JP2012191138A - ガスセルユニット、原子発振器および電子装置 - Google Patents

ガスセルユニット、原子発振器および電子装置 Download PDF

Info

Publication number
JP2012191138A
JP2012191138A JP2011055657A JP2011055657A JP2012191138A JP 2012191138 A JP2012191138 A JP 2012191138A JP 2011055657 A JP2011055657 A JP 2011055657A JP 2011055657 A JP2011055657 A JP 2011055657A JP 2012191138 A JP2012191138 A JP 2012191138A
Authority
JP
Japan
Prior art keywords
gas cell
heater
cell unit
heating resistor
belt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011055657A
Other languages
English (en)
Other versions
JP2012191138A5 (ja
Inventor
Koji Chindo
幸治 珎道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2011055657A priority Critical patent/JP2012191138A/ja
Priority to CN2012100632981A priority patent/CN102684692A/zh
Priority to US13/418,642 priority patent/US8633773B2/en
Publication of JP2012191138A publication Critical patent/JP2012191138A/ja
Publication of JP2012191138A5 publication Critical patent/JP2012191138A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/26Automatic control of frequency or phase; Synchronisation using energy levels of molecules, atoms, or subatomic particles as a frequency reference
    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F5/00Apparatus for producing preselected time intervals for use as timing standards
    • G04F5/14Apparatus for producing preselected time intervals for use as timing standards using atomic clocks
    • G04F5/145Apparatus for producing preselected time intervals for use as timing standards using atomic clocks using Coherent Population Trapping

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ecology (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Resistance Heating (AREA)

Abstract

【課題】周波数精度を向上させることができるガスセルユニット、原子発振器および電子装置を提供すること。
【解決手段】本発明のガスセルユニット2は、ガス状のアルカリ金属原子を封入したガスセル21と、ガスセル21を加熱するヒーター22を有し、ヒーター22は、互いに平行となるように設けられた複数の帯状部222aを含む発熱抵抗体222を備え、互いに隣り合う2つの帯状部222aに流れる電流の方向を互いに反対方向とすることにより、複数の帯状部222aへの通電に伴って生じる磁場を互いに相殺または緩和させる。
【選択図】図1

Description

本発明は、ガスセルユニット、原子発振器および電子装置に関するものである。
ルビジウム、セシウム等のアルカリ金属の原子のエネルギー遷移に基づいて発振する原子発振器は、一般に、光およびマイクロ波による二重共鳴現象を利用したもの(例えば、特許文献1参照)と、波長の異なる2種類の光による量子干渉効果(CPT:Coherent Population Trapping)を利用したもの(例えば、特許文献2参照)とに大別される。
いずれの原子発振器においても、一般に、アルカリ金属をガスセル内に緩衝ガスとともに封入し、そのアルカリ金属をガス状に保つために、ガスセルを所定温度に加熱する必要がある。
例えば、特許文献3に記載の原子発振器では、ガス状の金属原子を封入したガスセルの外表面上にITOで構成された膜状の発熱体が設けられ、この発熱体を通電により発熱させる。これにより、ガスセルを加熱して、ガスセル内の金属原子をガス状に保つことができる。
このような原子発振器では、通常、ガスセル内の温度が一定となるように、発熱体へ供給される電流が調整される。そのため、例えば外気温変化に伴って、発熱体に流れる電流が変化してしまう。
このように発熱体に流れる電流が変化すると、発熱体から生じる磁場も変化してしまう。従来の原子発振機では、発熱体から生じる磁場がガスセル内に広範囲に及ぶため、発熱体から生じる磁場が変化すると、ガスセル中の金属原子の基底準位間のエネルギー差に相当する周波数が変動してしまう。このようなことから、従来の原子発振器では、出力周波数がずれてしまうという問題があった。
特開平10−284772号公報 米国特許第6806784号明細書 米国特許出願公開第2006/002276号明細書
本発明の目的は、周波数精度を向上させることができるガスセルユニット、原子発振器および電子装置を提供することにある。
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態または適用例として実現することが可能である。
[適用例1]
本発明のガスセルユニットは、ガスセルと、
前記ガスセルを加熱する第1ヒーターとを有し、
前記第1ヒーターは、互いに平行となるように設けられた第1帯状部および第2帯状部と、前記第1帯状部と前記第2帯状部が接続された構成とを含み、
前記第1帯状部に流れる電流の方向と、前記第2帯状部に流れる電流の方向とを互いに反対方向としたことを特徴とする。
このように構成されたガスセルユニットによれば、ヒーター(具体的には発熱抵抗体)への通電量が変化しても、ガスセル内の磁場の変動を抑制または防止することができる。そのため、ガスセル内の磁場の変化を抑えつつ、ガスセル内の温度を所望の温度に維持することができる。その結果、原子発振器の周波数精度を向上させることができる。
[適用例2]
本発明のガスセルユニットでは、前記第1ヒーターと同一の構成を有する第2ヒーターを備え、
前記ガスセルが前記第1ヒーターと前記第2ヒーターとに挟まれた構成を有することが好ましい。
このように構成されたガスセルユニットによれば、第1ヒーターおよび第2ヒーター(具体的には発熱抵抗体)への通電量がそれぞれ変化しても、ガスセル内の磁場の変動を抑制または防止することができる。そのため、ガスセル内の磁場の変化を抑えつつ、ガスセル内の温度を所望の温度に維持することができる。その結果、本発明のガスセルユニットは、周波数精度を向上させることができる。
[適用例3]
本発明のガスセルユニットでは、前記第1ヒーターまたは前記第2ヒーターは、前記第1帯状部および前記第2帯状部を複数備え、前記第1帯状部と前記第2帯状部が交互に並んでいることが好ましい。
これにより、第1帯状部への通電に伴って生じる磁場と、第2帯状部への通電に伴って生じる磁場とを互いに効率的に相殺または緩和させることができる。
[適用例4]
本発明のガスセルユニットでは、前記第1帯状部と前記第2帯状部とが接続された構成の形状が、蛇行した形状をなしていることが好ましい。
これにより、発熱抵抗体への通電のための配線を簡単化することができる。
[適用例5]
本発明のガスセルユニットでは、前記第1帯状部および前記第2帯状部は、膜状の発熱抵抗体であることが好ましい。
これにより、発熱抵抗体を各種成膜法により簡単かつ高い寸法精度で形成することができる。
[適用例6]
本発明のガスセルユニットでは、前記第1帯状部および前記第2帯状部は、前記ガスセルとは別体として設けられた絶縁性の基板上に接合されていることが好ましい。
これにより、発熱抵抗体の各部同士の短絡を防止しつつ、発熱抵抗体の設置を容易なものとすることができる。
[適用例7]
本発明のガスセルユニットでは、前記第1帯状部および前記第2帯状部は、前記ガスセルの外表面に接合されていることが好ましい。
これにより、発熱抵抗体とガスセルの間の距離を小さくし、発熱抵抗体からの熱をガスセルに効率的に伝達することができる。また、発熱抵抗体とガスセルとの間に隙間が生じるのを防止することができる。そのため、ガスセルを均一かつ効率的に加熱することができる。
[適用例8]
本発明の原子発振器は、本発明のガスセルユニットと、
前記ガスセル中のアルカリ金属原子を励起する励起光を出射する光出射部と、
前記ガスセルを透過した前記励起光の強度を検出する光検出部とを備えることを特徴とする。
これにより、優れた周波数精度を有する原子発振器を提供することができる。
[適用例9]
本発明の電子装置は、本発明の原子発振器を備えたことを特徴とする。
これにより、優れた信頼性を有する電子装置を提供することができる。
本発明の第1実施形態に係る原子発振器の概略構成を示すブロック図である。 図1に示す原子発振器に備えられたガスセル内のアルカリ金属のエネルギー状態を説明するための図である。 図1に示す原子発振器に備えられた光出射部および光検出部について、光出射部からの2つの光の周波数差と、光検出部の検出強度との関係を示すグラフである。 図1に示す原子発振器に備えられたガスセルユニットの概略構成を示す斜視図である。 図4に示すガスセルユニットを示す断面図である。 図5に示すヒーターに備えられた発熱抵抗体を示す図である。 図5に示すヒーターに備えられた発熱抵抗体への通電に伴って生じる磁場を説明するための図である。 本発明の第2実施形態に係るガスセルユニットに備えられたヒーターを示す図である。 本発明の第3実施形態に係るガスセルユニットに備えられたヒーターを示す図である。 本発明の第4実施形態に係るガスセルユニットに備えられたヒーターを示す図である。 本発明の第5実施形態に係るガスセルユニットを示す断面図である。 (a)は、図11に示すヒーターの基板の一方の面上に設けられた発熱抵抗体(第1発熱抵抗体)を示す図、(b)は、図11に示すヒーターの基板の他方の面上に設けられた発熱抵抗体を示す図である。 本発明の第6実施形態に係るガスセルユニットを示す断面図である。 本発明の第7実施形態に係るガスセルユニットを示す断面図である。 GPS衛星を利用した測位システムに本発明の原子発振器を用いた場合のシステム構成概要図である。
以下、本発明のガスセルユニットおよび原子発振器を添付図面に示す実施形態に基づいて詳細に説明する。
<第1実施形態>
図1は、本発明の第1実施形態に係る原子発振器の概略構成を示すブロック図、図2は、図1に示す原子発振器に備えられたガスセル内のアルカリ金属のエネルギー状態を説明するための図、図3は、図1に示す原子発振器に備えられた光出射部および光検出部について、光出射部からの2つの光の周波数差と、光検出部の検出強度との関係を示すグラフ、図4は、図1に示す原子発振器に備えられたガスセルユニットの概略構成を示す斜視図、図5は、図4に示すガスセルユニットを示す断面図、図6は、図5に示すヒーターに備えられた発熱抵抗体を示す図、図7は、図5に示すヒーターに備えられた発熱抵抗体への通電に伴って生じる磁場を説明するための図である。なお、以下では、説明の便宜上、図4、5、7中の上側を「上」、下側を「下」と言う。また、説明の便宜上、図4〜7では、互いに直交する3つの軸として、X軸、Y軸およびZ軸を図示しており、X軸に平行な方向を「X軸方向」、Y軸に平行な方向を「Y軸方向」、Z軸に平行な方向(上下方向)を「Z軸方向」と言う。
(原子発振器)
まず、図1〜図3に基づいて、本実施形態に係る原子発振器の全体構成を簡単に説明する。
なお、以下では、量子干渉効果を利用した原子発振器に本発明を適用した場合を一例として説明するが、本発明は、これに限定されるものでななく、二重共鳴効果を利用した原子発振器にも適用可能である。
図1に示す原子発振器1は、ガスセルユニット2と、光出射部3と、光検出部4と、制御部5とを有している。
また、ガスセルユニット2は、ガス状のアルカリ金属を封入したガスセル21と、ガスセル21を加熱するヒーター22、23と、ガスセル21の温度を検出する温度センサー24、25と、ガスセル21に作用する磁場を発生させるコイル26とを有している。
ガスセル21の内部には、ガス状のルビジウム、セシウム、ナトリウム等のアルカリ金属が封入されている。
アルカリ金属は、図2に示すように、3準位系のエネルギー準位を有しており、エネルギー準位の異なる2つの基底状態(基底状態1、2)と、励起状態との3つの状態をとり得る。ここで、基底状態1は、基底状態2よりも低いエネルギー状態である。
このようなガス状のアルカリ金属に対して周波数の異なる2種の共鳴光1、2を照射すると、共鳴光1の周波数ω1と共鳴光2の周波数ω2との差(ω1−ω2)に応じて、共鳴光1、2のアルカリ金属における光吸収率(光透過率)が変化する。
そして、共鳴光1の周波数ω1と共鳴光2の周波数ω2との差(ω1−ω2)が基底状態1と基底状態2とのエネルギー差に相当する周波数に一致したとき、基底状態1、2から励起状態への励起がそれぞれ停止する。このとき、共鳴光1、2は、いずれも、アルカリ金属に吸収されずに透過する。このような現象をCPT現象または電磁誘起透明化現象(EIT:Electromagnetically Induced Transparency)と呼ぶ。
光出射部3は、ガスセル21中のアルカリ金属原子を励起する励起光を出射するものである。
より具体的には、光出射部3は、前述したような周波数の異なる2種の光(共鳴光1および共鳴光2)を出射するものである。
共鳴光1の周波数ω1は、ガスセル21中のアルカリ金属を前述した基底状態1から励起状態に励起し得るものである。
また、共鳴光2の周波数ω2は、ガスセル21中のアルカリ金属を前述した基底状態2から励起状態に励起し得るものである。
また、上記励起光(共鳴光1、2)は、コヒーレント性を有するのが好ましい。
このような光出射部3は、例えば、半導体レーザー等のレーザー光源で構成することができる。
光検出部4は、ガスセル21を透過した共鳴光1、2の強度を検出するものである。
例えば、前述した光出射部3が共鳴光1の周波数ω1を固定し、共鳴光2の周波数ω2を変化させていくと、共鳴光1の周波数ω1と共鳴光2の周波数ω2との差(ω1−ω2)が基底状態1と基底状態2とのエネルギー差に相当する周波数ω0に一致したとき、光検出部4の検出強度は、図3に示すように、急峻に上昇する。このような急峻な信号をEIT信号として検出する。このEIT信号は、アルカリ金属の種類によって決まった固有値をもっている。したがって、このようなEIT信号を用いることにより、発振器を構成することができる。
このような光検出部4は、例えば、受光した光の強度に応じた検出信号を出力する光検出器で構成することができる。
制御部5は、ヒーター22、23および光出射部3を制御する機能を有する。
このような制御部5は、光出射部3の共鳴光1、2の周波数を制御する周波数制御回路51と、ガスセル21中のアルカリ金属の温度を制御する温度制御回路52と、ガスセル21に印加する磁場を制御する磁場制御回路53とを有する。
周波数制御回路51は、前述した光検出部4の検出結果に基づいて、光出射部3から出射される共鳴光1、2の周波数を制御する。より具体的には、周波数制御回路51は、前述した光検出部4によって検出された(ω1−ω2)が前述したアルカリ金属固有の周波数ω0となるように、光出射部3から出射される共鳴光1、2の周波数を制御する。
また、温度制御回路52は、温度センサー24、25の検出結果に基づいて、ヒーター22、23への通電を制御する。
また、磁場制御回路53は、コイル26が発生する磁場が一定となるように、コイル26への通電を制御する。
(ガスセルユニット)
次に、ガスセルユニット2について詳述する。
ガスセルユニット2は、図4に示すように、ガスセル21と、ガスセル21を挟持するように設けられた1対のヒーター22、23とを有している。
[ガスセル]
ガスセル21は、図5に示すように、1対の板状部211、212と、これらの間に設けられたスペーサー213とを有している。
板状部211、212は、それぞれ、前述した光出射部3からの励起光に対する透過性を有している。本実施形態では、板状部212は、ガスセル21内へ入射する励起光が透過するものであり、板状部211は、ガスセル21内から出射した励起光が透過するものである。
本実施形態では、板状部211、212は、それぞれ、板状をなしている。また、板状部211、212は、平面視にて四角形をなしている。なお、板状部211、212の形状は、前述したものに限定されず、例えば、平面視にて円形をなしていてもよい。
このような板状部211、212を構成する材料は、前述したような励起光に対する透過性を有していれば、特に限定されないが、例えば、ガラス材料、水晶等が挙げられる。
また、スペーサー213は、前述した1対の板状部211、212間に空間Sを形成するものである。この空間Sには、前述したようなアルカリ金属が封入されている。
本実施形態では、スペーサー213は、枠状または筒状をなし、平面視にて外周および内周がそれぞれ四角形をなしている。なお、スペーサー213の形状は、前述したものに限定されず、例えば、平面視にて外周および内周がそれぞれ円形をなしていてもよい。
また、スペーサー213は、各板状部211、212に対して気密的に接合されている。これにより、1対の板状部211、212間の空間Sを気密空間とすることができる。スペーサー213と各板状部211、212との接合方法としては、スペーサー213や各板状部211、212の構成材料に応じて決められるものであり、特に限定されないが、例えば、接着剤による接合方法、直接接合法、陽極接合法等を用いることができる。
このようなスペーサー213を構成する材料は、特に限定されず、金属材料、樹脂材料等であってもよく、板状部211、212と同様にガラス材料、水晶等であってもよい。
[ヒーター]
ヒーター22、23は、それぞれ、前述したガスセル21(より具体的にはガスセル21中のアルカリ金属)を加熱する機能を有する。これにより、ガスセル21中のアルカリ金属の蒸気圧が所定の圧力値以上となるように維持され、所望量のアルカリ金属をガス状に保つことができる。
本実施形態では、ヒーター22、23は、ガスセル21を挟むように設けられている。また、ヒーター22、23は、ガスセル21を介して上下対称となるように構成されている。なお、ヒーター22、23は、ガスセル21を介して上下非対称となるように構成されていてもよい。また、例えば、ヒーター22、23は、ガスセル21を中心としてY軸に平行な軸線回りに回転対称となるように構成されてもよい。
このヒーター22は、基板221と、基板221の一方の面(図5にて上側の面)上に設けられた発熱抵抗体(第1発熱抵抗体)222とを有している。
同様に、ヒーター23は、基板231と、基板231の一方の面(図5にて下側の面)上に設けられた発熱抵抗体(第1発熱抵抗体)232とを有している。
以下、ヒーター22の各部を詳細に説明する。なお、ヒーター23の構成については、ヒーター22の構成と同様であるため、その説明を省略する。
本実施形態では、基板221は、平面視にて四角形(より具体的には長方形)をなしている。なお、基板221の平面視形状は、長方形に限定されず、正方形、菱形、台形等の他の四角形であってもよいし、三角形、五角形等の他の多角形であってもよいし、円形、楕円形、異形状等であってもよい。
基板221は、ガスセル21中のアルカリ金属原子を励起する励起光に対する透過性を有する。これにより、励起光の光路上(具体的にはガスセル21の外表面の励起光の出射部分上)にヒーター22を設け、励起光の光路内のアルカリ金属をヒーター22により効率的に加熱することができる。なお、本実施形態では、図4に示すように、励起光は、ヒーター23を介してガスセル21内に入射され、ガスセル21内からヒーター22を介して出射される。
また、基板221は、絶縁性を有する。これにより、発熱抵抗体222の各部同士の短絡を防止することができる。また、ガスセル21とは別体として設けられた基板221上に発熱抵抗体222を形成することにより、発熱抵抗体222の設置を容易なものとすることができる。
このような基板221の構成材料としては、前述したような絶縁性および光透過性を有し、発熱抵抗体222の発熱に耐え得るものであれば、特に限定されないが、例えば、ガラス材料、水晶等を用いることができる。
また、基板221の厚さは、特に限定されないが、例えば、0.001〜10mm程度である。
このような基板221のガスセル21側の面は、ガスセル21に接触している。なお、基板221およびガスセル21は、互いに接合されていてもよいし、互いに接合されていなくてもよい。また、基板221とガスセル21との間に接合のための接合層や高熱伝導性の熱伝導層等の層が介在していてもよい。ただし、このような接合層や熱伝導層等の層は、励起光に対する透過性を有する必要がある。
また、基板221のガスセル21とは反対側の面には、発熱抵抗体(第1発熱抵抗体)222が接合されている。
発熱抵抗体222は、通電により発熱するものである。本実施形態では、発熱抵抗体(第1発熱抵抗体)222が基板221のガスセル21とは反対側の面に接合されているので、発熱抵抗体222からの熱が基板221を介してガスセル21に伝達される。その際、発熱抵抗体222からの熱が基板221内で基板221の面方向に適度に拡散されるので、後述するような発熱抵抗体222のパターンが粗くても(より具体的には例えば帯状部222a同士間の距離が大きくても)、ガスセル21を均一に加熱することができる。
また、本実施形態では、発熱抵抗体222は、ガスセル21中のアルカリ金属原子を励起する励起光に対する透過性を有する。これにより、ガスセル21の外表面の励起光の出射部にヒーター22を設け、励起光の光路内のアルカリ金属をヒーター22により効率的に加熱することができる。
特に、発熱抵抗体222は、通電に伴って生じる磁場が外側へ漏れるのを防止または抑制するように構成されている。これにより、発熱抵抗体222への通電量が変化しても、ガスセル21内の磁場の変動を抑制または防止することができる。そのため、ガスセル21内の磁場の変化を抑えつつ、ガスセル21内の温度を所望の温度に維持することができる。その結果、原子発振器1の周波数精度を向上させることができる。
具体的に説明すると、図6に示すように、発熱抵抗体222は、蛇行形状をなしている。これにより、発熱抵抗体222の通電経路(電流の流れる経路)を、通電に伴って生じる磁場が外側へ漏れるのを防止または抑制し得るものとするとともに、発熱抵抗体222への通電のための配線を簡単化することができる。なお、発熱抵抗体222への通電のための配線は、特に限定されないが、例えば、ボンディングワイヤー、フレキシブルプリント基板等を用いることができる。また、発熱抵抗体222への通電の配線の一部が基板221の側面上やガスセル21の側面上に形成されていてもよい。
このような発熱抵抗体222は、複数の帯状部222aと、複数の連結部222b、222cとで構成されている。
複数の帯状部222aのそれぞれは短冊形状(長方形の形状)を有し、それぞれX軸方向に延在し、互いに間隔を隔てて平行となるように設けられている。
また、本実施形態では、複数の帯状部222aの幅(Y軸方向での長さ)は、互いに等しい。また、各帯状部222aの幅は、帯状部222aの厚さ、発熱量、通電量、構成材料、抵抗値等に応じて決められるものであり、特に限定されないが、例えば、0.01mm以上10mm以下程度である。なお、複数の帯状部222aの幅は、互いに異なっていてもよい。
また、本実施形態では、複数の帯状部222aは、等ピッチで設けられている。また、複数の帯状部222aのピッチPは、特に限定されないが、帯状部222aの幅よりも小さいのが好ましく、また、帯状部222a同士間の絶縁性を確保し得る限りできるだけ小さいのが好ましい。なお、複数の帯状部222aは、不等ピッチで設けられていてもよい。
このような複数の帯状部222aは、互いに隣接する2つの帯状部222aの一端部同士と他端部同士とが交互に連結部222b、222cを介して連結されている。これにより、発熱抵抗体222が蛇行形状をなす。
図6に示すように、このような発熱抵抗体222は、その一端部(図6中左側端部)から他端部(図6中右側端部)へ電流を流すと、複数の帯状部222aに流れる電流の方向は、一端部側から他端部側に向けて順に、交互に反対方向となる。すなわち、発熱抵抗体222は、複数の帯状部222aのうち、−X方向に電流が流れる複数の帯状部222a1と、+X方向に電流が流れる複数の帯状部222a2とを含み、帯状部222a1と帯状部222a2とがY軸方向に交互に並んで設けられている。
このように、発熱抵抗体222は、帯状部222a1(第1帯状部)に流れる電流の方向(図6の矢印a1で示す方向)と、帯状部222a2(第2帯状部)に流れる電流の方向(図6の矢印a2で示す方向)とを互いに反対方向とすることができる。これにより、図7に示すように、帯状部222a1への通電に伴って生じる磁場の向き(図7の矢印b1で示す方向)と、帯状部222a2への通電に伴って生じる磁場の向き(図7の矢印b2で示す方向)とを互いに反対方向とすることができる。その結果、帯状部222a1への通電に伴って生じる磁場と、帯状部222a2への通電に伴って生じる磁場とを互いに相殺または緩和させることができる。
そのため、ヒーター22(具体的には発熱抵抗体222)への通電量が変化しても、ガスセル21内の磁場の変動を抑制または防止することができる。そのため、ガスセル21内の磁場の変化を抑えつつ、ガスセル21内の温度を所望の温度に維持することができる。その結果、原子発振器1の周波数精度を向上させることができる。
また、本実施形態では、前述したように帯状部222a1(第1帯状部)および帯状部222a2(第2帯状部)が交互に並んで設けられているので、帯状部222a1への通電に伴って生じる磁場と、帯状部222a2への通電に伴って生じる磁場とを互いに効率的に相殺または緩和させることができる。
なお、帯状部222a1(第1帯状部)および帯状部222a2(第2帯状部)のうちいずれか一方の帯状部は、抵抗値がゼロに近い抵抗体(導体)であって、通電による発熱がほとんど生じないものであってもよい。例えば、抵抗値がゼロに近い抵抗体(導体)で帯状部222a2(第2帯状部)を構成した場合、帯状部222a2は、発熱する機能を実質的に有さないが、磁場を相殺または緩和する機能、および、各帯状部222a1への通電のための配線としての機能を有することとなる。また、図6、7に示す電流および磁場の向き(方向)は一例であり、これに限定されず、例えば、矢印a1、a2の方向(矢印b1、b2の方向についても同様)が図示のものとは逆方向であってもよい。
また、発熱抵抗体222は、薄膜状をなしている。これにより、発熱抵抗体222を各種成膜法により簡単かつ高い寸法精度で形成することができる。
このような発熱抵抗体222の構成材料としては、前述したように通電により発熱するとともに励起光に対する光透過性を有するものであれば、特に限定されないが、例えば、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、In、SnO、Sb含有SnO、Al含有ZnO等の酸化物等の透明電極材料を用いるのが好ましい。
このような透明電極材料は、好適な光透過性を有するとともに、通電により効率的に発熱することができる。
また、発熱抵抗体222が透明電極材料で構成されていると、励起光の光路上にヒーター22を設けることができる。そのため、ガスセル21の励起光の出射部をヒーター22により効率的に加熱することができる。
発熱抵抗体222、223の厚さは、特に限定されないが、例えば、0.1μm以上1mm以下程度である。
なお、発熱抵抗体222の構成材料は、一様に同一材料で構成されていてもよいし、一部が他の部分とは異なっていてもよい。
また、発熱抵抗体222の形成は、特に限定されないが、例えば、PVD法(物理気相成長法)、プラズマCVD、熱CVDのような化学蒸着法(CVD)、真空蒸着等の乾式メッキ法、ゾル・ゲル法等を用いて形成することができる。
このような発熱抵抗体222は、その一端部および他端部が温度制御回路52に電気的に接続され、その一端部と他端部との間に電圧が印加される。これにより、複数の帯状部222aが電源に対して直列に接続される。
[温度センサー]
また、ガスセルユニット2は、温度センサー24、23を有する。前述したようなヒーター22、23の発熱量は、この温度センサー24、25の検出結果に基づいて制御される。これにより、ガスセル21内のアルカリ金属原子を所望の温度に維持することができる。
温度センサー24は、ヒーター22またはガスセル21の板状部211の温度を検出するものである。また、温度センサー25は、ヒーター23またはガスセル21の板状部212の温度を検出するものである。
このような温度センサー24、25の設置位置は、特に限定されず、図示しないが、例えば、温度センサー24にあっては、ヒーター22上またはガスセル21の外表面の板状部211付近上、温度センサー25にあっては、ヒーター23上またはガスセル21の外表面の板状部212付近上である。
温度センサー24、25としては、それぞれ、特に限定されず、サーミスタ、熱電対等の公知の各種温度センサーを用いることができる。
このような温度センサー24、25は、図示しない配線を介して、前述した温度制御回路52に電気的に接続されている。
そして、温度制御回路52は、温度センサー24の検知結果に基づいて、前述したヒーター22の通電量を制御する。また、温度制御回路52は、温度センサー25の検知結果に基づいて、前述したヒーター23への通電量を制御する。
このように2つの温度センサー24、25を用いて、ヒーター22、23への通電量を制御することにより、より高精度な温度制御が可能となる。また、ガスセル21内の温度のバラツキ(励起光の入射側と出射側との温度差)を防止することができる。
[コイル]
また、ガスセルユニット2は、コイル26を有する(図1参照)。
このようなコイル26は、通電により、磁場を発生させる。これにより、ガスセル21中のアルカリ金属に磁場を印加することにより、アルカリ金属の縮退している異なるエネルギー状態間のギャップを拡げて、分解能を向上させることができる。その結果、原子発振器1の発振周波数の精度を高めることができる。
このコイル26の設置位置は、特に限定されず、図示しないが、例えば、ソレノイド型を構成するようにガスセル21の外周に沿って巻回して設けられていてもよいし、ヘルムホルツ型を構成するように1対のコイルをガスセル21を介して対向させてもよい。
このコイル26は、図示しない配線を介して、前述した磁場制御回路53に電気的に接続されている。これにより、コイル26に通電を行うことができる。
このようなコイル26の構成材料としては、特に限定されないが、例えば、銀、銅、パラジウム、白金、金、または、これらの合金等が挙げられ、これらのうち1種または2種以上を組み合わせて用いることができる。
以上説明したような本実施形態のガスセルユニット2によれば、帯状部222a1に流れる電流の方向と、帯状部222a2に流れる電流の方向とが互いに反対方向となっているので、帯状部222a1への通電に伴って生じる磁場と、帯状部222a2への通電に伴って生じる磁場とを互いに相殺または緩和させることができる。すなわち、発熱抵抗体222は、通電に伴って生じる磁場が外側(より具体的にはガスセル21内)へ漏れるのを防止または抑制するように構成されている。同様に、発熱抵抗体223も、通電に伴って生じる磁場が外側へ漏れるのを防止または抑制するように構成されている。
そのため、ヒーター22、23への通電量が変化しても、ガスセル21内の磁場の変動を抑制または防止することができる。そのため、ガスセル21内の磁場の変化を抑えつつ、ガスセル21内の温度を所望の温度に維持することができる。その結果、原子発振器1の周波数精度を向上させることができる。
また、このようなガスセルユニット2を備える原子発振器1によれば、優れた周波数精度を有する。
<第2実施形態>
次に、本発明の第2実施形態について説明する。
図8は、本発明の第2実施形態に係るガスセルユニットに備えられたヒーターを示す図である。
本実施形態にかかるガスセルユニットは、ヒーターの発熱抵抗体の構成(主に形状)が異なる以外は、前述した第1実施形態にかかるガスセルユニットと同様である。
なお、以下の説明では、第2実施形態のガスセルユニットに関し、第1実施形態との相違点を中心に説明し、同様の事項に関してはその説明を省略する。また、図8において、前述した実施形態と同様の構成については、同一符号を付している。
図8に示すガスセルユニット2Aは、前述した第1実施形態のガスセルユニット2において、ヒーター22に代えて、ヒーター22Aが設けられている。なお、図示しないが、ガスセルユニット2Aは、前述した第1実施形態のガスセルユニット2において、ヒーター23に代えて、ヒーター22Aと同様のヒーターが設けられていてもよい。
ヒーター22Aは、通電により発熱する発熱抵抗体222Aを備える。
この発熱抵抗体222Aは、互いに平行となるように設けられた複数の帯状部222aで構成されている。すなわち、発熱抵抗体222Aは、前述した第1実施形態のヒーター22の発熱抵抗体222において、連結部222b、222cを省略したものと同様に構成されている。
この発熱抵抗体222Aは、第1実施形態の発熱抵抗体222と同様、帯状部222a1(第1帯状部)に流れる電流の方向と、帯状部222a2(第2帯状部)に流れる電流の方向とが互いに反対方向となっている。
また、発熱抵抗体222Aは、複数の帯状部222aが電源に対して並列に接続され、各帯状部222aの一端部と他端部との間に電圧が印加される。これにより、電源電圧を抑えることができる。
以上説明したような第2実施形態に係るガスセルユニット2Aによっても、周波数精度を向上させることができる。
<第3実施形態>
次に、本発明の第3実施形態について説明する。
図9は、本発明の第3実施形態に係るガスセルユニットに備えられたヒーターを示す図である。
本実施形態にかかるガスセルユニットは、ヒーターの発熱抵抗体の構成(主に形状)が異なる以外は、前述した第1実施形態にかかるガスセルユニットと同様である。
なお、以下の説明では、第3実施形態のガスセルユニットに関し、第1実施形態との相違点を中心に説明し、同様の事項に関してはその説明を省略する。また、図9において、前述した実施形態と同様の構成については、同一符号を付している。
図9に示すガスセルユニット2Bは、前述した第1実施形態のガスセルユニット2において、ヒーター22に代えて、ヒーター22Bが設けられている。なお、図示しないが、ガスセルユニット2Bは、前述した第1実施形態のガスセルユニット2において、ヒーター23に代えて、ヒーター22Bと同様のヒーターが設けられていてもよい。
ヒーター22Bは、通電により発熱する発熱抵抗体222Bを備える。
この発熱抵抗体222Bは、互いに平行となるように設けられた複数の帯状部222aと、複数の連結部222bとで構成されている。すなわち、発熱抵抗体222Bは、前述した第1実施形態のヒーター22の発熱抵抗体222において、連結部222cを省略したものと同様に構成されている。
この発熱抵抗体222Bは、第1実施形態の発熱抵抗体222と同様、帯状部222a1(第1帯状部)に流れる電流の方向と、帯状部222a2(第2帯状部)に流れる電流の方向とが互いに反対方向となっている。
このような発熱抵抗体222Bは、複数の帯状部222aの一端部側(図9中上側)のみからの通電を行うことができる。そのため、発熱抵抗体222Bへの通電のための配線を、前述した第2実施形態の発熱抵抗体222Aへの通電のための配線に比し簡単化することができる。また、連結部222bにより連結された対となる2つの帯状部222a1、222a2ごとに、複数の帯状部222aを電源に対して並列に接続することができる。そのため、前述した第1実施形態に比し電源電圧を抑えることができる。
以上説明したような第3実施形態に係るガスセルユニット2Bによっても、周波数精度を向上させることができる。
<第4実施形態>
次に、本発明の第4実施形態について説明する。
図10は、本発明の第4実施形態に係るガスセルユニットに備えられたヒーターを示す図である。
本実施形態にかかるガスセルユニットは、ヒーターの発熱抵抗体の構成(主に形状)が異なる以外は、前述した第1実施形態にかかるガスセルユニットと同様である。また、本実施形態にかかるガスセルユニットは、ヒーターの発熱抵抗体への通電の仕方(通電のための配線の構成)が異なる以外は、前述した第3実施形態にかかるガスセルユニットと同様である。
なお、以下の説明では、第4実施形態のガスセルユニットに関し、第1実施形態との相違点を中心に説明し、同様の事項に関してはその説明を省略する。また、図10において、前述した実施形態と同様の構成については、同一符号を付している。
図10に示すガスセルユニット2Cは、前述した第1実施形態のガスセルユニット2において、ヒーター22に代えて、ヒーター22Cが設けられている。なお、図示しないが、ガスセルユニット2Cは、前述した第1実施形態のガスセルユニット2において、ヒーター23に代えて、ヒーター22Cと同様のヒーターが設けられていてもよい。
ヒーター22Cは、通電により発熱する発熱抵抗体222Cを備える。
この発熱抵抗体222Cは、互いに平行となるように設けられた複数の帯状部222aと、複数の連結部222bとで構成されている。すなわち、発熱抵抗体222Cは、前述した第3実施形態のヒーター22Bの発熱抵抗体222Bと同様の形状をなしている。
この発熱抵抗体222Cは、連結部222bにより連結された対となる2つの帯状部222a(帯状部222a1および帯状部222a2)に流れる電流の方向は互いに反対方向となるが、2つの対間で互いに隣接する2つの帯状部222a同士(帯状部222a1同士、帯状部222a2同士)に流れる電流の方向は互いに同方向となっている。
以上説明したような第4実施形態に係るガスセルユニット2Cによっても、周波数精度を向上させることができる。
<第5実施形態>
次に、本発明の第5実施形態について説明する。
図11は、本発明の第5実施形態に係るガスセルユニットを示す断面図、図12(a)は、図11に示すヒーターの基板の一方の面上に設けられた発熱抵抗体(第1発熱抵抗体)を示す図、図12(b)は、図11に示すヒーターの基板の他方の面上に設けられた発熱抵抗体を示す図である。
本実施形態にかかるガスセルユニットは、ヒーターの構成が異なる以外は、前述した第1実施形態にかかるガスセルユニットと同様である。
なお、以下の説明では、第5実施形態のガスセルユニットに関し、第1実施形態との相違点を中心に説明し、同様の事項に関してはその説明を省略する。また、図11、12において、前述した実施形態と同様の構成については、同一符号を付している。
図11に示すガスセルユニット2Dは、ガスセル21と、ガスセル21を挟持するように設けられた1対のヒーター22D、23Dとを有している。
ヒーター22Dは、基板221と、基板221に対してガスセル21とは反対側に設けられた発熱抵抗体(第2発熱抵抗体)222と、基板221に対してガスセル21側に設けられた発熱抵抗体(第1発熱抵抗体)223とを有している。
発熱抵抗体223は、互いに間隔を隔てて並設された複数の帯状部223aを有し、発熱抵抗体222と同様に構成されている。
このような発熱抵抗体223は、基板221のガスセル21側の面に接合されているので、発熱抵抗体223とガスセル21の間の距離を小さくし、発熱抵抗体223からの熱をガスセル21に効率的に伝達することができる。また、本実施形態では、基板221のガスセル21とは反対側の面上にも発熱抵抗体222が設けられているので、ヒーター22の発熱量を大きくすることができる。
同様に、ヒーター23Dは、基板231と、基板231に対してガスセル21とは反対側に設けられた発熱抵抗体(第2発熱抵抗体)232と、基板231に対してガスセル21側に設けられた発熱抵抗体(第1発熱抵抗体)233とを有している。
以上説明したような第5実施形態に係るガスセルユニット2Dによっても、周波数精度を向上させることができる。
<第6実施形態>
次に、本発明の第6実施形態について説明する。
図13は、本発明の第6実施形態に係るガスセルユニットを示す断面図である。
本実施形態にかかるガスセルユニットは、ヒーターの構成が異なる以外は、前述した第1実施形態にかかるガスセルユニットと同様である。また、本実施形態にかかるガスセルユニットは、基板のガスセルとは反対側の面上に設けられた発熱抵抗体を省略した以外は、前述した第5実施形態にかかるガスセルユニットと同様である。
なお、以下の説明では、第6実施形態のガスセルユニットに関し、第1実施形態との相違点を中心に説明し、同様の事項に関してはその説明を省略する。また、図13において、前述した実施形態と同様の構成については、同一符号を付している。
図13に示すガスセルユニット2Eは、ガスセル21と、ガスセル21を挟持するように設けられた1対のヒーター22E、23Eとを有している。
ヒーター22Eは、基板221と、基板221に対してガスセル21側に設けられた発熱抵抗体223とを有している。言い換えると、ヒーター22Eは、前述した第1実施形態のヒーター22を表裏反転させたものと同様に構成されている。
同様に、ヒーター23Eは、基板231と、基板231に対してガスセル21側に設けられた発熱抵抗体233とを有している。
以上説明したような第6実施形態に係るガスセルユニット2Eによっても、周波数精度を向上させることができる。
<第7実施形態>
次に、本発明の第7実施形態について説明する。
図14は、本発明の第7実施形態に係るガスセルユニットを示す断面図である。
本実施形態にかかるガスセルユニットは、ヒーターの構成が異なる以外は、前述した第1実施形態にかかるガスセルユニットと同様である。
なお、以下の説明では、第7実施形態のガスセルユニットに関し、第1実施形態との相違点を中心に説明し、同様の事項に関してはその説明を省略する。また、図14において、前述した実施形態と同様の構成については、同一符号を付している。
図14に示すガスセルユニット2Fは、ガスセル21と、ガスセル21を挟持するように設けられた1対のヒーター22F、23Fとを有している。
ヒーター22Fは、ガスセル21の上面に接合された発熱抵抗体224を有している。
この発熱抵抗体224は、前述した第1実施形態の発熱抵抗体222と同様にパターンニングされている。
このような発熱抵抗体224は、ガスセル21の外表面に接合されているので、発熱抵抗体224とガスセル21の間の距離を小さくし、発熱抵抗体224からの熱をガスセル21に効率的に伝達することができる。また、発熱抵抗体224とガスセル21との間に隙間が生じるのを防止することができる。そのため、ガスセル21を均一かつ効率的に加熱することができる。
同様に、ヒーター23Fは、ガスセル21の下面に接合された発熱抵抗体234を有している。
図15は、GPS衛星を利用した測位システムに本発明の原子発振器を用いた場合のシステム構成概要図である。
図15に示す測位システム100は、GPS衛星200と、基地局装置300と、GPS受信装置400とで構成されている。
GPS衛星200は、測位情報(GPS信号)を送信する。
基地局装置300は、例えば電子基準点(GPS連続観測局)に設置されたアンテナ301を介してGPS衛星200からの測位情報を高精度に受信する受信装置302と、この受信装置302で受信した測位情報をアンテナ303を介して送信する送信装置304とを備える。
ここで、受信装置302は、その基準周波数発振源として前述した本発明の原子発振器1を備える電子装置である。このような受信装置302は、優れた信頼性を有する。また、受信装置302で受信された測位情報は、リアルタイムで送信装置304により送信される。
GPS受信装置400は、GPS衛星200からの測位情報をアンテナ401を介して受信する衛星受信部402と、基地局装置300からの測位情報をアンテナ403を介して受信する基地局受信部404とを備える。
以上、本発明のガスセルユニット、原子発振器および電子装置について、図示の実施形態に基づいて説明したが、本発明は、これらに限定されるものではない。
また、本発明のガスセルユニットおよび原子発振器では、各部の構成は、同様の機能を発揮する任意の構成のものに置換することができ、また、任意の構成を付加することもできる。
また、本発明のガスセルユニットおよび原子発振器は、前述した各実施形態の任意の構成同士を組み合わせるようにしてもよい。
例えば、前述した実施形態では、ガスセルユニットに備えられた2つのヒーター(第1ヒーター、第2ヒーター)は互いに同じ構成である場合を説明したが、ガスセルユニットが2つのヒーターを有する場合、一方のヒーターと他方のヒーターとが異なる構成であってもよい。
また、ガスセル21の大きさ、用いるアルカリ金属の種類、ヒーターの発熱量等によっては、ヒーター22、23のいずれか一方を省略してもよい。また、ガスセルユニットが備えるヒーターの数は、3つあるいは5つ以上であってもよい。
また、前述した実施形態では、2つの温度センサーを設けた場合を説明したが、温度センサーの数は1つであってもよいし、3つ以上であってもよい。
1‥‥原子発振器 2‥‥ガスセルユニット 2A‥‥ガスセルユニット 2B‥‥ガスセルユニット 2C‥‥ガスセルユニット 2D‥‥ガスセルユニット 2E‥‥ガスセルユニット 2F‥‥ガスセルユニット 3‥‥光出射部 4‥‥光検出部 5‥‥制御部 21‥‥ガスセル 22‥‥ヒーター 22A‥‥ヒーター 22B‥‥ヒーター 22C‥‥ヒーター 22D‥‥ヒーター 22E‥‥ヒーター 22F‥‥ヒーター 23‥‥ヒーター 23D‥‥ヒーター 23E‥‥ヒーター 23F‥‥ヒーター 24‥‥温度センサー 25‥‥温度センサー 26‥‥コイル 51‥‥周波数制御回路 52‥‥温度制御回路 53‥‥磁場制御回路 211‥‥板状部 212‥‥板状部 213‥‥スペーサー 221‥‥基板 222‥‥発熱抵抗体 222A‥‥発熱抵抗体 222B‥‥発熱抵抗体 222C‥‥発熱抵抗体 222a‥‥帯状部 222a1‥‥帯状部 222a2‥‥帯状部 222b‥‥連結部 222c‥‥連結部 223‥‥発熱抵抗体 223a‥‥帯状部 224‥‥発熱抵抗体 231‥‥基板 232‥‥発熱抵抗体 233‥‥発熱抵抗体 234‥‥発熱抵抗体 100‥‥測位システム 200‥‥GPS衛星 300‥‥基地局装置 301‥‥アンテナ 302‥‥受信装置 303‥‥アンテナ 304‥‥送信装置 400‥‥GPS受信装置 401‥‥アンテナ 402‥‥衛星受信部 403‥‥アンテナ 404‥‥基地局受信部 a1‥‥矢印 a2‥‥矢印 b1‥‥矢印 b2‥‥矢印 P‥‥ピッチ S‥‥空間 ω0‥‥周波数 ω1‥‥周波数 ω2‥‥周波数

Claims (9)

  1. ガスセルと、
    前記ガスセルを加熱する第1ヒーターとを有し、
    前記第1ヒーターは、互いに平行となるように設けられた第1帯状部および第2帯状部と、前記第1帯状部と前記第2帯状部が接続された構成とを含み、
    前記第1帯状部に流れる電流の方向と、前記第2帯状部に流れる電流の方向とを互いに反対方向としたことを特徴とするガスセルユニット。
  2. 前記第1ヒーターと同一の構成を有する第2ヒーターを備え、
    前記ガスセルが前記第1ヒーターと前記第2ヒーターとに挟まれた構成を有することを特徴とする請求項1に記載のガスセルユニット。
  3. 前記第1ヒーターまたは前記第2ヒーターは、前記第1帯状部および前記第2帯状部を複数備え、前記第1帯状部と前記第2帯状部が交互に並んでいることを特徴とする請求項1または2に記載のガスセルユニット。
  4. 前記第1帯状部と前記第2帯状部とが接続された構成の形状が、蛇行した形状をなしている請求項3に記載のガスセルユニット。
  5. 前記第1帯状部および前記第2帯状部は、膜状の発熱抵抗体であることを特徴とする請求項1ないし4のいずれかに記載のガスセルユニット。
  6. 前記第1帯状部および前記第2帯状部は、前記ガスセルとは別体として設けられた絶縁性の基板上に接合されている請求項5に記載のガスセルユニット。
  7. 前記第1帯状部および前記第2帯状部は、前記ガスセルの外表面に接合されている請求項5に記載のガスセルユニット。
  8. 請求項1ないし7のいずれかに記載のガスセルユニットと、
    前記ガスセル中のアルカリ金属原子を励起する励起光を出射する光出射部と、
    前記ガスセルを透過した前記励起光の強度を検出する光検出部とを備えることを特徴とする原子発振器。
  9. 請求項8に記載の原子発振器を備えたことを特徴とする電子装置。
JP2011055657A 2011-03-14 2011-03-14 ガスセルユニット、原子発振器および電子装置 Pending JP2012191138A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011055657A JP2012191138A (ja) 2011-03-14 2011-03-14 ガスセルユニット、原子発振器および電子装置
CN2012100632981A CN102684692A (zh) 2011-03-14 2012-03-12 气室单元、原子振荡器及电子装置
US13/418,642 US8633773B2 (en) 2011-03-14 2012-03-13 Gas cell unit, atomic oscillator and electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011055657A JP2012191138A (ja) 2011-03-14 2011-03-14 ガスセルユニット、原子発振器および電子装置

Publications (2)

Publication Number Publication Date
JP2012191138A true JP2012191138A (ja) 2012-10-04
JP2012191138A5 JP2012191138A5 (ja) 2014-04-17

Family

ID=46816143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011055657A Pending JP2012191138A (ja) 2011-03-14 2011-03-14 ガスセルユニット、原子発振器および電子装置

Country Status (3)

Country Link
US (1) US8633773B2 (ja)
JP (1) JP2012191138A (ja)
CN (1) CN102684692A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013030513A (ja) * 2011-07-26 2013-02-07 Seiko Epson Corp ガスセルユニットおよび原子発振器
JP2014088308A (ja) * 2012-10-29 2014-05-15 Honeywell Internatl Inc 陽極接合された蒸気セル内で圧力の均一性を高める製作技法
JP2015062167A (ja) * 2013-08-20 2015-04-02 株式会社リコー ヒーター基板、アルカリ金属セルユニット及び原子発振器
JP2015070331A (ja) * 2013-09-26 2015-04-13 セイコーエプソン株式会社 原子セル、原子共鳴遷移装置、原子発振器、電子機器および移動体
CN104734706A (zh) * 2013-12-20 2015-06-24 精工爱普生株式会社 量子干涉装置、原子振荡器、电子设备以及移动体
JP2015122597A (ja) * 2013-12-20 2015-07-02 セイコーエプソン株式会社 量子干渉装置、原子発振器、電子機器および移動体
US9276595B2 (en) 2013-10-15 2016-03-01 Seiko Epson Corporation Quantum interference device, atomic oscillator, electronic apparatus, and moving object
US10432204B2 (en) 2016-09-07 2019-10-01 Seiko Epson Corporation Atomic oscillator
CN111947638A (zh) * 2020-06-30 2020-11-17 北京航天控制仪器研究所 一种工作介质分立的核磁共振陀螺仪

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011158384A (ja) * 2010-02-02 2011-08-18 Seiko Epson Corp 微粒子検出装置
JP5799553B2 (ja) 2011-04-01 2015-10-28 セイコーエプソン株式会社 磁場測定装置、磁場測定システムおよび磁場測定方法
JP5954540B2 (ja) * 2012-09-10 2016-07-20 セイコーエプソン株式会社 原子セルモジュール、量子干渉装置、電子機器及び原子セルの磁界制御方法
US9116510B1 (en) * 2012-12-06 2015-08-25 The Boeing Company Micro atomic and inertial measurement unit on a chip system
JP2015089055A (ja) * 2013-11-01 2015-05-07 セイコーエプソン株式会社 光学モジュールおよび原子発振器
JP6337456B2 (ja) * 2013-12-13 2018-06-06 セイコーエプソン株式会社 量子干渉装置、原子発振器、電子機器および移動体
JP2015142240A (ja) * 2014-01-28 2015-08-03 セイコーエプソン株式会社 量子干渉ユニット、量子干渉装置、原子発振器、電子機器および移動体
JP6375637B2 (ja) * 2014-02-14 2018-08-22 セイコーエプソン株式会社 原子セル、量子干渉装置、原子発振器、電子機器および移動体
EP3149429B1 (en) * 2014-06-02 2019-05-29 Twinleaf LLC Circuit board integrated atomic magnetometer and gyroscope
CN110389136B (zh) * 2019-07-25 2021-07-27 中国计量科学研究院 一种基于电磁超表面的无电磁扰动可控温原子气室及其加工工艺流程
CN111077482B (zh) * 2019-12-11 2022-06-03 北京航天控制仪器研究所 一种基于cpt原子磁力仪的空间用玻璃气室保温装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04316379A (ja) * 1991-04-15 1992-11-06 Anritsu Corp 原子周波数標準器用恒温槽
US5387881A (en) * 1992-03-16 1995-02-07 Observatoire Cantonal De Neuchatel Atomic frequency standard
JPH0745886A (ja) * 1993-07-26 1995-02-14 Anritsu Corp 原子発振器用共振器
US6812800B2 (en) * 2002-02-05 2004-11-02 Fujitsu Limited Atomic oscillator
JP2007036555A (ja) * 2005-07-26 2007-02-08 Seiko Epson Corp 発振器における加熱構造、発振器、及び、電子機器
JP2012191582A (ja) * 2011-03-14 2012-10-04 Seiko Epson Corp ガスセルユニット、原子発振器および電子装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5442326A (en) * 1994-09-09 1995-08-15 Westinghouse Electric Corporation Atomic time standard with piezoelectric stabilization of diode laser light source
JP3963998B2 (ja) 1997-03-31 2007-08-22 アンリツ株式会社 原子発振器
US6806784B2 (en) 2001-07-09 2004-10-19 The National Institute Of Standards And Technology Miniature frequency standard based on all-optical excitation and a micro-machined containment vessel
JP2006018877A (ja) 2004-06-30 2006-01-19 Toshiba Corp 光ディスク装置
WO2006036268A2 (en) 2004-07-16 2006-04-06 Sarnoff Corporation Chip-scale atomic clock (csac) and method for making same
JP4941249B2 (ja) * 2007-11-22 2012-05-30 セイコーエプソン株式会社 光学系及び原子発振器
JP5217661B2 (ja) * 2008-06-11 2013-06-19 セイコーエプソン株式会社 原子発振器
JP5375279B2 (ja) 2008-06-18 2013-12-25 セイコーエプソン株式会社 原子発振器
US8237514B2 (en) * 2009-02-06 2012-08-07 Seiko Epson Corporation Quantum interference device, atomic oscillator, and magnetic sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04316379A (ja) * 1991-04-15 1992-11-06 Anritsu Corp 原子周波数標準器用恒温槽
US5387881A (en) * 1992-03-16 1995-02-07 Observatoire Cantonal De Neuchatel Atomic frequency standard
JPH0745886A (ja) * 1993-07-26 1995-02-14 Anritsu Corp 原子発振器用共振器
US6812800B2 (en) * 2002-02-05 2004-11-02 Fujitsu Limited Atomic oscillator
JP2007036555A (ja) * 2005-07-26 2007-02-08 Seiko Epson Corp 発振器における加熱構造、発振器、及び、電子機器
JP2012191582A (ja) * 2011-03-14 2012-10-04 Seiko Epson Corp ガスセルユニット、原子発振器および電子装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6015001812; Peter D. D. Schwindt et al.: 'Chip-scale atomic magnetometer with improved sensitivity by use of the Mx technique' Applied Physics Letters Vol.90, 2007, pp.081102-1-081102-3 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013030513A (ja) * 2011-07-26 2013-02-07 Seiko Epson Corp ガスセルユニットおよび原子発振器
JP2014088308A (ja) * 2012-10-29 2014-05-15 Honeywell Internatl Inc 陽極接合された蒸気セル内で圧力の均一性を高める製作技法
JP2015062167A (ja) * 2013-08-20 2015-04-02 株式会社リコー ヒーター基板、アルカリ金属セルユニット及び原子発振器
US9112518B2 (en) 2013-08-20 2015-08-18 Ricoh Company, Ltd. Heater substrate, alkali metal cell unit and atomic oscillator
JP2015070331A (ja) * 2013-09-26 2015-04-13 セイコーエプソン株式会社 原子セル、原子共鳴遷移装置、原子発振器、電子機器および移動体
US9276595B2 (en) 2013-10-15 2016-03-01 Seiko Epson Corporation Quantum interference device, atomic oscillator, electronic apparatus, and moving object
CN104734706A (zh) * 2013-12-20 2015-06-24 精工爱普生株式会社 量子干涉装置、原子振荡器、电子设备以及移动体
JP2015119151A (ja) * 2013-12-20 2015-06-25 セイコーエプソン株式会社 量子干渉装置、原子発振器、電子機器および移動体
JP2015122597A (ja) * 2013-12-20 2015-07-02 セイコーエプソン株式会社 量子干渉装置、原子発振器、電子機器および移動体
US10432204B2 (en) 2016-09-07 2019-10-01 Seiko Epson Corporation Atomic oscillator
CN111947638A (zh) * 2020-06-30 2020-11-17 北京航天控制仪器研究所 一种工作介质分立的核磁共振陀螺仪

Also Published As

Publication number Publication date
CN102684692A (zh) 2012-09-19
US20120235754A1 (en) 2012-09-20
US8633773B2 (en) 2014-01-21

Similar Documents

Publication Publication Date Title
JP2012191138A (ja) ガスセルユニット、原子発振器および電子装置
JP5655647B2 (ja) ガスセルユニット、原子発振器および電子装置
US8736386B2 (en) Gas cell unit and atomic oscillator
JP6291768B2 (ja) 原子共鳴遷移装置、原子発振器、電子機器および移動体
JP6171748B2 (ja) 原子セル、量子干渉装置、原子発振器、電子機器および移動体
JP6354151B2 (ja) 量子干渉装置、原子発振器、電子機器および移動体
JP6484922B2 (ja) 原子セル、量子干渉装置、原子発振器および電子機器
US9755654B2 (en) Atomic cell, quantum interference device, atomic oscillator, electronic device and moving object
JP6287169B2 (ja) 量子干渉装置、原子発振器、電子機器および移動体
JP2015070228A (ja) 量子干渉装置、原子発振器、電子機器および移動体
JP2015231053A (ja) 原子セル、量子干渉装置、原子発振器、電子機器および移動体
JP6347101B2 (ja) 量子干渉装置、原子発振器、電子機器および移動体
US9577652B2 (en) Atomic resonance transition device, atomic oscillator, electronic apparatus, and moving object
JP6160021B2 (ja) 原子発振器
JP2011199329A (ja) 加熱装置、ガスセルユニットおよび原子発振器
JP2014183484A (ja) 電子デバイス、量子干渉装置、原子発振器、電子機器、移動体および電子デバイスの製造方法
JP6060568B2 (ja) ガスセルユニット、原子発振器および電子機器
JP2012195351A (ja) 原子発振器
JP6164341B2 (ja) ガスセルユニットおよび原子発振器
JP6264876B2 (ja) 量子干渉装置、原子発振器、および電子機器
JP2015170882A (ja) 発振器、電子機器および移動体
US9467157B2 (en) Atomic cell, atomic cell manufacturing method, quantum interference device, atomic oscillator, electronic device, and moving object
JP2014192799A (ja) 原子発振器、電子機器および移動体
JP2017208559A (ja) 原子セル、量子干渉装置、原子発振器、電子機器および移動体

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150325

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150804