JP2012164597A - 冷陰極装置及びその製造方法 - Google Patents

冷陰極装置及びその製造方法 Download PDF

Info

Publication number
JP2012164597A
JP2012164597A JP2011025873A JP2011025873A JP2012164597A JP 2012164597 A JP2012164597 A JP 2012164597A JP 2011025873 A JP2011025873 A JP 2011025873A JP 2011025873 A JP2011025873 A JP 2011025873A JP 2012164597 A JP2012164597 A JP 2012164597A
Authority
JP
Japan
Prior art keywords
cold cathode
heater
voltage
filament
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011025873A
Other languages
English (en)
Inventor
Tomonobu Nakamura
智宣 中村
Yoshihiro Onizuka
好弘 鬼塚
Atsuo Sadatsuka
淳生 定塚
Takahisa Koike
高寿 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ONIZUKA GLASS KK
Original Assignee
ONIZUKA GLASS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ONIZUKA GLASS KK filed Critical ONIZUKA GLASS KK
Priority to JP2011025873A priority Critical patent/JP2012164597A/ja
Priority to PCT/JP2012/000746 priority patent/WO2012108161A1/ja
Priority to TW101103991A priority patent/TW201241870A/zh
Publication of JP2012164597A publication Critical patent/JP2012164597A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • H01J1/3042Field-emissive cathodes microengineered, e.g. Spindt-type
    • H01J1/3044Point emitters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cold Cathode And The Manufacture (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

【課題】冷陰極装置の真空容器内の真空度を高めるため、容器内の真空排気時に冷陰極から吸着ガスを追い出すためにその冷陰極を昇温させることを実現できる冷陰極装置を提供する。
【解決手段】電圧の印加により電子を放出する冷陰極3と、冷陰極3を加熱するフィラメント4と、冷陰極3を支持する導電性を有した支持軸6と、冷陰極3、ヒータ4及び支持軸6を包囲する真空容器であるガラス管2と、ガラス管2の外部に出ておりフィラメント4につながっているヒータ端子7a,7bと、ガラス管2の外部に出ており支持軸6につながっている支持体端子7cとを有した冷陰極装置1である。ヒータ端子7a,7bと支持体端子7cとは互いに電気的に独立しており、それらに独自に所望の電圧を正確に印加できる。
【選択図】図1

Description

本発明は、冷陰極に電圧を印加して当該冷陰極から電子を放出する冷陰極装置、すなわち電界放出の原理に従った電子源に関する。
従来、特許文献1に開示された冷陰極装置が知られている。特許文献1には、本願明細書に添付の図5(特許文献1の図4に相当)に示すように、容器としてのガラス管101の一方の端部101aに設けられた複数のステムピン102と、そのガラス管101の内部においてステムピン102の適所に固定された石英プレート103と、その石英プレート103によって支持された冷陰極104と、冷陰極104の周囲に設けられており2つのステムピン102に接続されたフィラメント105とを有した冷陰極装置が開示されている。
この冷陰極装置では、フィラメント105が冷陰極104にカーボンペーストによって接着されている。そして、ステムピン102及びフィラメント105を通して冷陰極104に所定の電圧が印加される。この電圧印加により冷陰極104から電子が放出される。このとき、フィラメント105は通電によって発熱し、これにより冷陰極104が加熱される。こうして冷陰極104が加熱されることにより、冷陰極104から放出される電子の放出量を安定させることができることが特許文献1の[0006]段落に記載されている。
つまり、従来の冷陰極装置では、フィラメント105は、主として冷陰極104に電子放出のための所定の電圧を印加するために設けられたものであり、従として冷陰極104からの電子の放出量の安定化のためにヒータとして機能するものである。このため、ヒータとして機能するフィラメント105は電子の放出量の安定化を達成できるだけの発熱を行うだけであって、電子の放出量の安定化以外の機能を果たすための発熱を実現することは不可能である。
特開2008−226760号公報(第3〜4頁、図4)
通常、図5に示す冷陰極装置おいて、ガラス管101の内部は真空又はそれに近い減圧状態(以下、高真空状態という)、例えば1×10−6パスカルに設定される。その理由は、効率の高い電子の発生を促すためである。ガラス管101の内部を高真空状態に設定することは、冷陰極装置の製造過程においてポンプ等といった排気装置によってガラス管101の内部を排気することによって行われる。
しかしながら、従来の冷陰極装置においては、ガラス管101の内部を十分な高真空状態に設定することができず、電子の発生を効率良く行うことができなかった。その理由は、冷陰極104には予めガスが吸着しており、冷陰極装置の完成後にその吸着ガスが冷陰極から漏れ出ることにより、ガラス管101の内部の真空度が劣化するからである。
本発明は、従来装置における上記の問題点に鑑みて成されたものであって、冷陰極の周囲に配置されたヒータへの通電量を、冷陰極へ印加する電圧とは独立して正確に設定することを可能にして、容器内の真空度を高めることを可能とし、もって電子発生効率が極めて高い冷陰極装置を提供することを目的とする。
また、そのように電子発生効率が極めて高い冷陰極装置を安定して確実に製造できる製造方法を提供することを目的とする。
本発明に係る冷陰極装置は、電圧の印加により電子を放出する冷陰極と、前記冷陰極を加熱するヒータと、前記冷陰極を支持する導電性を有した支持体と、前記冷陰極、前記ヒータ及び前記支持体を包囲する容器と、前記容器の外部に出ており前記ヒータにつながっているヒータ端子と、前記容器の外部に出ており前記支持体につながっている支持体端子とを有しており、前記ヒータ端子と前記支持体端子とは互いに電気的に独立していることを特徴とする。電気的に独立しているとは、互いに電気的に絶縁状態にあるということである。
本発明によれば、ヒータ端子と支持体端子とが互いに電気的に独立している。従って、冷陰極には電子放出のための電圧を正確に印加することができ、しかも、ヒータには冷陰極を加熱して吸着ガスを放出させるための電圧を、電子放出のための電圧とは別個独立に正確に印加することができる。
その結果、本発明によれば、容器の排気時に冷陰極の吸着ガスを冷陰極から放出させることにより、容器の内部を高度の真空状態に設定できるようになり、その結果、冷陰極からの電子の放出を多量に安定して行うこと、すなわち電子発生効率を高めることが可能となった。
本発明に係る冷陰極装置は、前記冷陰極に吸着しているガスが当該冷陰極から放出される温度まで前記冷陰極を加熱できる大きさの電流を前記ヒータ端子に供給する電源を有することが望ましい。そして、その温度は、300℃〜1000℃の範囲内から選択された任意の温度とすることが望ましい。
この構成により、冷陰極装置の構成要素である容器の内部を真空状態に排気する際に、冷陰極の吸着ガスを当該冷陰極から十分に放出させることができ、それ故、容器内の真空度を長期にわたって真空状態に保持することができる。
本発明に係る冷陰極装置において、前記支持体は棒状の形状であり且つ前記冷陰極を挿入できる凹部を有する構成とすることができる。この構成により、冷陰極の周囲の構成を小型で作業し易い構成にすることができる。
本発明に係る冷陰極装置において、前記冷陰極は、炭素、タングステン、タンタル、その他の高融点材料によって形成することができる。また、冷陰極は、微細構造であるナノ材料、例えばカーボンナノチューブによって形成できる。
次に、本発明に係る冷陰極装置の製造方法は、電圧の印加により電子を放出する冷陰極と、前記冷陰極を加熱するヒータと、前記冷陰極を支持する導電性を有した支持体と、前記冷陰極、前記ヒータ及び前記支持体を包囲する容器とを有して成る冷陰極装置の製造方法であって、前記冷陰極に吸着しているガスが当該冷陰極から放出される温度まで、前記ヒータにより前記冷陰極を加熱した状態で、前記容器の内部を排気する工程を有することを特徴とする。
本発明に係る冷陰極装置の製造方法によれば、電子の放出を行う冷陰極が収容されている容器の内部を長期にわたって高度の真空状態に保持できるので、電子発生効率が極めて高い冷陰極装置を安定して確実に製造できる。
本発明に係る冷陰極装置よれば、ヒータ端子と支持体端子とが互いに電気的に独立している。従って、冷陰極には電子放出のための電圧を正確に印加することができ、しかも、ヒータには冷陰極を加熱して吸着ガスを放出させるための電圧を、電子放出のための電圧とは別個独立に正確に印加することができる。
その結果、容器の排気時に冷陰極の吸着ガスを冷陰極から放出させることにより、容器の内部を高度の真空状態に設定できるようになり、その結果、冷陰極からの電子の放出を多量に安定して行うこと、すなわち電子発生効率を高めることが可能となった。
本発明に係る冷陰極装置の製造方法によれば、電子の放出を行う冷陰極が収容されている容器の内部を長期にわたって高度の真空状態に保持できるので、電子発生効率が極めて高い冷陰極装置を安定して確実に製造できる。
本発明に係る冷陰極装置を用いた電子線放出装置の一実施形態を示す正面断面図である。 図1のA−A線に従った平面断面図である。 図1に示す装置の要部である電源の内部構成を示す図であり、特に冷陰極装置の製造時に使用する第1電源回路を示す図である。 図1に示す装置の要部である電源の内部構成を示す図であり、特に冷陰極装置の使用時に使用する第2電源回路を示している。 従来の冷陰極装置の一例の正面断面図である。
以下、本発明に係る冷陰極装置を実施形態に基づいて説明する。なお、本発明がこの実施形態に限定されないことはもちろんである。また、これ以降の説明では図面を参照するが、その図面では特徴的な部分を分かり易く示すために実際のものとは異なった比率で構成要素を示す場合がある。
図1は、本発明に係る冷陰極装置の一実施形態を含んでいる電子線放出装置の一実施形態を示している。図2は、図1におけるA−A線に従った平面断面図を示している。これらの図において、冷陰極装置1は、容器としてのガラス管2と、冷陰極3と、ヒータとしてのフィラメント4と、冷陰極3を支持している支持体としての支持軸6と、ガラス管2の端部2aを貫通して設けられている端子としての複数(本実施形態では3個)のステムピン7a〜7cとを有している。
電子線放出装置11は、上記の冷陰極装置1と、ガラス管2の他方の端部に設けられた電子透過膜12と、電子引出電極であるグリッド電極13と、ガラス管2の端部2aを貫通して設けられている端子としてのステムピン7dとを有している。ステムピン7a〜7dには、複数の電線8を介して電源14が電気的に接続されている。
冷陰極3は電子を放出する要素であり、エミッタと呼ばれることがある。冷陰極3は、概ね円柱形状であり、電子を放出する側の先端が円錐状に尖った形状に形成されている。冷陰極3は、例えば導電材料、例えば炭素によって形成されている。冷陰極3は、微小な粒子の集合体である、いわゆるナノ材料、例えばカーボンナノチューブによって形成されることが望ましい。
支持軸6は、冷陰極3よりも直径が大きい円柱形状に形成されている。支持軸6は、その下端においてガラス管2の下端部2aに固着、例えばスポット溶接によって接着されている。支持軸6は、Ni(ニッケル)、Ta(タンタル)、ステンレス等といった高融点で導電性を有する材料によって形成されている。支持軸6は、支持体端子として機能するステムピン7cに接続している。
支持軸6の先端には円柱状の凹部16が設けられており、その凹部16の中に冷陰極3が挿入されている。冷陰極3は凹部16の中に挿入された上で接着剤、例えばカーボン接着剤によって支持軸6に固着されている。
フィラメント4はコイル状に巻かれた部分を有しており、そのコイル状部分を冷陰極3が貫通している。これにより、フィラメント4が発熱したときには冷陰極3が加熱される。また、冷陰極3が位置変位することをフィラメント4によって防止することもできる。フィラメント4の両端は、それぞれ、ヒータ端子として機能するステムピン7a及び7bに接続している。フィラメント4は、例えばW(タングステン)によって形成されている。
電子線放出装置11を構成しているグリッド電極13の外観形状は、本実施形態では図2に示すように円形状である。しかしながら、グリッド電極13の外観形状は矩形状、その他の任意の形状であっても良い。グリッド電極13は、多数の細い線材を網目状に配列した構成を有している。図1において、グリッド電極13は1つのステム端子7dに接続している。
ガラス管2の端子側の端部2aの反対側の端部に設けられた電子透過膜12は、ガラス管2の内部を気密に保持し、さらに電子を通過させることができる材質及び構造から成っている。
電源14は、図3に示す第1電源回路14aと、図4に示す第2電源回路14bとを含んでいる。第1電源回路14aと第2電源回路14bとは、必要に応じて、選択して使用することができる。
第1電源回路14aは、フィラメント4に接続されたヒータ端子7aとヒータ端子7bとの間に電圧V1を印加する回路である。フィラメント電圧V1は、フィラメント4に所定の大きさの電流を流すための電圧である。この通電により、フィラメント4は所定の温度まで昇温する。
炭素によって形成された冷陰極3は、大気中のガスを吸着し易い性質を有している。特に、冷陰極3がナノ材料等といった表面積の大きな材料によって形成されている場合には、ガスを吸着する性質がより一層促進される。フィラメント4によって加熱された冷陰極3の温度は、冷陰極3に吸着しているガスをその冷陰極3から放出することができるに十分である高さの温度である。具体的には、例えば、300℃〜1000℃の温度範囲内の適宜の温度である。
つまり、図3において、フィラメント4に電圧V1を印加すると、フィラメント4が発熱し、冷陰極3に吸着したガスをその冷陰極3の外部へ放出させるのに十分な温度、すなわち300℃〜1000℃の範囲内の適宜の温度へ、その冷陰極3を昇温させる。
第2電源回路14bは、フィラメント4に接続されたヒータ端子7a及びヒータ端子7bと、支持軸6に接続された支持体端子7cとを共通電位となるように共通に接続し、その共通となった端子に電圧V2を印加し、さらにグリッド電極13に接続された端子7dに電圧V3を印加する回路である。電圧V2は、支持軸6を介して冷陰極3に印加される電圧であり、この冷陰極電圧V2は、例えば負の数十kVである。また、グリッド電圧V3は、例えば冷陰極3に対して正の1500V程度である。
(冷陰極装置1及び電子線放出装置11の製造方法)
以下、冷陰極装置1及び電子線放出装置11の製造方法について説明する。
当初、図1のガラス管2の端部2aに相当する部分はガラス管2と分離している。この状態の端部2aの所定位置にはステムピン7a〜7dが貫通状態で固定されている。
次に、支持軸6の下端を支持体端子としてのステムピン7cの所の表面にスポット溶接によって固着する。次に、フィラメント4の両端を、それぞれ、ヒータ端子としてのステムピン7a及び7bに接続、例えば溶接する。次に、冷陰極3の下端に接着剤、例えばカーボンペーストを塗った上で、又は支持軸6の上端の凹部16内に接着剤、例えばカーボンペーストを塗った上で、冷陰極3をその下端部からフィラメント4のコイル巻き部分を貫通させ、冷陰極3の下端部を支持軸6の凹部16内に挿入し、そして冷陰極3を支持軸6の上端に固着する。
本実施形態ではフィラメント4は冷陰極3を所定温度に加熱させるという作用を果たすものであり、電子放出のための電圧を冷陰極3へ印加するという作用をフィラメント4に持たせるということではないので、フィラメント4と冷陰極3とをカーボンペースト等によって互いに接着させる必要は無い。
次に、グリッド電極13を冷陰極3の上方の所定位置に配設し、さらに導電線17によってグリッド電極13とステムピン7dを導通する。次に、端部2aの上にガラス管2を被せ、そして、電源14の回路構成を図3に示す第1電源回路14aに設定する。この回路設定により、フィラメント4に通電が成されて当該フィラメント4が発熱し、冷陰極3が加熱され、その結果、当該冷陰極3に吸着しているガスが当該冷陰極3から放出される。
電源14を第1電源回路14aに設定するのと同期させて、具体的には、その設定タイミングよりも所定時間の前に、その設定と同時に、又はその設定タイミングよりも所定時間の後に、ガラス管2の内部の排気処理を開始する。この排気処理は、例えば排気ポンプ等といった排気装置によって行われる。この排気処理により、ガラス管2の内部の空気が排気され、さらに冷陰極3から放出されたガスが排気される。この排気処理の結果、ガラス管2の内部は、高度の真空状態、例えば1×10−6パスカル程度の減圧状態に設定される。
この排気処理により冷陰極3の吸着ガスがガラス管2の外部に排気されるので、ガラス管2の内部はその後、長期にわたって高度の真空状態に維持される。その結果、後述する冷陰極3からの電子の放出を長期間にわたって、大きな放出量を維持して、安定して行うことが可能となる。
本実施形態ではフィラメント4によって冷陰極3の温度を昇温させて当該冷陰極3から吸着ガスを放出させるのであるが、その際の冷陰極3の温度は、自身に吸着しているガスを自身から放出することができるのに十分である高さの温度である。この温度は、冷陰極3の材質及び排気処理を行う時間に応じて変わるものであるが、実用上は、300℃〜1000℃の温度範囲内の適宜の温度である。300℃程度の低温度であっても排気処理時間を長く設定することにより、吸着ガスの放出を確実に行うことができる。
(冷陰極装置1及び電子線放出装置11の使用方法)
以下、冷陰極装置1及び電子線放出装置11の使用方法について説明する。
冷陰極装置1及び電子線放出装置11を使用する際には、電源14の回路構成を図4に示す第2電源回路14bに設定する。この回路設定により、冷陰極3に負の高電圧V2、例えば数十kVの電圧が印加される。さらに、冷陰極3とグリッド電極13との間に所定の電圧V3、例えば1500V程度の電圧が引火される。
以上の電圧設定の結果、グリッド電極13によって電子を引き出しつつ、冷陰極3から電界放電に基づいて電子が放出される。ガラス管2の内部は高度の真空状態に設定されているので、電子の放出は安定して行われる。
図5に示した従来の冷陰極装置によれば、冷陰極104は絶縁体である石英プレート103によって支持されており、フィラメント105が、電子放出のための冷陰極104への電圧印加と、電子放出の安定化のための冷陰極104の加熱との両方の作用を行っていた。この場合、冷陰極104の加熱は副次的な作用であって、吸着ガスの放出といった特定の作用を達成するための加熱ではない。
これに対し、本実施形態によれば、図1に示すようにヒータ端子7a,7bと支持体端子7cとが互いに電気的に独立している、すなわち互いに電気的に絶縁している。従って、冷陰極3には電子放出のための電圧を正確に印加することができ、しかも、フィラメント4には冷陰極3を加熱して吸着ガスを放出させるための電圧を、電子放出のための電圧とは別個独立に正確に印加することができる。
こうして、本実施形態によれば、容器であるガラス管2内の排気時に冷陰極3の吸着ガスを冷陰極3から放出させることにより、ガラス管2の内部を高度の真空状態に設定できるようになった。そしてその結果、冷陰極3からの電子の放出を多量に安定して行うことが可能となった。
また、本実施形態では、フィラメント4は冷陰極3に接着されることが無いので、フィラメント4が冷陰極3に無用な力を及ぼすことが無い。このため、冷陰極3の姿勢が崩れたり、冷陰極3が破損することを防止できる。
(その他の実施形態)
以上、好ましい実施形態を挙げて本発明を説明したが、本発明はその実施形態に限定されるものでなく、請求の範囲に記載した発明の範囲内で種々に改変できる。
例えば、上記の実施形態は、本発明に係る冷陰極装置(実施形態では符号1で示す装置)を電子を放出するための装置である電子線放出装置(実施形態では符号11で示す装置)の構成要素として適用した場合の実施形態であるが、本発明に係る冷陰極装置は電子線放出装置以外の電子利用装置にも適用できる。
例えば、本発明に係る冷陰極装置は、X線管のような放射線放射装置や、フィールドエミッションランプ(すなわち、電界放出ランプ)のような発光装置等にも適用できる。本発明に係る冷陰極装置を放射線放射装置に適用する場合には、図1において冷陰極3から放出された電子をターゲット(すなわち対陰極、すなわち陽極)に衝突させてそのターゲットから放射線、例えばX線を放射する。
本発明に係る冷陰極装置を発光装置に適用する場合には、図1において冷陰極3から放出された電子を蛍光体等といった発光要素に照射して、その発光要素を発光させる。
図1に示した実施形態では、冷陰極3に対向させてグリッド電極13を設けたが、冷陰極3への電圧印加だけで十分量の電子を発生させることができる場合には、グリッド電極13を設けなくても良い。
本実施形態ではガラス管2によって容器を構成したが、容器はガラス以外の任意の材料から成る容器とすることができる。
上記実施形態では、冷陰極3を加熱するためのヒータをコイル状の巻き回し部分を備えたフィラメント4によって構成した。しかしながら、ヒータはフィラメント4以外の任意の構造の加熱要素とすることができる。
1.冷陰極装置、 2.ガラス管(容器)、 2a.端部、 3.冷陰極、 4.フィラメント(ヒータ)、 6.支持軸(支持体)、 7a、7b.ステムピン(ヒータ端子)、 7c.ステムピン(支持体端子)、 7d.ステムピン、 8.電線、 11.電子線放出装置、 12.電子透過膜、 13.グリッド電極(電子引出電極)、 14.電源、 14a.第1電源回路、 14b.第2電源回路、 16.凹部、 17.導電線、 V1.フィラメント電圧、 V2.冷陰極電圧、 V3.グリッド電圧

Claims (6)

  1. 電圧の印加により電子を放出する冷陰極と、
    前記冷陰極を加熱するヒータと、
    前記冷陰極を支持する導電性を有した支持体と、
    前記冷陰極、前記ヒータ及び前記支持体を包囲する容器と、
    前記容器の外部に出ており前記ヒータにつながっているヒータ端子と、
    前記容器の外部に出ており前記支持体につながっている支持体端子と、を有しており、
    前記ヒータ端子と前記支持体端子とは互いに電気的に独立している
    ことを特徴とする冷陰極装置。
  2. 前記冷陰極に吸着しているガスが当該冷陰極から放出される温度まで前記冷陰極を加熱できる大きさの電流を前記ヒータ端子に供給する電源を有することを特徴とする請求項1記載の冷陰極装置。
  3. 前記冷陰極に吸着しているガスが当該冷陰極から放出される温度は、300℃〜1000℃の範囲内から選択された任意の温度であることを特徴とする請求項2記載の冷陰極装置。
  4. 前記支持体は棒状の形状であり且つ前記冷陰極を挿入できる凹部を有していることを特徴とする請求項1から請求項3のいずれか1つに記載の冷陰極装置。
  5. 前記冷陰極は、炭素、タングステン、タンタル、その他の高融点材料であることを特徴とする請求項1から請求項4のいずれか1つに記載の冷陰極装置。
  6. 電圧の印加により電子を放出する冷陰極と、
    前記冷陰極を加熱するヒータと、
    前記冷陰極を支持する導電性を有した支持体と、
    前記冷陰極、前記ヒータ及び前記支持体を包囲する容器と、
    を有して成る冷陰極装置の製造方法であって、
    前記冷陰極に吸着しているガスが当該冷陰極から放出される温度まで、前記ヒータにより前記冷陰極を加熱した状態で、前記容器の内部を排気する工程
    を有することを特徴とする冷陰極装置の製造方法。
JP2011025873A 2011-02-09 2011-02-09 冷陰極装置及びその製造方法 Withdrawn JP2012164597A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011025873A JP2012164597A (ja) 2011-02-09 2011-02-09 冷陰極装置及びその製造方法
PCT/JP2012/000746 WO2012108161A1 (ja) 2011-02-09 2012-02-03 冷陰極装置及びその製造方法
TW101103991A TW201241870A (en) 2011-02-09 2012-02-08 Cold cathode device and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011025873A JP2012164597A (ja) 2011-02-09 2011-02-09 冷陰極装置及びその製造方法

Publications (1)

Publication Number Publication Date
JP2012164597A true JP2012164597A (ja) 2012-08-30

Family

ID=46638388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011025873A Withdrawn JP2012164597A (ja) 2011-02-09 2011-02-09 冷陰極装置及びその製造方法

Country Status (3)

Country Link
JP (1) JP2012164597A (ja)
TW (1) TW201241870A (ja)
WO (1) WO2012108161A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7464793B2 (ja) 2020-09-30 2024-04-09 エヌシーエックス コーポレーション 電界放出陰極装置および電界放出陰極装置の形成方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52127059A (en) * 1976-04-16 1977-10-25 Hitachi Ltd Field emission type electron gun
JP2607251B2 (ja) * 1987-08-26 1997-05-07 松下電工株式会社 電界放射陰極
JPH01187749A (ja) * 1988-01-21 1989-07-27 Jeol Ltd フィールド・エミッション電子銃
JP3131339B2 (ja) * 1993-12-22 2001-01-31 三菱電機株式会社 陰極、陰極線管および陰極線管の作動方法
JP3156755B2 (ja) * 1996-12-16 2001-04-16 日本電気株式会社 電界放出型冷陰極装置
JP2002361599A (ja) * 2001-06-07 2002-12-18 Sony Corp カーボン・ナノチューブ構造体及びその製造方法、冷陰極電界電子放出素子及びその製造方法、並びに、冷陰極電界電子放出表示装置及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7464793B2 (ja) 2020-09-30 2024-04-09 エヌシーエックス コーポレーション 電界放出陰極装置および電界放出陰極装置の形成方法

Also Published As

Publication number Publication date
TW201241870A (en) 2012-10-16
WO2012108161A1 (ja) 2012-08-16

Similar Documents

Publication Publication Date Title
JP4783239B2 (ja) 電子エミッタ材料および電子放出応用装置
RU2682182C2 (ru) Эмиттер электронов для рентгеновской трубки
JP2008181876A5 (ja)
US8300769B2 (en) Microminiature X-ray tube with triode structure using a nano emitter
JP4889871B2 (ja) X線発生装置
JP5845342B2 (ja) X線管およびx線管用電子放出素子
TWI453781B (zh) 應用於電子源之燈絲
RU2014126428A (ru) Рентгеновская трубка с подогреваемым автоэмиссионным эмиттером электронов и способ приведения в действие упомянутой трубки
JP6777746B2 (ja) 電子顕微鏡
JP2002334663A (ja) 荷電粒子発生装置及びその発生方法
WO2017131895A1 (en) Dual material repeller
WO2012108161A1 (ja) 冷陰極装置及びその製造方法
JP2008140623A (ja) 電子線源装置
JP2017054768A (ja) X線管
JP2002022899A (ja) 電子線照射装置
JP2005063857A (ja) 荷電粒子放射源
JP2004095311A (ja) 電子線発生装置
JP4114770B2 (ja) 酸素イオン発生用真空処理装置
KR101227258B1 (ko) 탄소나노튜브 팁의 다중 배열을 이용하여 x-선 발생을 위한 3극관 냉음극 전자원
WO2017046886A1 (ja) 真空装置
JP2005251502A (ja) 電界電子放出装置
JP4227364B2 (ja) ガス放電管及びガス放電管装置
US8749127B2 (en) System and manufacturing a cathodoluminescent lighting device
JP2005071816A (ja) 光源装置
JP2004014467A (ja) ガス放電管

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513