JP2012232815A - フォークリフトの油圧制御装置、及びフォークリフト - Google Patents

フォークリフトの油圧制御装置、及びフォークリフト Download PDF

Info

Publication number
JP2012232815A
JP2012232815A JP2011101358A JP2011101358A JP2012232815A JP 2012232815 A JP2012232815 A JP 2012232815A JP 2011101358 A JP2011101358 A JP 2011101358A JP 2011101358 A JP2011101358 A JP 2011101358A JP 2012232815 A JP2012232815 A JP 2012232815A
Authority
JP
Japan
Prior art keywords
oil
hydraulic
pump motor
hydraulic pump
tilt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011101358A
Other languages
English (en)
Other versions
JP5641239B2 (ja
Inventor
Tsutomu Matsuo
力 松尾
Hirohiko Ishikawa
洋彦 石川
Sukenori Ueda
祐規 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2011101358A priority Critical patent/JP5641239B2/ja
Publication of JP2012232815A publication Critical patent/JP2012232815A/ja
Application granted granted Critical
Publication of JP5641239B2 publication Critical patent/JP5641239B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Forklifts And Lifting Vehicles (AREA)

Abstract

【課題】マストを傾動動作させるためのティルトシリンダを効率良く動作させること。
【解決手段】マストの前傾動作時に作動油を排出するティルトシリンダ19のロッド室19rと油圧ポンプモータ36が接続される回路構成とする。そして、マストの前傾動作時には、ティルトシリンダ19のロッド室19rから排出される作動油を油圧ポンプモータ36が油圧モータとして駆動するための駆動力とする。これにより、油圧ポンプモータ36に回生動作を行わせる。
【選択図】図1

Description

本発明は、フォークリフトの油圧制御装置、特にはリフトシリンダ及びティルトシリンダを制御するための油圧制御装置、及びフォークリフトに関する。
従来、フォークリフトでは、フォークやマストなどの可動部材を動作させる機構として、油圧シリンダが採用されている。そして、近時のフォークリフトでは、車両の電気エネルギを効率良く使用するという観点から、上記可動部材の動作に伴いエネルギを回収することが行われている。例えば、特許文献1のフォークリフトでは、フォークが下降動作する時の位置エネルギを電気エネルギに変換し、回収するリフト回生が行われている。このようなリフト回生を採用すれば、油圧シリンダに作動油を給排するためのポンプやモータの作動エネルギをリフト回生で得られたエネルギによって補うことができ、油圧シリンダを効率良く動かすことが可能である。
特開2006−76751号公報
ところで、フォークリフトには、マストを傾動動作させるための油圧シリンダも搭載されている。そして、マストを傾動動作させる際には、油圧シリンダに対して作動油を供給する必要があるから、ポンプやモータを作動させている。しかしながら、特許文献1のフォークリフトでも、マストの動作に伴いエネルギを回収することは行われていない。したがって、マストを傾動動作させるための油圧シリンダについては、車両の電気エネルギを使用するだけであって、効率化が図られていない。
この発明は、このような従来の技術に存在する問題点に着目してなされたものであり、その目的は、マストを傾動動作させるためのティルトシリンダを効率良く動作させることを可能とするフォークリフトの油圧制御装置、及びフォークリフトを提供することにある。
上記問題点を解決するために、請求項1に記載の発明は、リフトシリンダへの作動油の給排によってフォークを昇降動作させるとともに、ティルトシリンダの第1油室からの作動油の排出及び第2油室への作動油の供給によって前記フォークが装着されるマストを前傾動作させるとともに、前記第1油室への作動油の供給及び前記第2油室からの作動油の排出によって前記マストを後傾動作させるフォークリフトの油圧制御装置において、前記第1油室から排出される作動油を前記油圧ポンプモータが油圧モータとして駆動するための駆動力とすることにより、前記油圧ポンプモータに回生動作を行わせることを要旨とする。
これによれば、マストが前傾動作する際の位置エネルギを利用して電気エネルギが得られるので、その電気エネルギを油圧ポンプモータなどの電気エネルギを必要とする部材に使用することができる。したがって、マストを傾動動作させるためのティルトシリンダを効率良く動作させることができる。なお、油圧ポンプモータとは、回転電機の回転力を駆動力とする場合に油圧ポンプとして動作する一方で、作動油を駆動力とする場合に油圧モータとして動作する部材である。
請求項2に記載の発明は、請求項1に記載のフォークリフトの油圧制御装置において、前記油圧ポンプモータは双方向回転可能な構成であって、前記ティルトシリンダへの作動油の給排経路は、前記第1油室と前記第2油室との間で作動油を給排させる閉回路で構成されており、前記油圧ポンプモータの回転方向を切換えることによって前記マストの前傾動作と後傾動作を切換えることを要旨とする。
これによれば、油圧ポンプモータの回転方向の切換え制御によってマストの動作方向を切換えることができるので、ティルトシリンダを動作させるための構成や制御を簡素化することができる。
請求項3に記載の発明は、請求項2に記載のフォークリフトの油圧制御装置において、前記リフトシリンダには、前記ティルトシリンダに接続される前記油圧ポンプモータとは別に、油圧ポンプモータが接続されていることを要旨とする。
これによれば、ティルトシリンダを動作させるための機構と、リフトシリンダを動作させるための機構と、が独立されている。このため、ティルトシリンダによるマストの動作とリフトシリンダによるフォークの動作を同時に行った場合であっても、ティルトシリンダの動作によって回生動作を行わせることができる。したがって、同時に動作させる場合及び単独で動作させる場合の何れの場合であっても、ティルトシリンダを効率良く動作させることができる。
請求項4に記載の発明は、請求項2又は請求項3に記載のフォークリフトの油圧制御装置において、前記第2油室と前記油圧ポンプモータとを接続する管路には、前記マストの前傾動作時に前記第2油室の容積拡大に伴う不足分の作動油を供給するチェック弁と前記第2油室から排出された作動油のうち余剰分の作動油を油タンクへ排出する流量制御弁とが接続されており、前記流量制御弁を、前記チェック弁よりも前記油圧ポンプモータの吸込口側に配置したことを要旨とする。
これによれば、後傾動作時には、流量制御弁を通じて作動油が油タンクへ排出されることにより、回路が加圧された状態となる。このため、油圧ポンプモータの吸込口でのキャビテーションが抑制される。したがって、マストの後傾動作の高加速化を実現できる。
請求項5に記載の発明は、請求項1に記載のフォークリフトの油圧制御装置において、前記油圧ポンプモータは、前記リフトシリンダに作動油を給排する油圧ポンプモータとしても兼用されており、前記ティルトシリンダの第1油室には、前記第1油室から排出される作動油を前記油圧ポンプモータへ流通させる回生用油路が接続されているとともに、前記回生用油路には当該回生用油路の開閉状態を切換える回生用切換弁が接続されており、前記前傾動作時に、回生動作を行わせる場合には前記回生用油路を開状態とする一方で、回生動作を行わせない場合には前記回生用油路を閉状態とするように前記回生用切換弁を制御する制御部を備えたことを要旨とする。
これによれば、単一の油圧ポンプモータにより、前傾動作時の回生動作を実現することができる。そして、油圧ポンプモータを兼用するとともに、回生用切換弁の切換えによって回生動作を行わせることができるので、構成を簡素化することができる。
請求項6に記載の発明は、請求項5に記載のフォークリフトの油圧制御装置において、前記油圧ポンプモータには、前記回生動作を行わせない場合、前記油圧ポンプモータを迂回して作動油を前記第1油室から油タンクへ排出する第1油室排出用油路を開状態とするとともに、前記第2油室へ前記油圧ポンプモータからの作動油を供給する第2油室供給用油路を開状態とするティルト用切換弁を接続することを要旨とする。
これによれば、回生動作を行わせる場合にはティルトシリンダを効率良く動作させる一方で、回生動作を行わせない場合にはマストの前傾動作を確実に行わせることができる。
請求項7に記載の発明は、請求項5に記載のフォークリフトの油圧制御装置において、前記油圧ポンプモータには、前記前傾動作時、常に前記油圧ポンプモータを迂回して作動油を前記第1油室から油タンクへ排出する第1油室排出用油路を開状態とするとともに、前記第2油室へ前記油圧ポンプモータからの作動油を供給する第2油室供給用油路を開状態とするティルト用切換弁を接続し、前記第1油室排出用油路には、前記第2油室側の圧力をパイロット圧として逆流を許容するパイロットチェック弁を備えることを要旨とする。
これによれば、前傾動作時には、回生動作を行わせる場合及び行わせない場合の何れでも、ティルト用切換弁によって第1油室用油路と第2油室用油路を開状態としておく。このため、回生動作を行わせる場合には回生用切換弁によって回生用油路を開状態とし、回生動作を行わせない場合には回生用切換弁によって回生用油路を閉状態とするだけで、回生動作を行わせるか否かを容易に切換えることができる。
請求項8に記載の発明は、請求項6又は請求項7に記載のフォークリフトの油圧制御装置において、前記油圧ポンプモータは、前記フォークの下降動作時に前記作動油を排出する前記リフトシリンダの油室にリフト用排出油路を介して接続されており、前記リフト用排出油路には、当該リフト用排出油路の開閉状態を切換えるリフト用切換弁が接続されており、前記制御部は、前記下降動作と後傾動作を同時に行わせる場合、前記リフト用排出油路を開状態とするように前記リフト用切換弁を制御するとともに、前記第1油室へ作動油を供給する第1油室供給用油路を開状態とし、かつ前記第2油室から油タンクへ作動油を排出する第2油室排出用油路を開状態とするように前記ティルト用切換弁を制御する一方で、前記下降動作と前記前傾動作を同時に行わせる場合、前記リフト用排出油路を開状態とするように前記リフト用切換弁を制御するとともに、前記第1油室排出用油路として開状態とし、かつ前記第2油室供給用油路を開状態とするように前記ティルト用切換弁を制御することを要旨とする。
これによれば、回生動作に加えて、リフトシリンダとティルトシリンダの同時動作を、単一の油圧ポンプモータによって実現することができる。したがって、構成を簡素化することができる。
請求項9に記載の発明は、フォークを昇降動作させるリフトシリンダと、前記フォークが装着されるマストを傾動動作させるティルトシリンダと、を備えたフォークリフトにおいて、請求項1〜請求項8のうち何れか一項に記載のフォークリフトの油圧制御装置を備えたことを要旨とする。これによれば、各請求項1〜8に記載された発明と同様の作用効果に加えて、フォークリフトの電気エネルギを効率良く使用することができる。
本発明によれば、マストを傾動動作させるためのティルトシリンダを効率良く動作させることができる。
第1の実施形態におけるフォークリフトの油圧制御装置の回路図。 フォークリフトの側面図。 第2の実施形態におけるフォークリフトの油圧制御装置の回路図。 (a)は、比例弁の制御態様を示すグラフ、(b)は、ポンプモータの制御態様を示すグラフ。 第3の実施形態におけるフォークリフトの油圧制御装置の回路図。 同じく、回路図。 同じく、回路図。 第4の実施形態におけるフォークリフトの油圧制御装置の回路図。
(第1の実施形態)
以下、本発明を具体化した第1の実施形態を図1及び図2にしたがって説明する。
図2に示すように、バッテリ式のフォークリフト11の車体フレーム12にはその前部にマスト13が設けられている。マスト13は車体フレーム12に対して傾動可能に支持された左右一対のマストとしてのアウタマスト13aと、その内側に昇降可能に装備されたインナマスト13bとからなる。両アウタマスト13aの後側には荷役用油圧シリンダとしてのリフトシリンダ14がアウタマスト13aと平行に固定されるとともに、リフトシリンダ14のピストンロッド14aの先端がインナマスト13bの上部に連結されている。
インナマスト13bの内側にはリフトブラケット15がインナマスト13bに沿って昇降可能に装備され、リフトブラケット15にはフォーク16が取着されている。インナマスト13bの上部にはチェーンホイール17が支承され、チェーンホイール17には、第1端部がリフトシリンダ14の上部に、第2端部がリフトブラケット15にそれぞれ連結されたチェーン18が掛装されている。そして、リフトシリンダ14の伸縮によりチェーン18を介してフォーク16がリフトブラケット15とともに昇降動される。
車体フレーム12の左右両側には荷役用油圧シリンダとしてのティルトシリンダ19の基端が回動可能に支持されるとともに、ティルトシリンダ19のピストンロッド19aの先端がアウタマスト13aの上下方向ほぼ中央部に回動可能に連結されている。そして、ティルトシリンダ19の伸縮によりマスト13が傾動される。
運転室20の前部にはステアリング21、リフトレバー22及びティルトレバー23がそれぞれ設けられている。図2においてはリフトレバー22とティルトレバー23とが重なった状態で示されている。リフトレバー22の操作によりリフトシリンダ14が伸縮されるとともにフォーク16が昇降するようになっている。また、ティルトレバー23の操作によりティルトシリンダ19が伸縮されるとともに、マスト13が傾動するようになっている。
マスト13は、図2に破線で示すように、予め定めた最後傾位置から最前傾位置の間で傾動可能とされている。図2に実線で示す垂直位置を基準とした場合、運転室20に接近する方向に傾動する動作が後傾動作となり、運転室20から離間する方向に傾動する動作が前傾動作となる。本実施形態のフォークリフト11の構成では、ティルトシリンダ19が伸びる方向に動作した時にマスト13が前傾動作する一方で、ティルトシリンダ19が縮む方向に動作した時にマスト13が後傾動作する。
また、図1に示すように、リフトシリンダ14には、位置検出用のリフト側位置検出センサSE1が設けられている。また、図1に示すように、ティルトシリンダ19には、位置検出用のティルト側検出センサSE2が設けられている。また、フォークリフト11には、バッテリBTが搭載されている。
以下、本実施形態の油圧制御装置について図1にしたがって説明する。油圧制御装置は、リフトシリンダ14及びティルトシリンダ19の動作を制御する。そして、本実施形態の油圧制御装置では、リフトシリンダ14を動作させるための機構(油圧回路)と、ティルトシリンダ19を動作させるための機構(油圧回路)とを、独立した構成としている。具体的に言えば、リフトシリンダ14とティルトシリンダ19に作動油を給排する機構、すなわち油圧ポンプと油圧ポンプを駆動するモータを、別々に設けている。
最初に、リフトシリンダ14の油圧回路の構成を説明する。
リフトシリンダ14のボトム室14bに接続される油路としての配管K1には、油圧ポンプ及び油圧モータとして機能する油圧ポンプモータ30が接続されている。油圧ポンプモータ30には、電動機及び発電機として機能するリフト用モータ(回転電機)31が接続されている。リフト用モータ31は、図示しないステータのコイルへの通電によってロータを回転させることで電動機として機能する一方で、ロータが回転することによってステータのコイルに電力を生じさせることで発電機として機能する。本実施形態においてリフト用モータ31は、油圧ポンプモータ30を油圧ポンプとして作動させる場合に電動機となり、油圧ポンプモータ30を油圧モータとして作動させる場合に発電機となる。また、油圧ポンプモータ30は、配管K1を介して作動油を貯留する油タンクT1に接続されている。
また、リフトシリンダ14のボトム室14bと油圧ポンプモータ30の間の配管K1上には、リフト用電磁切換弁32が接続されている。リフト用電磁切換弁32は、ボトム室14bへの作動油の供給及びボトム室14bからの作動油の排出を許容する開状態としての第1位置32aと、作動油の給排を不能とする閉状態としての第2位置32bの2位置を取り得る。
次に、ティルトシリンダ19の油圧回路の構成を説明する。
ティルトシリンダ19の第2油室としてのボトム室19bと第1油室としてのロッド室19rは、油路としての配管K2によって接続されている。配管K2には、ロッド室19rからボトム室19bへ向かう方向に沿って順に、ストップ弁35と、油圧ポンプ及び油圧モータとして機能する油圧ポンプモータ36が接続されている。
ストップ弁35は、第1位置35aと第2位置35bの2位置を取り得る。第1位置35aは、ロッド室19rからの作動油を、油圧ポンプモータ36の流通口36a,36bを通じてボトム室19bへ流通させる。第2位置35bは、ボトム室19bからの作動油を、油圧ポンプモータ36の流通口36a,36bを通じてロッド室19rに流通させる。また、油圧ポンプモータ36は、双方向回転可能に構成されている。このため、油圧ポンプモータ36の流通口36a,36bは、作動油の流通方向によって吸込口又は吐出口となる。そして、油圧ポンプモータ36には、電動機及び発電機として機能するティルト用モータ(回転電機)37が接続されている。本実施形態においてティルト用モータ37は、油圧ポンプモータ36を油圧ポンプとして作動させる場合に電動機となり、油圧ポンプモータ36を油圧モータとして作動させる場合に発電機となる。
このような構成により、本実施形態においてティルトシリンダ19に対する作動油の給排経路は、配管K2、ストップ弁35及び油圧ポンプモータ36を通じて、ボトム室19bとロッド室19rの両室間で作動油の給排が可能な閉回路を構成している。
また、配管K2においてボトム室19bと油圧ポンプモータ36との間には、作動油を貯留する油タンクT2に接続される油路としての配管K3が分岐接続されている。そして、配管K3には、油タンクT2からの作動油を流通させる一方で、その逆方向からの作動油を流通させないようにチェック弁38が接続されている。
また、配管K2には、配管K3の接続部位(チェック弁38の接続部位)と油圧ポンプモータ36との間に、作動油を貯留する油タンクT2にフィルタ39を介して接続される油路としての配管K4が分岐接続されている。そして、配管K4には、油圧上昇を防止する第1リリーフ弁40が接続されている。
また、配管K2において配管K4の接続部位(第1リリーフ弁40の接続部位)と油圧ポンプモータ36との間には、油路としての配管K5が分岐接続されている。また、配管K5は、分岐点P1を介して、第1リリーフ弁40の排出ポート側の配管K4と、ストップ弁35と油圧ポンプモータ36との間の配管K2に接続されている。そして、配管K5には、ボトム室19bと油圧ポンプモータ36との間の配管K2と分岐点P1との間に流量制御弁41が接続されている。流量制御弁41は、ロッド室19rと油圧ポンプモータ36との間の配管K2の圧力をパイロット圧として作動する。また、流量制御弁41の排出ポート側と分岐点P1との間には、オリフィス42が接続されている。このオリフィス42により、流量制御弁41からの排出に所定圧(例えば、0.1MPa)以上の圧力損失がかかるようになっている。また、配管K5において、ロッド室19rと油圧ポンプモータ36との間の配管K2と分岐点P1との間には、油圧上昇を防止する第2リリーフ弁43が接続されている。
また、配管K2において、配管K5の第2リリーフ弁43の流入ポート側の接続部位と油圧ポンプモータ36との間には、油タンクT2に接続される油路としての配管K6が接続されている。そして、配管K6には、油タンクT2からの作動油を流通させる一方で、その逆方向からの作動油を流通させないようにチェック弁44が接続されている。
次に、油圧制御装置の制御部Sの構成を説明する。
制御部Sには、リフトレバー22の操作量を検出するポテンショメータ22aとティルトレバー23の操作量を検出するポテンショメータ23aとが電気的に接続されている。そして、制御部Sは、リフトレバー22の操作量に基づくポテンショメータ22aからの検出信号をもとに、リフト用モータ31の回転数を制御するとともに、リフト用電磁切換弁32の切換えを制御する。また、制御部Sは、ティルトレバー23の操作量に基づくポテンショメータ23aからの検出信号をもとに、ティルト用モータ37の回転数を制御するとともに、ストップ弁35の切換えを制御する。
また、制御部Sには、インバータS1が電気的に接続されている。そして、リフト用モータ31及びティルト用モータ37には、バッテリBTの電力がインバータS1を介して供給される。なお、リフト用モータ31及びティルト用モータ37で生じた電力は、インバータS1を介してバッテリBTに蓄電される。
以下、本実施形態の油圧制御装置の作用を図1にしたがって詳しく説明する。
最初に、マスト13の前傾動作について説明する。
マスト13を前傾動作させる場合は、ティルトシリンダ19のボトム室19bに作動油を供給する一方で、ロッド室19rの作動油を排出する(図中の実線矢印)。このため、制御部Sは、ティルトレバー23の操作量に応じた指示速度で動作させるように油圧ポンプモータ36及びティルト用モータ37の回転数と回転方向を制御する。また、制御部Sは、ストップ弁35を第1位置35aとする。これにより、ロッド室19rの作動油は、ストップ弁35、及び油圧ポンプモータ36を通じて、ボトム室19bに供給される。その結果、ティルトシリンダ19の伸長によってマスト13が前傾動作する。
そして、本実施形態の油圧回路構成では、マスト13の前傾動作に伴ってティルトシリンダ19に加わる荷重(マスト13やフォーク16の重量及び積み荷の重量を含む)を利用し、回生動作を行わせる。すなわち、油圧ポンプモータ36は、前傾動作が回生動作可能な状態まで進む間は、ティルト用モータ37によって油圧ポンプとして作動する。その一方で、油圧ポンプモータ36は、前傾動作が進むことでロッド室19rの圧力が高くなると、それに伴うティルト用モータ37のトルク低下により、ロッド室19rから排出された作動油を駆動力とし、油圧モータとして作動する。その結果、ティルト用モータ37は、発電機として機能することになり、ティルト用モータ37で生じた電力がインバータS1を介してバッテリBTに蓄電されることになる。
なお、油圧ポンプモータ36は、フォーク16に搭載されている荷とマスト13の重心位置が、図2に示す最前傾位置に近付いて行くことによって、油圧ポンプから油圧モータへと切換る。すなわち、マスト13の傾動角度が最前傾位置寄りに近付くと、その前傾動作は位置エネルギを失いながら行われることになり、ティルトシリンダ19に荷重が加わることになる。つまり、油圧ポンプモータ36は、図2に示す最後傾位置寄りに重心位置が存在する時、油圧ポンプとして作動する。
また、前傾動作時に、ボトム室19bへ供給する作動油が不足する場合は、チェック弁38を通じて油タンクT2の作動油が吸込まれ、ボトム室19bへ供給される。すなわち、チェック弁38は、マスト13の前傾動作時に、ボトム室19bの容積拡大に伴う不足分の作動油を供給する。また、前傾動作時に、油圧ポンプモータ36の力行により、ボトム室19bへ作動油を供給する必要がある場合は、チェック弁44を通じて油タンクT2の作動油が吸込まれるとともに、油圧ポンプモータ36を通じてボトム室19bへ供給される。
次に、マスト13の後傾動作について説明する。
マスト13を後傾動作させる場合は、ティルトシリンダ19のロッド室19rに作動油を供給する一方で、ボトム室19bの作動油を排出する(図中の破線矢印)。このため、制御部Sは、ティルトレバー23の操作量に応じた指示速度で動作させるように油圧ポンプモータ36及びティルト用モータ37の回転数と回転方向を制御する。また、制御部Sは、ストップ弁35を第2位置35bとする。これにより、ボトム室19bの作動油は、油圧ポンプモータ36及びストップ弁35を通じて、ロッド室19rに供給される。その結果、ティルトシリンダ19の収縮によってマスト13が後傾動作する。なお、後傾動作時の油圧ポンプモータ36は、油圧ポンプとして作動する。つまり、回生動作は行われない。
そして、本実施形態の油圧回路構成では、後傾動作に伴ってボトム室19bから排出される作動油の余剰分は、流量制御弁41を通じて油タンクT2に排出される。このとき、本実施形態では、流量制御弁41に作動油(余剰油)が流れると、流量制御弁41の上流側(流入ポート側)が加圧されることになるから、ボトム室19bと油圧ポンプモータ30との間の配管K2内も加圧された状態とされる。このため、油圧ポンプモータ36の流通口36b(吸込口)におけるキャビテーションの発生を抑制できる。
次に、フォーク16の上昇動作及び下降動作について説明する。
フォーク16を上昇動作させる場合は、リフトシリンダ14のボトム室14bに作動油を供給する。このため、制御部Sは、リフトレバー22の操作量に応じた指示速度で動作させるように油圧ポンプモータ30及びリフト用モータ31の回転数を制御する。また、制御部Sは、リフト用電磁切換弁32を第1位置32aとする。これにより、油圧ポンプモータ30によって汲み上げられた油タンクT1の作動油は、リフト用電磁切換弁32を通じてボトム室14bに供給される。その結果、リフトシリンダ14の伸長によってフォーク16が上昇動作する。なお、上昇動作時の油圧ポンプモータ30は、油圧ポンプとして作動する。なお、制御部Sは、上昇動作を終了させる場合、リフト用電磁切換弁32を第2位置32bとする。
一方、フォーク16を下降動作させる場合は、リフトシリンダ14のボトム室14bから作動油を排出する。このため、制御部Sは、リフトレバー22の操作量に応じた指示速度で動作させるように油圧ポンプモータ30及びリフト用モータ31の回転数を制御する。また、制御部Sは、リフト用電磁切換弁32を第1位置32aとする。これにより、ボトム室14bの作動油は、リフト用電磁切換弁32を通じて油タンクT1に排出される。その結果、リフトシリンダ14の収縮によってフォーク16が下降動作する。
このとき、油圧ポンプモータ30は、ボトム室14bから排出された作動油を駆動力とし、油圧モータとして作動する。その結果、リフト用モータ31は、発電機として機能することになり、リフト用モータ31で生じた電力がインバータS1を介してバッテリBTに蓄電されることになる。
したがって、第1の実施形態によれば、以下に示す効果を得ることができる。
(1)マスト13の前傾動作時には、ティルトシリンダ19から排出される作動油を駆動力として油圧ポンプモータ36を油圧モータとして駆動させることで、回生動作を行わせる。このため、マスト13が前傾動作する際の位置エネルギを利用して電気エネルギが得られるので、その電気エネルギを油圧ポンプモータ36などの電気エネルギを必要とする部材に使用することができる。したがって、マスト13を傾動動作させるためのティルトシリンダ19を効率良く動作させることができる。
(2)ティルトシリンダ19の油圧回路構成を閉回路とし、双方向回転可能な油圧ポンプモータ36を用いている。このため、油圧ポンプモータ36の回転方向の切換え制御によってマスト13の動作方向(前傾動作方向と後傾動作方向)を切換えることができる。したがって、ティルトシリンダ19を動作させるための構成や制御を簡素化することができる。
(3)リフトシリンダ14の油圧回路とティルトシリンダ19の油圧回路を、独立させて別構成とした。このため、ティルトシリンダ19によるマスト13の傾動動作と、リフトシリンダ14によるフォーク16の動作を同時に行った場合であっても、ティルトシリンダ19の前傾動作によって回生動作を行わせることができる。したがって、同時に動作させる場合及び単独で動作させる場合の何れの場合であっても、ティルトシリンダ19を効率良く動作させることができる。
(4)また、別構成であるため、リフトシリンダ14の下降動作によっても回生動作を行わせることができる。したがって、より効率的に電気エネルギを得ることができる。特に、バッテリ式のフォークリフト11の場合には、リフトシリンダ14とティルトシリンダ19を効率良く動作させることで、走行性能(走行距離など)を向上させることもできる。すなわち、フォークリフト11の電気エネルギを効率良く使用することができる。
(5)また、別構成であるため、リフトシリンダ14及びティルトシリンダ19のそれぞれの動作に見合ったリフト用モータ31及びティルト用モータ37を選定することができる。したがって、リフトシリンダ14及びティルトシリンダ19を、より効率良く動作させることができる。
(6)後傾動作時には、流量制御弁41を通じて作動油が排出されることにより、回路が加圧された状態となる。このため、油圧ポンプモータ36の流通口36b(吸込口)でのキャビテーションが抑制される。したがって、マスト13の後傾動作の高加速化を実現できる。
(第2の実施形態)
次に、本発明を具体化した第2の実施形態を図3及び図4にしたがって説明する。
なお、以下に説明する実施形態は、既に説明した実施形態と同一構成について同一符号を付すなどしてその重複する説明を省略又は簡略する。
本実施形態のティルトシリンダ19の油圧回路では、第1の実施形態において接続されていたストップ弁35に代えて、同位置に第1電磁比例弁47が接続されている。第1電磁比例弁47は、第1位置47aと第2位置47bの2位置を取り得る。第1位置47aは、ロッド室19rからの作動油を、油圧ポンプモータ36の流通口36a,36bを通じてボトム室19bへ流通させる。第2位置47bは、ボトム室19bからの作動油を、油圧ポンプモータ36の流通口36a,36bを通じてロッド室19rに流通させるとともに、ロッド室19rからの作動油の流れを閉止する。
また、本実施形態のティルトシリンダ19の油圧回路では、ボトム室19bと油圧ポンプモータ36との間の配管K2に、第2電磁比例弁48が接続されている。より具体的に言えば、第2電磁比例弁48は、チェック弁38が接続された配管K3と第1リリーフ弁40が接続された配管K4との間の配管K2に接続されている。第2電磁比例弁48は、第1位置48aと第2位置48bの2位置を取り得る。第1位置48aは、ボトム室19bからの作動油を、油圧ポンプモータ36の流通口36a,36bを通じてロッド室19rへ流通させる。第2位置48bは、ロッド室19rからの作動油を、油圧ポンプモータ36の流通口36a,36bを通じてボトム室19bに流通させるとともに、ボトム室19bからの作動油の流れを閉止する。
以下、本実施形態の油圧制御装置の作用を説明する。
なお、マスト13の前傾動作と後傾動作に係る作用(制御内容)、及びフォーク16の上昇動作と下降動作に係る作用(制御内容)は、第1の実施形態と同一であるため、その重複する説明は省略する。
本実施形態では、図4(a),(b)に示すように、第1,第2電磁比例弁47,48及び油圧ポンプモータ36(ティルト用モータ37)を制御する。
具体的に言えば、制御部Sは、ティルトレバー23の操作量に応じた指示速度が予め定めた所定速度以下(図中の指示速度A)の場合、第1,第2電磁比例弁47,48の開度を小さく調整し、配管K2を流通する作動油の流量を制御する。一方、制御部Sは、ティルトレバー23の操作量に応じた指示速度が所定速度を超える場合は、第1,第2電磁比例弁47,48の開度を全開に調整し、配管K2を流通する作動油の流量を制御する。例えば、所定速度とは、油圧ポンプモータ36及びティルト用モータ37の回転数が400回転/分程度となる低速運転に相当する速度である。
なお、開度の調節方向は、前傾動作の場合と後傾動作の場合とで異なる。具体的に言えば、前傾動作の場合は、第1電磁比例弁47の第1位置47aと第2電磁比例弁48の第2位置48bの開度を調整する。一方、後傾動作の場合は、第1電磁比例弁47の第2位置47bと第2電磁比例弁48の第1位置48aの開度を調整する。
したがって、第2の実施形態によれば、第1の実施形態の効果(1)〜(6)に加えて、以下に示す効果を得ることができる。
(7)通常、油圧ポンプは、低速運転において流量の制御が難しい。このため、荷重が大きい場合や、ポンプ回転数の下限に制限がある時などは、動作が不安定になる可能性がある。このため、図4に示すように、低速運転時には、ポンプ回転数を下限制限値で一定流量運転をするとともに、第1,第2電磁比例弁47,48の開度調整を行ってティルトシリンダ19へ供給する作動油の流量を制御することで、動作を安定させることができる。一方、第1,第2電磁比例弁47,48の開度調整を行っている場合は圧力損失が大きくなる。このため、所定速度Aを超える場合には、第1,第2電磁比例弁47,48の開度を全開とすることで、指示速度に応じた回転数でポンプを作動させることができる。
(第3の実施形態)
次に、本発明を具体化した第3の実施形態を図5〜図7にしたがって説明する。
本実施形態の油圧制御装置は、図5に示すように、単一の油圧ポンプと油圧ポンプを駆動するモータにより、リフトシリンダ14及びティルトシリンダ19を動作させる機構(油圧回路)を構成している。
リフトシリンダ14のボトム室14bに接続される油路としての配管K10には、油圧ポンプ及び油圧モータとして機能する油圧ポンプモータ50が接続されている。油圧ポンプモータ50には、電動機及び発電機として機能するモータ(回転電機)51が接続されている。本実施形態においてモータ51は、油圧ポンプモータ50を油圧ポンプとして作動させる場合に電動機となり、油圧ポンプモータ50を油圧モータとして作動させる場合に発電機となる。また、油圧ポンプモータ50は、フィルタ52を介して作動油を貯留する油タンクT3に接続されている。本実施形態の油圧ポンプモータ50は、一方向に回転可能な構成とされている。
油圧ポンプモータ50の吸入口50aとボトム室14bとの間の配管K10には、ボトム室14b側から順に、リフト用切換弁としてのリフト下降用電磁比例弁53と、チェック弁54とが、接続されている。リフト下降用電磁比例弁53は、下降動作の際にボトム室14bから排出される作動油を油圧ポンプモータ50へ流通させる開状態としてその開度を任意に変更可能な第1位置53aと、その流通を許容しない閉状態としての第2位置53bを取り得る。チェック弁54は、ボトム室14bからの作動油を流通させる一方で、その逆方向からの作動油を流通させないように接続されている。また、油圧ポンプモータ50の吸入口50aとチェック弁54との間には、油タンクT3からの作動油を流通させる一方で、その逆方向からの作動油を流通させないようにチェック弁55が接続されている。
油圧ポンプモータ50の吐出口50b側の配管K10には、リフト上昇用電磁比例弁56と、チェック弁57とが接続されている。リフト上昇用電磁比例弁56は、油圧ポンプモータ50から吐出される作動油をボトム室14bへ流通させる開状態としてその開度を任意に変更可能な第1位置56aと、前記作動油を油路としての配管K11に接続されるティルト用切換弁としてのティルト用電磁比例弁58へ流通させる閉状態としての第2位置56bを取り得る。チェック弁57は、リフト上昇用電磁比例弁56からの作動油を流通させる一方で、その逆方向からの作動油を流通させないように接続されている。
油圧ポンプモータ50とリフト上昇用電磁比例弁56の間の配管K10には、油タンクT3にフィルタ59を介して接続される油路としての配管K12と、ティルト用電磁比例弁58に接続される油路としての配管K13とが、分岐接続されている。配管K12には、油圧上昇を防止するリリーフ弁60が接続されている。また、配管K12には、ティルト用電磁比例弁58からの作動油を油タンクT3に流通させる油路としての配管K14が接続されている。配管K13には、油圧ポンプモータ50からの作動油を流通させる一方で、その逆方向からの作動油を流通させないようにチェック弁61が接続されている。
ティルト用電磁比例弁58は、閉状態としての第1位置58aと、開状態としてその開度を調整可能な第2位置58bと、開状態としてその開度を調整可能な第3位置58cを取り得る。第1位置58aは、リフト上昇用電磁比例弁56からの作動油を油タンクT3に流通させる。本実施形態のティルト用電磁比例弁58は、第1位置58aを中立位置とし、制御部Sの制御によって第2位置58b又は第3位置58cの何れかの方向に動く。第2位置58bは、チェック弁61からの作動油を、ティルトシリンダ19のロッド室19rに接続される配管K16に流通させる。また、第2位置58bは、ティルトシリンダ19のボトム室19bに接続される第2油室排出用油路としての配管K15からの作動油を、配管K14に流通させる。第3位置58cは、チェック弁61からの作動油を第2油室供給用油路としての配管K15に流通させるとともに、第1油室排出用油路としての配管K16からの作動油を配管K14に流通させる。
配管K15には、油タンクT3からの作動油を流通させる一方で、その逆方向からの作動油を流通させないようにチェック弁62が接続されている。また、回生用油路としての配管K17は、油圧ポンプモータ50の吸入口50aとチェック弁54の間の配管K10にも接続されている。そして、配管K17には、回生用切換弁63と、チェック弁64が接続されている。回生用切換弁63は、ロッド室19rからの作動油を流通させる開状態としての第1位置63aと、その流通を許容しない閉状態としての第2位置63bの2位置を取り得る。チェック弁64は、回生用切換弁63からの作動油を流通させる一方で、その逆方向からの作動油を流通させないように接続されている。本実施形態では、ティルトシリンダ19のロッド室19rと配管K10の間の配管K17が、回生用油路となる。
以下、本実施形態の油圧制御装置の作用を図5〜図8にしたがって説明する。
最初に、単独操作にてフォーク16を上昇動作、又は下降動作させる場合について図5をもとに説明する。単独操作とは、フォーク16を動作させる時にはマスト13を動作させず、マスト13を動作させる時にはフォーク16を動作させないことである。なお、同時操作とは、フォーク16とマスト13を同時に動作させることである。フォーク16を上昇動作、又は下降動作させる場合、回生用切換弁63は第2位置63bとなっている。
フォーク16を上昇動作させる場合は、リフトシリンダ14のボトム室14bに作動油を供給する(図中の一点鎖線矢印)。このため、制御部Sは、リフトレバー22の操作量に応じた指示速度で動作させるように油圧ポンプモータ50及びモータ51の回転数を制御する。また、制御部Sは、リフト下降用電磁比例弁53を第2位置53bとする一方で、リフト上昇用電磁比例弁56を前記指示速度に対応する開度の第1位置56aで開く。そして、油圧ポンプモータ50は、油圧ポンプとして機能することで油タンクT3の作動油を吸込み、吐出口50bから配管K12に吐出する。この作動油は、リフト上昇用電磁比例弁56、及びチェック弁57を通じて、ボトム室14bに供給される。その結果、フォーク16は、リフトシリンダ14の伸長によって上昇動作する。なお、制御部Sは、上昇動作を終了させる場合、リフト上昇用電磁比例弁56を第2位置56bとする。
一方、フォーク16を下降動作させる場合は、リフトシリンダ14のボトム室14bから作動油を排出する(図中の破線矢印)。このため、制御部Sは、リフトレバー22の操作量に応じた指示速度で動作させるように油圧ポンプモータ50及びモータ51の回転数を制御する。また、制御部Sは、リフト上昇用電磁比例弁56を第2位置56bとする一方で、リフト下降用電磁比例弁53を前記指示速度に対応する開度の第1位置53aで開く。
このとき、油圧ポンプモータ50は、ボトム室14bから排出された作動油を駆動力とし、油圧モータとして作動する。その結果、モータ51は、発電機として機能することになり、モータ51で生じた電力がインバータS1を介してバッテリBTに蓄電される。また、油圧ポンプモータ50から吐出された作動油は、リフト上昇用電磁比例弁56及びティルト用電磁比例弁58を通じて油タンクT3に排出される。その結果、フォーク16は、リフトシリンダ14の収縮によって下降動作する。
次に、単独操作にてマスト13を前傾動作させる場合について図6をもとに説明する。
単独操作にてマスト13を前傾動作させる場合は、ティルトシリンダ19のロッド室19rから作動油を排出する一方で、ボトム室19bに作動油を供給する。そして、本実施形態の油圧制御装置では、マスト13の前傾動作時に回生動作を行わせる場合と行わせない場合とで、作動油の給排経路を異ならせる。このため、制御部Sは、前傾動作時に回生動作の実行条件が成立するか否かの回生判定を行う。この回生判定において制御部Sは、マスト13の傾動角度が垂直を越える角度の場合には前記回生判定を肯定判定する一方で、マスト13の傾動角度が垂直を越えない角度の場合には前記回生判定を否定判定する。垂直を越える角度とは、図2に示すように、マスト13が垂直位置から前傾方向に傾動している時の角度を示す。一方、垂直を越えない角度とは、図2に示すように、マスト13が垂直位置から後傾方向に傾動している時の角度を示す。制御部Sは、ティルト側検出センサSE2の検出結果をもとにマスト13の角度を検出する。
以下、回生動作を行わせる場合について説明する。
回生動作を行わせる場合、制御部Sは、ティルトレバー23の操作量に応じた指示速度で動作させるように油圧ポンプモータ50及びモータ51の回転数を制御する。また、制御部Sは、回生用切換弁63を第1位置63aとするとともに、リフト上昇用電磁比例弁56を第2位置56bとし、さらにティルト用電磁比例弁58を第1位置58aとする。これにより、ティルトシリンダ19に対する作動油の給排経路は、破線矢印で示す経路とされる。
このとき、油圧ポンプモータ50は、ロッド室19rから排出された作動油を駆動力とし、油圧モータとして作動する。その結果、モータ51は、発電機として機能することになり、モータ51で生じた電力がインバータS1を介してバッテリBTに蓄電される。また、油圧ポンプモータ50から吐出された作動油は、リフト上昇用電磁比例弁56及びティルト用電磁比例弁58を通じて油タンクT3に排出される。一方、ボトム室19bには、その容積拡大に伴って作動油が不足するから、チェック弁62を通じて油タンクT3の作動油が吸い込まれて供給される。その結果、マスト13は、ティルトシリンダ19の収縮によって前傾動作する。
回生動作時においてティルトシリンダ19から排出された作動油は、図5に示すフォーク16の下降動作時と同様に、油圧ポンプモータ50へ流通させる。すなわち、本実施形態の油圧制御装置は、単一の油圧ポンプモータ50とモータ51で構成しているため、フォーク16の下降動作に基づく回生動作時とマスト13の前傾動作に基づく回生動作時とで何れも油圧ポンプモータ50に作動油を流通させるように回路を構築している。
次に、回生動作を行わせない場合について説明する。
回生動作を行わせない場合、制御部Sは、ティルトレバー23の操作量に応じた指示速度で動作させるように油圧ポンプモータ50及びモータ51の回転数を制御する。また、制御部Sは、回生用切換弁63を第2位置63bとするとともに、ティルト用電磁比例弁58を前記指示速度に対応する開度の第3位置58cで開く。これにより、ティルトシリンダ19に対する作動油の給排経路は、一点鎖線矢印で示す経路とされる。
このとき、油圧ポンプモータ50は、油圧ポンプとして機能することになり、油タンクT3から吸い上げた作動油を吐出口50bから吐出する。そして、作動油は、チェック弁61、ティルト用電磁比例弁58及び配管K15を通じてボトム室19bに供給される。一方、ロッド室19rから排出される作動油は、配管K16、ティルト用電磁比例弁58及び配管K14を通じて油タンクT3に排出される。その結果、マスト13は、ティルトシリンダ19の伸長によって前傾動作する。この場合、配管K15が第2油室供給用油路となる一方で、配管K16が油圧ポンプモータを迂回して油タンクT3へ油を排出する第1油室排出用油路となる。
以上説明したように、本実施形態の油圧制御装置では、回生動作を行わせる場合には前傾動作時にティルト用電磁比例弁58を閉状態とし回生用切換弁63を第1位置63aに制御する。一方、回生動作を行わせない場合には、回生用切換弁63を第2位置63bとするともに、ティルト用電磁比例弁58を第3位置58cで開状態とする。そして、本実施形態の油圧制御装置では、例えば、マスト13が最後傾位置にある時に前傾動作を開始させると、マスト13の傾動角度が垂直を越える迄の間、回生動作を行わせない場合の制御を行う。その後、マスト13の傾動角度が垂直を越えた場合には、回生動作を行う場合の制御を行う。
次に、同時操作にて、フォーク16を下降動作させる場合とマスト13を後傾動作させる場合について図7をもとに説明する。
本実施形態の油圧制御装置では、同時操作を行う場合、リフトシリンダ14のボトム室14bから排出される作動油を、ティルトシリンダ19を傾動動作させるための駆動力の全部又は一部とする構成とされている。
制御部Sは、リフトレバー22の操作量、及びティルトレバー23の操作量のうち、作動油の流量が大きくなる方の操作量に応じた指示速度で動作させるように油圧ポンプモータ50及びモータ51の回転数を制御する。また、制御部Sは、リフト下降用電磁比例弁53を第1位置53aとするとともに、回生用切換弁63を第2位置63bとし、さらにティルト用電磁比例弁58をティルトレバー23の操作量に応じた指示速度に対応する開度の第2位置58bで開く。これにより、フォーク16の下降動作とマスト13の後傾動作からなる同時操作の場合、作動油の給排経路は、図中に一点鎖線で示す経路となる。
そして、リフトシリンダ14のボトム室14bから排出される作動油は、油圧ポンプモータ50の吐出口50bから吐出されるとともに、チェック弁61、ティルト用電磁比例弁58、及び配管K16を通じてティルトシリンダ19のロッド室19rに供給される。一方、ティルトシリンダ19のボトム室19bから排出される作動油は、配管K15、ティルト用電磁比例弁58及び配管K14を通じて油タンクT3に排出される。その結果、フォーク16はリフトシリンダ14の収縮によって下降動作するとともに、マスト13はティルトシリンダ19の収縮によって後傾動作する。この場合、配管K15が第2油室排出用油路となる一方で、配管K16が第1油室供給用油路となる。
なお、リフトシリンダ14のボトム室14bから排出される流量よりも、ティルトシリンダ19のロッド室19rに供給する流量が大きい場合は、その不足分の作動油が、油圧ポンプモータ50によって油タンクT3から吸込まれる。一方、リフトシリンダ14のボトム室14bから排出される流量よりも、ティルトシリンダ19のロッド室19rに供給する流量が小さい場合は、その余剰分の作動油が、リリーフ弁60を通じて油タンクT3に排出される。
因みに、同時操作にて、フォーク16の下降動作とマスト13の前傾動作を行わせる場合は、前述したフォーク16の下降動作とマスト13の後傾動作を行わせる場合に対し、ティルト用電磁比例弁58の制御内容が異なるのみで、その他の制御内容は同一である。すなわち、制御部Sは、ティルト用電磁比例弁58をティルトレバー23の操作量に応じた指示速度に対応する開度の第3位置58cで開く。そして、リフトシリンダ14のボトム室14bから排出される作動油は、油圧ポンプモータ50の吐出口50bから吐出されるとともに、チェック弁61、ティルト用電磁比例弁58、及び配管K15を通じてティルトシリンダ19のボトム室19bに供給される。一方、ティルトシリンダ19のロッド室19rから排出される作動油は、配管K16、ティルト用電磁比例弁58及び配管K14を通じて油タンクT3に排出される。これにより、フォーク16はリフトシリンダ14の収縮によって下降動作するとともに、マスト13はティルトシリンダ19の伸長によって前傾動作する。この場合、配管K15が第2油室供給用油路となる一方で、配管K16が第1油室排出用油路となる。
したがって、第3の実施形態によれば、以下に示す効果を得ることができる。
(8)マスト13の前傾動作時には、ティルトシリンダ19から排出される作動油を駆動力として油圧ポンプモータ50を油圧モータとして駆動させることで、回生動作を行わせる。このため、マスト13が前傾動作する際の位置エネルギを利用して電気エネルギが得られるので、その電気エネルギを油圧ポンプモータ50などの電気エネルギを必要とする部材に使用することができる。したがって、マスト13を傾動動作させるためのティルトシリンダ19を効率良く動作させることができる。
(9)単一の油圧ポンプモータ50及びモータ51を備える油圧回路構成としたので、単一の油圧ポンプモータ50によって、マスト13の前傾動作時の回生動作を行わせることができる。そして、油圧ポンプモータ50を兼用し、回生用切換弁63の切換えによって前傾動作による回生動作を行わせることができるので、油圧回路構成を簡素化することができる。
(10)回生動作の実行条件が成立したか否かによって回生動作を行わせる。このため、回生動作を行わせる場合には、ティルトシリンダ19を効率良く動作させることができる一方で、回生動作を行わせない場合であっても、マスト13の前傾動作を確実に行わせることができる。また、上記実行条件が成立した場合に回生動作を行わせるので、回生動作による効果を確実に得ることができる。
(11)回生動作に加えて、リフトシリンダ14とティルトシリンダ19の同時動作を、単一の油圧ポンプモータ50によって実現することができる。したがって、油圧回路構成を簡素化することができる。
(12)回生動作により、フォークリフト11の電気エネルギを効率良く使用することができる。特に、バッテリ式のフォークリフト11の場合には、リフトシリンダ14とティルトシリンダ19を効率良く動作させることで、走行性能(走行距離など)を向上させることもできる。
(第4の実施形態)
次に、本発明を具体化した第4の実施形態を図8にしたがって説明する。
本実施形態の油圧制御装置は、配管K16に、パイロットチェック弁65が接続されている。パイロットチェック弁65は、ティルト用電磁比例弁58からの作動油を許容する一方で、常にはその逆方向からの作動油を流通させないように接続されている。そして、パイロットチェック弁65は、配管K15側(第2油室としてのボトム室19b側)の圧力をパイロット圧として作動した場合、逆方向からの作動油の流通を許容する。
本実施形態の油圧制御装置において制御部Sは、単独操作にてマスト13を前傾動作させる場合、ティルト用電磁比例弁58をティルトレバー23の操作量に応じた指示速度に対応する開度の第3位置58cで開く。これにより、本実施形態では、前傾動作時、常に、配管K15が第2油室供給用油路として開状態とされる一方で、配管K16が第1油室排出用油路として開状態とされる。
そして、制御部Sは、前述した回生判定を肯定判定した場合、回生用切換弁63を第1位置63aとして回生動作を行わせる。これにより、ティルトシリンダ19に対する作動油の給排経路は、破線矢印で示す経路とされる。すなわち、本実施形態の場合、前傾動作時にティルト用電磁比例弁58が第3位置58cで開いていることで、油圧ポンプモータ50から吐出された作動油は、チェック弁61、ティルト用電磁比例弁58、及び配管K15を通じて、ティルトシリンダ19のボトム室19bに供給される。
一方、制御部Sは、前述した回生判定を否定判定した場合、回生用切換弁63を第2位置63bとして回生動作を行わせない。これにより、ティルトシリンダ19に対する作動油の給排経路は、一点鎖線で示す経路とされる。そして、本実施形態の場合、前傾動作時にティルト用電磁比例弁58が第3位置58cで開いていることで、油圧ポンプモータ50から吐出された作動油は、チェック弁61、ティルト用電磁比例弁58、及び配管K15を通じて、ティルトシリンダ19のボトム室19bに供給される。このとき、油圧ポンプモータ50は、油圧ポンプとして機能し、回生動作を行っていない。このため、油圧ポンプモータ50の力行により、ティルトシリンダ19のボトム室19b側の圧力が上昇するとともに、その上昇に伴ってパイロットチェック弁65が開く。その結果、ティルトシリンダ19のロッド室19rから排出される作動油が、配管K16、ティルト用電磁比例弁58、及び配管K14を通じて油タンクT3に排出される。
したがって、第4の実施形態によれば、第3の実施形態の効果(8)〜(12)に加えて、以下に示す効果を得ることができる。
(13)前傾動作時には、回生動作の実行条件が成立した場合及び成立していない場合の何れでも、ティルト用電磁比例弁58によって配管K15,K16を開状態としておく。このため、回生動作の実行条件が成立した場合には回生用切換弁63によって回生用の油路を開状態とし、回生動作の実行条件が成立していない場合には回生用切換弁63によって回生用の油路を閉状態とするだけで、回生動作を行わせるか否かを容易に切換えることができる。
なお、上記各実施形態は以下のように変更してもよい。
○ 第3,第4の実施形態において、回生動作を行うことができる場合には、回生判定を肯定判定するための角度を、垂直位置よりも後傾位置よりに設定しても良い。
○ 第3,第4の実施形態において、ティルトシリンダ19のロッド室19rから排出される作動油の圧力をセンサによって検出し、その検出結果をもとに回生判定を行っても良い。
11…フォークリフト、13…マスト、14…リフトシリンダ、16…フォーク、19…ティルトシリンダ、19r…第1油室としてのロッド室、19b…第2油室としてのボトム室、30,36,50…油圧ポンプモータ、36a,36b…流通口、38,62…チェック弁、41…流量制御弁、50a…吸込口、50b…吐出口、53…リフト下降用電磁比例弁、58…ティルト用電磁比例弁、63…回生用切換弁、65…パイロットチェック弁、K15…第2油室供給用油路及び第2油室排出用油路としての配管、K16…第1油室排出用油路としての配管、K17…回生用油路としての配管、S…制御部、T2,T3…油タンク。

Claims (9)

  1. リフトシリンダへの作動油の給排によってフォークを昇降動作させるとともに、ティルトシリンダの第1油室からの作動油の排出及び第2油室への作動油の供給によって前記フォークが装着されるマストを前傾動作させるとともに、前記第1油室への作動油の供給及び前記第2油室からの作動油の排出によって前記マストを後傾動作させるフォークリフトの油圧制御装置において、
    前記第1油室から排出される作動油を油圧ポンプモータが油圧モータとして駆動するための駆動力とすることにより、前記油圧ポンプモータに回生動作を行わせることを特徴とするフォークリフトの油圧制御装置。
  2. 前記油圧ポンプモータは双方向回転可能な構成であって、
    前記ティルトシリンダへの作動油の給排経路は、前記第1油室と前記第2油室との間で作動油を給排させる閉回路で構成されており、
    前記油圧ポンプモータの回転方向を切換えることによって前記マストの前傾動作と後傾動作を切換えることを特徴とする請求項1に記載のフォークリフトの油圧制御装置。
  3. 前記リフトシリンダには、前記ティルトシリンダに接続される前記油圧ポンプモータとは別に、油圧ポンプモータが接続されていることを特徴とする請求項2に記載のフォークリフトの油圧制御装置。
  4. 前記第2油室と前記油圧ポンプモータとを接続する管路には、前記マストの前傾動作時に前記第2油室の容積拡大に伴う不足分の作動油を供給するチェック弁と前記第2油室から排出された作動油のうち余剰分の作動油を油タンクへ排出する流量制御弁とが接続されており、
    前記流量制御弁を、前記チェック弁よりも前記油圧ポンプモータの吸込口側に配置したことを特徴とする請求項2又は請求項3に記載のフォークリフトの油圧制御装置。
  5. 前記油圧ポンプモータは、前記リフトシリンダに作動油を給排する油圧ポンプモータとしても兼用されており、
    前記ティルトシリンダの第1油室には、前記第1油室から排出される作動油を前記油圧ポンプモータへ流通させる回生用油路が接続されているとともに、前記回生用油路には当該回生用油路の開閉状態を切換える回生用切換弁が接続されており、
    前記前傾動作時に、回生動作を行わせる場合には前記回生用油路を開状態とする一方で、回生動作を行わせない場合には前記回生用油路を閉状態とするように前記回生用切換弁を制御する制御部を備えたことを特徴とする請求項1に記載のフォークリフトの油圧制御装置。
  6. 前記油圧ポンプモータには、前記回生動作を行わせない場合、前記油圧ポンプモータを迂回して作動油を前記第1油室から油タンクへ排出する第1油室排出用油路を開状態とするとともに、前記第2油室へ前記油圧ポンプモータからの作動油を供給する第2油室供給用油路を開状態とするティルト用切換弁を接続することを特徴とする請求項5に記載のフォークリフトの油圧制御装置。
  7. 前記油圧ポンプモータには、前記前傾動作時、常に前記油圧ポンプモータを迂回して作動油を前記第1油室から油タンクへ排出する第1油室排出用油路を開状態とするとともに、前記第2油室へ前記油圧ポンプモータからの作動油を供給する第2油室供給用油路を開状態とするティルト用切換弁を接続し、
    前記第1油室排出用油路には、前記第2油室側の圧力をパイロット圧として逆流を許容するパイロットチェック弁を備えることを特徴とする請求項5に記載のフォークリフトの油圧制御装置。
  8. 前記油圧ポンプモータは、前記フォークの下降動作時に前記作動油を排出する前記リフトシリンダの油室にリフト用排出油路を介して接続されており、
    前記リフト用排出油路には、当該リフト用排出油路の開閉状態を切換えるリフト用切換弁が接続されており、
    前記制御部は、
    前記下降動作と後傾動作を同時に行わせる場合、前記リフト用排出油路を開状態とするように前記リフト用切換弁を制御するとともに、前記第1油室へ作動油を供給する第1油室供給用油路を開状態とし、かつ前記第2油室から油タンクへ作動油を排出する第2油室排出用油路を開状態とするように前記ティルト用切換弁を制御する一方で、
    前記下降動作と前記前傾動作を同時に行わせる場合、前記リフト用排出油路を開状態とするように前記リフト用切換弁を制御するとともに、前記第1油室排出用油路として開状態とし、かつ前記第2油室供給用油路を開状態とするように前記ティルト用切換弁を制御することを特徴とする請求項6又は請求項7に記載のフォークリフトの油圧制御装置。
  9. フォークを昇降動作させるリフトシリンダと、前記フォークが装着されるマストを傾動動作させるティルトシリンダと、を備えたフォークリフトにおいて、
    請求項1〜請求項8のうち何れか一項に記載のフォークリフトの油圧制御装置を備えたフォークリフト。
JP2011101358A 2011-04-28 2011-04-28 フォークリフトの油圧制御装置、及びフォークリフト Expired - Fee Related JP5641239B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011101358A JP5641239B2 (ja) 2011-04-28 2011-04-28 フォークリフトの油圧制御装置、及びフォークリフト

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011101358A JP5641239B2 (ja) 2011-04-28 2011-04-28 フォークリフトの油圧制御装置、及びフォークリフト

Publications (2)

Publication Number Publication Date
JP2012232815A true JP2012232815A (ja) 2012-11-29
JP5641239B2 JP5641239B2 (ja) 2014-12-17

Family

ID=47433549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011101358A Expired - Fee Related JP5641239B2 (ja) 2011-04-28 2011-04-28 フォークリフトの油圧制御装置、及びフォークリフト

Country Status (1)

Country Link
JP (1) JP5641239B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013114948A1 (ja) * 2012-02-02 2013-08-08 株式会社 豊田自動織機 フォークリフトの油圧制御装置
WO2014132792A1 (ja) * 2013-02-27 2014-09-04 株式会社 豊田自動織機 フォークリフトの油圧制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07125994A (ja) * 1993-11-08 1995-05-16 Shimadzu Corp バッテリ式産業用車両の液圧装置
JP2003192299A (ja) * 2001-12-27 2003-07-09 Shinko Electric Co Ltd バッテリーフォークリフト
JP2005076781A (ja) * 2003-09-01 2005-03-24 Shin Caterpillar Mitsubishi Ltd 作業機械の駆動装置
JP2011006262A (ja) * 2009-05-29 2011-01-13 Toyota Industries Corp 荷役用油圧制御装置の制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07125994A (ja) * 1993-11-08 1995-05-16 Shimadzu Corp バッテリ式産業用車両の液圧装置
JP2003192299A (ja) * 2001-12-27 2003-07-09 Shinko Electric Co Ltd バッテリーフォークリフト
JP2005076781A (ja) * 2003-09-01 2005-03-24 Shin Caterpillar Mitsubishi Ltd 作業機械の駆動装置
JP2011006262A (ja) * 2009-05-29 2011-01-13 Toyota Industries Corp 荷役用油圧制御装置の制御方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013114948A1 (ja) * 2012-02-02 2013-08-08 株式会社 豊田自動織機 フォークリフトの油圧制御装置
JP2013159431A (ja) * 2012-02-02 2013-08-19 Toyota Industries Corp フォークリフトの油圧制御装置
US9469515B2 (en) 2012-02-02 2016-10-18 Kabushiki Kaisha Toyota Jidoshokki Forklift hydraulic control apparatus
WO2014132792A1 (ja) * 2013-02-27 2014-09-04 株式会社 豊田自動織機 フォークリフトの油圧制御装置
CN105008264A (zh) * 2013-02-27 2015-10-28 株式会社丰田自动织机 叉车的液压控制装置
US10059575B2 (en) 2013-02-27 2018-08-28 Kabushiki Kaisha Toyota Jidoshokki Hydraulic control device for forklift

Also Published As

Publication number Publication date
JP5641239B2 (ja) 2014-12-17

Similar Documents

Publication Publication Date Title
JP5333616B2 (ja) フォークリフトの油圧制御装置
JP5352663B2 (ja) フォークリフトの油圧制御装置
JP6506146B2 (ja) 作業機械の油圧駆動装置
KR102107579B1 (ko) 건설 기계의 유압 구동 장치
EP2685011A1 (en) Shovel and method for controlling shovel
KR101669452B1 (ko) 포크 리프트의 유압 제어 장치
EP3109366B1 (en) Construction machine
JP6013503B2 (ja) 建設機械
KR101747519B1 (ko) 하이브리드식 건설 기계
JP6214327B2 (ja) ハイブリッド式建設機械
JP6398863B2 (ja) フォークリフトの油圧制御装置
JP5641239B2 (ja) フォークリフトの油圧制御装置、及びフォークリフト
JP2017015118A (ja) 建設機械の制御システム
JP5831263B2 (ja) フォークリフトの油圧制御装置
JP2008297031A (ja) 産業車両
JP4831082B2 (ja) ハイブリッド型油圧装置
JP6089609B2 (ja) フォークリフトの油圧制御装置
JP2011002085A (ja) 建設機械の油圧制御装置
JP6259631B2 (ja) 作業機械の油圧ポンプの容量制御装置
JP6149068B2 (ja) ハイブリッド作業機の制御システム
JP6514895B2 (ja) 作業機械の駆動制御システム、それを備える作業機械、及びその駆動制御方法
JP2011241080A (ja) フォークリフトの荷役用油圧回路装置
JP2016223613A (ja) ハイブリッド建設機械の制御システム
JPH02305800A (ja) バッテリ式産業車両における油圧装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141014

R151 Written notification of patent or utility model registration

Ref document number: 5641239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees