JP2012164594A - 半導体発光素子の点灯装置およびそれを用いた照明器具 - Google Patents

半導体発光素子の点灯装置およびそれを用いた照明器具 Download PDF

Info

Publication number
JP2012164594A
JP2012164594A JP2011025813A JP2011025813A JP2012164594A JP 2012164594 A JP2012164594 A JP 2012164594A JP 2011025813 A JP2011025813 A JP 2011025813A JP 2011025813 A JP2011025813 A JP 2011025813A JP 2012164594 A JP2012164594 A JP 2012164594A
Authority
JP
Japan
Prior art keywords
circuit
rectangular wave
semiconductor light
frequency
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011025813A
Other languages
English (en)
Inventor
Sana Ezaki
佐奈 江崎
Akinori Hiramatsu
明則 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011025813A priority Critical patent/JP2012164594A/ja
Priority to EP12000702.6A priority patent/EP2487992B1/en
Priority to CN201210027336.8A priority patent/CN102638921B/zh
Priority to US13/368,722 priority patent/US9226353B2/en
Publication of JP2012164594A publication Critical patent/JP2012164594A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/375Switched mode power supply [SMPS] using buck topology
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/38Switched mode power supply [SMPS] using boost topology
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/385Switched mode power supply [SMPS] using flyback topology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Led Devices (AREA)

Abstract

【課題】簡単な構成で色温度を制御できる半導体発光素子の点灯装置を提供する。
【解決手段】色温度が異なる半導体発光素子1、2をそれぞれ駆動するスイッチング電源回路10、20のオンオフスイッチング信号となる高周波の矩形波信号HFを一方の入力とし、低周波の矩形波信号PWM1、PWM2をそれぞれ他方の入力とするゲート回路A1、A2を備え、低周波の矩形波信号PWM1、PWM2のデューティに応じて各スイッチング電源回路10、20を間欠動作させる。
【選択図】図1

Description

本発明は、発光ダイオード(LED)のような半導体発光素子の点灯装置およびそれを用いた照明器具に関するものである。
従来、特許文献1(特開2006−202494号公報、図21、0108、0111)によれば、補完色相を有する2種類のLED、例えば、発光色が青−緑のLEDと発光色がアンバーのLEDを組み合わせて、第1の発光色のLED直列回路に一定電流を流す第1の点灯回路と、第2の発光色のLED直列回路に一定電流を流す第2の点灯回路をそれぞれ独立したデューティ・サイクル制御で動作させることにより、白色照明の色温度並びに明るさを可変としたLED調色・調光点灯装置が開示されている。
特許文献2(特開2002−203988公報、図1〜図4)によれば、LED直列回路を駆動するスイッチング電源回路を間欠的に発振動作させることにより、LED直列回路に流れる平均電流を制御可能とした半導体発光素子の点灯装置が開示されている。
特許文献3(特開2000−173304号公報、図11、図12、0086)によれば、AND回路により高周波の矩形波信号と低周波の矩形波信号の論理積をとり、LED直列回路に流れる電流を制御するスイッチング素子の制御電極に前記AND回路の出力信号を供給する構成が開示されている。この特許文献3は調光機能と点滅機能を有するLED標識灯に関するものであり、調色機能は有していない。
特開2006−202494号公報(図21、0108、0111) 特開2002−203988公報(図1〜図4) 特開2000−173304号公報(図11、図12、0086)
特許文献1では、第1の発光色のLED直列回路に一定電流を流す第1の点灯回路と、第2の発光色のLED直列回路に一定電流を流す第2の点灯回路がバイポーラトランジスタを用いた定電流回路で構成されており、定電流制御のための回路損失が大きく、効率が悪かった。特許文献2のようなスイッチング電源回路を用いれば、効率を改善できると考えられるが、2系統のLED直列回路を制御することは想定していなかった。特許文献2のスイッチング電源回路では、スイッチング素子を一定周波数でオン制御する高周波発振回路と、スイッチング素子に流れる電流が所定値に達するとスイッチング素子をオフ制御する尖頭電流制御回路と、LED直列回路に流れる平均電流を検出し調光目標値よりも多いときは高周波発振回路を間欠的に発振停止させる発振制御回路を備えている。このように、構成が複雑であるうえに、高周波発振回路を間欠的に発振停止させるので、2系統のLED直列回路の制御について、1つの高周波発振回路を兼用することは出来なかった。したがって、例えば特許文献1のような発光色の異なる2系統のLED直列回路の制御に特許文献2の技術をそのまま適用しようとすると、構成が複雑で高価なものとなるという問題があった。
本発明は上述のような点に鑑みてなされたものであり、発光色の異なる2系統の半導体発光素子を駆動する2系統のスイッチング電源回路を共通の高周波発振回路により制御可能とすることにより、簡単な構成で色温度を制御できる半導体発光素子の点灯装置を提供することを課題とする。
請求項1の半導体発光素子の点灯装置は、上記の課題を解決するために、図1に示すように、入力直流電源に並列に接続され、色温度が異なる第1及び第2の半導体発光素子1、2をそれぞれ駆動する第1及び第2のスイッチング電源回路10、20と、前記各スイッチング電源回路10、20のオンオフスイッチング信号となる高周波の矩形波信号HFを発生させる高周波発振回路と、前記高周波の矩形波信号HFを一方の入力とし、前記高周波の矩形波信号HFに比べて周波数が低く且つ点滅が認識できない程度に周波数が高い第1及び第2の低周波の矩形波信号PWM1、PWM2をそれぞれ他方の入力とし、前記高周波の矩形波信号HFを第1及び第2のスイッチング電源回路10、20にオンオフスイッチング信号として供給するか否かをそれぞれ第1及び第2の低周波の矩形波信号PWM1、PWM2に応じて選択する第1及び第2のゲート回路A1、A2とを備えることを特徴とするものである。
請求項2の発明は、請求項1記載の半導体発光素子の点灯装置において、図3に示すように、前記高周波発振回路OSCが発生させる高周波の矩形波信号HF1、HF2はオンオフデューティが不均等であり、第1及び第2の半導体発光素子1、2は負荷電圧が異なり、負荷電圧が高い方の半導体発光素子2を駆動するスイッチング電源回路20のオンパルス幅が他方のスイッチング電源回路10のオンパルス幅よりも長くなるように第1及び第2のゲート回路G1、G2が接続されていることを特徴とする。
請求項3の発明は、請求項1または2のいずれかに記載の半導体発光素子の点灯装置において、図2〜図5に示すように、4素子または6素子の論理回路を1チップに内蔵した集積回路を備え、第1及び第2の論理回路によりそれぞれ第1及び第2のゲート回路を構成し、残りの論理回路により前記高周波の矩形波信号HFまたは低周波の矩形波信号PWM1、PWM2を発生させることを特徴とする。
請求項4の発明は、請求項1〜3のいずれかに記載の半導体発光素子の点灯装置と、それにより駆動される第1及び第2の半導体発光素子を備える照明器具である(図6)。
本発明によれば、色温度が異なる第1及び第2の半導体発光素子をそれぞれ駆動する第1及び第2のスイッチング電源回路のオンオフスイッチング信号となる高周波の矩形波信号を第1及び第2のゲート回路を介して共通の高周波発振回路から供給するように構成したから、第1及び第2のゲート回路に与える低周波の矩形波信号のデューティを制御することにより、簡単な構成で色温度を制御できる。
本発明の実施形態1の回路図である。 本発明の実施形態2の要部構成を示す回路図である。 本発明の実施形態3の回路図である。 本発明の実施形態4の要部構成を示す回路図である。 本発明の実施形態5の要部構成を示す回路図である。 本発明の実施形態7の照明器具の概略構成を示す断面図である。
(実施形態1)
図1は本発明の実施形態1に係るLED調色・調光点灯装置の回路図である。入力直流電源としての平滑コンデンサC1には、スイッチング素子Q1とインダクタL1及び回生ダイオードD1よりなる第1の降圧チョッパ回路10と、スイッチング素子Q2とインダクタL2及び回生ダイオードD2よりなる第2の降圧チョッパ回路20が並列接続されている。
以下、第1の降圧チョッパ回路10の構成について説明するが、第2の降圧チョッパ回路20についても同様である。
第1の降圧チョッパ回路10のスイッチング素子Q1は、例えば、MOSFETよりなる。そのソース電極は、入力直流電源としての平滑コンデンサC1の負極に接続されており、ドレイン電極はダイオードD1のアノード電極と、インダクタL1の一端に接続されている。平滑コンデンサC1の正極は、ダイオードD1のカソード電極に接続されると共に、出力端子a1に接続されている。インダクタL1の他端は出力端子b1に接続されている。出力端子a1−b1間には、出力電圧を平滑化するための平滑コンデンサ(図示せず)が接続されていても良い。
負荷端子c1−d1間には、複数個のLEDの直列回路よりなる第1の半導体発光素子1が接続されている。第1の半導体発光素子1は、複数個の発光ダイオード(LED)を直列接続して構成されているが、並列接続あるいは直並列接続して構成されていても良い。出力端子a1と負荷端子c1の間、出力端子b1と負荷端子d1の間は、後述の図6に示すように、電源ユニット5とLEDモジュール4を配線するリード線8を介してそれぞれ接続されている。
第1の降圧チョッパ回路10の動作について説明する。スイッチング素子Q1がオンすると、平滑コンデンサC1の正極→半導体発光素子1→インダクタL1→スイッチング素子Q1→平滑コンデンサC1の負極の経路で電流が流れて、インダクタL1にエネルギーが蓄積される。スイッチング素子Q1がオフすると、インダクタL1の蓄積エネルギーにより、インダクタL1→回生ダイオードD1→半導体発光素子1→インダクタL1の経路で回生電流が流れて、インダクタL1のエネルギーが放出される。第2の降圧チョッパ回路20についても同様の動作である。
第1の降圧チョッパ回路10の出力に接続される第1の半導体発光素子1は、寒色系(例えば、青−緑)の発光色を有しているものとする。また、第2の降圧チョッパ回路20の出力に接続される第2の半導体発光素子2は、暖色系(例えば、アンバー)の発光色を有しているものとする。各半導体発光素子1、2は必ずしも単一色のLEDの直列回路である必要は無く、全体の混合色がそれぞれ寒色系(高い色温度)、暖色系(低い色温度)の白色となるように、発光色の異なる複数個のLEDを適宜組み合わせて構成しても良い。
次に、第1及び第2の降圧チョッパ回路10、20のスイッチング素子Q1、Q2を制御する制御回路について説明する。スイッチング素子Q1、Q2の制御電極には、AND回路A1、A2の出力信号がそれぞれ入力されている。AND回路A1、A2の一方の入力には、高周波の矩形波信号HFが入力されており、他方の入力には、低周波の矩形波信号PWM1、PWM2がそれぞれ入力されている。
高周波の矩形波信号HFは、例えば無安定マルチバイブレータのような高周波発振回路(図示せず)から出力され、十数kHz〜数十kHzの周波数でHighレベルとLowレベルを繰り返すものとする。
低周波の矩形波信号PWM1、PWM2は、例えば調光・調色用のマイコン(図示せず)の出力ポートからHighレベルまたはLowレベルの2値信号として出力され、人間の目に点滅が認識できない程度の周波数、例えば百Hz〜数千Hzの周波数でHighレベルとLowレベルを繰り返すものとする。
AND回路A1に入力される低周波の矩形波信号PWM1がHighレベルのときには、高周波の矩形波信号HFによりスイッチング素子Q1が高周波でオンオフされ、Lowレベルのときには、スイッチング素子Q1はオフとなる。同様に、AND回路A2に入力される低周波の矩形波信号PWM2がHighレベルのときには、高周波の矩形波信号HFによりスイッチング素子Q2が高周波でオンオフされ、Lowレベルのときには、スイッチング素子Q2はオフとなる。
これにより、低周波の矩形波信号PWM1、PWM2のデューティに応じて、各降圧チョッパ回路10、20が間欠的に動作するから、各半導体発光素子1、2に流れる平均電流が個別に制御され、それぞれの発光色の明るさが調節されることにより、混合された発光色を調節できる。また、低周波の矩形波信号PWM1、PWM2のデューティの比率を一定に保ったままで、これらを同時に増減させることにより、発光色を一定に保ったまま、明るさを増減することも出来る。
なお、入力直流電源となる平滑コンデンサC1は、例えば商用交流電源を全波整流器(図示せず)により全波整流した直流電圧を充電されているものとする。AND回路A1、A2などで構成される制御回路の制御電源電圧Vccは、例えば、降圧用の抵抗と電圧規制用のツェナーダイオードの直列回路を平滑コンデンサC1に並列接続することで生成しても良い。他の実施形態でも同様である。
(実施形態2)
図2は本発明の実施形態2の要部構成を示す回路図である。主回路の構成は図1と同じで良い。本実施形態では、図1のAND回路A1、A2に代えて、スイッチング素子Q1、Q2の制御電極に、ゲート回路としてのNOR回路G1、G2の出力信号がそれぞれ入力されている。NOR回路G1、G2の一方の入力には、高周波の矩形波信号HFが入力されており、他方の入力には、低周波の矩形波信号PWM1、PWM2がそれぞれ入力されている。
図中の点線で囲まれた回路は、高周波の矩形波信号HFを発生させる高周波発振回路OSCである。この高周波発振回路OSCは、縦続接続されたNOR回路G3、G4に抵抗R1、R2、コンデンサC2を外付けして構成されている。NOR回路G3の一方の入力は、発振停止/発振開始の制御入力となっている。NOR回路G3の他方の入力は、抵抗R1を介して抵抗R2とコンデンサC2の各一端に接続されている。コンデンサC2の他端はNOR回路G4の出力に接続されている。抵抗R2の他端はNOR回路G3の出力とNOR回路G4の一方の入力に接続されている。NOR回路G4の他方の入力はLowレベルに固定されている。
この高周波発振回路OSCは、NOR回路G3の前記一方の入力がHighレベルのときは、発振停止状態となる。例えば、図示しない異常検出回路が何らかの異常を検出した場合に、NOR回路G3の前記一方の入力端子がHighレベルに設定されると、NOR回路G3の出力は常にLowレベルとなるから、NOR回路G4の出力は常にHighレベルとなる。これにより、NOR回路G1、G2の出力は常にLowレベルとなるから、スイッチング素子Q1、Q2はオフ状態に維持される。
高周波発振回路OSCが発振停止状態であるとき、NOR回路G4の出力はHighレベル、NOR回路G3の出力はLowレベルであるから、コンデンサC2と抵抗R2の接続点の電位はLowレベルとなっている。
次に、NOR回路G3の前記一方の入力がLowレベルに設定されると、高周波発振回路OSCはコンデンサC2と抵抗R2の時定数により決まる高周波の矩形波信号HFを発振する。抵抗R1を介してコンデンサC2に接続されたNOR回路G3の入力端子は高インピーダンスであるから、コンデンサC2の充放電は抵抗R2を介して行われる。
コンデンサC2の充放電による発振動作について説明する。NOR回路G3の前記一方の入力がLowレベルになると、NOR回路G3の出力は反転してHighレベルとなり、NOR回路G4の出力も反転してLowレベルとなる。すると、コンデンサC2と抵抗R2の接続点の電位はさらに低下するから、NOR回路G3の出力はHighレベルに維持される。
その後、NOR回路G3のHighレベルの出力→抵抗R2→コンデンサC2→NOR回路G4のLowレベルの出力という経路で電流が流れることにより、コンデンサC2と抵抗R2の接続点の電位が上昇し、抵抗R1を介して検出されるNOR回路G3の入力電圧がしきい値電圧(通常はVcc/2)を上回ると、NOR回路G3の出力は反転してLowレベルとなり、NOR回路G4の出力も反転してHighレベルとなる。すると、コンデンサC2と抵抗R2の接続点の電位はさらに上昇するから、NOR回路G3の出力はLowレベルに維持される。
その後、NOR回路G4のHighレベルの出力→コンデンサC2→抵抗R2→NOR回路G3のLowレベルの出力という経路で電流が流れることにより、コンデンサC2と抵抗R2の接続点の電位が低下して行き、抵抗R1を介して検出されるNOR回路G3の入力電圧がしきい値電圧(通常はVcc/2)を下回ると、NOR回路G3の出力は反転してHighレベルとなり、NOR回路G4の出力も反転してLowレベルとなる。以下、同じ動作を繰り返す。
この実施形態では、高周波発振回路OSCの発振周波数は抵抗R2とコンデンサC2の充放電の時定数により決定され、発振される高周波の矩形波信号HFのオンオフデューティは略50%となる。
図1の主回路において、電源電圧(平滑コンデンサC1の電圧)と負荷電圧(半導体発光素子1、2の電圧)の比率が2:1である場合には、スイッチング素子Q1、Q2のオン時にインダクタL1、L2に印加される電圧(=電源電圧−負荷電圧)と、スイッチング素子Q1、Q2のオフ時にインダクタL1、L2に印加される電圧(=負荷電圧)が等しくなるので、図2の制御回路のように、高周波の矩形波信号HFのオンオフデューティが50%であるときに都合良くゼロクロススイッチング動作が実現される。
図1の主回路において、負荷電圧(半導体発光素子1、2の電圧)が電源電圧(平滑コンデンサC1の電圧)の1/2よりも大きい場合、スイッチング素子Q1、Q2のオン時にインダクタL1、L2に印加される電圧(=電源電圧−負荷電圧)は、スイッチング素子Q1、Q2のオフ時にインダクタL1、L2に印加される電圧(=負荷電圧)よりも小さくなるので、インダクタL1、L2に流れる電流の上昇速度は降下速度よりも遅くなる。したがって、図2の制御回路のように、高周波の矩形波信号HFのオンオフデューティが50%であるときには、毎回のオンオフスイッチングのたびにインダクタL1、L2のエネルギーが完全に放出される不連続モードのスイッチング動作が実現される。
図1の主回路において、負荷電圧(半導体発光素子1、2の電圧)が電源電圧(平滑コンデンサC1の電圧)の1/2よりも小さい場合、スイッチング素子Q1、Q2のオン時にインダクタL1、L2に印加される電圧(=電源電圧−負荷電圧)は、スイッチング素子Q1、Q2のオフ時にインダクタL1、L2に印加される電圧(=負荷電圧)よりも大きくなるので、インダクタL1、L2に流れる電流の上昇速度は降下速度よりも速くなる。したがって、図2の制御回路のように、高周波の矩形波信号HFのオンオフデューティが50%であるときには、インダクタL1、L2のエネルギー放出が完了する前にスイッチング素子Q1、Q2がオンされる連続モードのスイッチング動作となる。
連続モードのスイッチング動作では、インダクタのエネルギー放出が完了しないうちに、次回のスイッチング素子のオンによりインダクタにさらにエネルギーが蓄積されるから、インダクタが磁気飽和しないように、スイッチング素子の間欠動作の休止期間を設定するような配慮が必要となる。
以上の検討から明らかなように、図2の制御回路は、図1の主回路において、負荷電圧(半導体発光素子1、2の電圧)が電源電圧(平滑コンデンサC1の電圧)の1/2以上である場合に特に適していると言える。負荷電圧が電源電圧の1/2以上であれば、図2の制御回路のように、高周波の矩形波信号HFのオンオフデューティが50%であっても、スイッチング素子Q1、Q2のオン時にインダクタL1、L2に蓄積されたエネルギーがスイッチング素子Q1、Q2のオフ時に速やかに放出され、次回のスイッチング素子Q1、Q2のオン時にはインダクタL1、L2のエネルギー放出が完了しているから、特許文献2のような尖頭電流制御回路を省略してもインダクタL1、L2が磁気飽和する恐れは無い。これにより制御回路の構成を大幅に簡略化できる。
なお、実施形態2において、NOR回路G1〜G4は、1チップに4素子が内蔵された汎用のロジックICを用いて安価に実現できる。実施形態3についても同様である。
(実施形態3)
図3は本発明の実施形態3の回路図である。本実施形態では、第1の半導体発光素子1の負荷電圧と第2の半導体発光素子2の負荷電圧が相違している。例えば、第1の半導体発光素子1の負荷電圧が電源電圧の1/2よりも低く、第2の半導体発光素子2の負荷電圧が電源電圧の1/2よりも高い場合、前者を駆動する第1の降圧チョッパ回路10のスイッチング素子Q1のオン時間はオフ時間よりも短く設定することが好ましく、後者を駆動する第2の降圧チョッパ回路20のスイッチング素子Q2のオン時間はオフ時間よりも長く設定することが好ましい。
そこで、図3の回路では、上述の図2に示した高周波発振回路OSCにおける発振周波数設定用の抵抗R2を、抵抗R3とダイオードD3の直列回路と、抵抗R4とダイオードD4の直列回路の並列回路に置き換えて、コンデンサC2の充放電の時定数をアンバランスとすることにより、オンオフデューティが不均等な高周波の矩形波信号HF1、HF2を発振し、NOR回路G3から出力される矩形波信号HF1をNOR回路G1を介してスイッチング素子Q1に供給し、NOR回路G4から出力される矩形波信号HF2をNOR回路G2を介してスイッチング素子Q2に供給するように構成している。
一例として、第1の半導体発光素子1の負荷電圧が電源電圧の1/4である場合、スイッチング素子Q1のオン時にインダクタL1に印加される電圧は電源電圧の3/4となり、スイッチング素子Q1のオフ時にインダクタL1に印加される電圧は電源電圧の1/4となるから、スイッチング素子Q1のオン時間とオフ時間の比率が1:3であれば、第1の降圧チョッパ回路10はゼロクロススイッチング動作となる。
また、これも一例として、第2の半導体発光素子2の負荷電圧が電源電圧の3/4である場合、スイッチング素子Q2のオン時にインダクタL2に印加される電圧は電源電圧の1/4となり、スイッチング素子Q2のオフ時にインダクタL2に印加される電圧は電源電圧の3/4となるから、スイッチング素子Q2のオン時間とオフ時間の比率が3:1であれば、第2の降圧チョッパ回路20はゼロクロススイッチング動作となる。
この場合、高周波発振回路OSCから出力される第1の矩形波信号HF1のオンオフデューティを3:1とし、これを反転させた第2の矩形波信号HF2のオンオフデューティを1:3とし、それぞれをNOR回路G1、G2を介してスイッチング素子Q1、Q2に供給すれば、第1及び第2の降圧チョッパ回路10、20は共にゼロクロススイッチング動作となる。
なお、半導体発光素子1、2の負荷電圧や、高周波の矩形波信号HF1、HF2のオンオフデューティには、ばらつきがあるので、完全なゼロクロススイッチング動作になるとは限らない。そこで、ゼロクロススイッチング動作となる条件よりも少し大きめの負荷電圧となるように半導体発光素子1、2の負荷電圧(LEDの直列個数)を設計しておけば、スイッチング素子Q1、Q2のオフ時にインダクタL1、L2のエネルギー放出時間が少し早まるので、ゼロクロススイッチング動作に近い不連続モードとすることができる。
本実施形態では、実施形態2とは異なり、高周波発振回路OSCの発振を停止させても、スイッチング素子Q1、Q2を同時にオフさせることは出来ないが、低周波の矩形波信号PWM1、PWM2を同時にHighレベルとすることでスイッチング素子Q1、Q2を同時にオフさせることは出来る。
なお、副次的な効果として、本実施形態では、スイッチング素子Q1とQ2は同時にオンしないので、入力直流電源となる平滑コンデンサC1のリップルを軽減できる。実施形態4、5でも同様である。
(実施形態4)
図4は本発明の実施形態4の制御回路の構成を示している。主回路の構成は図1と同じで良い。本実施形態では、スイッチング素子Q1、Q2の制御電極には、インバータ回路N1、N2の出力信号がそれぞれ入力されている。
インバータ回路N1は、ダイオードD11、D12と抵抗R11よりなるダイオードOR回路と共に、第1のNOR回路NOR1を構成している。インバータ回路N2は、ダイオードD21、D22と抵抗R12よりなるダイオードOR回路と共に、第2のNOR回路NOR2を構成している。
第1及び第2のNOR回路NOR1、NOR2には、高周波発振回路OSC−Hから出力される高周波の矩形波信号HFと、低周波発振回路OSC−Lから出力される低周波の矩形波信号PWM1、PWM2が入力されている。本実施形態では、低周波の矩形波信号PWM1、PWM2のオンオフデューティは相補的に変化する。つまり、一方の矩形波信号PWM1のHighレベル期間が長くなると、他方の矩形波信号PWM2のHighレベル期間は短くなる。逆もまた真であり、Lowレベル期間についても同様である。
高周波発振回路OSC−Hは、明るさを変化させる調光制御回路として機能し、低周波発振回路OSC−Lは、色温度を変化させる調色制御回路として機能する。
高周波発振回路OSC−Hは、インバータ回路N3、N4に抵抗R1、R2、可変抵抗VR1、ダイオードD3、D4、コンデンサC2を外付け接続して構成されている。可変抵抗VR1の摺動子の位置を調節することにより、高周波の矩形波信号HFのオンオフデューティを50%よりも大きくしたり、小さくしたりすることができる。
低周波発振回路OSC−Lは、インバータ回路N5、N6に抵抗R5、R6、可変抵抗VR2、ダイオードD5、D6、コンデンサC3を外付け接続して構成されている。可変抵抗VR2の摺動子の位置を調節することにより、低周波の矩形波信号PWM1のオンオフデューティを50%よりも大きくしたり、小さくしたりすることができる。このとき、低周波の矩形波信号PWM2のオンオフデューティは、100%−(低周波の矩形波信号PWM1のオンオフデューティ)となる。
例えば、スイッチング素子Q1が寒色系の発光色を有する半導体発光素子1に流れる電流を制御しており、スイッチング素子Q2が暖色系の発光色を有する半導体発光素子2に流れる電流を制御している場合、寒色系の半導体発光素子1に流れる電流と暖色系の半導体発光素子2に流れる電流が拮抗していれば、混合色は中立的な白色系の発光色となり、また、前者が後者よりも勝っていれば青みがかった白色系の発光色となり、後者が前者よりも勝っていれば赤みがかった白色系の発光色となる。これにより、蛍光灯の分野で広く用いられている昼光色、昼白色、電球色のような色温度を実現できる。
本実施形態では、低周波の矩形波信号PWM1、PWM2のオンオフデューティは相補的に変化するので、全体の明るさを低周波発振回路OSC−Lのオンオフデューティにより変化させることは出来ない。そこで、高周波発振回路OSC−Hから出力される高周波の矩形波信号HFのオンオフデューティを可変とすることにより、スイッチング素子Q1、Q2の高周波のオンパルス幅を可変とすることで、調光動作を実現している。
本実施形態において、インバータ回路N1〜N6は、1チップに6素子が内蔵された汎用のロジックICを用いて安価に実現できる。
(実施形態5)
図5は本発明の実施形態5の制御回路の構成を示している。主回路の構成は図1と同じで良い。本実施形態では、スイッチング素子Q1、Q2の制御電極には、シュミットインバータ回路S1、S2の出力信号がそれぞれ入力されている。
実施形態4と比較すると、高周波発振回路OSC−H、低周波発振回路OSC−Lの構成が異なる。本実施形態で用いるシュミットインバータ回路は、入力電圧しきい値にヒステリシス特性を有しているので、1素子で発振回路を構成することができる。
低周波発振回路OSC−Lの構成及び動作について説明する。シュミットインバータ回路S4の入力端子と出力端子の間には、発振周波数設定用の抵抗R5が接続されている。シュミットインバータ回路S4の入力端子と回路グランドの間には発振周波数設定用のコンデンサC3が接続されている。抵抗R5とコンデンサC3の時定数は、低周波の矩形波信号PWM1を発振するように設定されている。シュミットインバータ回路S4の出力をシュミットインバータ回路S5により論理反転した第2の矩形波信号PWM2のオンオフデューティは、第1の矩形波信号PWM1のオンオフデューティに対して相補的に変化する。
電源投入時には、コンデンサC3の電圧は低いから、シュミットインバータ回路S4の出力はHighレベルとなる。このため、抵抗R5を介してコンデンサC3に充電電流が流れて、コンデンサC3の電圧は上昇して行く。コンデンサC3の電圧がシュミットインバータ回路S4の上側しきい値よりも高くなると、シュミットインバータ回路S4の出力は反転し、Lowレベルとなる。すると、今度はコンデンサC3の電荷が抵抗R5を介して放電されて、コンデンサC3の電圧は降下して行く。コンデンサC3の電圧がシュミットインバータ回路S4の下側しきい値よりも低くなると、シュミットインバータ回路S4の出力は反転し、Highレベルとなる。以下、同じ動作を繰り返し、シュミットインバータ回路S4の出力は、コンデンサC3と抵抗R5の時定数で決まる発振周波数でHighレベルとLowレベルを交互に繰り返す。
シュミットインバータ回路S4の上側しきい値と下側しきい値の間には、一般的には制御電源電圧Vccの20%程度のヒステリシスが設けられており、上側しきい値が0.6×Vccのとき、下側しきい値は0.4×Vccとなり、そのときのオンオフデューティは略50%となる。
以上の動作は、デューティ切替スイッチSWが図示された位置に設定されている場合であるが、デューティ切替スイッチSWを他の位置に切り換えると、オンオフデューティを50%よりも大きくしたり、小さくしたりできる。抵抗R5とコンデンサC3の接続点に一端を接続された抵抗R8の他端は、デューティ切替スイッチSWを介して制御電源電圧Vccの電位または回路グランドの電位に接続可能となっており、前者に接続した場合、コンデンサC3の充電は早くなり放電は遅くなる。後者に接続した場合、コンデンサC3の放電は早くなり、充電は遅くなる。これにより、低周波発振回路OSC−Lのオンオフデューティを3段階に切り替えることができるから、例えば、蛍光灯の分野で広く用いられている昼光色、昼白色、電球色などの色温度を実現できる。
高周波発振回路OSC−Hの構成及び動作については、低周波発振回路OSC−Lと殆ど同様であるが、抵抗R2とコンデンサC2の時定数は、高周波の矩形波信号HFを発振するように設定されている点が異なる。また、本実施形態では、可変抵抗VR1により制御電源電圧Vccを分圧するポテンショメータを構成し、その分圧点の電位と抵抗R2とコンデンサC2の接続点を抵抗R7を介して接続することにより、高周波の矩形波信号HFのオンオフデューティを連続的に可変とし、これにより色温度を変えずに明るさを変える調光動作を実現している点が異なる。
なお、図5の可変抵抗VR1と切替スイッチSWは入れ換えても良く、その場合、段調光と連続的な色温度の可変が実現できる。また、高周波発振回路OSC−H、低周波発振回路OSC−Lの両方に可変抵抗を用いれば、連続的な調光と連続的な色温度の可変が可能となり、両方に切替スイッチを用いれば、段階的な調光と段階的な色温度の可変が可能となる。
本実施形態において用いるシュミットインバータ回路S1〜S5は、1チップに6素子が内蔵された汎用のロジックICを用いて安価に実現できる。
(実施形態6)
上述の実施形態1〜5では、スイッチング電源回路として、降圧チョッパ回路を例示したが、これに限定されるものではなく、昇降圧チョッパ回路、フライバックDC−DCコンバータ回路、昇圧チョッパ回路などを用いても構わない。これらのスイッチング電源回路は、インダクタやトランスのような誘導性素子と、入力直流電源から誘導性素子に流れる電流を高周波で開閉するスイッチング素子と、スイッチング素子のオフ時に誘導性素子のエネルギーを負荷側に放出する回生ダイオードを有する構成であり、所定の条件が満たされていれば、連続モードにならない。
例えば、スイッチング電源回路が降圧チョッパ回路である場合、スイッチング素子のオン時間/オフ時間の比率が負荷電圧/(電源電圧−負荷電圧)の比率以下であれば、連続モードにはならない。
また、スイッチング電源回路が昇降圧チョッパ回路またはフライバックDC−DCコンバータ回路である場合には、スイッチング素子のオン時間/オフ時間の比率が負荷電圧/電源電圧の比率以下であれば、連続モードにはならない。
さらに、スイッチング電源回路が昇圧チョッパ回路である場合には、スイッチング素子のオン時間/オフ時間の比率が(負荷電圧−電源電圧)/電源電圧の比率以下であれば、連続モードにはならない。
したがって、これらの条件を満たす程度に負荷電圧が大きいか又はオン時間が短いという前提が満たされていれば、いずれの形式のスイッチング電源回路を用いた場合であっても、インダクタが磁気飽和する恐れは無く、特許文献2のような尖頭電流制御回路を設ける必要は無くなる。
特許文献2のような尖頭電流制御回路を設ける理由は、スイッチング電源回路の間欠動作時の定電流性を高めると共に、インダクタが磁気飽和しないようにするためである。しかし、半導体発光素子がLEDの直列回路である場合には、負荷電圧が略一定であるという特有の前提がある。したがって、仮に電源電圧が一定であれば、スイッチング素子のオン期間が決まれば、スイッチング素子のオン時にインダクタに流れる電流のピーク値は一義的に決まる。また、インダクタに流れる電流のピーク値が決まれば、負荷電圧が略一定であるという特有の性質により、スイッチング素子のオフ時にインダクタのエネルギーが放出完了するまでの時間も一義的に決まる。したがって、スイッチング素子のオン時間をインダクタに流れる電流のピーク値を規定するように設定すると共に、スイッチング素子のオフ時間を負荷電圧に応じて決まるインダクタのエネルギー放出に要する時間以上となるように設定すれば、共通の高周波発振回路を用いて、複数系統のスイッチング電源回路を独立して制御することが可能となる。
(実施形態7)
図6は本発明のLED点灯装置を用いた電源一体型のLED照明器具の断面図である。LED照明器具の器具筐体3は天井9に埋め込まれている。器具筐体3内に、LEDモジュール4と電源ユニット5が内蔵されている。器具筐体3は、下端開放された金属製の円筒体よりなり、下端開放部は光拡散板6で覆われている。この光拡散板6に対向するように、LEDモジュール4が配置されている。40はLED実装基板であり、LEDモジュール4のLED1a,1b,…;2a,2b,…を実装している。
LED1a,1b,…は、例えば寒色系のLEDであり、その直列回路が図1または図3の半導体発光素子1に相当する。LED2a,2b,…は、例えば暖色系のLEDであり、その直列回路が図1または図3の半導体発光素子2に相当する。なお、寒色系のLEDと暖色系のLEDは、円板状のLED実装基板40の円周方向に沿って交互に配置するなどして、発光色が混ざり易くすることが好ましいことは言うまでも無い。
50は電源回路基板であり、電源ユニット5の電子部品を実装している。LEDモジュール4は、器具筐体3内において放熱板7に接触するように設置されており、LED1a,1b,…;2a,2b,…の発生する熱を器具筐体3に逃がすようになっている。また、LEDモジュール4と電源ユニット5は、この放熱板7に設けられた穴を介して、リード線8で接続されている。放熱板7はアルミ板や銅板のような金属板であり、放熱効果と遮蔽効果を兼ねている。放熱板7は器具筐体3に電気的に接続されてアースされるが、リード線8とは電気的に分離された非充電部となっている。
上述の各実施形態の説明では、半導体発光素子として発光ダイオードを例示したが、これに限定されるものではなく、例えば、有機EL素子や半導体レーザー素子などであっても良い。
C1 平滑コンデンサ(入力直流電源)
10 降圧チョッパ回路(第1のスイッチング電源回路)
20 降圧チョッパ回路(第2のスイッチング電源回路)
1 第1の半導体発光素子
2 第2の半導体発光素子
A1 AND回路
A2 AND回路
HF 高周波の矩形波信号
PWM1 低周波の矩形波信号
PWM1 低周波の矩形波信号

Claims (4)

  1. 入力直流電源に並列に接続され、色温度が異なる第1及び第2の半導体発光素子をそれぞれ駆動する第1及び第2のスイッチング電源回路と、
    前記各スイッチング電源回路のオンオフスイッチング信号となる高周波の矩形波信号を発生させる高周波発振回路と、
    前記高周波の矩形波信号を一方の入力とし、前記高周波の矩形波信号に比べて周波数が低く且つ点滅が認識できない程度に周波数が高い第1及び第2の低周波の矩形波信号をそれぞれ他方の入力とし、前記高周波の矩形波信号を第1及び第2のスイッチング電源回路にオンオフスイッチング信号として供給するか否かをそれぞれ第1及び第2の低周波の矩形波信号に応じて選択する第1及び第2のゲート回路とを備えることを特徴とする半導体発光素子の点灯装置。
  2. 前記高周波発振回路が発生させる高周波の矩形波信号はオンオフデューティが不均等であり、第1及び第2の半導体発光素子は負荷電圧が異なり、負荷電圧が高い方の半導体発光素子を駆動するスイッチング電源回路のオンパルス幅が他方のスイッチング電源回路のオンパルス幅よりも長くなるように第1及び第2のゲート回路が接続されていることを特徴とする請求項1記載の半導体発光素子の点灯装置。
  3. 4素子または6素子の論理回路を1チップに内蔵した集積回路を備え、第1及び第2の論理回路によりそれぞれ第1及び第2のゲート回路を構成し、残りの論理回路により前記高周波の矩形波信号または低周波の矩形波信号を発生させることを特徴とする請求項1または2のいずれかに記載の半導体発光素子の点灯装置。
  4. 請求項1〜3のいずれかに記載の半導体発光素子の点灯装置と、それにより駆動される第1及び第2の半導体発光素子を備える照明器具。
JP2011025813A 2011-02-09 2011-02-09 半導体発光素子の点灯装置およびそれを用いた照明器具 Pending JP2012164594A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011025813A JP2012164594A (ja) 2011-02-09 2011-02-09 半導体発光素子の点灯装置およびそれを用いた照明器具
EP12000702.6A EP2487992B1 (en) 2011-02-09 2012-02-02 Lighting device for semiconductor light emitting elements and illumination apparatus including the same
CN201210027336.8A CN102638921B (zh) 2011-02-09 2012-02-08 用于半导体发光元件的点亮设备和包括其的照明装置
US13/368,722 US9226353B2 (en) 2011-02-09 2012-02-08 Lighting device for semiconductor light emitting elements and illumination apparatus including same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011025813A JP2012164594A (ja) 2011-02-09 2011-02-09 半導体発光素子の点灯装置およびそれを用いた照明器具

Publications (1)

Publication Number Publication Date
JP2012164594A true JP2012164594A (ja) 2012-08-30

Family

ID=45606945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011025813A Pending JP2012164594A (ja) 2011-02-09 2011-02-09 半導体発光素子の点灯装置およびそれを用いた照明器具

Country Status (4)

Country Link
US (1) US9226353B2 (ja)
EP (1) EP2487992B1 (ja)
JP (1) JP2012164594A (ja)
CN (1) CN102638921B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014078405A (ja) * 2012-10-11 2014-05-01 Nidec Sankyo Corp Led光源装置
JPWO2020209295A1 (ja) * 2019-04-11 2020-10-15

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8513904B2 (en) * 2011-11-17 2013-08-20 Micrel, Inc. Step-down hysteretic current LED driver implementing frequency regulation
CN103841704B (zh) * 2012-11-23 2018-07-27 海洋王(东莞)照明科技有限公司 Led灯具控制电路
US9433059B2 (en) * 2014-06-17 2016-08-30 Shenzhen China Star Optoelectronics Technology Co., Ltd Boost circuits, LED backlight driving circuits and liquid crystal devices
CN107846749B (zh) * 2017-11-04 2019-06-21 肖志蓝 一种无级色温及亮度调节的led灯系统及其控制方法
DE102018109045A1 (de) * 2018-04-17 2019-10-17 Insta Gmbh Dimmschaltung für ein trägheitsfreies Leuchtmittel sowie Dimmverfahren
KR20230099316A (ko) * 2021-12-27 2023-07-04 삼성전자주식회사 Led 제어 장치 및 이를 포함하는 조명 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006015476A1 (en) * 2004-08-12 2006-02-16 Tir Systems Ltd. Method and apparatus for scaling the average current supply to light-emitting elements
JP2007189004A (ja) * 2006-01-12 2007-07-26 Hitachi Lighting Ltd 直流電源装置、発光ダイオード用電源、及び照明装置
JP2010170845A (ja) * 2009-01-22 2010-08-05 Panasonic Electric Works Co Ltd 電源装置及びそれを用いた照明器具

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5569984A (en) * 1994-12-28 1996-10-29 Philips Electronics North America Corporation Method and controller for detecting arc instabilities in gas discharge lamps
US5803579A (en) 1996-06-13 1998-09-08 Gentex Corporation Illuminator assembly incorporating light emitting diodes
JP4122607B2 (ja) 1998-11-30 2008-07-23 東芝ライテック株式会社 航空標識灯
JP2002203988A (ja) 2000-12-28 2002-07-19 Toshiba Lsi System Support Kk 発光素子駆動回路
US7071762B2 (en) * 2001-01-31 2006-07-04 Koninklijke Philips Electronics N.V. Supply assembly for a led lighting module
EP1825717B1 (en) * 2004-11-23 2014-01-08 Koninklijke Philips N.V. Apparatus and method for controlling colour and colour temperature of light generated by a digitally controlled luminaire
US8203260B2 (en) * 2007-04-13 2012-06-19 Intematix Corporation Color temperature tunable white light source
CN101153072B (zh) * 2007-09-18 2011-10-05 长春工业大学 由低纯度工业级双环戊二烯制备改性不饱和聚酯树脂的方法
KR101454662B1 (ko) * 2008-07-08 2014-10-27 삼성전자주식회사 색온도 및 밝기 조절이 가능한 조명 장치 및 이를 구비한조명 시스템
CN201403243Y (zh) * 2009-04-24 2010-02-10 厦门海莱照明有限公司 冷阴极调光灯
US8674610B2 (en) * 2010-12-13 2014-03-18 Arkalumen Inc. Lighting apparatus and circuits for lighting apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006015476A1 (en) * 2004-08-12 2006-02-16 Tir Systems Ltd. Method and apparatus for scaling the average current supply to light-emitting elements
JP2007189004A (ja) * 2006-01-12 2007-07-26 Hitachi Lighting Ltd 直流電源装置、発光ダイオード用電源、及び照明装置
JP2010170845A (ja) * 2009-01-22 2010-08-05 Panasonic Electric Works Co Ltd 電源装置及びそれを用いた照明器具

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014078405A (ja) * 2012-10-11 2014-05-01 Nidec Sankyo Corp Led光源装置
JPWO2020209295A1 (ja) * 2019-04-11 2020-10-15
WO2020209295A1 (ja) * 2019-04-11 2020-10-15 株式会社小糸製作所 車両用灯具およびその点灯回路
JP7353358B2 (ja) 2019-04-11 2023-09-29 株式会社小糸製作所 車両用灯具およびその点灯回路

Also Published As

Publication number Publication date
EP2487992B1 (en) 2018-01-24
US9226353B2 (en) 2015-12-29
CN102638921A (zh) 2012-08-15
CN102638921B (zh) 2014-12-17
EP2487992A1 (en) 2012-08-15
US20120200231A1 (en) 2012-08-09

Similar Documents

Publication Publication Date Title
EP2487992B1 (en) Lighting device for semiconductor light emitting elements and illumination apparatus including the same
JP5821279B2 (ja) 発光ダイオード駆動装置
JP5518098B2 (ja) Led駆動回路
JP5870278B2 (ja) 半導体発光素子の点灯装置およびそれを用いた照明器具
JP5471330B2 (ja) 発光ダイオード駆動回路及び発光ダイオードの点灯制御方法
JP4600583B2 (ja) 調光機能を有する電源装置及び照明器具
JP6048943B2 (ja) 駆動回路、照明用光源、及び、照明装置
JP5884046B2 (ja) 点灯装置および、これを用いた照明器具
KR20120082468A (ko) 발광 다이오드 구동장치 및 발광 다이오드의 점등 제어 방법
US20130141003A1 (en) Lighting apparatus and illuminating fixture with the same
JP6011761B2 (ja) 点灯装置及びそれを用いた照明器具
KR101435853B1 (ko) 발광 다이오드 구동 장치
JP6094959B2 (ja) 点灯装置及び照明器具
JP2009182074A (ja) 発光装置
JP5430716B2 (ja) 照明装置
JP2010257026A (ja) 電源回路及び照明装置
CN108124346B (zh) 发光二极管驱动装置以及使用了该发光二极管驱动装置的照明、渔灯
JP2011198673A (ja) Ledの調光方法及び調光装置
JP2018133308A (ja) 照明器具
JP2010282983A (ja) 電源装置及び照明器具
KR20140093456A (ko) 발광 다이오드 조명 장치
KR20150026348A (ko) 발광 다이오드 조명 회로
WO2013149582A1 (zh) Led工作模式控制装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150127