮轴调相器系统
DE102020216387A1 (de) 2020-12-21 2022-06-23 Robert Bosch Gesellschaft mit beschränkter Haftung Absperreinheit für eine Absperrvorrichtung
DE102020216385A1 (de) 2020-12-21 2022-06-23 Robert Bosch Gesellschaft mit beschränkter Haftung Absperreinheit für eine Absperrvorrichtung
DE102020216386A1 (de) 2020-12-21 2022-06-23 Robert Bosch Gesellschaft mit beschränkter Haftung Absperreinheit für eine Absperrvorrichtung

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5793669U (ja) * 1980-11-28 1982-06-09
JPS5891978A (ja) * 1981-11-24 1983-06-01 Sadaji Umemoto 渦巻形の弾性物を用いた弁
JPH11287118A (ja) * 1998-02-03 1999-10-19 Honda Motor Co Ltd 内燃機関の排気流路制御弁
JP2001207822A (ja) * 2000-01-21 2001-08-03 Honda Motor Co Ltd 排気流路制御弁
JP2001207827A (ja) * 2000-01-21 2001-08-03 Honda Motor Co Ltd 排気流路制御弁
JP2005325841A (ja) * 2004-05-14 2005-11-24 Ina Schaeffler Kg 内燃機関の制御時間を変更するための装置用の制御弁
JP2007046786A (ja) * 2005-08-09 2007-02-22 Schaeffler Kg 制御弁及び制御弁を作製する方法
JP2007247562A (ja) * 2006-03-16 2007-09-27 Denso Corp 冷媒圧縮機
JP2007333120A (ja) * 2006-06-15 2007-12-27 Showa Corp 油圧緩衝器の減衰バルブ
JP2009515090A (ja) * 2005-11-03 2009-04-09 シャフラー、コマンディット、ゲゼルシャフト 内燃機関のガス交換弁の制御時間を可変調整するための装置用の制御弁
JP2011504558A (ja) * 2007-07-02 2011-02-10 ボーグワーナー・インコーポレーテッド 位相器用のスプール内に逆止弁を備えた同心カム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3868991A (en) 1972-09-14 1975-03-04 Avm Corp Valve assembly
JP3326743B2 (ja) 2000-01-21 2002-09-24 本田技研工業株式会社 排気流路制御弁
JP3375930B2 (ja) * 2000-03-06 2003-02-10 日本ピラー工業株式会社 チェックバルブ
DE10022811A1 (de) * 2000-05-10 2001-11-15 Bosch Gmbh Robert Rückschlagventil für eine Kolbenpumpe
DE10143433B4 (de) 2001-09-05 2013-09-26 Hilite Germany Gmbh Proportionalventil
DE10215939C1 (de) * 2002-04-11 2003-08-21 Ina Schaeffler Kg Elektromagnetisches Hydtaulikventil, insbesondere Proportionalventil zur Steuerung einer Vorrichtung zur Drehwinkelverstellung einer Nockenwelle gegenüber einer Kurbelwelle einer Brennkraftmaschine, sowie Verfahren zu dessen Herstellung
DE502005010369D1 (de) * 2004-05-14 2010-11-25 Schaeffler Kg Nockenwellenversteller
US7000580B1 (en) * 2004-09-28 2006-02-21 Borgwarner Inc. Control valves with integrated check valves
DE102005013085B3 (de) 2005-03-18 2006-06-01 Hydraulik-Ring Gmbh Ventil mit Rückschlagventil
US8695548B2 (en) 2010-12-10 2014-04-15 Denso Corporation Valve timing control apparatus

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5793669U (ja) * 1980-11-28 1982-06-09
JPS5891978A (ja) * 1981-11-24 1983-06-01 Sadaji Umemoto 渦巻形の弾性物を用いた弁
JPH11287118A (ja) * 1998-02-03 1999-10-19 Honda Motor Co Ltd 内燃機関の排気流路制御弁
JP2001207822A (ja) * 2000-01-21 2001-08-03 Honda Motor Co Ltd 排気流路制御弁
JP2001207827A (ja) * 2000-01-21 2001-08-03 Honda Motor Co Ltd 排気流路制御弁
JP2005325841A (ja) * 2004-05-14 2005-11-24 Ina Schaeffler Kg 内燃機関の制御時間を変更するための装置用の制御弁
JP2007046786A (ja) * 2005-08-09 2007-02-22 Schaeffler Kg 制御弁及び制御弁を作製する方法
JP2009515090A (ja) * 2005-11-03 2009-04-09 シャフラー、コマンディット、ゲゼルシャフト 内燃機関のガス交換弁の制御時間を可変調整するための装置用の制御弁
JP2007247562A (ja) * 2006-03-16 2007-09-27 Denso Corp 冷媒圧縮機
JP2007333120A (ja) * 2006-06-15 2007-12-27 Showa Corp 油圧緩衝器の減衰バルブ
JP2011504558A (ja) * 2007-07-02 2011-02-10 ボーグワーナー・インコーポレーテッド 位相器用のスプール内に逆止弁を備えた同心カム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015158194A (ja) * 2014-02-25 2015-09-03 株式会社デンソー バルブ特性調整用リニアソレノイド及びバルブ特性調整装置
JP2015175310A (ja) * 2014-03-17 2015-10-05 株式会社デンソー バルブタイミング調整装置

Also Published As

Publication number Publication date
US20130068184A1 (en) 2013-03-21
CN102996195B (zh) 2015-03-25
CN102996195A (zh) 2013-03-27
US8851032B2 (en) 2014-10-07
DE102012216432A1 (de) 2013-03-21
JP5360173B2 (ja) 2013-12-04

Similar Documents

Publication Publication Date Title
JP5360173B2 (ja) バルブタイミング調整装置
US7131410B2 (en) Solenoid spool valve
JP6369966B2 (ja) 揺動形アクチュエータのための中央バルブ
JP4545127B2 (ja) バルブタイミング調整装置
JP5500350B2 (ja) 弁開閉時期制御装置
JPH06330712A (ja) バルブタイミング調整装置
JP2009133216A (ja) バルブタイミング調整装置
JP4222177B2 (ja) オイルフローコントロールバルブ
JP2009074424A (ja) バルブタイミング調整装置
JP2011196245A (ja) バルブタイミング調整装置
JP4492684B2 (ja) バルブタイミング調整装置
JP6647540B2 (ja) 内燃機関の機械的に調整可能な冷却媒体ポンプのための調整ユニット
JP2009185719A (ja) バルブタイミング調整装置
JP5724770B2 (ja) 油圧制御バルブ
JP7264025B2 (ja) バルブタイミング調整装置
JP2006017189A (ja) 電磁弁
JPH11343820A (ja) 内燃機関のバルブタイミング制御装置
JP2008069916A (ja) 複数機能一体型スプール弁
JP2018112080A (ja) 内燃機関のバルブタイミング制御装置の油圧制御弁と内燃機関のバルブタイミング制御装置
JP2015045282A (ja) 弁開閉時期制御装置
US6935291B2 (en) Variable valve timing controller
JP5724778B2 (ja) 電磁スプール弁
WO2017159159A1 (ja) 内燃機関のバルブタイミング制御装置に用いる制御弁及びその制御方法、内燃機関のバルブタイミング制御システム
JP5281614B2 (ja) 電磁弁
JPH10280919A (ja) 内燃機関のバルブタイミング制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130819

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees