JP2005233153A - 可変バルブタイミング機構の制御装置 - Google Patents

可変バルブタイミング機構の制御装置 Download PDF

Info

Publication number
JP2005233153A
JP2005233153A JP2004046395A JP2004046395A JP2005233153A JP 2005233153 A JP2005233153 A JP 2005233153A JP 2004046395 A JP2004046395 A JP 2004046395A JP 2004046395 A JP2004046395 A JP 2004046395A JP 2005233153 A JP2005233153 A JP 2005233153A
Authority
JP
Japan
Prior art keywords
rotation phase
control
cycle
detection
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2004046395A
Other languages
English (en)
Inventor
Tatsu Miyakoshi
竜 宮腰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004046395A priority Critical patent/JP2005233153A/ja
Publication of JP2005233153A publication Critical patent/JP2005233153A/ja
Ceased legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】可変バルブタイミング機構の制御におけるオーバーシュートの発生を回避する。
【解決手段】クランクシャフトに対するカムシャフトの回転位相の検出周期Trefが可変バルブタイミング機構のアクチュエータに対するフィードバック制御周期Ts0よりも大きい場合は、前記回転位相を検出するまでアクチュエータ操作量を前回値に維持し、回転位相が検出された時点で、該回転位相の検出値に基づいて操作量を算出・更新して出力し、前記アクチュエータをフィードバック制御する(S45〜46、47)。一方、前記検出周期Trefが前記制御周期Ts0以下である場合は、該制御周期Ts0毎に最新の回転位相の検出値θdetに基づいてアクチュエータをフィードバック制御する(S44〜46、47)。
【選択図】図13

Description

本発明は、機関バルブ(吸気バルブ、排気バルブ)の開閉タイミング(バルブタイミング)を変化させる可変バルブタイミング機構の制御装置に関する。
内燃機関のクランクシャフトに対するカムシャフトの回転位相を変化させることによって、吸気バルブ又は排気バルブのバルブタイミングを変化させる可変バルブタイミング機構の制御装置としては、特許文献1に開示されるようなものがある。
このものは、クランクシャフトの基準回転位置でクランク角信号を出力するクランク角センサと、カムシャフトの基準回転位置でカム信号を出力するカムセンサと、を備え、前記基準回転位置のずれ角に基づいて回転位相を検出し、この回転位相が目標になるように可変バルブタイミング機構をフィードバック制御するようにしている。
特開2000−297686号公報
ところで、上記従来の構成によると、一定のクランク角毎に回転位相が検出されることになるが、回転位相の検出結果に基づく可変バルブタイミング機構のフィードバック制御は、一般に微少単位時間毎に実行される。
このため、低回転時には、フィードバック制御の実行周期よりも回転位相の検出周期の方が長くなり、前記回転位相が更新される間は、同じ回転位相の検出結果に基づいて、すなわち、実際とは異なる回転位相に基づいてフィードバック制御が繰り返し行われてしまい、オーバーシュートが発生するおそれがあるという問題があった。
本発明は、このような従来の問題を解決するためになされたものであり、機関の低回転時で回転位相の検出周期が長くなった場合であっても、回転位相の検出結果に基づくフィードバック制御がオーバーシュートすることを回避でき高精度な制御性能が得られる可変バルブタイミング機構の制御装置を提供することを目的とする。
このため、請求項1記載の発明は、クランクシャフトの基準回転位置及びカムシャフトの基準回転位置に基づいてクランクシャフトに対するカムシャフトの回転位相を検出する一方、前記回転位相の検出周期を算出して前記アクチュエータの設定された制御周期との大小を判定し、算出された回転位相検出周期が設定された制御周期より長いと判定されたときに、制御周期を算出された回転位相検出周期以上に変更するようにした。
このようにすれば、回転位相が検出された時点で該回転位相に基づいて算出された操作量によってアクチュエータが駆動されるため、実際とは異なる同じ回転位相の検出結果を用いて繰り返しフィードバック制御されることがなく、オーバーシュート等が発生することが防止できる。
更に、回転位相が検出されるまでの間は操作量の演算をしないようにした場合は、演算負荷を軽減できるという効果もある。
また、請求項2に係る発明は、前記設定された制御周期でアクチュエータの操作量を算出しつつ、回転位相が検出される間に算出されたアクチュエータ操作量による制御の実行を禁止し、回転位相が検出された直後に前記設定された制御周期で該検出された回転位相に基づいて算出されたアクチュエータ操作量による制御を実行するようにした。
このようにすれば、回転位相が検出される間も所定の制御周期で操作量の算出は行うが、この間に算出された操作量による制御の実行が禁止され、回転位相が検出された直後の設定された制御周期で算出された操作量で制御を実行するので、実際とは異なる同じ回転位相の検出結果を用いて繰り返しフィードバック制御されることがなく、オーバーシュート等が発生することが防止でき、さらに、制御周期(操作量の演算周期)を変更する必要がないため、制御プログラムの複雑化を防止することができる。
また、請求項3に係る発明は、回転位相の検出周期を機関回転速度に基づいて算出するようにした。
このようにすれば、回転位相の検出周期は機関回転速度に依存するため、機関回転速度をモニタすることで容易に検出周期を算出することができる。
以下、本発明の実施の形態を図に基づいて説明する。
図1は、実施形態における車両用内燃機関の構成図である。この図1において、内燃機関101の吸気管102には、スロットルモータ103aでスロットルバルブ103bを開閉駆動する電子制御スロットル104が介装され、該電子制御スロットル104及び吸気バルブ105を介して、燃焼室106内に空気が吸入される。
燃焼排気は燃焼室106から排気バルブ107を介して排出され、フロント触媒108及びリア触媒109で浄化された後、大気中に放出される。
前記吸気バルブ105及び排気バルブ107は、それぞれ吸気側カムシャフト134及び排気側カムシャフト110に設けられたカムによって開閉駆動されるが、吸気側カムシャフト134には、吸気バルブ105のバルブタイミング(弁開閉タイミング)を進遅角する機構で構成される可変バルブタイミング機構(VTC)113及び該吸気側カムシャフト134の回転位置を検出するカム角センサ201が吸気側カムシャフトの端部に設けられる。カム角センサ201は、吸気カムシャフト134の所定の回転位置に同期して信号を出力し、該信号出力時にクランク角センサで検出されるクランク角位置に基づいてクランクシャフトに対するカムシャフトの回転位置を検出する。つまり、カム角センサ201が吸気側カムシャフト134の基準回転位置を検出したときの、クランク角センサで検出されるクランクシャフト120の基準回転位置からのクランク角位置を、クランクシャフト120に対するカムシャフトの回転位相として検出する。
前記VTC113は、クランクシャフト120に対する吸気側カムシャフト134の回転位相を変化させることで、吸気バルブ105のバルブタイミングを変化させる機構であり、本実施形態では、後述するようなスパイラルラジアルリンク式の可変バルブタイミング機構を採用する。
なお、本実施形態では吸気バルブ105側にのみVTC113を備える構成としたが、吸気バルブ105側に代えて、又は、吸気バルブ105側と共に、排気バルブ107側に可変バルブタイミング機構を備える構成であっても良い。
また、各気筒の吸気ポート130には、電磁式の燃料噴射弁131が設けられ、該燃料噴射弁131は、エンジンコントロールユニット(ECU)114からの噴射パルス信号によって開弁駆動されると、所定圧力に調整された燃料を吸気バルブ105に向けて噴射する。
マイクロコンピュータを内蔵する前記ECU114には、各種センサからの検出信号が入力され、該検出信号に基づく演算処理によって、前記電子制御スロットル104,VTC113及び燃料噴射弁131を制御する。
前記各種センサとしては、アクセル開度を検出するアクセル開度センサAPS116、機関101の吸入空気量Qを検出するエアフローメータ115、クランクシャフト120からクランク角180°毎の基準クランク角信号REF(基準回転位置信号)と単位クランク角度毎の単位角度信号POSを取り出すクランク角センサ117、スロットルバルブ103bの開度TVOを検出するスロットルセンサ118、機関101の冷却水温度を検出する水温センサ119が設けられている。
なお、前記基準クランク角信号REFの周期、又は、単位時間当たりの単位角度信号POSの発生数に基づいて、ECU114において機関回転速度Neが算出される。
次に、前記VTC113の構成を、図2〜図9に基づいて説明する。図2に示すように、前記吸気側のカムシャフト134と、このカムシャフト134の前端部に必要に応じて相対回動できるように組み付けられ、チェーン(図示せず)を介してクランクシャフト120に連係されるタイミングスプロケット302を外周に有する駆動リンク303(駆動回転体)と、この駆動リング3とカムシャフト134の前方側(図2中左側)に配置されて、両者303,301の組付角を操作する組付角操作機構304と、この組付角操作機構304のさらに前方側に配置されて、同機構304を駆動する操作力付与手段305と、内燃機関の図外のシリンダヘッドとヘッドカバーの前面に跨って取り付けられて組付角操作機構304と操作力付与手段305の前面と周域を覆う図外のVTCカバーと、を備えている。
駆動リング303は、段差状の挿通孔306を備えた短軸円筒状に形成され、この挿通孔306部分が、カムシャフト134の前端部に結合された従動軸部材307(従動回転体)に回転可能に組み付けられている。そして、駆動リング303の前面(カムシャフト134と逆側の面)には、図3に示すように、対面する平行な側壁を有する3個の径方向溝308(径方向ガイド)が駆動リング303のほぼ半径方向に沿うように形成されている。
また、従動軸部材307は、図2に示すように、カムシャフト134の前端部に突き合される基部側外周に拡径部が形成されると共に、その拡径部よりも前方側の外周面に放射状に突出する三つのレバー309が一体に形成され、軸芯部を貫通するボルト310によってカムシャフト134に結合されている。各レバー309には、リンク311の基端がピン312によって軸支連結され、各リンク311の先端には前記各径方向溝308に摺動自由に係合する円柱状の突出部313が一体に形成されている。
各リンク311は、突出部313が対応する径方向溝308に係合した状態において、ピン312を介して従動軸部材307に連結されているため、リンク311の先端側が外力を受けて径方向溝308に沿って変位すると、駆動リング303と従動軸部材307とはリンク311の作用によって突出部313の変位に応じた方向及び角度だけ相対回動する。
また、各リンク311の先端部には、軸方向前方側に開口する収容穴314が形成され、この収容穴314に、後述する渦巻き溝315(渦巻き状ガイド)に係合する球面突起316aを有する係合ピン316(転動部材)と、この係合ピン316を前方側(渦巻き溝315側)に付勢するコイルばね317とが収容されている。なお、この実施形態においては、リンク311の先端の突出部313と係合ピン316、コイルばね317等とによって径方向に変位可能な可動案内部が構成されている。
一方、従動軸部材307のレバー309の突設位置よりも前方側には、円板状のフランジ壁318aを有する中間回転体318が軸受331を介して回転自在に支持されている。この中間回転体318のフランジ壁318aの後面側には断面半円状の前述の渦巻き溝315が形成され、この渦巻き溝315に、前記各リンク311の先端の係合ピン316が転動自在に案内係合されている。渦巻き溝315の渦巻きは、駆動リング303の回転方向に沿って次第に縮径するように形成されている。したがって、各リンク311先端の係合ピン316が渦巻き溝315に係合した状態において、中間回転体318が駆動リング303に対して遅れ方向に相対回転すると、リンク311の先端部は径方向溝308に案内されつつ、渦巻き溝315の渦巻き形状に誘導されて半径方向内側に移動し、逆に、中間回転体318が進み方向に相対変位すると、半径方向外側に移動する。
この実施形態の組付角操作機構304は、以上説明した駆動リング303の径方向溝308、リンク311、突出部313、係合ピン316、レバー309、中間回転体318、渦巻き溝315等によって構成されている。この組付角操作機構304は、操作力付与手段305から中間回転体318にカムシャフト134に対する相対的な回動操作力が入力されると、その操作力が渦巻き溝315と係合ピン316の係合部を通してリンク311の先端を径方向に変位させ、このときリンク311とレバー309の作用によって駆動リンク303と従動軸部材307に相対的な回動力を伝達する。
一方、操作力付与手段305は、中間回転体318を駆動リング303の回転方向に付勢するゼンマイばね319と、中間回転体318を駆動リング303の回転方向と逆方向に付勢すべく制動機構であるヒステリシスブレーキ320と、を備えてなり、内燃機関の運転状態に応じてヒステリシスブレーキ320の制動力を適宜制御することにより、中間回転体318を駆動リング303に対して相対回動させ、或は、この両者の回動位置を維持するようになっている。
ゼンマイばね319は、駆動リング303に一体に取り付けられた円筒部材321にその外周端部が結合される一方で、内周端部が中間回転体318の円筒状の基部に結合され、全体が中間回転体318のフランジ壁318aの前方側スペースに配置されている。
一方、ヒステリシスブレーキ320は、中間回転体318の前端部にリテーナプレート322を介して取り付けられた有底円筒状のヒステリシスリング323と、非回転部材である図外のVTCカバーに回転を規制した状態で取り付けられた磁界制御手段としての電磁コイル324と、電磁コイル324の磁気を誘導する磁気誘導部材であるコイルヨーク325と、を備え、電磁コイル324が機関の運転状態に応じて前記ECU114によって通電制御されるようになっている。
ヒステリシスリング323は、図6に示すように、外部の磁界の変化に対して位相遅れをもって磁束力が変化する特性(磁気的ヒステリシス特性)を持つヒステリシス材(半硬質材)によって形成され、外周側の円筒壁323a部分が前記コイルヨーク325によって制動作用を受けるようになっている。
コイルヨーク325は、電磁コイル324を取り囲むように全体が略円筒形状に形成され、その内周面が軸受328を介して従動軸部材307の先端部に回転可能に支持されている。そして、コイルヨーク325の後部面側(中間回転体318側)には磁気入出部分が円筒状の隙間をもって向かい合うように周面状の一対の対向面326,327が形成されている。
また、図4に示すように、コイルヨーク325の両対向面326,327には夫々円周方向に沿って複数の凹凸が連続して形成され、これら凹凸のうちの凸部326a,327aが磁極(磁界発生部)を成すようになっている。
そして、一方の対向面326の凸部326aと他方の対向面327の凸部327aは円周方向に交互に配置され、対向面326,327相互の近接する凸部326a,327aがすべて円周方向にずれている。したがって、両対向面326,327の近接する凸部326a,327a間には、電磁コイル24の励磁によって図7に示すような円周方向に傾きをもった向きの磁界が発生する。そして、両対向面326,327間の隙間には前記ヒステリシスリング323の円筒壁323aが非接触状態で介装されている。
ここで、このヒステリシスブレーキ320の作動原理を図8によって説明する。なお、図8(a)はヒステリシスリング323(ヒステリシス材)に最初に磁界をかけた状態を示し、図8(b)は上記(a)の状態からヒステリシスリング323を変位(回転)させた状態を示す。
図8(a)の状態においては、コイルヨーク325の対向面326,327間の磁界の向き(対向面27の凸部327aから他方の対向面326の凸部327aに向かう磁界の向き)に沿うようにヒステリシスリング323内に磁束の流れが生じる。
この状態からヒステリシスリング323が図8(b)に示すように外力Fを受けて移動すると、外部磁界内をヒステリシスリング323が変位することとなるため、このときヒステリシスリング323の内部の磁束は位相遅れをもち、ヒステリシスリング323の内部の磁束の向きは対向面326,327間の磁界の向きに対してずれる(傾斜する)こととなる。したがって、対向面327の凸部327aからヒステリシスリング323に入る磁束の流れ(磁力線)と、ヒステリシスリング323から他方の対向面326の凸部326aに向かう磁束の流れ(磁力線)が歪められ、このとき、この磁束の流れの歪みを矯正するような引き合い力が対向面326,327とヒステリシスリング323の間に作用し、その引き合い力がヒステリシスリング323を制動する抗力F’として働く。
このヒステリシスブレーキ320は、以上のようにヒステリシスリング323が対向面326,327間の磁界内を変位するときに、ヒステリシスリング323の内部の磁束の向きと磁界の向きのずれによって制動力を発生するものであるが、その制動力は、ヒステリシスリング323の回転速度(対向面326,327とヒステリシスリング323の相対速度)に関係なく、磁界の強さ、即ち、電磁コイル324の励磁電流の大きさに略比例した一定の値となる。
図9は、夫々この実施形態のヒステリシスブレーキ320における回転速度と制動トルクの関係を、励磁電流をa〜d(a<b<c<d)に変えて調べた試験結果である。この試験結果から明らかなように、ヒステリシスブレーキ320は渦電流を用いたブレーキのように回転速度の影響を何等受けることがなく、常に励磁電流値に応じた制動力を得ることができる。
本実施形態に係るVTC113は以上のような構成となっており、ヒステリシスブレーキ320の電磁コイル324の励磁をオフにすると、ゼンマイばね319の付勢力によって中間回転体318が駆動リング303に対して機関回転方向に最大限回転し、係合ピン316が渦巻き溝315の外周側端面315aに突き当たる位置で規制され、この位置がVTC113の機構上で変更し得る回転位相の最遅角位置となる(図3参照)。
この状態から電磁コイル324の励磁をオンとすると、ゼンマイばね319の力に抗する制動力が中間回転体318に付与されて、中間回転体318が駆動リング303に対して逆方向に回転し、それによってリンク311の先端の係合ピン316が渦巻き溝315に誘導されてリンク311の先端部が径方向溝308に沿って変位し、リンク11の作用によって駆動リング303と従動軸部材307の組付角が進角側に変更される。そして、前記電磁コイル324の励磁電流を増大して制動力を増大していくと、ついには係合ピン316が渦巻き溝315の内周側端面315bに突き当たる位置で規制され、この位置がVTC113の機構上で変更し得る回転位相の最進角位置となる(図5参照)。
この状態から電磁コイル324の励磁電流を減少して制動力を減少するとゼンマイばね319の付勢力によって中間回転体318が正方向に戻り回転し、渦巻き溝315による係合ピン316の誘導によってリンク311が上記と逆方向に揺動し駆動リング303と従動軸部材307の組付角が遅角側に変更される。
このように、このVTC113によって可変される(クランクシャフト120に対するカムシャフト134の)回転位相は、電磁コイル324の励磁電流値を制御してヒステリシスブレーキ320の制動力を制御することによって任意の位相に変更し、ゼンマイばね319の力とヒステリシスブレーキ320の制動力のバランスによってその位相を保持することができる。
そして、前記ECU114は、クランクシャフト120に対するカムシャフト134の目標回転位相(目標進角値)θtgを機関の運転条件(負荷・回転)に基づいて設定する一方、現在の回転位相(進角値)θnowを求め、この現在の回転位相θnowが前記目標回転位相θtgに一致するように、前記電磁コイル324への通電をフィードバック制御する。ここで、前記回転位相の検出周期は、前記カム角センサ201がカムシャフトの基準回転位置を検出する間(4サイクル機関ではクランク角720°)の周期、つまりクランク角周期である。一方、アクチュエータであるVTC113の操作量(電磁コイル324の通電電流)を算出更新して制御を実行する制御周期は、基本的に微少単位時間毎の時間周期として設定される。
したがって、設定された周期で制御を実行すると、既述したように低回転時には、制御周期よりも回転位相の検出周期の方が長くなり、前記回転位相が更新される間は、実際とは異なる同じ回転位相の検出結果に基づいて、フィードバック制御が繰り返し行われオーバーシュートが発生するおそれがある。
そこで、本発明では、低回転時に、設定された制御周期より回転位相検出周期の方が大きくなるときは、制御周期が回転位相検出周期以上となるように制御周期を変更する。
以下、かかる制御周期の変更を含むフィードバック制御について説明する。
図10〜12は、回転位相を検出するためのフローチャートである。
図10は、単位角度信号POSのカウント値CPOSのリセット処理を行うフローチャートであり、クランク角センサ117からクランクシャフトの基準回転位置を検出して基準クランク信号REFが出力されると実行される。
図10において、S11ではクランク角センサ117からの単位角度信号POSのカウント値CPOSを0とする。
図11は、単位角度信号POSのカウント値CPOSのカウントアップ処理を行うフローチャートであり、クランク角センサ117から単位角度信号POSが出力されると実行される。図11において、S21ではカウント値CPOSを1アップする。
以上の図10,11のフローにより、前記カウント値CPOSは基準クランク角信号REFの発生時に0にリセットされ、その後の単位角度信号POSの発生数を計数した値となる。
図12は、回転位相を検出するフローチャートであり、カムセンサ132からカムシャフトの基準回転位置を検出してカム信号CAMが出力されると実行される。図12において、S31では、基準クランク角信号REFの発生からカム信号CAMの発生までの前記カウント値CPOSを読み込む。
S32では、読み込んだカウント値CPOSに基づいてクランクシャフト120に対するカムシャフト134の回転位相(回転位相検出値)θdetを検出する。
つまり、クランクシャフト120の対するカムシャフト134の回転位相検出値θdetは、カム信号CAMが出力される毎(クランク角180°毎)に検出されることになる。
図13は、上記回転位相検出値に基づくVTC113のフィードバック制御の第1実施形態のフローチャートを示す。
図13において、S41では、目標回転位相(目標進角値)θtgを機関の運転条件(負荷・回転)に基づいて設定する。
S42では、回転位相の検出周期(回転位相検出値θdetの検出間隔)Trefを、機関回転速度Neに基づいて次式により算出する。
Tref=1/[(Ne/60)*n] (sec)
但し、nは、エンジン1回転で検出可能なカム信号の回数(2回)である。
S43では、前記回転位相検出周期Trefとフィードバック制御の予め設定された制御周期Ts0とを比較する。
回転位相検出周期Trefが設定された制御周期Ts0以下となる中・高回転時は、該制御周期Ts0をそのまま制御周期Tsとして制御を実行する。すなわち、S44で制御周期Ts0毎の操作量更新時期を判定したときにS46へ進み前記目標回転位相θtgと最新の回転位相検出値θdetとの偏差に基づいて、VTC113の操作量(電磁コイル324の通電電流)を算出・更新し、S47で、VTC113の操作量を出力してフィードバック制御(電磁コイル324の通電電流値の更新)を実行する。図17は、前記S46でのVTC113の操作量算出のフローチャートをしめす。すなわち、S61で作動角偏差ERR(=目標回転位相θtg−回転位相検出値θdet)を算出し、該偏差ERRに基づいてS62〜S64で順次図示の演算式にしたがって、比例分操作量Up、積分操作量Ui、微分操作量Udを順次算出した後、S65でこれら各操作量Up,Ui,Udを加算してVTC113の操作量Uを算出する。但し、図示の演算式で、ERRz:偏差前回値,Gp:比例分ゲイン,Gi:積分分ゲイン,Gd:微分分ゲイン,Ts:制御周期,Iz:積分操作量前回値である。
図13に戻って、S43で回転位相検出周期Trefが制御された制御周期Ts0より大きいと判定される低回転時は、該回転位相検出周期Trefを制御周期Tsとして制御を実行する。すなわち、S45で、回転位相の検出が更新されたかを判定し、更新されたと判定されたときに、S46で該更新された回転位相検出値を用いてVTC113の操作量を算出・更新し、S47で、VTC113の操作量を出力してフィードバック制御を実行する。
なお、設定または変更された制御周期の間(S44,S45の判定がNO)では、S48でVTC113の操作量を前回値に維持する。
図14は、かかる制御内容を説明するための図(タイムチャート)である。
図14に示すように、設定された制御周期Ts0一定のまま回転位相検出値に基づくフィードバック制御を実行すると、回転位相検出周期Trefが制御周期Ts0より大きい場合は、実際の回転位相が刻々と変化しているにもかかわらず、同一の回転位相検出値に基づいてフィードバック制御が繰り返し行われることになる。このため、制御に用いる回転位相(検出値)と実際の回転位相と誤差が大きくなり、実際の回転位相が目標回転位相θtgを超えるオーバーシュートが発生するなど制御が悪化することになる。
これに対して、本実施形態では、低回転時に前記回転位相検出周期Trefが制御周期Ts0より大きくなった場合には、回転位相検出周期Trefを制御周期Tsとして変更することで、回転位相検出が更新されるまでの実際とは異なる回転位相に基づき更新設定される操作量の制御が停止され、回転位相検出時点で設定される操作量の制御が維持されるので、回転位相誤差に伴うオーバーシュートの発生を回避でき、目標回転位相θtgに滑らかに収束させることができる。
具体的には、目標回転位相θtgがステップ的に変化した場合で考えると、図14に示すように、低回転時に前記回転位相検出周期Trefが設定された制御周期Ts0より大きい場合に、一定の制御周期Ts0でPID制御を実行すると、同図(D)に示すように、回転位相検出が更新されるまでに制御周期Ts0毎に更新設定される操作量は、偏差一定であるので比例分Pは変化せず、微分分Dも0であるが、誤った偏差に応じて設定される積分分Iが更新毎に増大し、これにより、オーバーシュートが発生する。目標回転位相θtgが徐々に変化して回転位相検出が更新されるまでに偏差が増大する場合は、比例分Pや微分分Dも誤った偏差に応じて更新設定されるので、さらにオーバーシュートが助長されてしまう可能性がある。
これに対し、本実施形態では、同図(C)に示すように、回転位相検出時に操作量を算出して制御後、次の回転位相検出が更新されるまでの間、操作量の更新を行うことなく、回転位相検出時点で設定された操作量に維持して制御されるので、オーバーシュートの発生を防止できる。
また、本実施形態では、回転位相検出が更新されるまでの間は、操作量の演算が停止されるので、演算負荷を軽減できる。
図15は、VTC113のフィードバック制御の第2実施形態のフローチャートを示す。
S51で目標回転位相(目標進角値)θtgを設定し、S52で回転位相の検出周期Trefを算出することは同様である。
S53では、設定された制御周期Ts0毎の操作量更新時期であるかを判定し、更新時期と判定されたときは、S54へ進み、目標回転位相θtgと回転位相検出値θdetとの偏差に基づいて、図17で示すように、VTC113の操作量を算出した後、S55へ進む。更新時期以外のときはS58で前回出力値に維持した操作量をS57で出力する。
S55では、回転位相検出周期Trefと設定された制御周期Ts0とを比較し、回転位相検出周期Trefが制御周期Ts0以下となる中・高回転時は、前記S54で算出した操作量をS57でそのまま出力して、制御周期Ts0毎のフィードバック制御を実行する。
また、S55で回転位相検出周期Trefが制御周期Ts0より大きいと判定される低回転時は、S56へ進み、回転位相の検出が更新されたかを判定し、更新されるまではS58,S57へ進んで操作量が前回出力値に維持され、更新されたときにそのままS57へ進み、S54で最新の制御周期Ts0で算出した操作量を出力してフィードバック制御を実行する。
本実施形態にかかる制御内容を図16に示す。
このようにすれば、低回転時にも制御周期Ts0毎に操作量の算出は行うが、回転位相検出直後の制御周期Ts0で算出した操作量で制御した後は、次の回転位相検出が更新されるまでは、この間に算出した操作量の出力を禁止し、回転位相検出直後に算出した操作量に維持して制御するので、第1の実施形態と同様、オーバーシュートの発生を防止しつつ、目標回転位相θtgに滑らかに収束させることができる。
また、本実施形態では、操作量の演算、出力は設定された制御周期Ts0に同期して行われ、制御周期Ts0を変更する必要がないので制御プログラムの複雑化を防止できる。
更に、以上説明した実施形態から把握し得る請求項以外の技術的思想について、その効果と共に以下に記載する。
(イ)請求項2記載の可変バルブタイミング機構の制御装置において、前記回転位相の検出が更新される間に演算されたアクチュエータの操作量による制御の実行を禁止することを特徴とする。
このようにすれば、回転位相の検出が更新されるまでの間は、操作量が保持され、回転位相が検出された時点で演算された操作量によってアクチュエータが駆動されるため、オーバーシュートの発生を防止できる。
本発明に係る可変バルブタイミング機構の制御装置を備えた内燃機関のシステム構成図。 可変バルブタイミング機構を示す断面図。 図2のA−A線に沿う断面図。 図2のB−B線に沿う断面図。 上記可変バルブタイミング機構の作動状態を示す図3と同様の断面図。 ヒステリシス材の磁束密度−磁界特性を示すグラフ。 図4の部分拡大断面図。 図7の部品を直線状に展開した模式図であり、初期状態(a)とヒステリシスリングが回転したとき(b)の磁束の流れを示す図。 上記可変バルブタイミング機構のブレーキトルク−回転速度特性(a)と従来技術のブレーキトルク−回転速度特性(b)を示すグラフ。 基準クランク角信号REF毎のCPOSリセット処理を示すフローチャートである。 単位角度信号POS毎のCPOSのカウントアップ処理を示すフローチャートである。 カム信号CAM毎の進角値θdetの検出処理を示すフローチャートである。 第1実施形態に係る可変バルブタイミング機構のフィードバック制御を示すフローチャートである。 第1実施形態における制御内容を示すタイムチャートである。 第2実施形態に係る可変バルブタイミング機構のフィードバック制御を示すフローチャートである。 第2実施形態における制御内容を示すタイムチャートである。 実施形態におけるVTC操作量を算出するフローチャート。
符号の説明
101…内燃機関、105…吸気バルブ、112…可変バルブリフト機構、113…可変バルブタイミング機構、114…エンジンコントロールユニット、117…クランク角センサ、120…クランクシャフト、134…カムシャフト、201…カム角センサ、202…電流センサ、324…電磁コイル

Claims (3)

  1. 内燃機関のクランクシャフトに対するカムシャフトの回転位相をアクチュエータによって変化させることで、吸気バルブ又は排気バルブの開閉タイミングを変化させる可変バルブタイミング機構の制御装置であって、
    前記クランクシャフトの基準回転位置を検出するクランク角センサと、
    前記カムシャフトの基準回転位置を検出するカムセンサと、
    前記クランク角センサ及び前記カムセンサの検出信号に基づいて前記回転位相を検出する回転位相検出手段と、
    前記回転位相検出手段による前記回転位相の検出周期を算出する回転位相検出周期算出手段と、
    前記アクチュエータの設定された制御周期と、前記算出された回転位相検出周期との大小を判定する周期判定手段と、
    前記算出された回転位相検出周期が前記設定された制御周期より長いと判定されたときに、制御周期を算出された回転位相検出周期以上に変更する制御周期変更手段と、
    を備えることを特徴とする可変バルブタイミング機構の制御装置。
  2. 前記制御周期変更手段は、前記設定された制御周期でアクチュエータの操作量を算出しつつ、回転位相が検出される間に算出されたアクチュエータ操作量による制御の実行を禁止し、回転位相が検出された直後に前記設定された制御周期で該検出された回転位相に基づいて算出されたアクチュエータ操作量による制御を実行することを特徴とする請求項1記載の可変バルブタイミング機構の制御装置。
  3. 前記回転位相検出周期算出手段は、回転位相の検出周期を機関回転速度に基づいて算出することを特徴とする請求項1または請求項2に記載の可変バルブタイミング機構の制御装置。
JP2004046395A 2004-02-23 2004-02-23 可変バルブタイミング機構の制御装置 Ceased JP2005233153A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004046395A JP2005233153A (ja) 2004-02-23 2004-02-23 可変バルブタイミング機構の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004046395A JP2005233153A (ja) 2004-02-23 2004-02-23 可変バルブタイミング機構の制御装置

Publications (1)

Publication Number Publication Date
JP2005233153A true JP2005233153A (ja) 2005-09-02

Family

ID=35016350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004046395A Ceased JP2005233153A (ja) 2004-02-23 2004-02-23 可変バルブタイミング機構の制御装置

Country Status (1)

Country Link
JP (1) JP2005233153A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157060A (ja) * 2006-12-21 2008-07-10 Nissan Motor Co Ltd 可変動弁機構の制御装置
JP2009197591A (ja) * 2008-02-19 2009-09-03 Hitachi Ltd 内燃機関のバルブタイミング制御装置
WO2014196237A1 (ja) * 2013-06-06 2014-12-11 日立オートモティブシステムズ株式会社 内燃機関の可変バルブタイミング制御装置及び制御方法
JP2019100189A (ja) * 2017-11-29 2019-06-24 日立オートモティブシステムズ株式会社 内燃機関の制御装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157060A (ja) * 2006-12-21 2008-07-10 Nissan Motor Co Ltd 可変動弁機構の制御装置
JP2009197591A (ja) * 2008-02-19 2009-09-03 Hitachi Ltd 内燃機関のバルブタイミング制御装置
WO2014196237A1 (ja) * 2013-06-06 2014-12-11 日立オートモティブシステムズ株式会社 内燃機関の可変バルブタイミング制御装置及び制御方法
US9410488B2 (en) 2013-06-06 2016-08-09 Hitachi Automotive Systems, Ltd. Variable valve timing control device for internal combustion engine, and control method
JP2019100189A (ja) * 2017-11-29 2019-06-24 日立オートモティブシステムズ株式会社 内燃機関の制御装置

Similar Documents

Publication Publication Date Title
JP2008002324A (ja) 位相角検出装置及び該位相角検出装置を用いた内燃機関のバルブタイミング制御装置
US8091523B2 (en) Apparatus for and method of controlling variable valve timing mechanism
US7246582B2 (en) Variable valve control apparatus and variable valve controlling method for internal combustion engine
JP4313704B2 (ja) 内燃機関のバルブタイミング制御装置
JP4680127B2 (ja) 内燃機関の減速時制御装置
JP2003206710A (ja) 可変バルブタイミング機構の制御装置
JP2007113440A (ja) 内燃機関の制御装置
JP2005299639A (ja) 内燃機関のバルブタイミング制御装置
JP4125999B2 (ja) 可変バルブタイミング機構の制御装置
US8452519B2 (en) Valve timing control apparatus for internal combustion engine
JP2005299640A (ja) 内燃機関のバルブタイミング制御装置
JP4159854B2 (ja) 可変バルブタイミング機構の制御装置
JP2005233153A (ja) 可変バルブタイミング機構の制御装置
JP4299164B2 (ja) 可変バルブタイミング機構の制御装置
JP2009047128A (ja) 可変動弁機構の制御装置
JP2009174473A (ja) 可変バルブタイミング機構の制御装置
JP2005264864A (ja) 内燃機関の制御装置
JP4956454B2 (ja) 可変バルブタイミング機構の制御装置
JP2005220760A (ja) 可変動弁制御装置及び制御装置
JP4313626B2 (ja) 可変バルブタイミング機構の制御装置
JP4200111B2 (ja) 動弁制御装置
JP2009257180A (ja) 可変動弁機構の制御装置
JP2005016413A (ja) 可変バルブタイミング機構の制御装置
JP2005220758A (ja) 内燃機関の制御装置
JP4901337B2 (ja) 内燃機関の制御装置及び変速制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090324

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20090728