JP2012129336A - Semiconductor device and manufacturing method of the same - Google Patents

Semiconductor device and manufacturing method of the same Download PDF

Info

Publication number
JP2012129336A
JP2012129336A JP2010278860A JP2010278860A JP2012129336A JP 2012129336 A JP2012129336 A JP 2012129336A JP 2010278860 A JP2010278860 A JP 2010278860A JP 2010278860 A JP2010278860 A JP 2010278860A JP 2012129336 A JP2012129336 A JP 2012129336A
Authority
JP
Japan
Prior art keywords
solder
recess
conductive pattern
semiconductor chip
external terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010278860A
Other languages
Japanese (ja)
Other versions
JP5691475B2 (en
Inventor
Norihiro Nashida
典弘 梨子田
Yoko Nakamura
瑶子 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2010278860A priority Critical patent/JP5691475B2/en
Publication of JP2012129336A publication Critical patent/JP2012129336A/en
Application granted granted Critical
Publication of JP5691475B2 publication Critical patent/JP5691475B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12032Schottky diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • H01L2924/15155Shape the die mounting substrate comprising a recess for hosting the device the shape of the recess being other than a cuboid
    • H01L2924/15157Top view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device which improves positioning accuracy at low cost and achieves the size reduction and high density assembly of a semiconductor chip, and to provide a manufacturing method of the semiconductor device.SOLUTION: A first recessed part 5 on which a semiconductor chip 9 is placed is formed on a conductive pattern 4 of an insulation substrate with conductive patterns 1. A positioning external terminal 17 fastened to each conductive pattern 4 penetrates through a through hole 12 of a printed substrate with post pins 11, thereby positioning tips of the post pins 16 on a gate pad 9b and an emitter electrode pad 9a of the semiconductor chip 9. This structure significantly improves the positioning accuracy of the post pins 16 on the pad 9b at low cost.

Description

この発明は、半導体モジュールなどの半導体装置およびその製造方法に関する。   The present invention relates to a semiconductor device such as a semiconductor module and a manufacturing method thereof.

図14は、従来のパワー半導体モジュール700の構成図であり、同図(a)は要部平面図、同図(b)は同図(a)のX−X線で切断した要部断面図である。また、図15は、図14で示す半導体チップ55をIGBT(絶縁ゲート型バイポーラトランジスタ)チップとした場合の導電パターン53に配置した要部平面図である。点線の丸67はポストピン57の位置を示す。   14A and 14B are configuration diagrams of a conventional power semiconductor module 700. FIG. 14A is a plan view of the main part, and FIG. 14B is a cross-sectional view of the main part taken along line XX of FIG. It is. FIG. 15 is a plan view of a main part arranged in the conductive pattern 53 when the semiconductor chip 55 shown in FIG. 14 is an IGBT (insulated gate bipolar transistor) chip. A dotted circle 67 indicates the position of the post pin 57.

図14において、パワー半導体モジュール700は、冷却ベース52と、冷却ベース52に直接あるいは半田等接合材を介して表・裏面が固着する導電パターン付絶縁基板51と、導電パターン53に半田54を介して裏面が固着される半導体チップ55と、半導体チップ55の表面に半田56を介して固着されるポストピン57と、導電パターン53の凹部58に半田54で固着される外部端子59と、ポストピン57が固着するポストピン付プリント基板60と、外部端子59が貫通するポストピン付プリント基板60の貫通孔61から構成される。ポストピン付プリント基板60の表側には導電パターン62が形成されている。尚、図中の63はゲートパッド55bへ電気的に接続する外部端子59と導電パターン62を電気的に接続し固定する半田である。   In FIG. 14, a power semiconductor module 700 includes a cooling base 52, an insulating substrate 51 with a conductive pattern that is fixed to the cooling base 52 directly or via a bonding material such as solder, and a conductive pattern 53 with solder 54. A semiconductor chip 55 whose back surface is fixed, a post pin 57 fixed to the surface of the semiconductor chip 55 with solder 56, an external terminal 59 fixed to the recess 58 of the conductive pattern 53 with solder 54, and a post pin 57. The printed board 60 with post pins to be fixed and the through holes 61 of the printed board 60 with post pins through which the external terminals 59 penetrate. A conductive pattern 62 is formed on the front side of the printed circuit board 60 with post pins. Reference numeral 63 in the figure denotes solder for electrically connecting and fixing the external terminal 59 electrically connected to the gate pad 55b and the conductive pattern 62.

このパワー半導体モジュール700は、半導体チップ55を導電パターン付絶縁基板51に半田54で接合し、半導体チップ55の表面電極(ゲートパッド55b,エミッタ電極パッド55a)との電気配線をポストピン付プリント基板60のポストピン57で行なう構造となっている(例えば、特許文献5参照)。   In this power semiconductor module 700, the semiconductor chip 55 is joined to the insulating substrate 51 with the conductive pattern by the solder 54, and the electric wiring with the surface electrodes (gate pad 55b, emitter electrode pad 55a) of the semiconductor chip 55 is connected to the printed board 60 with post pins. The post pin 57 has a structure (see, for example, Patent Document 5).

図16は、図14のパワー半導体モジュールの製造方法であり、同図(a)〜同図(c)は工程順に示した要部製造工程断面図である。
同図(a)において、カーボン治具71の凹部72に半導体チップ55を入れ、半導体チップ55上に半田56を載置する。その上からポストピン付プリント基板60をカーボン治具71に挿入して半田56上にポストピン57の先端を接触させる。
FIG. 16 shows a method of manufacturing the power semiconductor module of FIG. 14, and FIGS. 16A to 18C are cross-sectional views of the main part manufacturing process shown in the order of steps.
In FIG. 2A, the semiconductor chip 55 is placed in the recess 72 of the carbon jig 71, and the solder 56 is placed on the semiconductor chip 55. The printed circuit board 60 with post pins is inserted into the carbon jig 71 from above, and the tips of the post pins 57 are brought into contact with the solder 56.

つぎに、同図(b)において、同図(a)の組立品をリフロー炉で半田56を溶融し、固化して、半導体チップ55の表面電極(ゲートパッド55b,エミッタ電極パッド55a)とポストピン57の先端を固着する。続いて、導電パターン付絶縁基板51を別のカーボン治具73に入れ、導電パターン53上に半田54を載置し、その上から半導体チップ55の付いたポストピン付プリント基板60をカーボン治具73に挿入して、半田54と半導体チップ55の裏面を接触させる。また、外部端子59をポストピン付プリント基板60の貫通孔61を通して導電パターン53上の凹部58内の半田54に接触させる。   Next, in FIG. 4B, the assembly of FIG. 6A is melted and solidified by solder 56 in a reflow furnace, and the surface electrode (gate pad 55b, emitter electrode pad 55a) of the semiconductor chip 55 and the post pin are assembled. The tip of 57 is fixed. Subsequently, the insulating substrate 51 with the conductive pattern is put in another carbon jig 73, the solder 54 is placed on the conductive pattern 53, and the printed circuit board 60 with the post pin with the semiconductor chip 55 is placed thereon from the carbon jig 73. The solder 54 and the back surface of the semiconductor chip 55 are brought into contact with each other. Further, the external terminal 59 is brought into contact with the solder 54 in the recess 58 on the conductive pattern 53 through the through hole 61 of the printed circuit board 60 with post pins.

つぎに、同図(c)において、同図(b)の組立品をリフロー炉で半田54、56を溶融し、固化して、半導体チップ55の裏面および外部端子59を導電パターン53に固着する。その後、フロー炉から組立品を取り出して、樹脂64で封止した後、裏面の厚い冷却ベース52を研削して平坦にして完成する。   Next, in FIG. 4C, the assembly of FIG. 4B is melted and solidified by a reflow furnace, and the back surface of the semiconductor chip 55 and the external terminal 59 are fixed to the conductive pattern 53. . Thereafter, the assembly is taken out from the flow furnace and sealed with the resin 64, and then the thick cooling base 52 on the back surface is ground and flattened.

また、特許文献1では、セラミック基板と金属板との接合基板において金属板上の半導体チップ搭載部の周囲を半田の厚さすることで、半導体チップを固着する半田が流れたり、半導体チップの位置ずれを防止したりすることが記載されている。   Further, in Patent Document 1, by soldering the periphery of the semiconductor chip mounting portion on the metal plate in the bonding substrate between the ceramic substrate and the metal plate, the solder for fixing the semiconductor chip flows or the position of the semiconductor chip It is described that the shift is prevented.

また、特許文献2では、金属ベースに半導体チップが搭載された半導体モジュールにおいて、金属ベースの打ち抜き加工と同時に、半導体チップが搭載される所定位置に凹部を形成することで、安価な方法で半導体チップの位置決めができることが記載されている。   Further, in Patent Document 2, in a semiconductor module in which a semiconductor chip is mounted on a metal base, a recess is formed at a predetermined position where the semiconductor chip is mounted at the same time as the punching process of the metal base. It is described that positioning can be performed.

また、特許文献3では、基板上に実装すべき半導体チップの底面全体を半田を介して接合するための半導体チップ半田付け用ランドパターンをソルダーレジストで形成し、前記半導体チップ底面の4隅部にほぼ一致する角部と、前記半導体チップ底面の各辺に対応して各辺より外側に突出する半田溜め部(逃がし部)を有するパターンとする。こうすることで、位置決め用の治具を用いることなくセルフアライメント効果を用いて半導体チップの位置決めを行なうことで、簡単な構成で半導体チップを所定の位置に高精度で位置決めできることが記載されている。   Further, in Patent Document 3, a land pattern for soldering a semiconductor chip for joining the entire bottom surface of a semiconductor chip to be mounted on a substrate via solder is formed with a solder resist, and is formed at four corners of the bottom surface of the semiconductor chip. A pattern having substantially matching corners and solder reservoirs (relief portions) protruding outward from the sides corresponding to the sides of the bottom surface of the semiconductor chip. By doing so, it is described that the semiconductor chip can be positioned at a predetermined position with high accuracy with a simple configuration by positioning the semiconductor chip using the self-alignment effect without using a positioning jig. .

また、特許文献4では、ヒートスプレッダ上には、溶融した半田の不要な広がりを防止するために、半導体チップの周囲を取り囲むように溶融した半田の流れを堰き止める半田ダム(ダム内が半田溜め部)を凸状に設ける。この凸部の高さは半田の厚さ程度である。また、この凸状の半田ダムのうち、矩形状の半導体チップの辺部にはこれに沿うように直線状な凸部を形成する。角部には半導体チップの角部から離れて溶融した半田が外方に広がるように、円状に凸部を形成することで、半導体チップの傾きおよびヒートスプレッダに対する半導体チップの位置決めをセルフアライメントで行い、簡易かつ安価に制御することができることが記載されている。   Further, in Patent Document 4, a solder dam (inside the dam is a solder reservoir) that dams the flow of molten solder so as to surround the periphery of the semiconductor chip in order to prevent unnecessary spread of the molten solder on the heat spreader. ) Is provided in a convex shape. The height of the convex portion is about the thickness of the solder. Further, among the convex solder dams, linear convex portions are formed along the sides of the rectangular semiconductor chip. At the corner, the convex part is formed in a circular shape so that the melted solder away from the corner of the semiconductor chip spreads outward, and the semiconductor chip is positioned by self-alignment with respect to the inclination of the semiconductor chip and the heat spreader. It is described that it can be controlled simply and inexpensively.

また、特許文献5では、パワー半導体モジュールなどの半導体装置において、絶縁板の第1の主面に金属箔が形成され、絶縁板の第2の主面に、少なくとも一つの別の金属箔が形成される。また、別の金属箔上に接合された少なくとも一つの半導体チップと、半導体チップが配置された絶縁板の主面に対向するようにプリント基板が配置される。そして、プリント基板の第1の主面に形成された金属箔またはプリント基板の第2の主面に形成された別の金属箔と、半導体チップの主電極とが複数のポスト電極(ポストピン)により電気的に接続される。これにより、高信頼性で、優れた動作特性を有し、且つ高い生産性を有する半導体装置とすることができることが記載されている。   In Patent Document 5, in a semiconductor device such as a power semiconductor module, a metal foil is formed on the first main surface of the insulating plate, and at least one other metal foil is formed on the second main surface of the insulating plate. Is done. In addition, the printed circuit board is disposed so as to face at least one semiconductor chip bonded on another metal foil and the main surface of the insulating plate on which the semiconductor chip is disposed. The metal foil formed on the first main surface of the printed circuit board or another metal foil formed on the second main surface of the printed circuit board and the main electrode of the semiconductor chip are formed by a plurality of post electrodes (post pins). Electrically connected. Thus, it is described that a semiconductor device having high reliability, excellent operating characteristics, and high productivity can be obtained.

また、特許文献6では、第1の半田リフローでプリント基板に導電性ポスト(ポストピン)および外部端子を半田接合しておく。金属箔接合絶縁基板(導電パターン付絶縁基板)に接合された厚金属ブロックの表面には、半導体チップの接合領域の周囲にチップ位置決め手段とする突起が形成され、第2の半田リフロー時に半導体チップの位置決めを行うようにした。これにより、半導体チップは、チップ下半田およびチップ上半田による厚金属ブロックおよび導電性ポストとの半田接合を同時に行うことができることが記載されている。   In Patent Document 6, a conductive post (post pin) and an external terminal are soldered to a printed circuit board by first solder reflow. On the surface of the thick metal block bonded to the metal foil bonding insulating substrate (insulating substrate with conductive pattern), a protrusion serving as a chip positioning means is formed around the bonding region of the semiconductor chip, and the semiconductor chip is subjected to the second solder reflow. Positioning was performed. Thus, it is described that the semiconductor chip can simultaneously perform solder bonding with the thick metal block and the conductive post by solder under the chip and solder on the chip.

特開平10−242331号公報JP-A-10-242331 特開2000−31358号公報JP 2000-31358 A 特開2002−353255号公報JP 2002-353255 A 特開2010−10574号公報JP 2010-10574 A 特開2009−64852号公報JP 2009-64852 A 特開2010−165764号公報JP 2010-165664 A

前記の図14のパワー半導体モジュール700では、半導体チップ55とポストピン57の位置合わせはカーボン治具71を介して行なわれる。カーボン治具71の凹部72から半導体チップ55を取り出すために、カーボン治具71の凹部72と半導体チップ55の間には遊び(間隔D1が0.2mm程度)を設ける必要がある。また、カーボン治具71からポストピン付プリント基板60を取り出すために、ポストピン付プリント基板60とカーボン治具71の間にも遊び(間隔D2が0.2mm程度)を設ける必要がある。   In the power semiconductor module 700 of FIG. 14 described above, the alignment of the semiconductor chip 55 and the post pin 57 is performed via the carbon jig 71. In order to take out the semiconductor chip 55 from the recess 72 of the carbon jig 71, it is necessary to provide play (the distance D1 is about 0.2 mm) between the recess 72 of the carbon jig 71 and the semiconductor chip 55. Further, in order to take out the printed circuit board 60 with post pins from the carbon jig 71, it is necessary to provide play (the distance D2 is about 0.2 mm) between the printed circuit board 60 with post pins and the carbon jig 71.

また、カーボン治具73から導電パターン付絶縁基板51を取り出すために、導電パターン付絶縁基板51とカーボン治具73の間にも遊び(間隔D3が0.2mm程度)を設ける必要がある。しかし、この遊び(間隔D3)は半導体チップ55と導電パターン53との位置ズレは、導電パターン53が広い面積なので特に問題になることはない。   Further, in order to take out the insulating substrate 51 with the conductive pattern from the carbon jig 73, it is necessary to provide play (the distance D3 is about 0.2 mm) between the insulating substrate 51 with the conductive pattern and the carbon jig 73. However, this play (interval D3) does not cause a problem with respect to the positional deviation between the semiconductor chip 55 and the conductive pattern 53 because the conductive pattern 53 has a large area.

前記の図16(a)の工程では、ポストピン57と半導体チップ55の位置ズレはD1+D2=0.4mm程度となる。この位置ズレを起こした状態で図16(b)の工程に入り、リフロー炉で半田54が溶融し、その後固化してポストピン57と半導体チップ55が半田付けされる。そのため、ポストピン57と半導体チップ55の位置ズレは最大で0.4mm程度になる。表面電極で面積が小さなゲートパッド55bとポストピン57の位置ズレも最大で0.4mmとなる。   In the process of FIG. 16A, the positional deviation between the post pin 57 and the semiconductor chip 55 is about D1 + D2 = 0.4 mm. The process shown in FIG. 16B is entered with this misalignment, the solder 54 is melted in a reflow furnace, and then solidified, and the post pins 57 and the semiconductor chip 55 are soldered. Therefore, the positional deviation between the post pin 57 and the semiconductor chip 55 is about 0.4 mm at the maximum. The positional misalignment between the gate electrode 55b and the post pin 57 having a small area on the surface electrode is 0.4 mm at the maximum.

この位置ズレを起こした状態で、導電パターン53に半導体チップ55が半田54を介して載置される。続いて、リフロー炉で、半導体チップ55上の一度固化した半田56と、半導体チップ55下の半田54が溶融し、その後固化する。このとき、半導体チップ55は半田54,56が溶融する前の位置(初期の位置)に対して位置ズレを起こす。この位置ズレは後述の図17に示すように、最大で0.3mm程度になる。   The semiconductor chip 55 is placed on the conductive pattern 53 via the solder 54 in a state where the positional deviation has occurred. Subsequently, the solder 56 once solidified on the semiconductor chip 55 and the solder 54 below the semiconductor chip 55 are melted and then solidified in a reflow furnace. At this time, the semiconductor chip 55 is displaced with respect to the position (initial position) before the solders 54 and 56 are melted. As shown in FIG. 17 to be described later, this positional deviation is about 0.3 mm at the maximum.

従って、ポストピン57とゲートパッド55bの位置ズレは最大で0.3mm程度+0.4mm程度=0.7mm程度になる。
このように、カーボン治具71、73を用いた場合、半導体チップ55のゲートパッド55bとポストピン57の位置合わせ精度は大幅に低下する。そのため、半導体チップ55の小型化が困難になり、半導体チップ55の高集積化が困難になる。
Therefore, the positional deviation between the post pin 57 and the gate pad 55b is about 0.3 mm + about 0.4 mm = about 0.7 mm at the maximum.
As described above, when the carbon jigs 71 and 73 are used, the alignment accuracy between the gate pad 55b of the semiconductor chip 55 and the post pin 57 is significantly lowered. For this reason, it is difficult to reduce the size of the semiconductor chip 55, and it is difficult to increase the integration of the semiconductor chip 55.

一方、近年、パワー半導体モジュールを高性能化するために、WBG(ワイドバンドギャップ)素子が使用される。その代表例として、高温動作も可能なSiC(炭化珪素)素子が使用されるが、このSiC素子は同一定格においてSi素子に対してサイズが小さくなり、ゲートパッドの大きさやエミッタ電極パッド(MOSFETの場合はソース電極パッド)の大きさが縮小化される。そのため、ポストピンとこれらのパッドとの位置合わせ精度はSi素子に比べて高める必要がある。   On the other hand, in recent years, WBG (Wide Band Gap) elements are used to improve the performance of power semiconductor modules. As a typical example, a SiC (silicon carbide) element capable of high-temperature operation is used, but this SiC element is smaller in size than the Si element at the same rating, and the size of the gate pad and the emitter electrode pad (MOSFET). In this case, the size of the source electrode pad) is reduced. Therefore, the alignment accuracy between the post pins and these pads needs to be higher than that of the Si element.

図17は、従来のパワー半導体モジュールの半導体チップと半田を溶融させる前の初期の位置からの位置ズレを示す図である。
位置ズレの測定は、20個のサンプルで導電パターン53に載置した初期の位置65の中心から半導体チップ55の中心までの距離をX方向とY方向で測定して、その大きい方の値を採用した。図17から位置ズレは0.2mmを中心に0.1mm〜0.3mmまでズレを生じる。
FIG. 17 is a diagram showing a positional deviation from an initial position before melting a semiconductor chip and solder of a conventional power semiconductor module.
The measurement of the positional deviation is performed by measuring the distance from the center of the initial position 65 placed on the conductive pattern 53 to the center of the semiconductor chip 55 with 20 samples in the X direction and the Y direction, and calculating the larger value. Adopted. From FIG. 17, the positional deviation occurs from 0.1 mm to 0.3 mm around 0.2 mm.

前記の特許文献1では、半田のみがはまる段差加工の深さであり、チップ位置決めは半田のセルフアライメント効果に大きく依存する。このセルフアライメントの効果のみによる実装では、チップが段差加工部からはみ出す場合もあり、高精度の位置決めは困難である。   In the above-mentioned Patent Document 1, the depth of the step processing into which only solder is fitted, and the chip positioning largely depends on the self-alignment effect of the solder. In mounting only by this self-alignment effect, the chip may protrude from the stepped portion, and high-precision positioning is difficult.

また、特許文献1、2では、半田溜め部(半田ダム)となる拡大加工を有していないため、位置補正がうまく行なわれず、またボイドの増加が懸念される。
また、特許文献3では、半田溜め部(半田逃がす部)の拡大加工の大きさが1mm程度であるため、半導体チップの間の間隔を2mm以上にする必要があり、半導体チップの高密度実装が困難になる。また、半田溜め部をソルダーレジストで形成するため、ソルダーレジストのパターニングにフォトリソグラフィ工程を用いると製造コストが増大する。
Further, in Patent Documents 1 and 2, since there is no enlargement processing that becomes a solder reservoir (solder dam), position correction is not performed well, and there is a concern about an increase in voids.
Further, in Patent Document 3, since the size of the enlargement process of the solder reservoir (solder escape portion) is about 1 mm, the interval between the semiconductor chips needs to be 2 mm or more. It becomes difficult. In addition, since the solder reservoir is formed of a solder resist, a manufacturing cost increases if a photolithography process is used for the solder resist patterning.

また、特許文献4では、半田ダムをソルダーレジストで形成するため、ソルダーレジストのパターニングにフォトリソグラフィ工程を用いると製造コストが増大する。また、このソルダーレジストの幅は20〜100μmと狭く、また高さが半田の厚さ程度であるため、半田がソルダーレジストを超えてはみ出す可能性がある。そうすると、チップははみ出した半田に引っ張られて、大きく横方向に移動する。つまり、位置ズレが大きくなる可能性がある。   Further, in Patent Document 4, since the solder dam is formed of a solder resist, if a photolithography process is used for patterning the solder resist, the manufacturing cost increases. Moreover, since the width of this solder resist is as narrow as 20 to 100 μm and the height is about the thickness of the solder, the solder may protrude beyond the solder resist. Then, the chip is pulled by the protruding solder and moves largely in the lateral direction. That is, there is a possibility that the positional deviation becomes large.

また、特許文献5では、前記したように、カーボン治具を用いるので、半導体チップのパッドとポストピンの位置合わせ精度が低い。
また、特許文献6では、導電パターン付絶縁基板上への半導体チップの位置決めを導電パターン付絶縁基板に設けた突起で行なっており、数箇所の突起で半導体チップが押さえられるので、位置決めにおいて半導体チップの回転成分が出易く高精度の位置決めは困難である。
In Patent Document 5, as described above, since the carbon jig is used, the alignment accuracy between the pads of the semiconductor chip and the post pins is low.
Further, in Patent Document 6, the semiconductor chip is positioned on the insulating substrate with the conductive pattern by the protrusions provided on the insulating substrate with the conductive pattern, and the semiconductor chip is pressed by several protrusions. It is difficult to achieve highly accurate positioning.

この発明の目的は、前記の課題を解決して、低コストで位置合わせ精度を向上でき、さらに半導体チップの小型化と高密度実装ができる半導体装置およびその製造方法を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor device that can solve the above-described problems, can improve the alignment accuracy at a low cost, and can further reduce the size and high-density mounting of a semiconductor chip, and a method for manufacturing the same.

前記の目的を達成するために、特許請求の範囲の請求項1に記載の発明によれば、導電パターン付絶縁基板と、前記導電パターンに配置された平面形状が四角形の凹部と、該凹部に載置され接合材で固着される半導体チップと、該半導体チップ上に接合材で一端が固着される接続導体柱と、該接続導体柱が固着するプリント基板と、前記導電パターンに固着された位置決め兼用の第1外部端子と、前記導電パターンに固着された前記第1外部端子以外の第2外部端子と、前記第1外部端子が貫通し前記プリント基板に配置される第1貫通孔と、前記第2外部端子が貫通し前記プリント基板に配置される第2貫通孔とを有する半導体装置において、前記第1外部端子と前記第1貫通孔で前記接続導体柱と前記半導体チップが位置決めされ、前記凹部で前記半導体チップと前記導電パターンが位置決めされ、前記第1貫通孔の大きさが前記第2貫通孔の大きさより小さい構成とする。   In order to achieve the above object, according to the first aspect of the present invention, an insulating substrate with a conductive pattern, a concave portion having a rectangular planar shape arranged in the conductive pattern, and the concave portion are provided. A semiconductor chip mounted and fixed with a bonding material, a connection conductor column having one end fixed with a bonding material on the semiconductor chip, a printed circuit board to which the connection conductor column is fixed, and a positioning fixed to the conductive pattern A first external terminal that is also used, a second external terminal other than the first external terminal fixed to the conductive pattern, a first through hole through which the first external terminal passes and is disposed in the printed circuit board, In the semiconductor device having a second through-hole penetrating through the second external terminal and disposed in the printed circuit board, the connection conductor column and the semiconductor chip are positioned by the first external terminal and the first through-hole, Wherein in parts semiconductor chip and the conductive pattern is positioned, the size of the first through hole and a smaller size configuration of the second through hole.

また、特許請求の範囲の請求項2記載の発明によれば、請求項1に記載の発明において、前記第1貫通孔と前記第1外部端子の平面形状が共に円形であり、前記第1貫通孔の直径と前記第1外部端子の直径の差が50μm以下であるとよい。   According to a second aspect of the present invention, the planar shape of the first through hole and the first external terminal are both circular in the first aspect of the invention, and the first through hole The difference between the diameter of the hole and the diameter of the first external terminal is preferably 50 μm or less.

また、特許請求の範囲の請求項3記載の発明によれば、導電パターン付絶縁基板と、該導電パターンに配置された平面形状が四角形の第1凹部と、該第1凹部に載置され接合材で固着される半導体チップと、該半導体チップ上に接合材で一端が固着される接続導体柱と、該接続導体柱が固着されるプリント基板と、該プリント基板に固着される位置決め用支柱と、該位置決め用支柱の先端が挿入され前記導電パターンに配置される位置決め用の第2凹部と、前記導電パターンに固着された外部端子と、該外部端子が貫通し前記プリント基板に配置される貫通孔とを有する構成とする。   According to the invention of claim 3, the insulating substrate with a conductive pattern, the first concave portion having a planar shape arranged in the conductive pattern, and the first concave portion are placed and bonded to the first concave portion. A semiconductor chip fixed by a material, a connecting conductor column having one end fixed by a bonding material on the semiconductor chip, a printed circuit board to which the connecting conductor column is fixed, and a positioning column fixed to the printed circuit board The positioning recess is inserted into the conductive pattern and the positioning recess is inserted into the conductive pattern, the external terminal fixed to the conductive pattern, and the external terminal penetrates through the printed circuit board. It is set as the structure which has a hole.

また、特許請求の範囲の請求項4に記載の発明によれば、導電パターン付絶縁基板と、該導電パターンに配置された平面形状が四角形の第1凹部と、該第1凹部に載置され接合材で固着される半導体チップと、該半導体チップ上に接合材で一端が固着される接続導体柱と、該接続導体柱が固着されるプリント基板と、位置決め用支柱が着脱され前記導電パターンに配置される位置決め用の第2凹部と、前記導電パターンに固着された外部端子と、該外部端子が貫通し前記プリント基板に配置される第1貫通孔と、着脱される前記位置決め支柱が貫通し前記プリント基板に配置される第2貫通孔とを有し、前記第2凹部が前記第2貫通孔の直下に位置する構成とする。   According to the invention described in claim 4 of the claims, the insulating substrate with a conductive pattern, the planar shape arranged in the conductive pattern is mounted on the first concave portion having a square shape, and placed on the first concave portion. A semiconductor chip fixed by a bonding material, a connection conductor column having one end fixed by a bonding material on the semiconductor chip, a printed circuit board to which the connection conductor column is fixed, and a positioning column are attached to and detached from the conductive pattern A second recessed portion for positioning, an external terminal fixed to the conductive pattern, a first through hole through which the external terminal passes and disposed in the printed circuit board, and the positioning column to be attached and detached pass through. A second through-hole disposed in the printed circuit board, and the second recess is located immediately below the second through-hole.

また、特許請求の範囲の請求項5に記載の発明によれば、請求項1、3または4のいずれか一項に記載の発明において、前記凹部もしくは前記第1凹部の深さが、該凹部もしくは第1凹部に載置される前記接合材の厚さより深く、前記接合材と前記半導体チップを合わせた厚さより浅いとよい。   According to the invention described in claim 5 of the claims, in the invention described in any one of claims 1, 3, or 4, the depth of the recess or the first recess is the recess. Alternatively, it may be deeper than the thickness of the bonding material placed in the first recess and shallower than the combined thickness of the bonding material and the semiconductor chip.

また、特許請求の範囲の請求項6に記載の発明によれば、請求項1、3または4のいずれか一項に記載の発明において、前記接合材が、半田、ろう材もしくは金属粒子を含んだ接合材であるとよい。   According to the invention as set forth in claim 6, in the invention as set forth in claim 1, 3 or 4, the bonding material contains solder, brazing material or metal particles. It is good that it is a joining material.

また、特許請求の範囲の請求項7に記載の発明によれば、請求項1、3または4のいずれか一項に記載の発明において、前記導電パターンが、前記凹部もしくは前記第1凹部の四角形の4隅に接する半田溜め部を有するとよい。   According to the invention described in claim 7 of the claims, in the invention described in any one of claims 1, 3, or 4, the conductive pattern is a quadrangle of the recess or the first recess. It is preferable to have a solder reservoir portion in contact with the four corners.

また、特許請求の範囲の請求項8に記載の発明によれば、請求項1、3または4のいずれか一項に記載の発明において、前記導電パターンが、前記凹部もしくは前記第1凹部の四角形の4隅に接する第1の半田溜め部と前記凹部の四角形の各辺にそれぞれ接する第2の半田溜め部を有するとよい。   According to the invention described in claim 8 of the claims, in the invention described in any one of claims 1, 3, or 4, the conductive pattern is a quadrangle of the recess or the first recess. It is preferable to have a first solder reservoir that is in contact with the four corners and a second solder reservoir that is in contact with each of the square sides of the recess.

また、特許請求の範囲の請求項9に記載の発明によれば、請求項6に記載の発明において、前記半田が、高温半田であるとよい。
また、特許請求の範囲の請求項10に記載の発明によれば、導電パターン付絶縁基板の導電パターンに半導体チップより開口部が大きい第1凹部と位置決め用の第1外部端子およびそれ以外の第2外部端子を固定する第2凹部を形成する工程と、前記導電パターンの第2凹部に前記の位置決め用の第1外部端子およびそれ以外の第2外部端子を嵌合する工程と、前記第1凹部に半田を載置し、該半田上に前記半導体チップを載置する工程と、前記半導体チップのゲートパッド上と主電極パッド上に半田を載置し、接続導体柱付プリント基板に設けた位置決め用の第1貫通孔に位置決め用の第1外部端子を貫通させ前記第1貫通孔以外の第2貫通孔に前記第2外部端子を貫通させて前記接続導体柱の先端と前記ゲートパッド上および前記主電極パッド上の前記半田とを位置決めし前記接続導体柱付プリント基板を上部から押さえ付ける工程と、全体(前記組立品)をリフロー炉に入れて、前記半田を溶融させ、その後固化させることで、前記接続導体柱を前記ゲートパッドおよび前記主電極パッドに前記半田を介して固着する工程と、を含む半導体装置の製造方法とする。
According to the ninth aspect of the present invention, in the sixth aspect, the solder may be high-temperature solder.
According to the invention of claim 10, the first recess having a larger opening than the semiconductor chip, the first external terminal for positioning, and the other first in the conductive pattern of the insulating substrate with the conductive pattern. 2 forming a second recess for fixing the external terminal, fitting the first external terminal for positioning and the other second external terminal into the second recess of the conductive pattern, and the first Placing the solder in the recess, placing the semiconductor chip on the solder, placing the solder on the gate pad and the main electrode pad of the semiconductor chip, and providing the printed circuit board with the connecting conductor column The first external terminal for positioning is passed through the first through hole for positioning, the second external terminal is passed through the second through hole other than the first through hole, and the tip of the connecting conductor column and the gate pad And the main electrode The step of positioning the solder on the lid and pressing the printed circuit board with connecting conductor columns from above, and putting the whole (the assembly) in a reflow furnace, melting the solder, and then solidifying, Fixing the connection conductor pillar to the gate pad and the main electrode pad via the solder.

また、特許請求の範囲の請求項11に記載の発明によれば、導電パターン付絶縁基板の導電パターンに半導体チップより開口部が大きい第1凹部と位置決め用の第3凹部を形成する工程と、前記第1凹部に半田を載置し、該半田上に前記半導体チップを載置する工程と、前記半導体チップのゲートパッド上と主電極パッド上に半田を載置し、位置決め支柱を有する接続導体柱付プリント基板の位置決め支柱を導電パターンに設けた第3凹部に挿入して前記接続導体柱の先端と前記ゲートパッド上および前記主電極パッド上の前記半田とを位置決めし前記接続導体柱付プリント基板を上部から押さえ付ける工程と、全体(前記組立品)をリフロー炉に入れて、前記半田を溶融させ、その後固化させることで、前記接続導体柱を前記ゲートパッドおよび前記主電極パッドに前記半田を介して固着する工程とを含む半導体装置の製造方法とする。   According to the invention of claim 11, the step of forming the first recess having a larger opening than the semiconductor chip and the third recess for positioning in the conductive pattern of the insulating substrate with the conductive pattern; A step of placing solder in the first recess, placing the semiconductor chip on the solder, and placing the solder on the gate pad and the main electrode pad of the semiconductor chip, and having a positioning post A positioning support of a printed circuit board with a column is inserted into a third recess provided in a conductive pattern to position the tip of the connection conductor column and the solder on the gate pad and the main electrode pad, and the print with the connection conductor column The step of pressing the substrate from the top and the whole (the assembly) is put in a reflow furnace, the solder is melted, and then solidified, so that the connection conductor pillar is connected to the gate pad. A method of manufacturing a semiconductor device including the step of securing via the solder pre said main electrode pads.

また、特許請求の範囲の請求項12に記載の発明によれば、導電パターン付絶縁基板の導電パターンに半導体チップより開口部が大きい第1凹部と位置決め用の第3凹部を形成する工程と、前記第1凹部に半田を載置し、該半田上に前記半導体チップを載置する工程と、前記半導体チップのゲートパッド上と主電極パッド上に半田を載置し、接続導体柱付プリント基板に設けた貫通孔に前記位置合わせ用支柱を貫通させ、該位置合わせ用支柱の先端を第3凹部に挿入し、前記接続導体柱の先端と前記ゲートパッド上および前記主電極パッド上の前記半田とを位置決めし前記接続導体柱付プリント基板を上部から押さえ付ける工程と、全体(前記組立品)をリフロー炉に入れて、前記半田を溶融させ、その後固化させることで、前記接続導体柱を前記ゲートパッドおよび前記主電極パッドに前記半田を介して固着する工程と、前記位置合わせ用柱を前記第3凹部と前記接続導体柱付プリント基板から引き抜く工程とを含む半導体装置の製造方法とする。   According to the invention of claim 12, the step of forming a first recess having a larger opening than the semiconductor chip and a third recess for positioning in the conductive pattern of the insulating substrate with a conductive pattern; A step of placing solder in the first recess and placing the semiconductor chip on the solder; placing the solder on the gate pad and the main electrode pad of the semiconductor chip; The alignment column is passed through a through hole provided in the first hole, the tip of the alignment column is inserted into a third recess, and the solder on the tip of the connection conductor column, the gate pad, and the main electrode pad And then pressing the printed circuit board with connection conductor columns from above, and putting the whole (the assembly) in a reflow furnace to melt the solder and then solidify the connection conductor columns. A method of manufacturing a semiconductor device, comprising: a step of fixing to the gate pad and the main electrode pad via the solder; and a step of extracting the alignment column from the third recess and the printed circuit board with connection conductor columns. .

この発明によれば、導電パターン付絶縁基板の導電パターンに半導体チップを載置する凹部を形成し、ポストピン付プリント基板の貫通孔に導電パターンに固着した位置決め用外部端子を貫通させ、半導体チップのゲートパッドおよびエミッタ電極パッドにポストピンの先端を位置決めすることで、低コストで前記ポストピンと前記パッドの位置合わせ精度を大幅に向上させることができる。   According to the present invention, the recess for mounting the semiconductor chip is formed in the conductive pattern of the insulating substrate with the conductive pattern, the positioning external terminal fixed to the conductive pattern is passed through the through-hole of the printed board with post pin, and the semiconductor chip By positioning the tip of the post pin on the gate pad and the emitter electrode pad, the alignment accuracy of the post pin and the pad can be greatly improved at low cost.

さらに、凹部に隣接して半田溜め部を設けることで、さらに位置合わせ精度を向上させることができる。
また、位置合わせ精度が向上することで、半導体チップの高密度実装ができる。
Furthermore, the positioning accuracy can be further improved by providing the solder reservoir adjacent to the recess.
Further, since the alignment accuracy is improved, semiconductor chips can be mounted at a high density.

また、位置決めピンを設けることで外部端子で位置決めする必要がなくなり外部端子の断面形状を四角形や多角形など円形以外の任意の形状とすることができる。
また、位置決めピンを半田付けの工程後、取り外すことで、位置決めピンの配置の自由度が上がり、ポストピン付プリント基板の小型化を図ることができる。
Further, by providing the positioning pin, it is not necessary to perform positioning with the external terminal, and the cross-sectional shape of the external terminal can be an arbitrary shape other than a circle such as a quadrangle or a polygon.
Further, by removing the positioning pins after the soldering process, the degree of freedom of positioning pins is increased, and the printed circuit board with post pins can be downsized.

この発明の第1実施例の半導体装置の構成図であり、(a)は要部平面図、(b)は(a)のX−X線で切断した要部断面図である。この半導体装置100は、パワー半導体モジュールを例に挙げた。ここではインバータ回路の1相分を示した。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram of the semiconductor device of 1st Example of this invention, (a) is a principal part top view, (b) is principal part sectional drawing cut | disconnected by the XX line of (a). The semiconductor device 100 is exemplified by a power semiconductor module. Here, one phase of the inverter circuit is shown. 図1で示す各部品の要部平面図であり,(a)は半導体チップ、位置決め用外部端子および回転防止用外部端子を固着した導電パターンの平面図、(b)はポストピン付プリント基板の平面図である。FIG. 2 is a plan view of a main part of each component shown in FIG. 1, (a) is a plan view of a conductive pattern to which a semiconductor chip, positioning external terminals and rotation prevention external terminals are fixed, and (b) is a plan view of a printed circuit board with post pins. FIG. 図1で示す第1凹部に半導体チップを配置した要部平面図である。FIG. 2 is a plan view of a main part in which a semiconductor chip is disposed in a first recess shown in FIG. 1. 図1の半導体装置の製造方法であり、(a)〜(d)は工程順に示した要部製造工程断面図である1 is a manufacturing method of the semiconductor device of FIG. 半導体チップと第1凹部との位置ズレを示す図である。It is a figure which shows the position shift of a semiconductor chip and a 1st recessed part. 半導体チップが大幅に位置ズレした様子を示す図であり、(a)は要部平面図、(b)は(a)のX−X線で切断した要部断面図である。It is a figure which shows a mode that the semiconductor chip shifted significantly, (a) is a principal part top view, (b) is principal part sectional drawing cut | disconnected by the XX line of (a). この発明の第2実施例の半導体装置の構成図であり、(a)は要部平面図、(b)は(a)のX−X線で切断した要部断面図である。It is a block diagram of the semiconductor device of 2nd Example of this invention, (a) is a principal part top view, (b) is principal part sectional drawing cut | disconnected by the XX line of (a). 半導体チップと凹部との位置ズレを示す図である。It is a figure which shows the position shift of a semiconductor chip and a recessed part. この発明の第3実施例の半導体装置の要部平面図である。It is a principal part top view of the semiconductor device of 3rd Example of this invention. この発明の第4実施例の半導体装置の要部断面図である。It is principal part sectional drawing of the semiconductor device of 4th Example of this invention. 図10の半導体装置の製造方法であり、(a)〜(d)は工程順に示した要部製造工程断面図である。10 is a method for manufacturing the semiconductor device of FIG. 10, and FIGS. この発明の第5実施例の半導体装置の要部断面図である。It is principal part sectional drawing of the semiconductor device of 5th Example of this invention. この発明の第6実施例の半導体装置の要部断面図である。It is principal part sectional drawing of the semiconductor device of 6th Example of this invention. 従来のパワー半導体モジュール700の構成図であり、(a)は要部平面図、(b)は(a)のX−X線で切断した要部断面図である。It is a block diagram of the conventional power semiconductor module 700, (a) is a principal part top view, (b) is principal part sectional drawing cut | disconnected by the XX line of (a). 図14で示す半導体チップ55をIGBTチップとした場合の導電パターン53に配置した要部平面図である。It is a principal part top view arrange | positioned at the conductive pattern 53 at the time of using the semiconductor chip 55 shown in FIG. 14 as an IGBT chip | tip. 図14のパワー半導体モジュールの製造方法であり、(a)〜(c)は工程順に示した要部製造工程断面図である。14 is a method for manufacturing the power semiconductor module of FIG. 14, and FIGS. 従来のパワー半導体モジュールの半導体チップと半田を溶融させる前の初期の位置からの位置ズレを示す図である。It is a figure which shows the position shift from the initial position before melting the semiconductor chip and solder of the conventional power semiconductor module.

実施の形態を以下の実施例で説明する。   Embodiments will be described in the following examples.

図1は、この発明の第1実施例の半導体装置の構成図であり、同図(a)は要部平面図、同図(b)は同図(a)のX−X線で切断した要部断面図である。この半導体装置100は、パワー半導体モジュールを例に挙げた。ここではインバータ回路の1相分を示した。   FIG. 1 is a block diagram of a semiconductor device according to a first embodiment of the present invention. FIG. 1 (a) is a plan view of an essential part, and FIG. 1 (b) is cut along line XX in FIG. It is principal part sectional drawing. The semiconductor device 100 is exemplified by a power semiconductor module. Here, one phase of the inverter circuit is shown.

図2は、図1で示す各部品の要部平面図であり,同図(a)は半導体チップ、位置決め用外部端子および回転防止用外部端子を固着した導電パターンの平面図、同図(b)はポストピン付プリント基板の平面図である。   2 is a plan view of the main part of each component shown in FIG. 1. FIG. 2A is a plan view of a conductive pattern to which a semiconductor chip, a positioning external terminal and a rotation preventing external terminal are fixed, and FIG. ) Is a plan view of a printed circuit board with post pins.

図3は、図1で示す第1凹部に半導体チップを配置した要部平面図である。点線の丸は参考までにポストピン16を示す。
図1〜図3において、半導体装置100は、セラミック板などの絶縁板3の裏側に冷却ベース2が固着し表側に金属箔で形成された導電パターン4が固着した導電パターン付絶縁基板1と、表側の導電パターン4に形成された半導体チップ9,10(9が例えばIGBTチップ、10がダイオードチップ)を位置決めする第1凹部5と、この第1凹部5に半田8を介して裏面が固着される半導体チップ9,10からなる。
FIG. 3 is a plan view of a main part in which a semiconductor chip is arranged in the first recess shown in FIG. The dotted circle indicates the post pin 16 for reference.
1 to 3, a semiconductor device 100 includes an insulating substrate 1 with a conductive pattern in which a cooling base 2 is fixed to the back side of an insulating plate 3 such as a ceramic plate, and a conductive pattern 4 formed of metal foil is fixed to the front side. A first recess 5 for positioning semiconductor chips 9 and 10 (9 is, for example, an IGBT chip, 10 is a diode chip) formed on the conductive pattern 4 on the front side, and the back surface is fixed to the first recess 5 via solder 8. Semiconductor chips 9 and 10.

また、半導体チップ9のゲートパッド9bおよびエミッタ電極パッド9a(主電極パッド)に半田15を介して固着されるポストピン16と、導電パターン14が形成された絶縁板11aにポストピン16が固着したポストピン付プリント基板11と、導電パターン4の第2凹部6に嵌合して固着される位置決め兼用の第1外部端子17と、導電パターン4の第3凹部7に嵌合して固着される第1外部端子17以外の第2外部端子18と、第1外部端子17が貫通するポストピン付プリント基板11に形成された位置決め用の第1貫通孔12と、第2外部端子18が貫通するポストピン付プリント基板に形成された第1貫通孔以外の第2貫通孔13とから構成される。   Further, a post pin 16 fixed to the gate pad 9b and the emitter electrode pad 9a (main electrode pad) of the semiconductor chip 9 via the solder 15 and a post pin fixed to the insulating plate 11a on which the conductive pattern 14 is formed. The printed circuit board 11, the first external terminal 17 that is also used for positioning and fitted to the second recess 6 of the conductive pattern 4, and the first external that is fitted and fixed to the third recess 7 of the conductive pattern 4. Second external terminal 18 other than terminal 17, first through hole 12 for positioning formed in printed board 11 with post pin through which first external terminal 17 passes, and printed board with post pin through which second external terminal 18 passes. The second through-hole 13 other than the first through-hole formed in the.

尚、前記のポストピン16とは半導体チップ9のゲートパッド9bやエミッタ電極パッド9aおよび半導体チップ10のアノード電極にその先端が半田付けされる接続導体柱のことであり、このポストピン16は導電パターン14が形成された絶縁板11a(プリント基板)にその根元が嵌合・固着され一体化されている。以下の説明で半導体チップとしてはIGBT(絶縁ゲート型バイポーラトランジスタ)チップを例として上げる場合があり、その場合には符号は9のみとする。   The post pin 16 is a connecting conductor column whose tip is soldered to the gate pad 9b or emitter electrode pad 9a of the semiconductor chip 9 and the anode electrode of the semiconductor chip 10, and the post pin 16 is a conductive pattern 14. The base is fitted and fixed to the insulating plate 11a (printed circuit board) on which is formed. In the following description, an IGBT (Insulated Gate Bipolar Transistor) chip may be taken as an example of the semiconductor chip, and in this case, the reference numeral is only 9.

前記の第2凹部6、第3凹部7と第1外部端子17,第2外部端子18を図示しない半田を介して固着することで、嵌合と半田固着により、凹部と第1外部端子17,第2外部端子18の固着強度が大きくなる。また、凹部6,7の開口部を大きくして半田のみで第1外部端子17,第2外部端子18を固着しても構わない。   By fixing the second concave portion 6, the third concave portion 7, the first external terminal 17, and the second external terminal 18 via solder (not shown), the concave portion and the first external terminal 17, The fixing strength of the second external terminal 18 is increased. Further, the openings of the recesses 6 and 7 may be enlarged so that the first external terminal 17 and the second external terminal 18 are fixed only with solder.

また、前記の貫通孔12,13の周りの絶縁板11aに図示しない導電パターン14を配置し、この導電パターン14と第1外部端子17、第2外部端子18を半田を介して固着すると、一層、外部端子の固着強度が大きくなる。   Further, when a conductive pattern 14 (not shown) is arranged on the insulating plate 11a around the through holes 12 and 13, and the conductive pattern 14, the first external terminal 17 and the second external terminal 18 are fixed to each other via solder, one layer is obtained. The fixing strength of the external terminal is increased.

また、前記の第1外部端子17と第2外部端子18は長さと直径(0.6mm〜1mm程度)が同一の円柱、ポストピン16の直径は0.1mm〜0.3mm程度である。第1凹部5の深さは0.2mm程度である。   The first external terminal 17 and the second external terminal 18 have the same length and diameter (about 0.6 mm to 1 mm), and the post pin 16 has a diameter of about 0.1 mm to 0.3 mm. The depth of the first recess 5 is about 0.2 mm.

前記の導電パターン4に形成される第1凹部5の四角形の開口部は半導体チップ9、10の外周部の寸法に対して50μm程度大きくし、第1凹部5の開口部形状を半導体チップ9、10の外形と相似形にする。   The square opening of the first recess 5 formed in the conductive pattern 4 is made larger by about 50 μm than the dimensions of the outer periphery of the semiconductor chips 9, 10. Similar to 10 external shapes.

この第1凹部5の深さは半田8の厚さより深くし、半田8と半導体チップ9、10を合わせた厚さより浅くする。前記の第1外部端子17の直径に対してポストピン付プリント基板11の第1貫通孔12の直径を50μm程度大きくする。この位置決め兼用の第1外部端子17が貫通する第1貫通孔12の開口部の大きさを第2貫通孔13の開口部の大きさより小さくする。   The depth of the first recess 5 is made deeper than the thickness of the solder 8 and shallower than the total thickness of the solder 8 and the semiconductor chips 9 and 10. The diameter of the first through hole 12 of the printed board 11 with post pins is increased by about 50 μm with respect to the diameter of the first external terminal 17. The size of the opening of the first through hole 12 through which the first external terminal 17 serving also for positioning passes is made smaller than the size of the opening of the second through hole 13.

また、2本の位置決め兼用の第1外部端子17を設けるのは、ポストピン付プリント基板11が半導体チップ9に対して回転移動するのを抑えるためである。この2本の位置決め兼用の第1外部端子17の間隔を半導体チップ9より大きくすることで、回転移動を小さくできて位置決め精度を向上できる。   The two first external terminals 17 that are also used for positioning are provided to prevent the printed circuit board 11 with post pins from rotating with respect to the semiconductor chip 9. By increasing the distance between the two first external terminals 17 that are also used for positioning as compared with the semiconductor chip 9, the rotational movement can be reduced and the positioning accuracy can be improved.

また、位置決めの要求精度によっては、2本の第1外部端子17を貫通させる貫通孔12のうち、回転防止に用いる方の大きさを位置決めに用いる方より多少大きめに形成しても構わない。   Further, depending on the required accuracy of positioning, the size of the through hole 12 through which the two first external terminals 17 are passed may be formed slightly larger than the size used for positioning.

また、第1凹部5から半導体チップ9、10を取り出す必要がないので、半導体チップ9、10と第1凹部5の隙間21を75μm程度以下とすることができる。
また、位置決め兼用の第1外部端子17とポストピン付プリント基板11に形成した第1貫通孔12の間隔22は25μm程度にする。
Further, since it is not necessary to take out the semiconductor chips 9 and 10 from the first recess 5, the gap 21 between the semiconductor chips 9 and 10 and the first recess 5 can be about 75 μm or less.
The interval 22 between the first external terminal 17 serving also for positioning and the first through hole 12 formed in the printed board 11 with post pins is set to about 25 μm.

後述の図5に示すように、第1凹部5と半導体チップ9、10の位置ズレの最大値は70μmである。この位置ズレに第1外部端子17とポストピン付プリント基板11の位置決め用の第1貫通孔12との位置ズレの最大値を加えると、ポストピン16とゲートパッド9bの位置ズレの最大値となる。つまり、ポストピン16とゲートパッド9bの位置ズレの最大値は70μm程度+25μm程度=95μm程度となる。   As shown in FIG. 5 described later, the maximum value of the positional deviation between the first recess 5 and the semiconductor chips 9 and 10 is 70 μm. When the maximum value of the positional deviation between the first external terminal 17 and the first through hole 12 for positioning the printed board 11 with post pin is added to this positional deviation, the maximum value of the positional deviation between the post pin 16 and the gate pad 9b is obtained. That is, the maximum value of the positional deviation between the post pin 16 and the gate pad 9b is about 70 μm + 25 μm = 95 μm.

これは従来のポストピン57とゲートパッド55bの位置ズレの最大値である0.7mmに対して本実施例のポストピン16とゲートパッド9bの位置ズレの最大値は1/7程度となり、本実施例を用いることで大幅に位置合わせ精度を向上させることができる。このポストピン16とゲートパッド9bの位置決め精度は、そのままポストピン16とエミッタ電極パッドの位置決め精度ともなる。このように、位置合わせ精度が向上することにより、半導体チップ9,10の高密度実装が可能となる。   This is because the maximum value of the positional deviation between the post pin 16 and the gate pad 9b of the present embodiment is about 1/7 with respect to 0.7 mm which is the maximum positional deviation between the conventional post pin 57 and the gate pad 55b. By using, the alignment accuracy can be greatly improved. The positioning accuracy between the post pin 16 and the gate pad 9b is directly used as the positioning accuracy between the post pin 16 and the emitter electrode pad. As described above, by improving the alignment accuracy, the semiconductor chips 9 and 10 can be mounted at high density.

また、第1凹部5に入る半田8の厚さを第1凹部5の深さより薄くすることで、半田8が溶融した場合でも、半導体チップ9、10は第1凹部5の側壁を乗り越えることがなく、第1凹部5内に留まるので、従来に比べると位置合わせ精度を大幅に向上できる。   Further, by making the thickness of the solder 8 entering the first recess 5 thinner than the depth of the first recess 5, the semiconductor chips 9 and 10 can get over the side wall of the first recess 5 even when the solder 8 is melted. Since it remains in the 1st recessed part 5, compared with the past, alignment accuracy can be improved significantly.

また、位置合わせ精度が向上することで、半導体チップ9、10の間隔を狭めることができる。例えば、機械加工などによる加工限界を考慮した場合でもその間隔を、0.7mm程度(従来は2mm程度)に小さくできて、半導体チップ9、10を高密度実装することができる。   In addition, since the alignment accuracy is improved, the interval between the semiconductor chips 9 and 10 can be reduced. For example, even when processing limits due to machining or the like are taken into consideration, the interval can be reduced to about 0.7 mm (about 2 mm in the past), and the semiconductor chips 9 and 10 can be mounted at high density.

また、前記の半導体チップ9,10としては、Siチップは勿論のこと、SiC−IGBTチップ,SiC−MOSFETチップ,SiC−SBD(ショットキーバリアダイオード)チップなどのSiCチップなどである。特にSiCチップは小型化に適しており本発明が効果を発揮することができる。   The semiconductor chips 9 and 10 are not only Si chips but also SiC chips such as SiC-IGBT chips, SiC-MOSFET chips, and SiC-SBD (Schottky barrier diode) chips. In particular, the SiC chip is suitable for miniaturization, and the present invention can exhibit the effect.

図4は、図1の半導体装置100の製造方法であり、同図(a)〜同図(d)は工程順に示した要部製造工程断面図である。
同図(a)において、導電パターン付絶縁基板1の導電パターン4に第1凹部5、第2凹部6、第3凹部7(図示せず)を形成し、この第1凹部5に半田8と半導体チップ9,10(10は図示せず)を載置し、第2凹部6、第3凹部7に第1外部端子17,第2外部端子18(図示せず)をそれぞれ嵌合する。第1凹部5の深さは半田8の厚さより深く、半田8と半導体チップ9,10を合わせた厚さより浅くする。第1、第2、第3凹部5,6,7(7は図示せず)は機械加工、薬液によるエッチング、レーザー加工による切削加工などで形成する。半田8、15として、WBG(ワイドバンドギャップ)素子(SiCチップなど)に対応するために、高温鉛フリー半田を用いると良い。
FIG. 4 shows a manufacturing method of the semiconductor device 100 of FIG. 1, and FIGS. 4A to 4D are cross-sectional views of main part manufacturing steps shown in the order of steps.
In FIG. 6A, a first recess 5, a second recess 6, and a third recess 7 (not shown) are formed in the conductive pattern 4 of the insulating substrate 1 with a conductive pattern. The semiconductor chips 9 and 10 (10 not shown) are placed, and the first external terminal 17 and the second external terminal 18 (not shown) are fitted into the second recess 6 and the third recess 7, respectively. The depth of the first recess 5 is deeper than the thickness of the solder 8 and shallower than the total thickness of the solder 8 and the semiconductor chips 9 and 10. The first, second, and third recesses 5, 6, and 7 (7 are not shown) are formed by machining, etching with a chemical, cutting by laser processing, or the like. As the solders 8 and 15, high-temperature lead-free solder is preferably used in order to cope with WBG (wide band gap) elements (such as SiC chips).

さらに具体的に高温鉛フリー半田について説明する。高温鉛フリー半田は、例えば、SnAgCuNiGe系半田、SnAg系半田、SnSb系半田、SnAgCu系半田、SnAgBi系半田、SnCuBi系半田、SnCu系半田、SnAu系半田、AuSi系半田、AgSi系半田、AgGe系半田などがある。また、半田の代わりにろう材やナノAgなどの金属粒子を含む接合材でもよい。   More specifically, the high-temperature lead-free solder will be described. The high-temperature lead-free solder includes, for example, SnAgCuNiGe solder, SnAg solder, SnSb solder, SnAgCu solder, SnAgBi solder, SnCuBi solder, SnCu solder, SnAu solder, AuSi solder, AgSi solder, AgGe solder There is solder. Further, a joining material containing metal particles such as brazing material or nano Ag instead of solder may be used.

ろう材としては、銀ろう、銅ろう、黄銅ろう、アルミろう、金ろう、りん銅ろう等が挙げられるが、チップ接合を考慮すると融点が300℃付近の低温ろう材がよく、具体的にはAu−Sn系ろうがよい。   Examples of the brazing material include silver brazing, copper brazing, brass brazing, aluminum brazing, gold brazing, phosphor copper brazing, etc., but considering the chip bonding, a low temperature brazing material having a melting point of about 300 ° C. is preferable. Au-Sn brazing is preferable.

また、前記の金属粒子を含む接合材とは、100μm程度以下のAgの粒子を、周りを有機物で結合・被覆し、溶剤を混入してペースト状にした接合材である。これを加熱、及び条件によっては加圧を行うことにより、溶媒・有機物が分解・揮発し、金属が焼結することで接合材として機能する。金属粒子としては、前記のAg粒子(ナノAg)のほかに、Zn粒子、Au粒子、Al粒子、Ni粒子、Sb粒子、Bi粒子、Sn粒子、Pd粒子、及びCu粒子などがある。   The bonding material including the metal particles is a bonding material in which Ag particles of about 100 μm or less are bound and covered with an organic substance and mixed with a solvent to form a paste. By heating and pressurizing depending on conditions, the solvent / organic matter is decomposed and volatilized, and the metal is sintered to function as a bonding material. Examples of the metal particles include Zn particles, Au particles, Al particles, Ni particles, Sb particles, Bi particles, Sn particles, Pd particles, and Cu particles in addition to the above Ag particles (nano Ag).

尚、半田8の平面形状を四角形にすると、第1凹部に入れ込む場合に位置合わせが必要となる。しかし、半田8を円形にすると第1凹部5との位置合わせが不要となるので好ましい。但し、溶融した円形の半田8が第1凹部5で均一に所定の厚みが確保されるように半田量を管理する必要がある。   If the planar shape of the solder 8 is a quadrangle, alignment is required when it is inserted into the first recess. However, it is preferable to make the solder 8 circular because alignment with the first recess 5 becomes unnecessary. However, it is necessary to manage the amount of solder so that the melted circular solder 8 can ensure a predetermined thickness uniformly in the first recess 5.

つぎに、同図(b)において、半導体チップ9,10上に半田15を載置し、半田15上にポストピン16の先端が接するように、ポストピン付プリント基板11を載置する。このときプリント基板11の位置決め用の第1貫通孔12に位置決め兼用の第1外部端子17を通すことでポストピン16の先端と半導体チップ9のエミッタ電極パッド9aおよびゲートパッド9bが位置決めされる。同時に第2外部端子18を第2貫通孔13に通す。ゲートパッド9bと接続するプリント基板11の導電パターン14(図2(b)のaで示す導電パターン)と第2外部端子18(図2(b)のbで示す第2外部端子)に接するように半田20(図2(b)に示す)を載置する。   Next, in FIG. 2B, the solder 15 is placed on the semiconductor chips 9 and 10, and the printed circuit board 11 with post pins is placed so that the tips of the post pins 16 are in contact with the solder 15. At this time, the front end of the post pin 16 and the emitter electrode pad 9a and gate pad 9b of the semiconductor chip 9 are positioned by passing the first external terminal 17 serving also for positioning through the first through hole 12 for positioning of the printed board 11. At the same time, the second external terminal 18 is passed through the second through hole 13. It is in contact with the conductive pattern 14 (conductive pattern indicated by a in FIG. 2B) of the printed board 11 connected to the gate pad 9b and the second external terminal 18 (second external terminal indicated by b in FIG. 2B). Solder 20 (shown in FIG. 2B) is placed on the substrate.

尚、ゲートパッド9bと第2外部端子18の接続において、ポストピン付プリント基板11の導電パターン14に2本のポストピン16を設け、その一つをゲートパッド9bに接続し、他方を第2外部端子18が固着する導電パターン4に接続すると、第2外部端子18と第2貫通孔13が形成された導電パターン14を半田13を介して接続する必要がなくなる。   In connecting the gate pad 9b and the second external terminal 18, two post pins 16 are provided on the conductive pattern 14 of the printed circuit board 11 with post pins, one of which is connected to the gate pad 9b, and the other is connected to the second external terminal. When connected to the conductive pattern 4 to which 18 is fixed, it is not necessary to connect the second external terminal 18 and the conductive pattern 14 in which the second through hole 13 is formed via the solder 13.

また、図1のcのポストピン16はプリント基板11の導電パターン14と導電パターン付絶縁基板1の導電パターン4を電気的に接続している。
つぎに、図4(c)においては、部材を搭載するための箱型のカーボン治具(図示せず)を使用し、さらに、ポストピン付プリント基板11を上から押さえるカーボン治具(図示せず)を用い、リフロー炉を通して半田8,15,20を溶融させ、固化させることで、半導体チップ9,10と第1凹部5、半導体チップ9,10とポストピン16および導電パターン14と第1外部端子17、第2外部端子18を半田付けする。このカーボン治具は、各部材の位置決めではなく、リフロー炉に入れるときの搬入箱、およびポストピン付プリント基板11を上から押さえる錘として使用する。
1c electrically connects the conductive pattern 14 of the printed board 11 and the conductive pattern 4 of the insulating substrate 1 with the conductive pattern.
Next, in FIG. 4C, a box-shaped carbon jig (not shown) for mounting members is used, and a carbon jig (not shown) that holds the printed board 11 with post pins from above. ), And melting and solidifying the solders 8, 15, and 20 through a reflow furnace, the semiconductor chips 9, 10 and the first recess 5, the semiconductor chips 9, 10, the post pin 16, the conductive pattern 14, and the first external terminal 17. Solder the second external terminal 18. This carbon jig is used not as a positioning of each member but as a weight for pressing the printed board 11 with post pins and a carry-in box when put into the reflow furnace.

尚、第1外部端子17と第2外部端子18を貫通するプリント基板11の貫通孔12,13の周りに導電パターン14を形成して半田で固着すると、凹部6,7と貫通孔12,13の2箇所で固定されるため、第1外部端子17,第2外部端子18の固定強度が増して好ましい。また、凹部6,7の嵌合箇所を半田で補強すると固定強度が増して好ましい。   When the conductive pattern 14 is formed around the through holes 12 and 13 of the printed circuit board 11 that penetrates the first external terminal 17 and the second external terminal 18 and fixed with solder, the recesses 6 and 7 and the through holes 12 and 13 are formed. Therefore, the fixing strength of the first external terminal 17 and the second external terminal 18 is preferably increased. Further, it is preferable to reinforce the fitting portions of the recesses 6 and 7 with solder because the fixing strength is increased.

つぎに、同図(d)において、リフロー炉から取り出し、樹脂19を用いて導電パターン付絶縁基板1、半導体チップ9,10およびポストピン付プリント基板11を封止して半導体装置100は完成する。   Next, in FIG. 4D, the semiconductor device 100 is completed by taking out the insulating substrate 1 with conductive pattern, the semiconductor chips 9, 10 and the printed substrate 11 with post pins using a resin 19 from the reflow furnace.

半導体チップ9,10とポストピン16の位置合わせは、導電パターン4の第2凹部6と位置決め兼用の第1外部端子17で行なわれる。この第1外部端子17は通常の他の第2外部端子18と同様の働きをして外部配線と導電パターン4の間の配線になる。従来のカーボン治具を用いて位置合わせする方法に比べて、本発明のように位置合わせにカーボン治具を用いない方法は、位置ズレを生ずる工程が少なく、また、第1凹部5に載置された半導体チップ9,10はこの第1凹部5から取り出す必要がないため、第1凹部5に必要以上の遊びを設ける必要がない。そのため、半導体チップ9のゲートパッド9bおよびエミッタ電極パッド9a(主電極パッド)とポストピン16の位置合わせの精度を高めることができる。   The alignment of the semiconductor chips 9 and 10 and the post pin 16 is performed by the second concave portion 6 of the conductive pattern 4 and the first external terminal 17 serving also for positioning. The first external terminal 17 functions in the same manner as the other normal second external terminals 18 and becomes a wiring between the external wiring and the conductive pattern 4. Compared to the conventional method of aligning using a carbon jig, the method of not using the carbon jig for alignment as in the present invention has fewer steps that cause misalignment and is placed in the first recess 5. Since it is not necessary to take out the semiconductor chips 9 and 10 from the first recess 5, it is not necessary to provide more play than necessary in the first recess 5. Therefore, it is possible to increase the accuracy of alignment of the gate pins 9b and emitter electrode pads 9a (main electrode pads) of the semiconductor chip 9 and the post pins 16.

前記したように、位置決め兼用の第1外部端子17の外径とポストピン付プリント基板11の貫通孔12の直径の差を50μm程度以下(隙間22は25μm程度以下)とすることで、位置決め兼用の第1外部端子17とポストピン付プリント基板11に形成した第1貫通孔12の位置ズレを25μm程度以下に小さくできる。このように半導体チップ9,10と第1凹部5および位置決め兼用の第1外部端子17とポストピン付プリント基板11の第1貫通孔12の位置ズレを小さくすることで、ゲートパッド9bとポストピン16の位置ズレを95μm程度以下に出来る。その結果、従来のカーボン治具での半導体チップの各パッドとポストピンの位置ズレである0.5mm程度に比べて大幅に位置ズレを小さくできる。   As described above, the difference between the outer diameter of the first external terminal 17 that is also used for positioning and the diameter of the through hole 12 of the printed circuit board 11 with post pins is about 50 μm or less (the gap 22 is about 25 μm or less). The positional deviation of the first through holes 12 formed in the first external terminals 17 and the post-pinned printed circuit board 11 can be reduced to about 25 μm or less. Thus, by reducing the positional deviation between the semiconductor chips 9 and 10, the first recess 5, the first external terminal 17 for positioning and the first through hole 12 of the printed circuit board 11 with post pin, the gate pad 9 b and the post pin 16 can be displaced. The positional deviation can be reduced to about 95 μm or less. As a result, the positional deviation can be greatly reduced as compared to the positional deviation of about 0.5 mm between each pad of the semiconductor chip and the post pin in the conventional carbon jig.

図5は、半導体チップと第1凹部との位置ズレを示す図である。比較のために従来例も示した。位置ズレの測定は、20個のサンプルで第1凹部5の中心から半導体チップ9の中心がX方向とY方向のズレを測定し大きい値を位置ズレとして採用した。サンプルの諸元は第1凹部5の深さは0.2mm、半導体チップ9の大きさは□2.5mm(□は正方形の一辺の長さの意)、厚さは0.35mm、半田8はΦ2.5mm、厚さは0.1mmである。   FIG. 5 is a diagram illustrating a positional deviation between the semiconductor chip and the first recess. A conventional example is also shown for comparison. For the measurement of the positional deviation, the deviation of the semiconductor chip 9 from the center of the first recess 5 in the X direction and the Y direction was measured from 20 centers, and a large value was adopted as the positional deviation. The dimensions of the sample are: the depth of the first recess 5 is 0.2 mm, the size of the semiconductor chip 9 is □ 2.5 mm (□ is the length of one side of the square), the thickness is 0.35 mm, and the solder 8 Is Φ2.5 mm and the thickness is 0.1 mm.

図5から、位置ズレは0.05mmを中心に0.03mm〜0.07mmである。この位置ズレに位置決め兼用の第1外部端子17とポストピン付プリント基板11に形成した位置決め用の第1貫通孔12との位置ズレの25μmを加えるとポストピン16とゲートパッド9bとの位置ズレは最大で95μmとなる。この位置ズレは、従来のパワー半導体モジュール500の場合に対して、大幅に小さくなっており、ポストピン16とゲートパッド9bの位置合わせ精度が大幅に向上する。   From FIG. 5, the positional deviation is 0.03 mm to 0.07 mm with 0.05 mm as the center. If the positional deviation of 25 μm between the first external terminal 17 that is also used for positioning and the first through hole 12 for positioning formed in the printed board 11 with post pin is added to this positional deviation, the positional deviation between the post pin 16 and the gate pad 9b is maximum. Is 95 μm. This misalignment is significantly smaller than that of the conventional power semiconductor module 500, and the alignment accuracy between the post pin 16 and the gate pad 9b is greatly improved.

導電パターン4の第1凹部5上に半田8を載置し、その上に半導体チップ9,10を載置し、半導体チップ9,10上にポストピン16の先端を接触させたポストピン付プリント基板11を載置した場合、半導体チップ9,10の下面と上面の半田8,15が溶融すると、半田8,15の表面張力によって半導体チップ9,10が第1凹部5内で移動し、さらに半導体チップ9,10の表面が傾く場合がある。   Solder 8 is placed on the first recess 5 of the conductive pattern 4, the semiconductor chips 9, 10 are placed thereon, and the printed circuit board 11 with post pins is in contact with the tips of the post pins 16 on the semiconductor chips 9, 10. When the solders 8 and 15 on the lower surface and the upper surface of the semiconductor chips 9 and 10 are melted, the semiconductor chips 9 and 10 move in the first recess 5 due to the surface tension of the solders 8 and 15, and further the semiconductor chip. The surface of 9, 10 may be inclined.

図6は、半導体チップが大幅に位置ズレした様子を示す図であり、同図(a)は要部平面図、同図(b)は同図(a)のX−X線で切断した要部断面図である。この図は、第1凹部5を拡大して示した。半導体チップ9、10(10は図示せず)に位置ズレが生じると、同図(b)のように、半導体チップ9が傾く場合があり、半導体チップ9が傾くと、半導体チップ9とポストピン16との固着が良好に行なわれなくなる。また、位置ズレが大きくなると、ゲートパッド9bにポストピン16が固着できなくなる。また、半導体チップ9,10を第1凹部5に挿入する場合、第1凹部5の隅に半導体チップ9,10が接触して欠けを生じることがある。   FIGS. 6A and 6B are views showing a state in which the semiconductor chip is greatly displaced. FIG. 6A is a plan view of the main part, and FIG. 6B is a cross-sectional view taken along line XX in FIG. FIG. This figure shows the first recess 5 in an enlarged manner. When a positional shift occurs in the semiconductor chips 9 and 10 (10 is not shown), the semiconductor chip 9 may be tilted as shown in FIG. 5B. When the semiconductor chip 9 is tilted, the semiconductor chip 9 and the post pin 16 are tilted. Will not be satisfactorily fixed. Further, when the positional deviation increases, the post pin 16 cannot be fixed to the gate pad 9b. Further, when the semiconductor chips 9 and 10 are inserted into the first recess 5, the semiconductor chips 9 and 10 may come into contact with the corners of the first recess 5 to cause chipping.

このような位置ズレを防止し半導体チップ9,10の欠けを防止できる方法について、つぎの実施例で説明する。   A method for preventing such misalignment and preventing chipping of the semiconductor chips 9 and 10 will be described in the next embodiment.

図7は、この発明の第2実施例の半導体装置の構成図であり、同図(a)は要部平面図、同図(b)は同図(a)のX−X線で切断した要部断面図である。この図は第1凹部5に半導体チップ9,10(10は図示せず)が半田8で固着した図である。   FIGS. 7A and 7B are configuration diagrams of a semiconductor device according to a second embodiment of the present invention. FIG. 7A is a plan view of the main part, and FIG. 7B is cut along line XX in FIG. It is principal part sectional drawing. In this figure, semiconductor chips 9 and 10 (10 not shown) are fixed to the first recess 5 with solder 8.

図1の半導体装置100とこの半導体装置200の違いは、四角形の第1凹部5の4隅に半田溜め部5aを設けた点である。この半田溜め部5aの深さは第1凹部5と同じであり、この半田溜め部5aを設けることで、半田8が溶融したときに、4隅の溜め部5aに流れ込み、半導体チップ9下の溶融した半田8の厚さが均等に薄くなる。また、リフロー時に、溶融した半田8に含まれるボイドがこの半田溜め部5aに流れることで、ボイドを半導体チップ9,10下の溶融した半田8から外に逃がすことができる。この半田溜め部5aの設置により、半導体チップ9,10が横方向へ動く程度が小さくなる。また、半導体チップ9,10の傾きは殆どなくなる。その結果、第1凹部5と半導体チップ9,10の隙間21を50μm程度まで小さくすることができて、ポストピン16とゲートパッド9bとの位置合わせ精度を向上できる。   The difference between the semiconductor device 100 of FIG. 1 and the semiconductor device 200 is that solder reservoirs 5 a are provided at the four corners of the rectangular first recess 5. The depth of the solder reservoir 5a is the same as that of the first recess 5. By providing this solder reservoir 5a, when the solder 8 is melted, it flows into the reservoir 5a at the four corners and below the semiconductor chip 9. The thickness of the melted solder 8 is uniformly reduced. Further, at the time of reflow, the voids contained in the melted solder 8 flow into the solder reservoir 5a, so that the voids can escape from the melted solder 8 under the semiconductor chips 9 and 10. By installing the solder reservoir 5a, the extent to which the semiconductor chips 9 and 10 move in the lateral direction is reduced. Further, the inclination of the semiconductor chips 9 and 10 is almost eliminated. As a result, the gap 21 between the first recess 5 and the semiconductor chips 9 and 10 can be reduced to about 50 μm, and the alignment accuracy between the post pin 16 and the gate pad 9b can be improved.

図8は、半導体チップと凹部との位置ズレを示す図である。サンプル数は20個である。位置ズレは0.025mmを中心に0.01mm〜0.05mmであり、実施例1の半導体装置100の場合に対して位置合わせ精度を向上させることができる。サンプルの諸元は図5の場合と同じである。   FIG. 8 is a diagram showing a positional deviation between the semiconductor chip and the recess. The number of samples is 20. The positional deviation is 0.01 mm to 0.05 mm centered on 0.025 mm, and the alignment accuracy can be improved compared to the case of the semiconductor device 100 of the first embodiment. The sample specifications are the same as in FIG.

また、この半田溜め部5aの平面形状は円形、楕円形および矩形のいずれでも構わない。この半田溜め部5aを円形にした場合、第1凹部5の4隅から半径rを0.2mm〜0.3mm程度の大きさで半田溜め部5aを形成すればよい。また、第1凹部5の開口部の四隅の角からはんだ溜め部中心に向かい0.1mm〜0.15mmの位置を中心とした前記の半径rの円としてもよい。   Further, the planar shape of the solder reservoir 5a may be circular, elliptical, or rectangular. When the solder reservoir 5a is circular, the solder reservoir 5a may be formed with a radius r of about 0.2 mm to 0.3 mm from the four corners of the first recess 5. Moreover, it is good also as a circle | round | yen of the said radius r centering on the position of 0.1 mm-0.15 mm toward the center of a solder reservoir from the corner | angular corners of the opening part of the 1st recessed part 5. FIG.

前記のように、半田溜め部5aを第1凹部5の隅に設けることで、第1凹部5と半導体チップ9の最大の位置ズレを50μm程度以下にできる。その結果、ゲートパッド9bとポストピン16の最大の位置ズレを75μm程度以下にできる。これは、実施例1に対して位置ズレが25μm程度小さい。   As described above, by providing the solder reservoir 5a at the corner of the first recess 5, the maximum positional deviation between the first recess 5 and the semiconductor chip 9 can be reduced to about 50 μm or less. As a result, the maximum positional deviation between the gate pad 9b and the post pin 16 can be reduced to about 75 μm or less. This is smaller than the first embodiment by about 25 μm.

また、半田溜め部5aを設けることで半田ボイドを5%以下(実施例1の場合は10%)まで低減できる。
しかし、半導体チップの大きさが□3mmより大きくなると、凹部の4隅に半田溜め部5aを設けた場合、半田溜め部5aまでの溶融半田8の流路が長くなり、溶融した半田8の厚さムラができ、またボイドが発生しやすくなる。それを防止するため、半田溜め部5aを分散させ、半田溜め部5aまでの溶融半田8の流路の長さを均一で短くする必要がある。その方策をつきの実施例で説明する。
Further, by providing the solder reservoir 5a, the solder void can be reduced to 5% or less (in the case of Example 1, 10%).
However, when the size of the semiconductor chip is larger than □ 3 mm, when the solder reservoir 5a is provided at the four corners of the recess, the flow path of the molten solder 8 to the solder reservoir 5a becomes longer, and the thickness of the molten solder 8 increases. Unevenness occurs and voids are likely to occur. In order to prevent this, it is necessary to disperse the solder reservoirs 5a and make the length of the flow path of the molten solder 8 to the solder reservoirs 5a uniform and short. This method will be described in the accompanying examples.

図9は、この発明の第3実施例の半導体装置の要部平面図である。この図は図7(a)に相当した平面図である。
図7の半導体装置200とこの半導体装置300の違いは、第1凹部5の辺の中央にも半田溜め部5bを設けた点である。こうすることで、半田溜め部5a,5bまでの溶融半田8の流路の長さを均一で短くすることができて、半導体チップ9,10(10は図示せず)と第1凹部5の位置ズレを小さな半導体チップ並みにすることができる。
FIG. 9 is a plan view of an essential part of a semiconductor device according to a third embodiment of the present invention. This figure is a plan view corresponding to FIG.
The difference between the semiconductor device 200 of FIG. 7 and the semiconductor device 300 is that a solder reservoir 5 b is also provided at the center of the side of the first recess 5. By doing so, the length of the flow path of the molten solder 8 to the solder reservoirs 5a and 5b can be made uniform and short, and the semiconductor chips 9 and 10 (10 is not shown) and the first recess 5 are formed. The positional deviation can be made as small as a semiconductor chip.

また、半導体チップがさらに大きい場合には辺上の半田溜め部5bの数を増やすとよい。この半田溜め部5bの平面形状は円形、楕円形および矩形のいずれでも構わない。
また、半田溜め部5bを円形にした場合、第1凹部5の開口部の辺から半径rを0.2mm〜0.3mm程度の大きさで半田溜め部5bを形成すればよい。また、第1凹部5の開口部の辺から0.1mm〜0.15mm開口部内側を中心とした前記の半径の円としてもよい。
If the semiconductor chip is larger, the number of solder reservoirs 5b on the side may be increased. The planar shape of the solder reservoir 5b may be circular, elliptical, or rectangular.
When the solder reservoir 5b is circular, the solder reservoir 5b may be formed with a radius r of about 0.2 mm to 0.3 mm from the side of the opening of the first recess 5. Moreover, it is good also as a circle | round | yen of the said radius centering on 0.1 mm-0.15mm opening part inner side from the edge | side of the opening part of the 1st recessed part 5. FIG.

また、濡れ性が低下し、ボイドが発生し易い高温鉛フリー半田を用いる場合は、このように半田溜め部5bを増やすと効果的である。また、第1凹部5と半導体チップ9,10との位置ズレは実施例2の場合とほぼ同じである。   Further, in the case of using high-temperature lead-free solder that has low wettability and easily generates voids, it is effective to increase the solder reservoir portion 5b in this way. Further, the positional deviation between the first recess 5 and the semiconductor chips 9 and 10 is substantially the same as in the second embodiment.

図10は、この発明の第4実施例の半導体装置の要部断面図である。図1と半導体装置100とこの半導体装置400との違いは、位置決め兼用の第1外部端子17の代わりに、位置決め用支柱として専用の位置決め用ピン26をポストピン付プリント基板11に設けた点である。この専用の位置決め用ピン26は導電パターン4に形成した位置決め用の第4凹部25に挿入して固定する。図示しないが、この専用の位置決め用ピン26を導電パターン4に固定し、ポストピン付プリント基板11に形成した位置決め用の貫通孔にこの専用の位置決め用ピン26を貫通させて位置決めしても構わない。   FIG. 10 is a cross-sectional view of the principal part of the semiconductor device according to the fourth embodiment of the present invention. The difference between FIG. 1 and the semiconductor device 100 and the semiconductor device 400 is that a dedicated positioning pin 26 is provided on the printed circuit board 11 with post pins as a positioning post instead of the first external terminal 17 that also serves as a positioning. . The dedicated positioning pin 26 is inserted and fixed in the positioning fourth recess 25 formed in the conductive pattern 4. Although not shown, the positioning pins 26 may be fixed to the conductive pattern 4 and the positioning pins 26 may be passed through positioning positioning holes formed in the printed circuit board 11 with post pins. .

こうすると、第2外部端子18の断面の大きさや断面形状を貫通孔13の大きさや平面形状に依存しないで四角形や多角形など任意に決めることができる。
図11は、図10の半導体装置400の製造方法であり、同図(a)〜同図(d)は工程順に示した要部製造工程断面図である。
In this way, the cross-sectional size and cross-sectional shape of the second external terminal 18 can be arbitrarily determined such as a square or a polygon without depending on the size or planar shape of the through-hole 13.
FIG. 11 shows a manufacturing method of the semiconductor device 400 of FIG. 10, and FIGS. 11A to 11D are cross-sectional views of main part manufacturing steps shown in the order of steps.

同図(a)において、導電パターン付絶縁基板1の導電パターン4に第1凹部5を形成し、この第1凹部5に半田8と半導体チップ9,10(10は図示せず)を載置し、第4凹部25に半田8を搭載する。   In FIG. 2A, a first recess 5 is formed in the conductive pattern 4 of the insulating substrate 1 with a conductive pattern, and solder 8 and semiconductor chips 9 and 10 (10 not shown) are placed in the first recess 5. Then, the solder 8 is mounted in the fourth recess 25.

同図(b)において、半導体チップ9,10上に半田15を載置し、半田15上にポストピン16の先端が接するように、ポストピン付プリント基板11を載置する。また、第2外部端子18をポストピン付プリント基板11の貫通孔13を通し、導電パターン4の第2凹部6に配置した半田8上に載置する。位置決めはポストピン付プリント板11に固着している2本の専用の位置決め用ピン26を導電パターン4の第4凹部25に差し込むことで行なわれる。   In FIG. 2B, the solder 15 is placed on the semiconductor chips 9 and 10, and the printed circuit board 11 with post pins is placed so that the tips of the post pins 16 are in contact with the solder 15. Further, the second external terminal 18 is placed on the solder 8 disposed in the second recess 6 of the conductive pattern 4 through the through hole 13 of the printed board 11 with post pin. Positioning is performed by inserting two dedicated positioning pins 26 fixed to the printed board 11 with post pins into the fourth recess 25 of the conductive pattern 4.

つぎに、同図(c)において、部材を搭載するための箱型のカーボン治具(図示せず)を使用し、さらに、ポストピン付プリント基板11を上から押さえるカーボン治具(図示せず)を用い、リフロー炉を通して半田8,15を溶融させ、固化させることで、半導体チップ9,10および第2外部端子18と第2凹部6、半導体チップ9,10とポストピン16の先端を半田付けする。このカーボン治具は、各部材の位置決めではなく、リフロー炉に入れるときの搬入箱、およびポストピン付プリント基板11を上から押さえる錘として使用する。   Next, in FIG. 2C, a box-shaped carbon jig (not shown) for mounting members is used, and a carbon jig (not shown) for pressing the printed board 11 with post pins from above. And melting the solders 8 and 15 through a reflow furnace and solidifying them, thereby soldering the semiconductor chips 9 and 10 and the second external terminals 18 and the second recesses 6, the semiconductor chips 9 and 10 and the tips of the post pins 16. . This carbon jig is used not as a positioning of each member but as a weight for pressing the printed board 11 with post pins and a carry-in box when put into the reflow furnace.

つぎに、同図(d)において、リフロー炉から取り出し、樹脂19で封止して半導体装置400は完成する。
しかし、この専用の位置決め用ピン26とプリント基板11の導電パターン14の間の電気的絶縁が確保できない場合がある。それを防止する方策について、つぎの実施例で説明する。
Next, in FIG. 4D, the semiconductor device 400 is completed by taking out from the reflow furnace and sealing with the resin 19.
However, there may be a case where electrical insulation between the dedicated positioning pin 26 and the conductive pattern 14 of the printed board 11 cannot be ensured. A measure for preventing this will be described in the next embodiment.

図12は、この発明の第5実施例の半導体装置の要部断面図である。図12と半導体装置400とこの半導体装置500との違いは、専用の位置決めピン25を脱着可能な専用の位置決めピン27にして、半導体チップ9,10をリフロー炉で半田付けした後、この位置決めピン27を導電パターン付絶縁基板1と第4凹部25から取り去った点である。こうすることで、位置決めピン27と第2外部端子18や内部配線パターンとの間の絶縁強度を気にかける必要がなくなり、位置決めピン27の配置の自由度が上がる。   FIG. 12 is a fragmentary cross-sectional view of the semiconductor device according to the fifth embodiment of the present invention. The difference between FIG. 12 and the semiconductor device 400 and the semiconductor device 500 is that the dedicated positioning pin 25 is used as a removable dedicated positioning pin 27 and the semiconductor chips 9 and 10 are soldered in a reflow furnace, and then the positioning pin 25 is used. 27 is removed from the insulating substrate with conductive pattern 1 and the fourth recess 25. By doing so, it is not necessary to pay attention to the insulation strength between the positioning pin 27 and the second external terminal 18 or the internal wiring pattern, and the degree of freedom of arrangement of the positioning pin 27 is increased.

貫通孔28の直下に着脱可能な位置決めピン27が挿入される第4凹部25が配置される。
この製造方法と図11の製造方法の違いは、図11(c)の工程の後に専用の位置決めピン27を除去する。その他の工程は図11の工程と同じである。
A fourth recess 25 into which a detachable positioning pin 27 is inserted is disposed immediately below the through hole 28.
The difference between this manufacturing method and the manufacturing method of FIG. 11 is that the dedicated positioning pin 27 is removed after the step of FIG. Other steps are the same as those in FIG.

このように専用の位置決めピン27をリフローによる半田付けした後に取り去ることで、図10で問題視された位置決めピン25とプリント基板11の導電パターン14との間の絶縁強度の低下が防止できる。また専用の位置決めピン27の配置の自由度が上がり、ポストピン付プリント基板11の任意の場所に位置決め用ピン27を通す貫通孔28を形成できる。   Thus, by removing the dedicated positioning pins 27 after soldering by reflow, it is possible to prevent a decrease in insulation strength between the positioning pins 25 and the conductive pattern 14 of the printed circuit board 11, which is regarded as a problem in FIG. 10. Further, the degree of freedom of arrangement of the dedicated positioning pin 27 is increased, and the through hole 28 through which the positioning pin 27 is passed can be formed at an arbitrary position of the printed board 11 with the post pin.

図13は、この発明の第6実施例の半導体装置の要部断面図である。この半導体装置600は1個のIGBTチップ(半導体チップ9)と1個のFWD(フリーホイールダイオード)チップ(半導体チップ10)を搭載した半導体ユニットである。この半導体ユニットを複数個組み合わせることで、パワー半導体モジュールと同一の機能を持たせることができる。   FIG. 13 is a fragmentary cross-sectional view of the semiconductor device according to the sixth embodiment of the present invention. The semiconductor device 600 is a semiconductor unit on which one IGBT chip (semiconductor chip 9) and one FWD (free wheel diode) chip (semiconductor chip 10) are mounted. By combining a plurality of these semiconductor units, the same function as that of the power semiconductor module can be provided.

1 導電パターン付絶縁基板
2 冷却ベース
3 絶縁板(導電パターン付絶縁基板)
4 導電パターン(導電パターン付絶縁基板)
5 第1凹部
5a 半田溜め部
6 第2凹部
7 第3凹部
8 半田(凹部と半導体チップの固着)
9 半導体チップ(例えば、IGBTチップ)
9a エミッタ電極パッド
9b ゲートパッド
10 半導体チップ(例えば、FWDチップ)
11 ポストピン付プリント基板
11a 絶縁板(ポストピン付プリント基板)
12 第1貫通孔
13 第2貫通孔
14 導電パターン(ポストピン付プリント基板)
15 半田(ポストピンと半導体チップの固着)
16 ポストピン
17 第1外部端子
18 第2外部端子
19 樹脂
20 半田(第2外部端子と導電パターン14との固着)
21 隙間(凹部5と半導体チップ9の間)
22 隙間(第1外部端子と第1貫通孔12の間)
25 第4凹部
26 専用の位置決め用ピン
27 着脱可能な位置決めピン
28 貫通孔(着脱可能な位置決めピン)
100,200,300,400,500,600 半導体装置
1 Insulating substrate with conductive pattern 2 Cooling base 3 Insulating plate (insulating substrate with conductive pattern)
4 Conductive pattern (insulating substrate with conductive pattern)
5 1st recessed part 5a Solder reservoir part 6 2nd recessed part 7 3rd recessed part 8 Solder (adhesion of a recessed part and a semiconductor chip)
9 Semiconductor chip (eg, IGBT chip)
9a Emitter electrode pad 9b Gate pad 10 Semiconductor chip (for example, FWD chip)
11 Printed circuit board with post pin 11a Insulation board (printed circuit board with post pin)
12 1st through-hole 13 2nd through-hole 14 Conductive pattern (printed board with a post pin)
15 Solder (adhesion of post pin and semiconductor chip)
16 Post pin 17 First external terminal 18 Second external terminal 19 Resin 20 Solder (adhesion between second external terminal and conductive pattern 14)
21 gap (between the recess 5 and the semiconductor chip 9)
22 Gap (between the first external terminal and the first through hole 12)
25 4th recessed part 26 Dedicated positioning pin 27 Removable positioning pin 28 Through-hole (removable positioning pin)
100, 200, 300, 400, 500, 600 Semiconductor device

Claims (12)

導電パターン付絶縁基板と、前記導電パターンに配置された平面形状が四角形の凹部と、該凹部に載置され接合材で固着される半導体チップと、該半導体チップ上に接合材で一端が固着される接続導体柱と、該接続導体柱が固着するプリント基板と、前記導電パターンに固着された位置決め兼用の第1外部端子と、前記導電パターンに固着された前記第1外部端子以外の第2外部端子と、前記第1外部端子が貫通し前記プリント基板に配置される第1貫通孔と、前記第2外部端子が貫通し前記プリント基板に配置される第2貫通孔とを有する半導体装置において、
前記第1外部端子と前記第1貫通孔で前記接続導体柱と前記半導体チップが位置決めされ、前記凹部で前記半導体チップと前記導電パターンが位置決めされ、前記第1貫通孔の大きさが前記第2貫通孔の大きさより小さいことを特徴とする半導体装置。
An insulating substrate with a conductive pattern, a concave portion having a square shape arranged in the conductive pattern, a semiconductor chip placed in the concave portion and fixed with a bonding material, and one end fixed on the semiconductor chip with a bonding material Connecting conductor pillars, a printed circuit board to which the connecting conductor pillars are fixed, a first external terminal for positioning and fixed to the conductive pattern, and a second external terminal other than the first external terminal fixed to the conductive pattern In a semiconductor device having a terminal, a first through hole through which the first external terminal passes and is arranged in the printed board, and a second through hole through which the second external terminal penetrates and is arranged in the printed board,
The connection conductor column and the semiconductor chip are positioned by the first external terminal and the first through hole, the semiconductor chip and the conductive pattern are positioned by the recess, and the size of the first through hole is the second size. A semiconductor device having a size smaller than that of the through hole.
前記第1貫通孔と前記第1外部端子の平面形状が共に円形であり、前記第1貫通孔の直径と前記第1外部端子の直径の差が50μm以下であることを特徴とする請求項1に記載の半導体装置。   2. The planar shape of the first through hole and the first external terminal are both circular, and the difference between the diameter of the first through hole and the diameter of the first external terminal is 50 μm or less. A semiconductor device according to 1. 導電パターン付絶縁基板と、該導電パターンに配置された平面形状が四角形の第1凹部と、該第1凹部に載置され接合材で固着される半導体チップと、該半導体チップ上に接合材で一端が固着される接続導体柱と、該接続導体柱が固着されるプリント基板と、該プリント基板に固着される位置決め用支柱と、該位置決め用支柱の先端が挿入され前記導電パターンに配置される位置決め用の第2凹部と、前記導電パターンに固着された外部端子と、該外部端子が貫通し前記プリント基板に配置される貫通孔とを有することを特徴とする半導体装置。   An insulating substrate with a conductive pattern, a first recess having a square shape arranged in the conductive pattern, a semiconductor chip placed on the first recess and fixed by a bonding material, and a bonding material on the semiconductor chip A connection conductor column to which one end is fixed, a printed board to which the connection conductor column is fixed, a positioning column to be fixed to the printed circuit board, and a tip of the positioning column are inserted and arranged in the conductive pattern. A semiconductor device comprising: a second concave portion for positioning; an external terminal fixed to the conductive pattern; and a through hole through which the external terminal passes and is disposed in the printed circuit board. 導電パターン付絶縁基板と、該導電パターンに配置された平面形状が四角形の第1凹部と、該第1凹部に載置され接合材で固着される半導体チップと、該半導体チップ上に接合材で一端が固着される接続導体柱と、該接続導体柱が固着されるプリント基板と、位置決め用支柱が着脱され前記導電パターンに配置される位置決め用の第2凹部と、前記導電パターンに固着された外部端子と、該外部端子が貫通し前記プリント基板に配置される第1貫通孔と、着脱される前記位置決め支柱が貫通し前記プリント基板に配置される第2貫通孔とを有し、前記第2凹部が前記第2貫通孔の直下に位置することを特徴とする半導体装置。   An insulating substrate with a conductive pattern, a first recess having a square shape arranged in the conductive pattern, a semiconductor chip placed on the first recess and fixed by a bonding material, and a bonding material on the semiconductor chip A connection conductor column to which one end is fixed, a printed circuit board to which the connection conductor column is fixed, a positioning second recess that is attached to and removed from the positioning pattern, and is fixed to the conductive pattern. An external terminal; a first through-hole through which the external terminal penetrates and disposed in the printed circuit board; and a second through-hole through which the detachable positioning column is disposed and disposed in the printed circuit board. 2. A semiconductor device, wherein two recesses are located immediately below the second through hole. 前記凹部もしくは前記第1凹部の深さが、該凹部もしくは第1凹部に載置される前記接合材の厚さより深く、前記接合材と前記半導体チップを合わせた厚さより浅いことを特徴とする請求項1、3または4のいずれか一項に記載の半導体装置。   The depth of the recess or the first recess is deeper than the thickness of the bonding material placed in the recess or the first recess and shallower than the combined thickness of the bonding material and the semiconductor chip. Item 5. The semiconductor device according to any one of Items 1, 3 and 4. 前記接合材が、半田、ろう材もしくは金属粒子を含んだ接合材であることを特徴とする請求項1、3または4のいずれか一項に記載の半導体装置。   The semiconductor device according to claim 1, wherein the bonding material is a bonding material containing solder, brazing material, or metal particles. 前記導電パターンが、前記凹部もしくは前記第1凹部の四角形の4隅に接する半田溜め部を有することを特徴とする請求項1、3または4のいずれか一項に記載の半導体装置。   5. The semiconductor device according to claim 1, wherein the conductive pattern has a solder reservoir portion in contact with four corners of the quadrangle of the concave portion or the first concave portion. 前記導電パターンが、前記凹部もしくは前記第1凹部の四角形の4隅に接する第1の半田溜め部と前記凹部の四角形の各辺にそれぞれ接する第2の半田溜め部を有することを特徴とする請求項1、3または4のいずれか一項に記載の半導体装置。   The conductive pattern includes a first solder reservoir that contacts four corners of the quadrangle of the recess or the first recess, and a second solder reservoir that contacts each side of the quadrangle of the recess. Item 5. The semiconductor device according to any one of Items 1, 3 and 4. 前記半田が、高温半田であることを特徴とする請求項6に記載の半導体装置。   The semiconductor device according to claim 6, wherein the solder is high-temperature solder. 導電パターン付絶縁基板の導電パターンに半導体チップより開口部が大きい第1凹部と位置決め用の第1外部端子およびそれ以外の第2外部端子を固定する第2凹部を形成する工程と、
前記導電パターンの第2凹部に前記の位置決め用の第1外部端子およびそれ以外の第2外部端子を嵌合する工程と、
前記第1凹部に半田を載置し、該半田上に前記半導体チップを載置する工程と、
前記半導体チップのゲートパッド上と主電極パッド上に半田を載置し、接続導体柱付プリント基板に設けた位置決め用の第1貫通孔に位置決め用の第1外部端子を貫通させ前記第1貫通孔以外の第2貫通孔に前記第2外部端子を貫通させて前記接続導体柱の先端と前記ゲートパッド上および前記主電極パッド上の前記半田とを位置決めし前記接続導体柱付プリント基板を上部から押さえ付ける工程と、
全体をリフロー炉に入れて、前記半田を溶融させ、その後固化させることで、前記接続導体柱を前記ゲートパッドおよび前記主電極パッドに前記半田を介して固着する工程と、を含むことを特徴とする半導体装置の製造方法。
Forming a first recess having a larger opening than the semiconductor chip, a first external terminal for positioning, and a second recess for fixing the other second external terminal in the conductive pattern of the insulating substrate with the conductive pattern;
Fitting the first external terminal for positioning and the other second external terminal to the second recess of the conductive pattern;
Placing solder in the first recess, placing the semiconductor chip on the solder; and
Solder is placed on the gate pad and the main electrode pad of the semiconductor chip, and a first external terminal for positioning is passed through a first through hole for positioning provided in a printed circuit board with a connecting conductor column. The second external terminal is passed through a second through hole other than the hole, and the tip of the connection conductor column and the solder on the gate pad and the main electrode pad are positioned, and the printed circuit board with the connection conductor column is placed on the top. The process of pressing from the
The whole is put into a reflow furnace, the solder is melted, and then solidified, thereby fixing the connection conductor column to the gate pad and the main electrode pad via the solder. A method for manufacturing a semiconductor device.
導電パターン付絶縁基板の導電パターンに半導体チップより開口部が大きい第1凹部と位置決め用の第3凹部を形成する工程と、
前記第1凹部に半田を載置し、該半田上に前記半導体チップを載置する工程と、
前記半導体チップのゲートパッド上と主電極パッド上に半田を載置し、位置決め支柱を有する接続導体柱付プリント基板の位置決め支柱を導電パターンに設けた第3凹部に挿入して前記接続導体柱の先端と前記ゲートパッド上および前記主電極パッド上の前記半田とを位置決めし前記接続導体柱付プリント基板を上部から押さえ付ける工程と、
全体をリフロー炉に入れて、前記半田を溶融させ、その後固化させることで、前記接続導体柱を前記ゲートパッドおよび前記主電極パッドに前記半田を介して固着する工程と、を含むことを特徴とする半導体装置の製造方法。
Forming a first recess having a larger opening than the semiconductor chip and a third recess for positioning in the conductive pattern of the insulating substrate with the conductive pattern;
Placing solder in the first recess, placing the semiconductor chip on the solder; and
Solder is placed on the gate pad and the main electrode pad of the semiconductor chip, and the positioning column of the printed circuit board with the connection conductor column having the positioning column is inserted into the third recess provided in the conductive pattern, and the connection conductor column Positioning the tip and the solder on the gate pad and the main electrode pad and pressing the printed circuit board with connection conductor columns from above;
The whole is put into a reflow furnace, the solder is melted, and then solidified, thereby fixing the connection conductor column to the gate pad and the main electrode pad via the solder. A method for manufacturing a semiconductor device.
導電パターン付絶縁基板の導電パターンに半導体チップより開口部が大きい第1凹部と位置決め用の第3凹部を形成する工程と、
前記第1凹部に半田を載置し、該半田上に前記半導体チップを載置する工程と、
前記半導体チップのゲートパッド上と主電極パッド上に半田を載置し、接続導体柱付プリント基板に設けた貫通孔に位置合わせ用支柱を貫通させ、該位置合わせ用支柱の先端を前記第3凹部に挿入し、前記接続導体柱の先端と前記ゲートパッド上および前記主電極パッド上の前記半田とを位置決めし前記接続導体柱付プリント基板を上部から押さえ付ける工程と、
全体をリフロー炉に入れて、前記半田を溶融させ、その後固化させることで、前記接続導体柱を前記ゲートパッドおよび前記主電極パッドに前記半田を介して固着する工程と、
前記位置合わせ用柱を前記第3凹部と前記接続導体柱付プリント基板から引き抜く工程と、を含むことを特徴とする半導体装置の製造方法。
Forming a first recess having a larger opening than the semiconductor chip and a third recess for positioning in the conductive pattern of the insulating substrate with the conductive pattern;
Placing solder in the first recess, placing the semiconductor chip on the solder; and
Solder is placed on the gate pad and the main electrode pad of the semiconductor chip, and an alignment post is passed through a through-hole provided in the printed circuit board with connection conductor columns, and the tip of the alignment column is inserted into the third column. Inserting into the recess, positioning the tip of the connection conductor pillar and the solder on the gate pad and the main electrode pad and pressing the printed circuit board with the connection conductor pillar from above;
The whole is put in a reflow furnace, the solder is melted, and then solidified to fix the connection conductor pillar to the gate pad and the main electrode pad via the solder;
A method of manufacturing a semiconductor device, comprising: a step of pulling out the alignment column from the third recess and the printed circuit board with connection conductor columns.
JP2010278860A 2010-12-15 2010-12-15 Semiconductor device and manufacturing method thereof Expired - Fee Related JP5691475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010278860A JP5691475B2 (en) 2010-12-15 2010-12-15 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010278860A JP5691475B2 (en) 2010-12-15 2010-12-15 Semiconductor device and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014230763A Division JP5971310B2 (en) 2014-11-13 2014-11-13 Semiconductor device manufacturing method and semiconductor device

Publications (2)

Publication Number Publication Date
JP2012129336A true JP2012129336A (en) 2012-07-05
JP5691475B2 JP5691475B2 (en) 2015-04-01

Family

ID=46646073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010278860A Expired - Fee Related JP5691475B2 (en) 2010-12-15 2010-12-15 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5691475B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014078646A (en) * 2012-10-12 2014-05-01 Panasonic Corp Power module and manufacturing method thereof
CN103828044A (en) * 2012-09-19 2014-05-28 微型模块科技株式会社 Semiconductor device
WO2014115561A1 (en) * 2013-01-25 2014-07-31 富士電機株式会社 Semiconductor device
JP2014175444A (en) * 2013-03-08 2014-09-22 Fuji Electric Co Ltd Semiconductor device
JP2014200824A (en) * 2013-04-05 2014-10-27 富士電機株式会社 Pressure-jointing method using static fluid pressure, and pressure-jointing device for use in the method
WO2014196309A1 (en) * 2013-06-05 2014-12-11 富士電機株式会社 Semiconductor device
JP2015103713A (en) * 2013-11-26 2015-06-04 トヨタ自動車株式会社 Semiconductor device
JP2015128154A (en) * 2013-11-29 2015-07-09 株式会社神戸製鋼所 Base plate and semiconductor device with base plate
JP2015138970A (en) * 2014-01-24 2015-07-30 富士電機株式会社 semiconductor device
US20150223339A1 (en) * 2012-10-15 2015-08-06 Fuji Electric Co., Ltd. Semiconductor device
DE102015202256A1 (en) 2014-03-07 2015-09-24 Fuji Electric Co., Ltd Semiconductor device, method for manufacturing a semiconductor device and position gauge
JP2015231022A (en) * 2014-06-06 2015-12-21 富士電機株式会社 Semiconductor device
WO2016024333A1 (en) * 2014-08-12 2016-02-18 新電元工業株式会社 Semiconductor module
JP5884922B2 (en) * 2012-12-18 2016-03-15 株式会社村田製作所 Multilayer electronic device and manufacturing method thereof
US9559042B2 (en) 2014-04-01 2017-01-31 Fuji Electric Co., Ltd. Semiconductor device
JPWO2014192298A1 (en) * 2013-05-30 2017-02-23 富士電機株式会社 Semiconductor device
JP2017079225A (en) * 2015-10-19 2017-04-27 富士電機株式会社 Semiconductor device and semiconductor device manufacturing method
WO2018061517A1 (en) * 2016-09-29 2018-04-05 三菱電機株式会社 Power module, method for producing same and electric power converter
US9991220B2 (en) 2013-06-19 2018-06-05 Fuji Electric Co., Ltd. Semiconductor device
JP2018186245A (en) * 2017-04-27 2018-11-22 富士電機株式会社 Semiconductor device
JP2019140236A (en) * 2018-02-09 2019-08-22 トヨタ自動車株式会社 Semiconductor device
JP2020136293A (en) * 2019-02-13 2020-08-31 富士電機株式会社 Semiconductor device and manufacturing method thereof
WO2020208741A1 (en) * 2019-04-10 2020-10-15 新電元工業株式会社 Semiconductor device, and lead frame material
US10923414B2 (en) 2018-03-16 2021-02-16 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
EP4312249A1 (en) * 2022-07-29 2024-01-31 Google LLC Pin fin placement assembly for forming temperature control element utilized in device die packages

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828292Y1 (en) * 1969-02-26 1973-08-24
JPH06291230A (en) * 1993-04-02 1994-10-18 Nippon Inter Electronics Corp Manufacture of composite semiconductor device
JPH09283682A (en) * 1996-04-18 1997-10-31 Nippon Inter Electronics Corp Composite semiconductor device
JPH10242331A (en) * 1997-02-24 1998-09-11 Dowa Mining Co Ltd Substrate for power module and manufacture thereof
JP2004228403A (en) * 2003-01-24 2004-08-12 Fuji Electric Holdings Co Ltd Semiconductor module, its manufacturing method and switching power supply device
JP2007242703A (en) * 2006-03-06 2007-09-20 Toyota Motor Corp Semiconductor device
JP2009064852A (en) * 2007-09-05 2009-03-26 Okutekku:Kk Semiconductor device, and manufacturing method of semiconductor device
JP2009099645A (en) * 2007-10-15 2009-05-07 Fuji Electric Device Technology Co Ltd Semiconductor device
JP2010010574A (en) * 2008-06-30 2010-01-14 Nichicon Corp Semiconductor device and its manufacturing method
JP2010165764A (en) * 2009-01-14 2010-07-29 Fuji Electric Systems Co Ltd Semiconductor device and method for manufacturing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828292Y1 (en) * 1969-02-26 1973-08-24
JPH06291230A (en) * 1993-04-02 1994-10-18 Nippon Inter Electronics Corp Manufacture of composite semiconductor device
JPH09283682A (en) * 1996-04-18 1997-10-31 Nippon Inter Electronics Corp Composite semiconductor device
JPH10242331A (en) * 1997-02-24 1998-09-11 Dowa Mining Co Ltd Substrate for power module and manufacture thereof
JP2004228403A (en) * 2003-01-24 2004-08-12 Fuji Electric Holdings Co Ltd Semiconductor module, its manufacturing method and switching power supply device
JP2007242703A (en) * 2006-03-06 2007-09-20 Toyota Motor Corp Semiconductor device
JP2009064852A (en) * 2007-09-05 2009-03-26 Okutekku:Kk Semiconductor device, and manufacturing method of semiconductor device
JP2009099645A (en) * 2007-10-15 2009-05-07 Fuji Electric Device Technology Co Ltd Semiconductor device
JP2010010574A (en) * 2008-06-30 2010-01-14 Nichicon Corp Semiconductor device and its manufacturing method
JP2010165764A (en) * 2009-01-14 2010-07-29 Fuji Electric Systems Co Ltd Semiconductor device and method for manufacturing the same

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103828044A (en) * 2012-09-19 2014-05-28 微型模块科技株式会社 Semiconductor device
JP2014078646A (en) * 2012-10-12 2014-05-01 Panasonic Corp Power module and manufacturing method thereof
US20150223339A1 (en) * 2012-10-15 2015-08-06 Fuji Electric Co., Ltd. Semiconductor device
JPWO2014061211A1 (en) * 2012-10-15 2016-09-05 富士電機株式会社 Semiconductor device
EP2908338A4 (en) * 2012-10-15 2016-07-13 Fuji Electric Co Ltd Semiconductor device
US10070528B2 (en) * 2012-10-15 2018-09-04 Fuji Electric Co., Ltd. Semiconductor device wiring pattern and connections
CN104919589A (en) * 2012-10-15 2015-09-16 富士电机株式会社 Semiconductor device
JP5884922B2 (en) * 2012-12-18 2016-03-15 株式会社村田製作所 Multilayer electronic device and manufacturing method thereof
JPWO2014097725A1 (en) * 2012-12-18 2017-01-12 株式会社村田製作所 Multilayer electronic device and manufacturing method thereof
US9907180B2 (en) 2012-12-18 2018-02-27 Murata Manufacturing Co., Ltd. Multilayer electronic device and manufacturing method therefor
JP6032294B2 (en) * 2013-01-25 2016-11-24 富士電機株式会社 Semiconductor device
CN104641459A (en) * 2013-01-25 2015-05-20 富士电机株式会社 Semiconductor device
WO2014115561A1 (en) * 2013-01-25 2014-07-31 富士電機株式会社 Semiconductor device
US9418916B2 (en) 2013-01-25 2016-08-16 Fuji Electric Co., Ltd. Semiconductor device
JP2014175444A (en) * 2013-03-08 2014-09-22 Fuji Electric Co Ltd Semiconductor device
US9750137B2 (en) 2013-03-08 2017-08-29 Fuji Electric Co., Ltd. Semiconductor device
JP2014200824A (en) * 2013-04-05 2014-10-27 富士電機株式会社 Pressure-jointing method using static fluid pressure, and pressure-jointing device for use in the method
JPWO2014192298A1 (en) * 2013-05-30 2017-02-23 富士電機株式会社 Semiconductor device
WO2014196309A1 (en) * 2013-06-05 2014-12-11 富士電機株式会社 Semiconductor device
US9640454B2 (en) 2013-06-05 2017-05-02 Fuji Electric Co., Ltd. Semiconductor device
US9991220B2 (en) 2013-06-19 2018-06-05 Fuji Electric Co., Ltd. Semiconductor device
JP2015103713A (en) * 2013-11-26 2015-06-04 トヨタ自動車株式会社 Semiconductor device
US9953905B2 (en) 2013-11-26 2018-04-24 Toyota Jidosha Kabushiki Kaisha Semiconductor device
US9824961B2 (en) 2013-11-26 2017-11-21 Toyota Jidosha Kabushiki Kaisha Semiconductor device
KR101922783B1 (en) * 2013-11-29 2018-11-27 가부시키가이샤 고베 세이코쇼 Base plate, and semiconductor device provided with base plate
TWI668808B (en) * 2013-11-29 2019-08-11 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Base plate and semiconductor device having the same
JP2015128154A (en) * 2013-11-29 2015-07-09 株式会社神戸製鋼所 Base plate and semiconductor device with base plate
JP2015138970A (en) * 2014-01-24 2015-07-30 富士電機株式会社 semiconductor device
DE102015202256A1 (en) 2014-03-07 2015-09-24 Fuji Electric Co., Ltd Semiconductor device, method for manufacturing a semiconductor device and position gauge
US9991242B2 (en) 2014-03-07 2018-06-05 Fuji Electric Co., Ltd. Semiconductor device, method of manufacturing a semiconductor device, and positioning jig
US10403616B2 (en) 2014-03-07 2019-09-03 Fuji Electric Co., Ltd. Method of manufacturing a semiconductor device
DE102015202256B4 (en) 2014-03-07 2020-07-30 Fuji Electric Co., Ltd. Method of manufacturing a semiconductor device and position gauge
US9559042B2 (en) 2014-04-01 2017-01-31 Fuji Electric Co., Ltd. Semiconductor device
JP2015231022A (en) * 2014-06-06 2015-12-21 富士電機株式会社 Semiconductor device
JP5930565B1 (en) * 2014-08-12 2016-06-08 新電元工業株式会社 Semiconductor module
WO2016024333A1 (en) * 2014-08-12 2016-02-18 新電元工業株式会社 Semiconductor module
JP2017079225A (en) * 2015-10-19 2017-04-27 富士電機株式会社 Semiconductor device and semiconductor device manufacturing method
WO2018061517A1 (en) * 2016-09-29 2018-04-05 三菱電機株式会社 Power module, method for producing same and electric power converter
JP7003439B2 (en) 2017-04-27 2022-01-20 富士電機株式会社 Semiconductor device
JP2018186245A (en) * 2017-04-27 2018-11-22 富士電機株式会社 Semiconductor device
JP2019140236A (en) * 2018-02-09 2019-08-22 トヨタ自動車株式会社 Semiconductor device
JP7027929B2 (en) 2018-02-09 2022-03-02 株式会社デンソー Semiconductor device
US10923414B2 (en) 2018-03-16 2021-02-16 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
JP2020136293A (en) * 2019-02-13 2020-08-31 富士電機株式会社 Semiconductor device and manufacturing method thereof
JP7310161B2 (en) 2019-02-13 2023-07-19 富士電機株式会社 Semiconductor device and its manufacturing method
WO2020208741A1 (en) * 2019-04-10 2020-10-15 新電元工業株式会社 Semiconductor device, and lead frame material
JP6850938B1 (en) * 2019-04-10 2021-03-31 新電元工業株式会社 Semiconductor devices and lead frame materials
EP4312249A1 (en) * 2022-07-29 2024-01-31 Google LLC Pin fin placement assembly for forming temperature control element utilized in device die packages

Also Published As

Publication number Publication date
JP5691475B2 (en) 2015-04-01

Similar Documents

Publication Publication Date Title
JP5691475B2 (en) Semiconductor device and manufacturing method thereof
JP5971310B2 (en) Semiconductor device manufacturing method and semiconductor device
US6791199B2 (en) Heat radiating semiconductor device
US9520374B2 (en) Semiconductor device, substrate and semiconductor device manufacturing method
KR20080070068A (en) Semiconductor die package using leadframe and clip and method of manufacturing
KR20060052333A (en) A semiconductor device and a method for manufacturing the same
JP5970348B2 (en) Semiconductor device
JP6206494B2 (en) Semiconductor device
JP6282454B2 (en) Manufacturing method of semiconductor package
JP2019050302A (en) Semiconductor device
JP2012164880A (en) Semiconductor device and method of manufacturing the same
JP7421622B2 (en) semiconductor equipment
US11552065B2 (en) Semiconductor device
JP6423147B2 (en) Power semiconductor device and manufacturing method thereof
JP4946959B2 (en) Manufacturing method of semiconductor device
JP2012195546A (en) Semiconductor device, and packaging body and manufacturing method of the same
JP2014150213A (en) Semiconductor device and semiconductor device manufacturing method
US20230154889A1 (en) Semiconductor device manufacturing method and jig set
JP2017079258A (en) Electronic part-mounting board and electronic device
JP7416607B2 (en) semiconductor equipment
WO2023054389A1 (en) Semiconductor device and method for producing semiconductor device
WO1998059369A1 (en) Semiconductor package and method for manufacturing the same
JP2021118216A (en) Semiconductor device
JP2002158310A (en) Semiconductor device and module thereof
CN117727705A (en) Electronic device and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150119

R150 Certificate of patent or registration of utility model

Ref document number: 5691475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees