JP2013040613A - 可変バルブタイミング機構の制御装置 - Google Patents

可変バルブタイミング機構の制御装置 Download PDF

Info

Publication number
JP2013040613A
JP2013040613A JP2012224324A JP2012224324A JP2013040613A JP 2013040613 A JP2013040613 A JP 2013040613A JP 2012224324 A JP2012224324 A JP 2012224324A JP 2012224324 A JP2012224324 A JP 2012224324A JP 2013040613 A JP2013040613 A JP 2013040613A
Authority
JP
Japan
Prior art keywords
valve
variable
intake
cylinder
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012224324A
Other languages
English (en)
Inventor
Satoru Watanabe
渡邊  悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2012224324A priority Critical patent/JP2013040613A/ja
Publication of JP2013040613A publication Critical patent/JP2013040613A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

【課題】機関バルブの開動作が一方のバンクで連続して行われるV型機関において、可変バルブタイミング機構によるバルブタイミング変化の応答速度が、バンク間で異なるようになることを抑制する。
【解決手段】機関バルブのバルブリフト量が増大変化する区間であって、バルブタイミングの遅角方向にカム反力が作用する区間では、可変バルブタイミング機構の操作量を進角側に補正し、機関バルブのバルブリフト量が減少変化する区間であって、バルブタイミングの進角方向にカム反力が作用する区間では、可変バルブタイミング機構の操作量を遅角側に補正する。また、バルブリフト量が増大変化する区間とバルブリフト量が減少変化する区間とが、同一バンクの異なる気筒間で重なる場合には、前記操作量の補正をキャンセルする。
【選択図】図13

Description

本発明は、クランクシャフトに対するカムシャフトの相対回転位相を可変とすることで機関バルブのバルブタイミングを可変とする可変バルブタイミング機構の制御装置に関する。
特許文献1には、機関バルブの開駆動に伴うカム反力が、進角を妨げる方向に生じているときに、進角制御を一時的に停止し、カム反力が進角を妨げない方向となったときに、進角制御を再開させる可変バルブタイミング機構の制御装置が開示されている。
特開2005−076518号公報
ところで、可変バルブタイミング機構を各バンクに備えるV型機関或いは水平対向機関では、可変バルブタイミング機構でバルブタイミングが可変とされる機関バルブの開動作が、各バンクで交互に行われるのではなく、一方バンクで連続して行われる場合がある。
そして、上記のように、一方バンクで開駆動が連続してなされるときに、他方バンクでは開動作が一時的に途切れることになり、これによってカム反力に影響されるバルブタイミング変化の応答速度が2つのバンクで異なるようになって、2つのバンク間でバルブタイミングに差異が生じることがあった。
本発明は上記問題点に鑑みなされたものであり、機関バルブの開動作が一方のバンクで連続して行われる機関において、バルブタイミング変化の応答速度がバンク間で異なるようになることを抑制できる制御装置を提供することを目的とする。
そのため、本発明では、機関バルブの開動作に伴うカム反力に抗する方向に、可変バルブタイミング機構の操作量を補正するようにした。
上記発明によると、カム反力の影響によって応答速度が変化することが抑制されるため、バルブタイミング変化の応答速度がバンク間で異なるようになることを抑制できる。
本発明の実施形態におけるV型内燃機関のシステム図である。 本発明の実施形態における各バンクの気筒構成を示す図である。 本発明の実施形態における可変リフト機構を示す斜視図である。 本発明の実施形態における可変リフト機構の断面図である。 本発明の実施形態における可変バルブタイミング機構を示す断面図である。 図5のA−A線に沿う断面図であって、最遅角状態を示す図である。 図5のB−B線に沿う断面図である。 図5のA−A線に沿う断面図であって、最進角状態を示す図である。 本発明の実施形態の可変バルブタイミング機構におけるヒステリシス材の磁束密度と磁界との相関を示すグラフである。 図7の部分拡大断面図である。 図10の部品を直線状に展開した模式図であり、初期状態(A)及びヒステリシスリングが回転したとき(B)の磁束の流れを示す図である。 本発明の実施形態における吸気バルブのバルブリフト量・バルブ作動角・バルブ作動角の中心位相の変化特性を示す線図である。 本発明の実施形態における可変バルブタイミング機構の制御を示すフローチャートである。 本発明の実施形態におけるV型8気筒機関の各気筒の行程順を示す図である。 本発明の実施形態における各気筒の吸気バルブのリフト状態と、各バンクにおけるカムシャフトの相対回転位相との相関を示す図である。 本発明の実施形態において一方のバンクで吸気行程が連続する場合における操作量の補正量の変化を示す図である。 本発明の実施形態における吸気バルブの開期間における操作量の補正量の変化を示す図である。
以下に本発明の実施の形態を説明する。
図1は、実施形態における車両用の内燃機関を示す。
図1に示す内燃機関101は、2つのバンク(気筒グループ)101a,101bからなるV型8気筒機関である。
このV型8気筒機関は、図2に示すように、第1バンク101aが第1気筒、第3気筒、第5気筒、第7気筒の4気筒で構成され、第2バンク101bが第2気筒、第4気筒、第6気筒、第8気筒の4気筒で構成され、点火は、第1気筒→第8気筒→第7気筒→第3気筒→第6気筒→第5気筒→第4気筒→第2気筒の順で行われるようになっている。
尚、内燃機関101をV型機関に限定するものではなく、水平対向機関であってもよい。
内燃機関101の各気筒の燃焼室102内は、吸気ダクト103、吸気マニホールド104a,104b、吸気ポート105を介して大気側と連通している。
前記燃焼室102(シリンダ)の吸気口102aは、吸気バルブ106で開閉され、ピストン107が降下するときに前記吸気バルブ106が開くと、燃焼室102内に空気が吸引される。
一方、前記吸気バルブ106の上流側の吸気通路である、前記吸気マニホールド104a,104bのブランチ部140a,140bには、各気筒それぞれに燃料噴射弁108が配設されており、この燃料噴射弁108から噴射された燃料が空気と共に燃焼室102内に吸引される。
前記燃料噴射弁108は、その噴霧が吸気バルブ106の傘部(吸気口102a)を指向するように配置されている。
尚、燃料噴射弁108が燃焼室102内に燃料を直接噴射する筒内直接噴射式内燃機関であってもよい。
前記シリンダ102内の燃料は、点火プラグ109による火花点火によって着火燃焼し、これによって発生する爆発力がピストン107を押し下げ、該押し下げ力によってクランクシャフト110が回転駆動される。
また、前記燃焼室102(シリンダ)の排気口102bは、排気バルブ111で開閉され、ピストン107が上昇するときに前記排気バルブ111が開くと、燃焼室102内の排気ガスが排気ポート112に排出される。
前記クランクシャフト110の回転駆動力が伝達される吸気カムシャフト131及び排気カムシャフト132が各バンク101a,101bそれぞれに備えられ、前記吸気バルブ106及び排気バルブ111は、前記吸気カムシャフト131及び排気カムシャフト132が回転することで開駆動される。
ここで、前記排気バルブ111は、前記排気カムシャフト132に一体的に設けられたカム132aによって、一定の最大バルブリフト量・バルブ作動角・バルブタイミングで開駆動される。
一方、前記クランクシャフト110に対する吸気カムシャフト131の相対回転位相を連続的に可変とする可変バルブタイミング機構133a,133bが、各バンク101a,101bの吸気カムシャフト131それぞれに設けられており、可変バルブタイミング機構133a,133bによって吸気カムシャフト131の相対回転位相を可変とすることで、吸気バルブ106のバルブ作動角の中心位相が連続的に変化する。
また、吸気カムシャフト131と、吸気バルブ106のバルブリフタ106aに当接して吸気バルブ106を開駆動する後述の揺動カム4との間には、吸気バルブ106のバルブ作動角をバルブリフト量(最大バルブリフト量)と共に連続的に変更するための可変リフト機構134a,134bが各バンク101a,101b毎に設けられている。
尚、前記バルブ作動角とは、吸気バルブ106の開期間の大きさをクランク角度で示すものであり、また、可変リフト機構134a,134bが可変とするバルブリフト量とは、吸気バルブ106の開期間における最大バルブリフト量である。
前記排気ポート112には、排気マニホールド113a,113bの各ブランチ部が接続され、更に、排気マニホールド113a,113bの各集合部は合流して、排気ダクト114に接続されている。
前記排気ダクト114には、排気を浄化する三元触媒などの触媒装置を内蔵した触媒コンバータ115が介装されている。
また、前記吸気ダクト103には、電子制御スロットル116が介装されている。
前記燃料噴射弁108による燃料噴射、点火プラグ109による点火、可変バルブタイミング機構133a,133b及び可変リフト機構134a,134bによる吸気バルブ106の開特性(リフト特性)、更に、電子制御スロットル116におけるスロットル開度などは、ECM(エンジン・コントロール・モジュール)121によって制御される。
前記ECM121は、マイクロコンピュータを含んで構成され、各種センサからの信号を入力し、該入力信号を予め記憶されているプログラムに従って演算処理して、各種の操作量(制御信号)を演算し、該操作量(制御信号)を出力する。
前記各種センサとしては、アクセル開度ACCを検出するアクセル開度センサ122、内燃機関101の冷却水温度TW(機関温度)を検出する水温センサ123、内燃機関101が搭載される車両の走行速度(車速)VSPを検出する車速センサ124、クランクシャフト110が単位角度だけ回転する毎の単位クランク角信号POSと基準クランク角位置毎の基準クランク角信号REFとをそれぞれに出力するクランク角センサ125、各バンクの排気マニホールド113a,113bの集合部にそれぞれ配置され、排気中の酸素濃度に基づいて各バンクの空燃比AFをそれぞれに検出する空燃比センサ126a,126b、内燃機関101の吸入空気流量QAを検出するエアフローセンサ127、前記電子制御スロットル116の開度TVOを検出するスロットル開度センサ128、電子制御スロットル116下流側の吸気通路内の圧力(吸気管圧)PBを検出する圧力センサ129などが設けられている。
そして、前記ECM121は、燃料噴射弁108による燃料噴射の制御においては、前記エアフローセンサ127で検出される吸入空気流量QAと、クランク角センサ125からの出力信号に基づいて算出される機関回転速度NEとから基本燃料噴射パルス幅TPを演算する。
更に、前記基本燃料噴射パルス幅TPを、冷却水温度TWに応じた補正係数や、空燃比センサ126a,126bの出力から検出される実際の空燃比を目標空燃比に近づけるように設定される空燃比フィードバック補正係数などによって補正することで、最終的な燃料噴射パルス幅TIを演算する。
そして、各気筒の吸気行程にタイミングを合わせ、各気筒の燃料噴射弁108に対して個別に前記燃料噴射パルス幅TIの噴射パルス信号を出力する。
前記燃料噴射弁108は、前記燃料噴射パルス幅TIに相当する時間だけ開弁し、開弁時間に比例する量の燃料を噴射する。
また、点火プラグ109には、それぞれに点火コイル及び該点火コイルへの通電を制御するパワートランジスタを内蔵した点火モジュール138が直付けされている。
そして、前記ECM121は、機関運転条件(例えば機関負荷及び機関回転速度NE)に基づいて点火時期を算出し、該点火時期及び点火エネルギを得るための通電時間とから、前記点火コイルへの通電開始時期及び通電遮断時期を決定し、該通電開始時期及び通電遮断時期に対応する点火制御信号で前記パワートランジスタのオン・オフを制御し、前記点火時期での火花点火を実行させる。
また、前記可変バルブタイミング機構133a,133b及び可変リフト機構134a,134bの制御においては、機関運転条件(例えば目標トルク及び機関回転速度NE)から目標中心位相(目標バルブタイミング)及び目標バルブリフト量を演算し、実際の中心位相・実際のバルブリフト量が前記目標に近づくように操作量を算出して出力する。
また、前記電子制御スロットル116におけるスロットル開度TVOの制御においては、機関運転条件(例えば機関負荷及び機関回転速度NE)から目標負圧を算出し、圧力センサ129で検出される実際の吸気管圧PBが、前記目標負圧に近づくように操作量を算出して出力する。
図3は、前記可変リフト機構134a,134bの構造を示す斜視図である。
前記吸気バルブ106の上方に、前記クランクシャフト110によって回転駆動される吸気カムシャフト131が、各バンクの気筒列方向に沿って回転可能に図外のシリンダヘッドに支持されている。
前記吸気カムシャフト131には、吸気バルブ106のバルブリフタ106aに当接して吸気バルブ106を開駆動する揺動カム4が相対回転可能に外嵌されている。
前記吸気カムシャフト131と揺動カム4との間に、前記可変リフト機構134a,134bが設けられている。
また、前記吸気カムシャフト131の一端部には、前記可変バルブタイミング機構133a,133bが配設されている。
可変リフト機構134a,134bは、図3及び図4に示すように、吸気カムシャフト131に偏心して固定的に設けられる円形の駆動カム11と、この駆動カム11に相対回転可能に外嵌するリング状リンク12と、吸気カムシャフト131と略平行に気筒列方向へ延びる制御軸13と、この制御軸13に偏心して固定的に設けられた円形の制御カム14と、この制御カム14に相対回転可能に外嵌すると共に、一端がリング状リンク12の先端に連結されたロッカアーム15と、このロッカアーム15の他端と揺動カム4とに連結されたロッド状リンク16と、を有している。
前記制御軸13は、アクチュエータとしての電動モータ17によりリンク機構18を介して回転駆動される。
前記電動モータ17としては、DCモータやブラシレスモータが用いられるが、アクチュエータとして油圧アクチュエータを用いることもできる。
前記リンク機構18は、モータ17の出力軸17aに形成された雄ねじ18aと、該雄ねじ18aに螺合される雌ねじを備えてなる可動子18bと、前記制御軸13と一体的に設けられ、先端が前記可動子18bに対して回転可能に接続されるリンクアーム18cとから構成される。
そして、前記モータ17の出力軸17aが回転すると、回り止めされている可動子18bが、前記出力軸17aの軸方向に平行移動し、該可動子18bの平行移動に伴ってリンクアーム18cが制御軸13を中心に揺動することで、リンクアーム18cと一体の制御軸13が回転する。
上記の構成により、クランクシャフト110に連動して吸気カムシャフト131が回転すると、駆動カム11を介してリング状リンク12がほぼ並進移動すると共に、ロッカアーム15が制御カム14の軸心周りに揺動し、ロッド状リンク16を介して揺動カム4が揺動して吸気バルブ106が開駆動される。
また、前記モータ17を駆動制御して制御軸13の回転角度を変化させることにより、ロッカアーム15の揺動中心となる制御カム14の軸心位置が変化して揺動カム4の姿勢が変化する。
これにより、吸気バルブ106のバルブ作動角の中心位相が略一定のままで、吸気バルブ106のバルブ作動角がバルブリフト量と共に連続的に変化する。
前記制御軸13の可動角度範囲は、図外のストッパによって制限されており、前記可動角度範囲の一方端が、バルブリフト量が最大になる位置であり、また、他方端が、バルブリフト量が最小になる位置であり、前記可動角度範囲の一方端から他方端に向けて制御軸13を回転させるとバルブリフト量が漸減し、逆に、前記可動角度範囲の他方端から一方端に向けて制御軸13を回転させると、バルブリフト量が漸増するように構成されている。
前記ECM121は、制御軸13の実角度θを角度センサ135で検出し、目標バルブリフト量に対応する制御軸13の目標角度に、前記実角度θが近づくように、前記モータ17の操作量をフィードバック制御する。
尚、バルブ作動角及びバルブリフト量が連続的に変化すると同時、バルブ作動角の中心位相が変化するように構成した可変リフト機構134a,134bであってもよい。
また、前記可変リフト機構134a,134bは、制御軸の軸方向の変位に応じて吸気バルブ106(機関バルブ)のバルブ作動角をバルブリフト量と共に変化させる機構であってもよい。
図5〜図8は、前記可変バルブタイミング機構133a,133bの構造を示す。
図5〜図8に示すように、前記可変バルブタイミング機構133a,133bは、前記吸気カムシャフト131と、この吸気カムシャフト131の前端部に必要に応じて相対回動できるように組み付けられ、チェーン(図示せず)を介してクランクシャフト110に連係されるタイミングスプロケット302を外周に有する駆動リング303(駆動回転体,第2回転体)と、この駆動リング303と吸気カムシャフト131の前方側(図5中左側)に配置されて、両者303,301の組付角を操作する組付角操作機構304(組付角度変更機構)と、この組付角操作機構304のさらに前方側に配置されて、同機構304を駆動する操作力付与手段305と、内燃機関101の図外のシリンダヘッドとヘッドカバーの前面に跨って取り付けられて組付角操作機構304と操作力付与手段305の前面と周域を覆う図外のカバーと、を備えている。
前記駆動リング303は、段差状の挿通孔306を備えた短軸円筒状に形成され、この挿通孔306部分が、吸気カムシャフト131の前端部に結合された従動軸部材307(従動回転体,第1回転体)に回転可能に組み付けられている。
そして、駆動リング303の前面、換言すれば、吸気カムシャフト131とは逆側の面には、図6に示すように、対面する平行な側壁を有する3個の径方向溝308(径方向ガイド)が、駆動リング303の半径方向に沿って形成されている。
また、従動軸部材307は、図5に示すように、吸気カムシャフト131の前端部に突き合わされる基部側外周に拡径部が形成されると共に、その拡径部よりも前方側の外周面に放射状に突出する3つのレバー309が一体に形成され、軸芯部を貫通するボルト310によって吸気カムシャフト131に結合されている。
各レバー309には、リンク311の基端がピン312によって軸支連結され、各リンク311の先端には前記各径方向溝308に摺動自由に係合する円柱状の突出部313が一体に形成されている。
各リンク311は、突出部313が対応する径方向溝308に係合した状態において、ピン312を介して従動軸部材307に連結されているため、リンク311の先端側が外力を受けて径方向溝308に沿って変位すると、駆動リング303と従動軸部材307とはリンク311の作用によって突出部313の変位に応じた方向及び角度だけ相対回動する。
また、各リンク311の先端部には、軸方向前方側に開口する収容穴314が形成され、この収容穴314に、後述する渦巻き溝315(渦巻き状ガイド)に係合する球面突起316aを有する係合ピン316(転動部材)と、この係合ピン316を前方側(渦巻き溝315側)に付勢するコイルばね317とが収容されている。
一方、従動軸部材307のレバー309の突設位置よりも前方側には、円板状のフランジ壁318aを有する中間回転体318が、軸受331を介して回転自在に支持されている。
この中間回転体318のフランジ壁318aの後面側には、断面半円状の前述の渦巻き溝315が形成され、この渦巻き溝315に、前記各リンク311の先端の係合ピン316が転動自在に案内係合されている。
渦巻き溝315の渦巻きは、駆動リング303の回転方向に沿って次第に縮径するように形成されている。
従って、各リンク311先端の係合ピン316が渦巻き溝315に係合した状態において、中間回転体318が駆動リング303に対して位相の遅れ方向に相対回転すると、リンク311の先端部は径方向溝308に案内されつつ、渦巻き溝315の渦巻き形状に誘導されて半径方向内側に移動し、逆に、中間回転体318が位相の進み方向に相対変位すると、半径方向外側に移動する。
前記組付角操作機構304は、以上説明した駆動リング303の径方向溝308、リンク311、突出部313、係合ピン316、レバー309、中間回転体318、渦巻き溝315等によって構成されている。
この組付角操作機構304は、操作力付与手段305から中間回転体318に吸気カムシャフト131に対する相対的な回動操作力が入力されると、その操作力が渦巻き溝315と係合ピン316の係合部を通してリンク311の先端を径方向に変位させ、このとき、リンク311とレバー309の作用によって駆動リンク303と従動軸部材307に相対的な回動力を伝達する。
一方、操作力付与手段305は、中間回転体318を駆動リング303の回転方向に付勢するゼンマイばね319と、中間回転体318を駆動リング303の回転方向と逆方向に付勢すべく制動する機構であるヒステリシスブレーキ320と、を備えてなり、内燃機関101の運転状態に応じてヒステリシスブレーキ320の制動力を適宜制御することにより、中間回転体318を駆動リング303に対して相対回動させ、或いは、この両者の回動位置を維持するようになっている。
前記ゼンマイばね319は、駆動リング303に一体に取り付けられた円筒部材321にその外周端部が結合される一方で、内周端部が中間回転体318の円筒状の基部に結合され、全体が中間回転体318のフランジ壁318aの前方側スペースに配置されている。
一方、ヒステリシスブレーキ320は、中間回転体318の前端部にリテーナプレート322を介して取り付けられた有底円筒状のヒステリシスリング323と、非回転部材である図外のカバーに回転を規制される状態で取り付けられた磁界制御手段としての電磁コイル324(アクチュエータ)と、電磁コイル324の磁気を誘導する磁気誘導部材であるコイルヨーク325と、を備え、電磁コイル324の通電が機関101の運転状態に応じて前記ECM121によって制御されるようになっている。
前記ヒステリシスリング323は、図9に示すように、外部の磁界の変化に対して位相遅れをもって磁束力が変化する特性(磁気的ヒステリシス特性)を持つヒステリシス材(半硬質材)によって形成され、外周側の円筒壁323a部分が前記コイルヨーク325によって制動作用を受けるようになっている。
また、コイルヨーク325は、電磁コイル324を取り囲むように全体が略円筒形状に形成され、その内周面が軸受328を介して従動軸部材307の先端部に回転可能に支持されている。
そして、コイルヨーク325の後部面側(中間回転体318側)には、磁気入出部分が円筒状の隙間をもって向かい合うように、周面状の一対の対向面326,327が形成されている。
また、図7に示すように、コイルヨーク325の両対向面326,327には夫々円周方向に沿って複数の凹凸が連続して形成され、これら凹凸のうちの凸部326a,327aが磁極(磁界発生部)を成すようになっている。
そして、一方の対向面326の凸部326aと他方の対向面327の凸部327aは円周方向に交互に配置され、対向面326,327相互の近接する凸部326a,327aが円周方向にずれている。
従って、両対向面326,327の近接する凸部326a,327a間には、電磁コイル24の励磁によって図10に示すような円周方向に傾きをもった向きの磁界が発生する。
そして、両対向面326,327間の隙間には、前記ヒステリシスリング323の円筒壁323aが非接触状態で介装されている。
ここで、このヒステリシスブレーキ320の作動原理を図11によって説明する。
尚、図11(A)は、ヒステリシスリング323(ヒステリシス材)に最初に磁界をかけた状態を示し、図11(B)は、上記(A)の状態からヒステリシスリング323を変位(回転)させた状態を示す。
図11(A)の状態においては、コイルヨーク325の対向面326,327間の磁界の向き、換言すれば、対向面27の凸部327aから他方の対向面326の凸部327aに向かう磁界の向きに沿うように、ヒステリシスリング323内に磁束の流れが生じる。
この状態から、ヒステリシスリング323が図11(B)に示すように外力Fを受けて移動すると、外部磁界内をヒステリシスリング323が変位することになるため、このときヒステリシスリング323の内部の磁束は位相遅れをもち、ヒステリシスリング323の内部の磁束の向きは、対向面326,327間の磁界の向きに対してずれる(傾斜する)ことになる。
従って、対向面327の凸部327aからヒステリシスリング323に入る磁束の流れ(磁力線)と、ヒステリシスリング323から他方の対向面326の凸部326aに向かう磁束の流れ(磁力線)が歪められ、このとき、この磁束の流れの歪みを矯正するような引き合い力が対向面326,327とヒステリシスリング323の間に作用し、その引き合い力がヒステリシスリング323を制動する抗力F’として働く。
前記ヒステリシスブレーキ320は、以上のように、ヒステリシスリング323が対向面326,327間の磁界内を変位するときに、ヒステリシスリング323の内部の磁束の向きと磁界の向きのずれによって制動力を発生するものである。
そして、前記ヒステリシスブレーキ320の制動力は、ヒステリシスリング323の回転速度、即ち、対向面326,327とヒステリシスリング323の相対速度に関係なく、磁界の強さ、即ち、電磁コイル324の励磁電流の大きさに略比例した一定の値となる。
前記可変バルブタイミング機構133a,133bは、以上のような構成となっており、ヒステリシスブレーキ320の電磁コイル324の励磁をオフにすると、ゼンマイばね319の付勢力によって中間回転体318が駆動リング303に対して機関回転方向に最大限回転し、図6に示すように、ピン316が渦巻き溝315の外周側端面315aに突き当たる位置で規制され、この位置が可変バルブタイミング機構133a,133bの機構上で変更し得る相対回転位相の最遅角位置となる。
この状態から電磁コイル324の励磁をオンとすると、ゼンマイばね319の力に抗する制動力が中間回転体318に付与されて、中間回転体318が駆動リング303に対して逆方向に回転し、それによってリンク311の先端の係合ピン316が渦巻き溝315に誘導されることでリンク311の先端部が径方向溝308に沿って変位し、リンク11の作用によって駆動リング303と従動軸部材307の組付角が進角側に変更される。
そして、前記電磁コイル324の励磁電流を増大して制動力を増大していくと、最終的には、図8に示すように、係合ピン316が渦巻き溝315の内周側端面315bに突き当たる位置で規制され、この位置が可変バルブタイミング機構133a,133bの機構上で変更し得る相対回転位相の最進角位置となる。
この状態から電磁コイル324の励磁電流が減少して制動力が減少すると、ゼンマイばね319の付勢力によって中間回転体318が正方向に戻り回転し、渦巻き溝315による係合ピン316の誘導によってリンク311が上記と逆方向に揺動し、駆動リング303と従動軸部材307の組付角が遅角側に変更される。
このように、可変バルブタイミング機構133a,133bによって可変されるクランクシャフト110に対する吸気カムシャフト131の相対回転位相(吸気バルブ105のバルブ作動角の中心位相)は、電磁コイル324の励磁電流値を制御してヒステリシスブレーキ320の制動力を制御することによって任意に変更され、ゼンマイばね319の力とヒステリシスブレーキ320の制動力のバランスによってその位相を保持することができる。
更に、本実施形態の可変バルブタイミング機構133a,133bには、駆動リング303側に支持されるロックピン351を、渦巻き溝315が形成される中間回転体318に設けられたピン穴352に嵌合させることで、駆動リング303に対する中間回転体318の相対回転を制限して、係合ピン316の径方向溝308における位置を固定し、以って、ロックピン351とピン穴352との嵌合位置で決められる中間位相にロックするロック機構が設けられている。
前記中間位相とは最遅角位置よりも進角側の始動時に要求される相対回転位相である。
前記ロックピン351は、ばね力によって中間回転体318に向けて突出する方向に付勢されており、ECM121で制御される電磁アクチュエータ353(又は電磁弁で供給油圧が制御される油圧アクチュエータ)により、前記ばね力に抗して駆動リング303側に引き戻されるようになっている。
前記ECM121は、ヒステリシスブレーキ320の電磁コイル324の通電を制御する操作量(オンデューティ比)を、目標中心位相に基づくフィードホワード分と、前記目標中心位相と実際の中心位相との偏差(制御エラー)に基づくフィードバック分とを加算して設定する。
前記実際の中心位相は、クランク角センサ125で検出されるクランクシャフト110の基準角度位置から、吸気カムセンサ136で検出される吸気カムシャフト131の基準角度位置までの角度を計測することで検出される。
尚、可変バルブタイミング機構133a,133bとしては、公知の種々の可変バルブタイミング機構を採用でき、例えば、特開2001−050063号公報に開示されるように、ベーンを挟んで遅角側油圧室と進角側油圧室とを形成し、各油圧室の油圧を制御することで、相対回転位相を変化させる可変バルブタイミング機構や、歯車を用いてクランクシャフトに対し前記吸気カムシャフトを相対回転させる機構などを採用することができ、また、アクチュエータとして、DCモータやブラシレスモータなどの電動モータを用いる機構であってもよい。
図12は、可変バルブタイミング機構133a,133b及び可変リフト機構134a,134bによる吸気バルブ106の開特性の変化を示す。
図12に示すように、可変リフト機構134a,134bを動作させると、矢印(イ)に示すように、吸気バルブ106のバルブ作動角の中心位相が略一定のままで、吸気バルブ106のバルブ作動角及びバルブリフト量の双方が連続的に増減変化する。
一方、可変バルブタイミング機構133a,133bを動作させると、矢印(ロ)に示すように、吸気バルブ106のバルブ作動角及びバルブリフト量が一定のままで、吸気バルブ106のバルブ作動角の中心位相が変化する。
次に、前記ECM121によって行われる、前記可変バルブタイミング機構133a,133bの制御を、図13のフローチャートに従って詳細に説明する。
尚、図13のフローチャートに示すルーチンは、第1バンクの可変バルブタイミング機構133aの制御用として実行されると共に、並行して第2バンクの可変バルブタイミング機構133bの制御用として実行され、可変バルブタイミング機構133aを制御するための操作量と、可変バルブタイミング機構133bを制御するための操作量とが個別に算出される。
図13のフローチャートにおいて、まず、ステップS501では、内燃機関101の運転・停止のメインスイッチであるイグニッションスイッチ139のON状態であるか否かを判断する。
そして、イグニッションスイッチ139のOFF状態であれば、ステップS502へ進み、内燃機関101が停止されたか否かを判断する。
イグニッションスイッチがON状態からOFF状態に切り替えられて、内燃機関101の運転が停止されると、ステップS503へ進み、内燃機関101の再始動に備えて、内燃機関101が停止したときのクランク角度、次回吸気バルブ105が開弁される気筒(最後の気筒判別の結果)などの情報を記憶する。
前記情報の記憶によって、再始動時における燃料噴射の開始を早めることができ、始動性が改善される。
また、次のステップS504では、前記可変バルブタイミング機構133a,133bによって可変とされる吸気カムシャフト131の相対回転位相の機関停止時における値を記憶する。
ここで、ロック機構によって中間位相にロックされていれば、ステップS504で記憶される相対回転位相は、ロック機構がロックする中間位相であり、ロック機構によるロックに失敗した場合には、ゼンマイばね319の付勢力によって中間回転体318が駆動リング303に対して機関回転方向に最大限回転するので、相対回転位相の最遅角位置がステップS504において記憶される。
一方、ステップS501で、イグニッションスイッチがON状態であると判断されると、ステップS505へ進み、内燃機関101が回転しているか否かを、クランク角センサ125の信号に基づいて判断し、内燃機関101が回転している場合に、ステップS506へ進む。
一方、内燃機関101が回転していない場合には、そのまま本ルーチンを終了させることで、可変バルブタイミング機構133への操作量の出力は行われない。
即ち、可変バルブタイミング機構133(電磁コイル324)の駆動開始は、内燃機関101の回転開始を待って行われるようになっており、これにより、相対回転位相が変化しない状態で駆動制御が開始されて電磁コイル324に高い電流を流してしまうことを抑制する。
ステップS506では、最初の気筒判別がなされたか否かを判断する。
前記気筒判別とは、基準ピストン位置(例えば、上死点前の基準クランク角度位置)に位置している気筒を特定する処理であり、吸気カムセンサ136からの出力信号CAMに基づいて検出され、前記ステップS503では、係る気筒判別の機関停止直前での最終結果を記憶する。
最初の気筒判別がなされていない場合には、ステップS507へ進み、ステップS503で記憶した次回吸気バルブ105が開弁される気筒(最後の気筒判別の結果)を読み込んで、どの気筒について吸気バルブ105が開駆動されるかを判断できるようにする。
ステップS508では、前記可変バルブタイミング機構133a,133bの操作量、即ち、ヒステリシスブレーキ320の電磁コイル324の通電制御デューティ(操作量)を演算する。
具体的には、前述のように、目標中心位相に基づくフィードホワード分と、前記目標中心位相と実際の中心位相との偏差(制御エラー)に基づくフィードバック分との加算値を、制御デューティ(操作量)として設定する。
前記偏差(制御エラー)に基づくフィードバック分の演算は、例えば、比例動作・積分動作・微分動作によってなされるが、スライディングモードを用いたフィードバック制御などであってもよい。
尚、前記可変バルブタイミング機構133a,133bが、例えば、油圧ベーン式のものである場合には、前記フィードホワード分の演算が省略され、フィードバック分をそのままデューティ(操作量)として設定する。
ここで、前記通電制御デューティ(操作量)は、デューティ比が大きくなるほど、励磁電流が大きくなって、相対回転位相が進角されるものとする。
ステップS509では、クランク角度の検出を行うことで、前記気筒判別の結果と共に、吸気行程となっている気筒及び吸気行程中(吸気バルブ106の開期間)のクランク角位置の判断を行う。
ステップS510以降(補正手段)では、前記ステップS508で演算した操作量を、カム反力に抗する方向に補正する処理を行う。
即ち、吸気カムシャフト131の回転によって吸気バルブ106が全閉状態から最大リフト量にまでリフトする間は、吸気バルブ106を全閉方向に付勢するバルブスプリングの付勢力に抗してリフト量を増大させることになるため、吸気カムシャフト131の回転を妨げる方向、換言すれば、カム反力が吸気カムシャフト131を遅角させる方向に作用する。
また、吸気バルブ106が最大リフト量からリフトを減じて全閉に至る間は、前記バルブスプリングの付勢力が吸気カムシャフト131の回転を助長する方向に作用するため、吸気カムシャフト131を進角させる方向のカム反力が吸気カムシャフト131に作用する。
前記カム反力が吸気カムシャフト131に作用することで、例えば、吸気カムシャフト131の相対回転位相を進角方向に変化させる過渡状態で、吸気バルブ106が全閉状態から最大リフト量にまでリフトする間は、前記進角変化が妨げられ、進角変化の応答が遅くなり、逆に、吸気バルブ106が最大リフト量からリフトを減じて全閉に至る間は、前記進角変化が助長され、進角変化の応答が速くなる。
そこで、ステップS510以降では、遅角方向に作用するカム反力の発生域では、操作量を増大補正して、電磁コイル324の励磁電流(換言すれば進角方向への駆動力)を増やし、また、進角方向に作用するカム反力の発生域では、逆に、操作量を減少補正して、電磁コイル324の励磁電流(換言すれば進角方向への駆動力)を減らすことで、カム反力の影響を抑制し、安定的に吸気カムシャフト131の相対回転位相(吸気バルブ106の中心位相)が目標に向けて変化するようにする。
まず、ステップS510では、吸気バルブ106の開期間が、同一バンクの異なる気筒間で重なり、遅角方向に作用するカム反力の発生域と進角方向に作用するカム反力の発生域とが重なっている状態に該当しているか否かを判断する。
例えば、第1バンクにおいては、第3気筒の吸気バルブ106のリフト量が増大変化する角度域は、その直前に吸気行程が開始されている第7気筒の吸気バルブ106のリフト量が減少変化する角度域でもある。
本実施形態の機関101は、点火は、第1気筒→第8気筒→第7気筒→第3気筒→第6気筒→第5気筒→第4気筒→第2気筒の順でなされ、係る点火順に対応して、各気筒の吸気行程は、図14及び図15に示すように、第1気筒→第8気筒→第7気筒→第3気筒→第6気筒→第5気筒→第4気筒→第2気筒の順に行われ、各気筒の吸気行程は、クランク角で90degの位相差をもって実施される。
従って、図15に示すように、第1バンクでは、第7気筒の吸気行程に続けて第3気筒の吸気行程になって、第7気筒の吸気バルブ106の開期間と、第3気筒の吸気バルブ106の開期間とが一部重なり、第2バンクでは、第4気筒の吸気行程に続けて第2気筒の吸気行程になって、第4気筒の吸気バルブ106の開期間と、第2気筒の吸気バルブ106の開期間とが一部重なる。
より具体的には、第7気筒の吸気バルブ106のバルブリフト量が減少しつつある期間と、第3気筒の吸気バルブ106のバルブリフト量が増大しつつある期間とが重なり、第4気筒の吸気バルブ106のバルブリフト量が減少しつつある期間と、第2気筒の吸気バルブ106のバルブリフト量が増大しつつある期間とが重なる。
ここで、第7気筒の吸気バルブ106と第3気筒の吸気バルブ106は、同じ第1バンク側の吸気カムシャフト131によって開駆動されるから、第7気筒の吸気バルブ106がリフト量を減じつつあるときには、係るリフト動作が第1バンク側の吸気カムシャフト131を進角させる方向のカム反力を発生させることになるものの、同時並行で、第3気筒の吸気バルブ106がリフト量を増大させる場合には、係るリフト動作が第1バンク側の吸気カムシャフト131を逆に遅角させる方向のカム反力を発生させることになる。
従って、第7気筒の吸気バルブ106のバルブリフト量が減少しつつある期間と、第3気筒の吸気バルブ106のバルブリフト量が増大しつつある期間とが重なる場合、このオーバーラップ期間では、進角方向のカム反力と遅角方向のカム反力とが相殺され、実際に吸気カムシャフト131に作用するカム反力は無視できる程度に小さくなり、吸気バルブ106が開動作を行っていない場合と同等になり、カム反力の抗するための操作量の補正は不要となる。
第2バンクにおける第4気筒及び第2気筒でも、第4気筒の吸気バルブ106のバルブリフト量が減少しつつある期間と、第2気筒の吸気バルブ106のバルブリフト量が増大しつつある期間とが重なるオーバーラップ期間では、進角方向のカム反力と遅角方向のカム反力とが相殺され、実際に吸気カムシャフト131に作用するカム反力は、吸気バルブ106が開動作を行っていない場合と同等になり、カム反力の抗するための操作量の補正は不要となる。
そこで、前記進角方向のカム反力と遅角方向のカム反力とが相殺される角度域であるか否かを、吸気行程が連続する気筒における吸気バルブ106の閉時期IVC及び開時期IVOから判断する。
具体的には、そのときのバルブ作動角の中心位相から、バルブ作動角の半分の角度だけ進角したクランク角位置が吸気バルブ106の開時期IVOであり、バルブ作動角の半分の角度だけ遅角したクランク角位置が吸気バルブ106の閉時期IVCであり、かつ、気筒判別の結果から吸気行程が連続する気筒の吸気行程になっているか否かを判断できる。
そして、吸気行程が連続する2つの気筒(第1バンクにおける第7気筒及び第3気筒、第2バンクにおける第4気筒及び第2気筒)において、後に吸気行程になる気筒における吸気バルブ106の開時期IVOから、先に吸気行程になる気筒における吸気バルブ106の閉時期IVOまでを、遅角方向に作用するカム反力の発生域と進角方向に作用するカム反力の発生域とが重なる角度区間として検出する。
そして、ステップS510で、現時点の角度位置が、前記進角方向のカム反力と遅角方向のカム反力とが相殺される角度域に該当していると判断されると、ステップS511〜ステップS515を迂回してステップS516へ進むことで、ステップS508で演算された操作量を、補正することなくそのまま電磁コイル324の駆動回路に出力する。
従って、図16に示すように、前記オーバーラップ期間では、補正量が零とされ、カム反力に抗するための操作量の補正がキャンセルされる。
一方、ステップS510で、現時点の角度位置が、前記進角方向のカム反力と遅角方向のカム反力とが相殺される角度域に該当していないと判断されると、ステップS511へ進む。
ステップS511では、カム反力が吸気カムシャフト131を遅角させる方向に作用する角度域、換言すれば、同一バンクの気筒のいずれかにおいて吸気バルブ106のリフト量が増大変化している角度域であるかを判別する。
リフト量が増大変化する角度域とは、吸気バルブ106の開時期IVOから最大リフト量となる時期MLTまでであり、バルブ開期間の中央で最大リフト量になるものとする。
但し、ステップS510の判断を通過しているので、ある気筒においてカム反力が遅角方向に作用する角度域であっても、他の気筒でカム反力が進角方向に作用する角度域である場合は除かれる。
ステップS511で、カム反力が吸気カムシャフト131を遅角させる方向に作用する角度域であると判断されると、ステップS512へ進み、カム反力に抗して進角させる方向に作用する力を発生させるように、操作量を増大補正して、電磁コイル324の励磁電流(換言すれば進角方向への駆動力)を増やすための増大補正量を設定する。
可変バルブタイミング機構133a,133が油圧ベーン式の場合、前記ステップ512では、進角側油圧室の油圧を高め、ベーンが進角側に向けて駆動されるように、操作量を補正する。
ここで、前記増大補正量は、リフト量が増大変化する角度域で一定の値として与えることができる。
また、遅角方向に作用するカム反力は、吸気バルブ106の開弁開始からリフト量の増大に伴って増大して極大値になり、カム山の頂点(最大リフト量)に近づくに従って減少に転じるので、図16及び図17に示すように、前記カム反力の大きさの変化に対応するように、増大補正量を変化させることができる。
即ち、初期値が零である増大補正量を、吸気バルブ106の開時期IVOからクランク角回転に応じて漸増させ、開時期IVOと最大リフト量となる時期MLT(中心位相位置)との中間で減少に転じさせて極大値を示すようにし、その後最大リフト量時期MLTに近づくに従って増大補正量を漸減し、最大リフト量時期MLTで増大補正量を零に戻すようにする。
また、本実施形態では、前記可変リフト機構134a,134bによって最大バルブリフト量が変更され、最大バルブリフト量が大きいほど、吸気カムシャフト131を遅角させる方向に作用する力が大きくなるので、可変リフト機構134a,134bによって可変とされる最大バルブリフト量が大きいほど、より大きな(より大きく操作量を増大補正する)増大補正量を設定させることができる。
ステップS511で、カム反力が吸気カムシャフト131を遅角させる方向に作用する角度域ではないと判断された場合には、ステップS513へ進みカム反力が吸気カムシャフト131を進角させる方向に作用する角度域、換言すれば、同一バンクの気筒のいずれかにおいて吸気バルブ106のリフト量が減少変化している角度域であるかを判別する。
リフト量が減少変化する角度域とは、吸気バルブ106のバルブリフト量が最大リフト量となる時期MLTから吸気バルブ106の閉時期IVCまでであり、バルブ開期間の中央で最大リフト量になるものとする。
但し、ステップS510の判断を通過しているので、ある気筒においてカム反力が進角方向に作用する角度域であっても、他の気筒でカム反力が遅角方向に作用する角度域である場合は除かれる。
ステップS513で、カム反力が吸気カムシャフト131を進角させる方向に作用する角度域であると判断されると、ステップS514へ進み、進角方向に作用する力を弱めるように操作量減少補正して、電磁コイル324の励磁電流(換言すれば進角方向への駆動力)を減らすための減少補正量を設定する。
換言すれば、電磁コイル324の励磁電流を減らすことで、ゼンマイばね319による付勢力で遅角方向へ駆動されるようにして、進角方向に作用するカム反力に抗する。
可変バルブタイミング機構133a,133が油圧ベーン式の場合、前記ステップ514では、遅角側油圧室の油圧を高めベーンが遅角側に向けて駆動されるように、操作量を補正する。
ここで、前記減少補正量は、リフト量が減少変化する角度域で一定の値として与えることができる。
また、進角方向に作用するカム反力は、最大リフト量の状態からリフト量の減少に伴って増大した後、全閉に近づくに従って減少に転じるので、図16及び図17に示すように、前記カム反力の大きさの変化に対応するように減少補正量を変化させることができる。
即ち、初期値が零である減少補正量の絶対値を、最大リフト量となる時期MLT(中心位相位置)からクランク角回転に応じて漸増させ、最大リフト量となる時期MLTと閉時期IVCとの中間で減少に転じさせて極大値を示すようにし、その後閉時期IVCに近づくに従って減少補正量の絶対値を漸減し、閉時期IVCで減少補正量を零に戻すようにする。
また、本実施形態では、前記可変リフト機構134a,134bによって最大バルブリフト量が変更され、最大バルブリフト量が大きいほど、吸気カムシャフト131を進角させる方向に作用する力が大きくなるので、可変リフト機構134a,134bによって可変とされる最大バルブリフト量が大きいほど、より大きな(より大きく操作量を減少補正する)減少補正量を設定させることができる。
なお、前述のように、オーバーラップ期間では、操作量の補正がキャンセルされるが、図16に示すように、オーバーラップ期間前のリフト増大区間では、操作量を進角方向に補正するための増大補正量が設定され、オーバーラップ期間直後のリフト減少区間では、操作量を遅角方向に補正するための減少補正量が設定されることになる。
ステップS512又はステップS514で補正量を設定すると、ステップS515を進んで、ステップS508で演算した操作量を前記補正量で補正設定する。
具体的には、増大補正量が設定された場合には、該増大補正量分だけデューティ(励磁電流)を大きくし、減少補正量が設定された場合には、該減少補正量分だけデューティ(励磁電流)を小さくする。
一方、ステップS513で、カム反力が吸気カムシャフト131を進角させる方向に作用する角度域ではないと判断された場合、即ち、同一バンクにおいていずれの気筒においても吸気バルブ106の開期間ではない場合には、ステップS512、ステップS514及びステップS515を迂回してステップS516へ進むことで、操作量の補正をキャンセルし、ステップS508で演算した操作量を出力させる。
ステップS516では、上記処理によって決定された操作量(デューティ)に基づいて、前記電磁コイル324の励磁電流を制御する。
上記のように、カム反力に抗するように、前記可変バルブタイミング機構133a,133bの操作量を補正すれば、カム反力の作用によって吸気カムシャフト131の相対回転位相が進角又は遅角方向に変動することが抑制される。
本実施形態のV型8気筒機関では、前述のように、バンク間で交互に吸気行程となる気筒が生じるのではなく、図15に示すように、一方のバンクで連続して吸気行程となる場合があり、一方のバンクで連続して吸気行程となっている間、他方のバンクでは、吸気バルブ106の開駆動が行われない。
このため、図15に実線で示すように、両バンク間で相対回転位相の応答速度が異なり、過渡的に両バンク間で相対回転位相、即ち、吸気バルブ106のバルブ作動角の中心位相(バルブタイミング)が異なるようになってしまい、バンク間でトルクのばらつきや燃焼ばらつきが生じてしまう。
しかし、本実施形態では、カム反力に抗する方向に操作量を補正することで、カム反力の影響が抑制され、図15に実線で示す変化特性から点線で示す変化特性に近づくから、一方のバンクで連続して吸気行程になっても、バンク間で相対回転位相の応答速度に差異が生じることを抑制でき、吸気バルブ106のバルブ作動角の中心位相が両バンク間で差異を生じることを抑制できる。
従って、吸気カムシャフト131の相対回転位相を変化させる過渡状態で、バンク間でトルクのばらつきや燃焼ばらつきが生じることを抑制でき、過渡状態での運転性を向上させることができる。
尚、上記実施形態では、吸気バルブの開駆動に対して常時操作量を補正する構成としたが、相対回転位相を変更する過渡時にのみ、カム反力に抗する方向に操作量を補正することができる。
また、リフト量が増大するときに操作量を補正する増大補正量の絶対値と、リフト量が減少するときに操作量を補正する減少補正量の絶対値とを、実際に発生するカム反力の違いに対応させて、同一のリフト量に対して異ならせることができる。
また、操作量を補正した場合の相対回転位相の変動を検出し、該検出結果に基づいて補正量の修正し、該修正結果を記憶して次回以降の補正に用いる学習を行わせることができる。
また、本実施形態では、可変バルブタイミング機構によって相対回転位相が変更されるカムシャフトを吸気カムシャフトとしたが、排気カムシャフトの相対回転位相を可変とする機構であって、排気バルブのバルブ作動角の中心位相を可変とする構成であってもよい。
また、カム反力に影響を受けてのカムシャフトの相対回転位相の変動は、低回転時ほど大きくなるので、相対回転位相の変動が許容範囲内となる高回転域では、補正をキャンセルすることができる。
ここで、上記実施形態から把握し得る請求項以外の技術的思想について、以下に効果と共に記載する。
(イ)請求項2記載の可変バルブタイミング機構の制御装置において、
前記補正手段が、同一バンクにおいてバルブリフト量の増大変化区間とバルブリフト量の減少変化区間とが重なる領域で補正をキャンセルする可変バルブタイミング機構の制御装置。
上記発明によると、進角方向に作用するカム反力と遅角方向に作用するカム反力とが相殺される区間で、無用な補正がなされることがなく、補正によってカムシャフトの相対回転位相を変動させてしまうことを抑制できる。
(ロ)請求項3記載の可変バルブタイミング機構の制御装置において、
前記補正手段が、前記可変リフト機構で可変とされる最大バルブリフト量が大きいほど前記操作量をより大きく補正する可変バルブタイミング機構の制御装置。
上記発明によると、最大バルブリフト量が大きく、カム反力が大きい場合には、補正量をより大きくして、実際に発生するカム反力に抗することができるようにする。
101…内燃機関、106…吸気バルブ、110…クランクシャフト、111…排気バルブ、121…ECM(エンジン・コントロール・モジュール)、125…クランク角センサ、131…吸気カムシャフト、133a,133b…可変バルブタイミング機構、134a,134b…可変リフト機構、135…角度センサ、136…カムセンサ
そのため、本発明では、バンク毎に、当該バンクの機関バルブの開動作に伴うカム反力に抗する方向に、当該バンクの可変バルブタイミング機構を制御するようにした。
ここで、上記実施形態から把握し得る請求項以外の技術的思想について、以下に効果と共に記載する。
(イ)請求項1記載の可変バルブタイミング機構の制御装置において、
前記機関バルブの開期間のうちのバルブリフト量の増大変化区間で、相対回転位相を進角変化させる方向に前記可変バルブタイミング機構を制御し、前記機関バルブの開期間のうちのバルブリフト量の減少変化区間で、相対回転位相を遅角変化させる方向に前記可変バルブタイミング機構を制御する可変バルブタイミング機構の制御装置。
上記発明によると、機関バルブの開動作に伴うカム反力に抗する方向に、相対回転位相が変更される。
(ロ)請求項1記載の可変バルブタイミング機構の制御装置において、
前記内燃機関が、前記機関バルブの最大バルブリフト量を可変とする可変リフト機構を備え、
前記カム反力に抗する方向への可変バルブタイミング機構の制御を、前記可変リフト機構で可変とされる最大バルブリフト量に応じて変更する、可変バルブタイミング機構の制御装置。
上記発明によると、最大バルブリフト量が大きくなるとカム反力が大きくなることに対応して、可変バルブタイミング機構を制御できる。

Claims (3)

  1. 2つのバンクを備え、かつ、気筒間における機関バルブの開動作順が一方バンクで連続する内燃機関の各バンクそれぞれに備えられ、クランクシャフトに対するカムシャフトの相対回転位相を可変とすることで前記機関バルブのバルブタイミングを可変とする可変バルブタイミング機構の制御装置であって、
    前記機関バルブの開動作に伴うカム反力に抗する方向に、前記可変バルブタイミング機構の操作量を補正する補正手段を備える可変バルブタイミング機構の制御装置。
  2. 前記補正手段が、前記機関バルブの開期間のうちのバルブリフト量の増大変化区間で、相対回転位相を進角変化させる方向に操作量を補正し、前記機関バルブの開期間のうちのバルブリフト量の減少変化区間で、相対回転位相を遅角変化させる方向に操作量を補正する請求項1記載の可変バルブタイミング機構の制御装置。
  3. 前記内燃機関が、前記機関バルブの最大バルブリフト量を可変とする可変リフト機構を備え、
    前記補正手段が、前記操作量の補正量を前記可変リフト機構で可変とされる最大バルブリフト量に応じて変更する請求項1又は2記載の可変バルブタイミング機構の制御装置。
JP2012224324A 2012-10-09 2012-10-09 可変バルブタイミング機構の制御装置 Pending JP2013040613A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012224324A JP2013040613A (ja) 2012-10-09 2012-10-09 可変バルブタイミング機構の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012224324A JP2013040613A (ja) 2012-10-09 2012-10-09 可変バルブタイミング機構の制御装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009068846A Division JP2010223017A (ja) 2009-03-19 2009-03-19 可変バルブタイミング機構の制御装置

Publications (1)

Publication Number Publication Date
JP2013040613A true JP2013040613A (ja) 2013-02-28

Family

ID=47889213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012224324A Pending JP2013040613A (ja) 2012-10-09 2012-10-09 可変バルブタイミング機構の制御装置

Country Status (1)

Country Link
JP (1) JP2013040613A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021175877A (ja) * 2020-05-01 2021-11-04 トヨタ自動車株式会社 エンジン装置の制御装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007126992A (ja) * 2005-11-01 2007-05-24 Toyota Motor Corp 内燃機関の制御装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007126992A (ja) * 2005-11-01 2007-05-24 Toyota Motor Corp 内燃機関の制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021175877A (ja) * 2020-05-01 2021-11-04 トヨタ自動車株式会社 エンジン装置の制御装置

Similar Documents

Publication Publication Date Title
US8180552B2 (en) Variable valve timing apparatus and control method thereof
US8020527B2 (en) Variable valve timing system
JP2008002324A (ja) 位相角検出装置及び該位相角検出装置を用いた内燃機関のバルブタイミング制御装置
JP4267635B2 (ja) 可変バルブタイミング装置
JP2006257959A (ja) 可変動弁機構の制御装置
JP2007113440A (ja) 内燃機関の制御装置
JP2007303390A (ja) 内燃機関の減速時制御装置
US7406933B2 (en) Variable valve timing apparatus with reduced power consumption and control method thereof
JP4125999B2 (ja) 可変バルブタイミング機構の制御装置
JP2013040613A (ja) 可変バルブタイミング機構の制御装置
JP2010223017A (ja) 可変バルブタイミング機構の制御装置
JP4299164B2 (ja) 可変バルブタイミング機構の制御装置
JP2005264864A (ja) 内燃機関の制御装置
JP5281449B2 (ja) 可変動弁機構の制御装置
JP2009174473A (ja) 可変バルブタイミング機構の制御装置
JP4901337B2 (ja) 内燃機関の制御装置及び変速制御装置
JP2005233153A (ja) 可変バルブタイミング機構の制御装置
JP4200111B2 (ja) 動弁制御装置
JP2007138857A (ja) 内燃機関のバルブタイミング制御装置
JP4315132B2 (ja) 内燃機関の可変動弁装置及びその制御方法
WO2023058340A1 (ja) モータの制御装置及びモータの制御方法
JP4315131B2 (ja) 内燃機関の可変動弁装置
JP2006274957A (ja) 内燃機関のバルブタイミング制御装置
JP2009174472A (ja) 可変バルブタイミング機構の制御装置
JP2010053711A (ja) 内燃機関の減速時制御装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131119