WO2018061517A1 - Power module, method for producing same and electric power converter - Google Patents

Power module, method for producing same and electric power converter Download PDF

Info

Publication number
WO2018061517A1
WO2018061517A1 PCT/JP2017/029727 JP2017029727W WO2018061517A1 WO 2018061517 A1 WO2018061517 A1 WO 2018061517A1 JP 2017029727 W JP2017029727 W JP 2017029727W WO 2018061517 A1 WO2018061517 A1 WO 2018061517A1
Authority
WO
WIPO (PCT)
Prior art keywords
power module
conductor layer
cooler
circuit board
module according
Prior art date
Application number
PCT/JP2017/029727
Other languages
French (fr)
Japanese (ja)
Inventor
畑中 康道
真之介 曽田
昌樹 田屋
穂隆 六分一
平松 星紀
祥 小杉
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2018061517A1 publication Critical patent/WO2018061517A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a molded resin-encapsulated power module provided with a cooler, a manufacturing method thereof, and a power conversion device provided with the power module.
  • an active element soldered to a conductor in contact with one surface of a ceramic substrate is sealed with a mold resin, and has a conductor film formed on the other surface of the ceramic substrate.
  • a power module is disclosed in which the peripheral portion of the surface of the ceramic substrate on which the conductor film is formed is covered and the conductor film and the cooler are joined (for example, Patent Document 1).
  • the difference in the thermal expansion coefficient between the power module and the cooler is large at the metal joint portion between the conductor layer exposed portion of the ceramic substrate and the cooler of the power module in which the ceramic substrate is sealed with mold resin.
  • peeling occurs at the metal joint due to thermal stress such as temperature cycle.
  • the present invention has been made to solve the above-described problems, and an object thereof is to obtain a power module in which the reliability of a metal joint portion between an insulating circuit board sealed with a mold resin and a cooler is improved. Yes.
  • the power module according to the present invention has a conductor layer on an upper surface and a lower surface, an insulating substrate on which a semiconductor element is mounted on the upper conductor layer, and the lower conductor layer has a flat portion on a lower side and a side portion on a side surface. And a sealing resin that seals the insulating substrate by exposing the flat surface portion and a part of the side surface portion, and a bonding material that bonds the flat surface portion exposed from the sealing resin and a part of the side surface portion. And a cooler bonded to the insulating substrate through a bonding material.
  • FIG. 1 is a schematic plan view showing a power module according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic cross-sectional structure diagram showing the power module according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram of a cross-sectional structure taken along one-dot chain line AA in FIG.
  • a power module 100 includes an insulating circuit board 4, a semiconductor element 5, an electrode terminal 6, a molding resin 7 that is a sealing resin, a bonding material 8, and a cooler 9.
  • the insulated circuit board 4 includes a ceramic plate 1 that is an insulated substrate and conductor layers 2 and 3 formed on the upper and lower surfaces of the ceramic plate 1.
  • a ceramic plate 1 silicon nitride (Si 3 N 4 ), aluminum nitride (AlN), alumina, or Zr-containing alumina can be used.
  • AlN and Si 3 N 4 are preferable from the viewpoint of thermal conductivity, and Si 3 N 4 is more preferable from the viewpoint of material strength.
  • the conductor layers 2 and 3 formed on both surfaces (upper surface and lower surface) of the ceramic plate 1 are made of metal having the same dimensions (size) and thickness. However, since an electric circuit is formed on each of the conductor layers 2 and 3, the pattern shape may be different.
  • the conductor layers 2 and 3 are smaller than the ceramic plate 1. By making the size of the conductor layers 2 and 3 smaller than that of the ceramic plate 1, the creeping distance between the conductor layers 2 and 3 can be increased (secured). Further, by making the size of the conductor layer 3 smaller than that of the ceramic plate 1, the sealing resin 7 can be made to wrap around the ceramic plate 1.
  • metals having excellent electrical conductivity and thermal conductivity for example, aluminum and aluminum alloys, copper and copper alloys can be used. In particular, it is preferable to use copper from the viewpoints of heat conduction and electric conduction.
  • the semiconductor element 5 On the conductor layer 2 on the upper surface side of the ceramic plate 1, the semiconductor element 5 is electrically joined, for example, as a joining material 8 via solder.
  • a power control semiconductor element switching element
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • silicon carbide SiC
  • Si silicon carbide
  • SiC silicon carbide
  • Si semiconductor elements or SiC semiconductor elements using these as substrate materials are applied.
  • the thickness of the SiC semiconductor element is preferably 0.08 to 0.2 mm. In order to reduce the thickness of the SiC semiconductor element to less than 0.08 mm, it takes time and cost to grind a very hard SiC wafer. Further, when the thickness of the SiC semiconductor element is larger than 0.2 mm, the heat dissipation of the SiC semiconductor element is lowered and the thermal stress at the interface with the sealing resin is increased. Therefore, the thickness of the SiC semiconductor element is preferably in the range of 0.08 to 0.2 mm.
  • solder is usually used as the bonding material 8 for bonding the semiconductor element 5 and the conductor layer 2 on the upper surface side of the insulating circuit board 4.
  • the bonding material 8 may be sintered silver or a liquid phase diffusion material. Sintered silver or a liquid phase diffusion material has a melting temperature higher than that of a solder material, and does not remelt when the cooler 9 and the conductor layer 3 on the lower surface side of the insulated circuit board 4 are joined. And the bonding reliability of the insulating circuit board 4 is improved.
  • the operating temperature of the power module 100 can be increased. Since sintered silver has better thermal conductivity than solder, the heat dissipation of the semiconductor element 5 is improved and the reliability is improved. Since the liquid phase diffusion material can be bonded with a lower load than sintered silver, the processability is good, and the influence of damage to the semiconductor element 5 due to the bonding load can be prevented.
  • the electrode terminal 6 is bonded to a predetermined electrode terminal 6 bonding position on the semiconductor element 5.
  • the electrode terminal 6 is also bonded to a predetermined electrode terminal 6 bonding position on the conductor layer 2 on the upper surface side of the insulated circuit board 4.
  • the electrode terminal 6 has a structure protruding from the side surface of the mold resin 7 to the outside.
  • a copper plate having a thickness of 0.5 mm processed into a predetermined shape by etching or die punching can be used as the electrode terminal 6, for example.
  • the conductor layer 3 on the lower surface side of the insulated circuit board 4 to which the semiconductor element 5 is not bonded includes a flat surface portion 31 on the lower side opposite to the surface in contact with the ceramic plate 1 and a side surface portion 32 on the side surface.
  • the conductor layer 3 is sealed with the mold resin 7 so that the lower flat portion 31 and a part of the side portion 32 on the side surface are exposed.
  • the exposed flat portion 31 and part of the side surface portion 32 of the conductor layer 3 are bonded to the cooler 9 using the bonding material 8.
  • the bonding material 8 is formed not only on the flat surface portion 31 of the conductor layer 3 but also on a part of the side surface portion 32 of the conductor layer 3.
  • the bonding material 8 is formed to a position (height) that contacts the portion of the mold resin 7 on the cooler 9 side (the bottom portion of the mold resin 7). However, as a position where the bonding material 8 is formed, the bonding material 8 may come into contact (climb up) on the mold resin 7, and the side surface portion 32 may be formed without contact between the mold resin 7 and the bonding material 8. It may be formed away from the top.
  • Mold resin 7 seals a part of insulating substrate 1, conductor layer 2, and side surface portion 32 of conductor layer 3 described above.
  • the mold resin 7 for example, an epoxy resin / phenol resin curing agent type mold resin filled with silica particles can be used.
  • solder can be used as the bonding material 8 between the conductor layer 3 on the lower surface side of the insulating circuit board 4 and the cooler 9.
  • solder a Sn—Sb composition type solder material is preferable from the viewpoint of bonding reliability.
  • sintered silver or a liquid phase diffusion material is applied in addition to the solder as in the case of joining the semiconductor element 5 and the insulated circuit board 4. Is possible.
  • the solder shape of the junction part of the side part 32 of the conductor layer 3 and the cooler 9 becomes a taper (fillet) shape which gave the inclination.
  • the taper shape of the solder which is the bonding material 8 is a shape that expands from the insulating substrate 1 side of the side surface portion 32 of the conductor layer 3 toward the outer peripheral side of the cooler 9 (bottoming). That is, the solder shape of the joint portion between the side surface portion 32 of the conductor layer 3 and the cooler 9 is a shape in which the width on the cooler 9 side is wider than the width on the insulating substrate 1 side in a sectional view.
  • liquid phase diffusion material a Cu—Sn composition system material or a Cu—Ag composition system material is preferable from the viewpoint of bonding reliability. Since sintered silver has better thermal conductivity than solder, the heat dissipation of the power module 100 is improved and the reliability is improved. In addition, since the liquid phase diffusion material can be bonded with a lower load than sintered silver, the processability is good, and the influence of damage to the power module 100 due to the bonding load can be prevented.
  • the cooler 9 can be made of, for example, a composite material made of aluminum and ceramics such as aluminum and aluminum alloy, copper and copper alloy, and AlSiC. In particular, aluminum and aluminum alloys are preferable from the viewpoints of thermal conductivity, workability, and light weight. Inside the cooler 9, a flow path for flowing a cooling refrigerant is formed. In FIG. 2, it is possible to cool more efficiently by providing a plurality of cooling pins 91.
  • the structure of the cooler 9 is not limited to this structure, and any structure that can be cooled is applicable.
  • FIGS. 3 to 11 are schematic cross-sectional views showing the manufacturing steps of the power module according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic cross-sectional structure diagram illustrating the manufacturing process of the power module according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic cross-sectional structure diagram showing the manufacturing process of the power module in the first embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional structure diagram illustrating the manufacturing process of the power module according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic cross-sectional structure diagram illustrating the manufacturing process of the power module according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic cross-sectional structure diagram illustrating the manufacturing process of the power module according to Embodiment 1 of the present invention.
  • FIG. 7 is a schematic cross-sectional structure diagram showing the manufacturing process of the power module according to Embodiment 1 of the present invention.
  • FIG. 8 is a schematic cross-sectional structure diagram illustrating the manufacturing process of the power module according to Embodiment 1 of the present invention.
  • FIG. 9 is a schematic cross-sectional structure diagram illustrating the manufacturing process of the power module according to Embodiment 1 of the present invention.
  • FIG. 10 is a schematic cross-sectional structure diagram showing the manufacturing process of the power module according to Embodiment 1 of the present invention.
  • FIG. 11 is a schematic cross-sectional structure diagram showing the manufacturing process of the power module in the first embodiment of the present invention.
  • the power module 100 can be manufactured through the steps of FIGS.
  • the conductor layer 2 is formed on the upper surface of the ceramic plate 1, and the conductor layer 3 is formed on the lower surface (insulating circuit board forming step).
  • the ceramic plate 1 and the conductor layers 2 and 3 are joined by brazing or the like.
  • the conductor layers 2 and 3 are formed using metal layers having the same size and thickness.
  • the formation positions of the conductor layers 2 and 3 on the ceramic plate 1 are symmetrical (same) positions with the ceramic plate 1 interposed therebetween.
  • the pattern shape may be different.
  • the conductor layer 3 has a flat surface portion 31 opposite to the surface of the conductor layer 3 on the lower surface side of the insulated circuit board 4 that is in contact with the ceramic plate 1 and a side surface portion 32 of the conductor layer 3.
  • the semiconductor element 5 and the electrode terminal 6 are placed at predetermined positions (semiconductor element 5 arrangement region or electrode terminal 6 arrangement region) on the conductor layer 2 on the upper surface of the insulating circuit substrate 4. It electrically joins using the solder which is the joining material 8.
  • the electrode terminal 6 is electrically bonded to a predetermined position on the semiconductor element 5 (electrode terminal 6 arrangement region) using solder which is the bonding material 8 (member bonding step).
  • an electrical circuit is formed by joining the semiconductor element 5 and the electrode terminal 6 on the insulating circuit substrate 4.
  • the insulated circuit board 4 produced in the previous step is fixed in a mold processed into a predetermined shape and sealed with a mold resin 7.
  • the insulating circuit board 4 is placed on the lower mold 12, the upper mold 11 is placed on the lower mold 12, the mold resin 7 is press-fitted, and the press-fitted mold resin 7 is cured. I do.
  • the lower mold 12 is prepared (lower mold installation step), and the conductor layer 3 of the insulated circuit board 4 in which the semiconductor element 5 and the electrode terminal 6 are joined on the conductor layer 2 is formed in the lower mold. 12 is inserted into the lower mold cavity 13 which is an inset portion formed in the insulating portion 12 (insulating circuit board installation step).
  • the lower mold cavity 13 includes a lower flat portion 31 on the opposite side of the surface of the conductor layer 3 on the lower surface side of the insulating circuit board 4 that is in contact with the ceramic plate 1 and a side portion 32 on the side surface of the conductor layer 3. It is for fitting the part.
  • the portion of the conductor layer 3 (a part of the flat surface portion 31 and the side surface portion 32) fitted in the lower mold cavity 13 is not sealed with the mold resin 7 after the resin sealing, and is exposed from the mold resin 7. It becomes an area. Further, the portion exposed from the lower mold cavity 13 of the conductor layer 3 is sealed with a mold resin 7 after sealing with resin.
  • the lower mold 12 and the upper mold 11 are combined and the upper and lower molds are closed to dispose the insulating circuit board 4 inside the upper mold 11 and the lower mold 12.
  • the upper mold 11 and the lower mold 12 are fixed in a state where a part of the electrode terminal 6 protrudes from the side surface of the mold (upper mold installation step).
  • the electrode terminal 6 can be exposed to the outside of the mold resin 7 after sealing with the mold resin 7.
  • the electrode terminal 6 may be configured to have a bent portion in accordance with a protruding position from the mold resin 7 (not shown).
  • a mold resin 7 is press-fitted into a mold in which the insulating circuit board 4 is disposed.
  • a state in which the mold resin 7 is being press-fitted from the right side to the left side indicated by an arrow is shown.
  • the mold resin 7 for example, an epoxy resin / phenol resin curing agent resin (thermal expansion coefficient 12 ppm / K) filled with silica particles can be used (resin sealing step). Moreover, it can seal with the mold resin 7 by pressing-in the mold resin 7 in a metal mold
  • the mold resin 7 that has been press-fitted in the state where the insulating circuit board 4 is disposed in the mold is cured.
  • the curing treatment condition for the mold resin 7 is performed at 180 ° C. for 3 minutes (first resin curing step).
  • the press-fitted mold resin 7 is cured by performing the curing process.
  • the insulating circuit board 4 that has been sealed with the mold resin 7 is taken out from the upper and lower molds (insulating circuit board removing step).
  • the mold resin 7 is in a state in which the entire upper surface side of the insulating circuit substrate 4 and a part of the side surface portion 32 of the conductor layer 3 on the lower surface side of the insulating circuit substrate 4 are sealed.
  • the planar portion 31 and part of the side surface portion 32 of the conductor layer 3 are exposed from the mold resin 7.
  • the position of the mold resin 7 on the side surface portion 32 of the conductor layer 3 is such that when the insulating circuit board 4 is placed on the lower mold 12, the amount of insertion (depth) of the lower mold cavity 13 in which the conductor layer 3 is installed. Determined by.
  • the depth of the lower mold cavity 13 determines the exposure amount of the side surface portion 32 of the conductor layer 3 from the mold resin 7. Then, by adjusting the depth of the lower mold cavity 13, desired characteristics (peeling characteristics, insulating characteristics) can be obtained.
  • the insulating circuit board 4 sealed with the mold resin 7 taken out from the upper and lower molds shown in FIG. 9 is subjected to a curing treatment of the mold resin 7 in an oven at 175 ° C. for 6 hours (second process). Resin curing step). Through these steps, the insulated circuit board 4 sealed with the mold resin 7 is completed.
  • the insulating circuit board 4 resin-sealed with the mold resin 7 is fixed to a predetermined position of the cooler 9 with a jig through the bonding material 8 (cooling).
  • Container placement step ).
  • the bonding material 8 is melted and exposed from the mold resin 7 by reflowing the bonding material 8 using a reflow furnace as shown in FIG. 11.
  • the plane portion 31 and part of the side surface portion 32 (exposed portion) of the conductor layer 3 on the lower surface side of the insulated circuit board 4 are bonded to the cooler 9 via the bonding material 8 (cooler bonding step).
  • the power module 100 can be manufactured through the above main manufacturing processes.
  • the basic structure of the power module 100 used for the evaluation is as follows.
  • a Si semiconductor element As the semiconductor element 5, a Si semiconductor element is used. Then, a 0.1 mm-thick Si semiconductor element is joined to a predetermined position of the insulated circuit board 4 having an outer shape of 20 mm ⁇ 20 mm with solder. Then, the electrode terminal 6 is soldered to a predetermined position of the insulating circuit board 4 and the Si semiconductor element.
  • the copper pattern is formed is a conductive layer 2 and 3 of 16 mm ⁇ 16 mm in thickness 0.7mm size on both surfaces of the ceramic plate 1 of a thickness of 0.32 mm Si 3 N 4 ing.
  • the size of the conductor layers 2 and 3 is smaller than the size of the ceramic plate 1, and the conductor layers 2 and 3 do not protrude from the ceramic plate 1.
  • the lower mold 12 used for transfer mold sealing is fitted with the flat portion 31 and part of the side portion 32 of the conductor layer 3 on the lower surface side of the insulating circuit board 4 having a size of 16 mm ⁇ 16 mm and a depth of 0.5 mm.
  • a lower mold cavity 13 is formed. For this reason, the entire surface of the ceramic plate 1 of the insulating circuit board 4 is sealed with the mold resin 7, and the plane of the lower planar portion 31 and the side portion 32 formed on the lower surface of the conductor layer 3 formed on the ceramic plate 1.
  • a height of 0.5 mm is exposed from the surface of the portion 31 toward the ceramic plate 1 and is sealed with a mold resin 7 (from the ceramic plate 1 of the side surface portion 32 of the conductor layer 3 to a position of 0.2 mm downward) Was sealed with mold resin 7).
  • a film-like solder having a size of 16 mm ⁇ 16 mm and a thickness of 0.3 mm is used as the bonding material 8. Then, the conductor layer 3 on the lower surface side of the insulating circuit board 4 and the film-like solder were fixed to a predetermined position of the cooler 9 with a jig, and joined by heating in a reflow furnace.
  • the solder is inserted into the lower mold cavity 13 of the lower mold 12 of the conductor layer 3 on the lower surface side of the insulated circuit board 4. It joins with the part (a part of plane part 31 and side part 32) exposed from mold resin 7 which had been.
  • the cooler 9 is made of aluminum, and has a size of 60 mm ⁇ 60 mm and a thickness of 15 mm, and is capable of joining six insulated circuit boards 4 having a size of 20 mm ⁇ 20 mm.
  • the solder thickness between the conductor layer 3 on the lower surface side of the insulated circuit board 4 and the cooler 9 is 0.25 mm. It is adjusted. Therefore, the solder protrudes from the exposed flat surface portion 31 of the conductor layer 3 on the lower surface side of the insulated circuit board 4 and is formed along the 0.5 mm exposed portion of the side surface portion 32 of the lower surface side conductor layer 3.
  • the solder shape formed on the side surface portion 32 of the conductor layer 3 is a taper shape from the ceramic plate 1 side toward the cooler 9, and a skirt (fillet) extending toward the outer peripheral portion of the cooler 9 on the upper surface of the cooler 9. Shape. That is, the solder shape of the joint portion between the side surface portion 32 of the conductor layer 3 and the cooler 9 is a shape in which the width on the cooler 9 side is wider than the width on the insulating substrate 1 side in a sectional view.
  • the solder thickness between the conductor layer 3 on the lower surface side of the insulated circuit board 4 and the cooler 9 is adjusted by forming a 0.25 mm bonding wire spacer on the surface (upper surface) of the cooler 9 with a wire bonder.
  • the thickness was controlled to be 0.25 mm.
  • FIG. 12 is a schematic cross-sectional structure diagram showing the end portion of the insulating substrate of the power module according to Embodiment 1 of the present invention.
  • the thickness of the conductor layer 3 on the lower surface side of the insulated circuit board 4 is t (mm)
  • the exposed length of the conductor layer 3 was L (mm).
  • Table 1 shows the specifications of the prototype power module, the temperature cycle test peeling determination result, and the insulation test determination result.
  • Evaluation sample examples 1 to 18 differ only in the thickness (t) of the conductor layer 3 on the lower surface side of the insulated circuit board 4 and the exposed length (L) from the mold resin 7 on the side surface portion 32 of the conductor layer 3.
  • a power module was prototyped by the same method as described above.
  • the exposed length of the side surface portion 32 of the conductor layer 3 from the mold resin 7 is determined by the depth of the lower mold cavity 13.
  • Table 1 shows the evaluation results as “OK” when no peeling was observed after the temperature cycle, and “NG” when peeling was observed.
  • FIG. 13 is a relationship diagram between the conductor layer thickness and the conductor layer side surface exposed length of the power module according to Embodiment 1 of the present invention.
  • Table 1 shows the conditions for which the determination was “OK” in both the peel determination and the insulation test determination after the temperature cycle test.
  • “black circles” in the graph indicate the exposed length L of the side surface portion 32 of the conductor layer 3 that becomes a pass determination in the temperature cycle test determination at each thickness t of the conductor layer 3.
  • the region of the exposure length L below the “black circle” is a region that fails the temperature cycle test determination, and the region of the exposure length L above the “black circle” passes the temperature cycle test determination. It is an area. It has been found that the exposed length L of the side surface portion 32 of the conductor layer 3 that is determined to pass in the temperature cycle test has a correlation with the thickness t of the conductor layer 3 and is shown below.
  • the exposed length L of the side surface portion 32 of the conductor layer 3 is the taper (fillet) height of the solder.
  • the exposed length L of the side surface portion 32 of the conductor layer 3 has an appropriate region with respect to the thickness t of the conductor layer 3.
  • Black squares in the graph of FIG. 13 indicate the exposed length L of the side surface portion 32 of the conductor layer 3 that is determined to pass in the insulation test at each thickness t of the conductor layer 3.
  • the region of the exposure length L below the “black square” is a region that passes the insulation test determination, and the region of the exposure length L above the “black square” is a region that fails the insulation test determination. It is. It has been found that the exposed length L of the side surface portion 32 of the conductor layer, which is determined to pass in the insulation test, has a correlation with the conductor layer thickness t and is shown below.
  • the dielectric breakdown path of the power module 100 is based on the ceramic plate 1 and the mold resin 7 starting from the end of the conductor layer 2 on the upper surface side of the insulated circuit board 4 on which the semiconductor element 5 having the maximum electric field strength is mounted. From the interface to the cooler 9.
  • the withstand voltage is greatly improved as compared with the case where the insulating circuit board 4 is not sealed with the mold resin 7.
  • the insulating properties are deteriorated because it approaches a state where the mold resin 7 is not sealed.
  • the difference between the thickness t of the conductor layer 3 and the exposed length L of the side surface portion 32 of the conductor layer 3 is adhered to the lower surface side of the ceramic plate 1 of the insulating circuit substrate 4 (the lower surface side is sealed). ) The thickness of the mold resin 7 is obtained.
  • the gap between the ceramic plate 1 and the mold is narrow at the time of molding the mold resin 7 and sufficient injection (intrusion) of the mold resin 7 is performed. Peeling and voids are generated between the ceramic plate 1 and the mold resin 7.
  • the resin thickness of the mold resin 7 adhered to the lower surface side of the ceramic plate 1 of the insulating circuit board 4 has a lower limit value, and the thickness is required to be 0.2 mm or more.
  • the exposed length L of the side surface portion 32 of the conductor layer 3 has an appropriate value. It was found that the formula (3) needs to be satisfied. Moreover, when the thickness of the conductor layer 3 was 0.4 mm, there was no area
  • the thickness of the conductor layer 3 increases, the area where both the bonding reliability between the insulating circuit board 4 and the cooler 9 and the insulation reliability of the power module 100 can be secured increases.
  • the upper limit of the thickness of the conductor layer 3 is also restricted due to restrictions in manufacturing the insulated circuit board 4 and restrictions on the temperature cycle test resistance of the insulated circuit board 4 itself.
  • the etching time is increased in proportion to the thickness of the conductor layer 3 and the manufacturing cost is increased.
  • the conductor layer 3 is thickened, thermal stress increases at the interface between the ceramic plate 1 and the conductor layer 3, and cracking of the ceramic plate 1 occurs even in a temperature cycle test with the insulated circuit board 4 alone. For this reason, the upper limit of the thickness of the conductor layer 3 is 1.0 mm.
  • FIG. 14 is a schematic cross-sectional view showing another power module according to Embodiment 1 of the present invention.
  • the power module 200 includes an insulated circuit board 4 sealed with two mold resins 7 on a cooler 9. In this way, by adjusting the size of the cooler 9, it is possible to arrange the insulated circuit board 4 sealed with a plurality of mold resins 7.
  • a part of the side surface portion 32 of the conductor layer 3 on the lower surface side of the insulating circuit substrate 4 sealed with the mold resin 7 is sealed with the mold resin 7. Since the planar portion 31 and part of the side surface portion 32 of the conductor layer 3 exposed from above and the cooler 9 are joined by the joining material 8, the occurrence of peeling at the metal joining portion can be suppressed. As a result, it becomes possible to improve the reliability of the power module.
  • the shape of the joined portion obtained by joining a part of the side surface portion 32 of the conductor layer 3 exposed from the mold resin 7 and the cooler 9 with the joining material 8 is a taper (fillet) shape, the heat at the metal joined portion The generation of stress can be suppressed, and the reliability of the power module can be improved.
  • the solder resist 10 is formed on the upper surface of the cooler 9 when the conductor layer 3 on the lower surface side of the insulated circuit board 4 used in the first embodiment and the cooler 9 are joined.
  • the solder resist 10 is formed on the upper surface of the cooler 9, the flow region of the bonding material 8 at the time of bonding between the conductor layer 3 and the cooler 9 can be restricted, and the side surface of the conductor layer 3 is surely The exposed region of the portion 32 can be covered with the bonding material 8. As a result, it becomes possible to improve the reliability of the power module. Since other points are the same as those in the first embodiment, detailed description thereof is omitted.
  • FIG. 15 is a schematic plan view showing the power module according to Embodiment 2 of the present invention.
  • FIG. 16 is a schematic cross-sectional structure diagram showing a power module according to Embodiment 2 of the present invention.
  • FIG. 16 is a schematic diagram of a cross-sectional structure taken along one-dot chain line BB in FIG.
  • a power module 300 includes an insulating circuit board 4, a semiconductor element 5, an electrode terminal 6, a molding resin 7 as a sealing resin, a bonding material 8, a cooler 9, and a solder resist 10. Except that the solder resist 10 is formed, it is the same as the first embodiment.
  • the solder resist 10 is formed on a surface where the conductor layer 3 on the lower surface side of the insulating circuit board 4 which is the upper surface of the cooler 9 is bonded by the bonding material 8.
  • the solder resist 10 is provided in a region surrounding the outer periphery of the bonding material 8 on the upper surface of the cooler 9. At this time, the solder resist 10 is formed with a predetermined distance from the bonding material 8. Therefore, the solder resist 10 has an opening 101 in the central region so that the bonding material 8 can be arranged at a predetermined interval.
  • the purpose of the solder resist 10 is arranged to limit the region where the bonding material 8 spreads on the upper surface of the cooler 9. That is, the solder resist 10 is disposed at a position where the bonding material 8 formed on the side surface portion 32 of the conductor layer 3 can be accurately tapered.
  • solder resist 10 As the solder resist 10, a general commercial product can be applied as long as adhesion to the cooler 9 and heat resistance can be secured.
  • FIG. 17 is a schematic cross-sectional structure diagram showing the manufacturing process of the power module in the second embodiment of the present invention.
  • FIG. 18 is a schematic cross-sectional structure diagram showing the manufacturing process of the power module in the second embodiment of the present invention.
  • FIG. 19 is a schematic cross-sectional structure diagram showing the manufacturing process of the power module according to Embodiment 2 of the present invention.
  • FIG. 17 is performed after the manufacturing process of FIG. 9, and FIGS. 18 and 19 are replaced with the manufacturing process shown in FIGS.
  • the power module 300 using 10 can be manufactured.
  • solder resist 10 is formed on the outer peripheral portion of the upper surface of the cooler 9 as shown in FIG. 17. (Solder resist forming step). At this time, the solder resist 10 is formed with the opening 101 in the central region of the upper surface of the cooler 9.
  • the bonding material 8 is disposed in the opening 101 surrounded by the solder resist 10. Then, the insulating circuit board 4 encapsulated with the mold resin 7 is bonded to a predetermined position in the central region of the upper surface of the cooler 9 whose outer periphery is covered with the solder resist 10 via the bonding material 8. It is fixed using (cooler arrangement process).
  • the bonding material 8 is reflowed using a reflow furnace as shown in FIG. 19 instead of FIG. As a result, the bonding material 8 is melted, and the flat portion 31 and the portion (exposed portion) of the side surface portion 32 of the conductor layer 3 on the lower surface side of the insulating circuit substrate 4 exposed from the mold resin 7 are bonded to the cooler 9. (Cooler joining process).
  • the bonding material 8 has the solder resist 10 disposed on the outer peripheral portion of the upper surface of the cooler 9, so that the range (region) that is expanded during reflow is limited. That is, it expands inside the opening 101 of the solder resist 10. Due to the solder resist 10, the bonding material 8 is restricted in diffusion and gathers at the peripheral corners of the conductor layer 3, so that the exposed portion of the side surface portion 32 of the conductor layer 3 can be reliably covered.
  • the bonding material 8 is sufficiently supplied also at the corners of the conductor layer 3. Therefore, it becomes easy to form the taper (fillet) shape of the bonding material 8 also in this corner portion.
  • FIG. 20 is a schematic plan view showing the solder resist shape of the power module according to Embodiment 2 of the present invention.
  • FIG. 21 is a schematic cross-sectional structure diagram showing a corner portion of the power module according to Embodiment 2 of the present invention.
  • the conductor layer 3 is indicated by a dotted line.
  • the solder resist 10 has a dimension of 21 mm on the inner side and an opening in the central region.
  • the distance between the side portion of the conductor layer 3 and the side portion of the solder resist 10 is 2.5 mm.
  • a film-like solder having a size of 16 mm ⁇ 16 mm and a thickness of 0.3 mm is used as the bonding material 8 as in the first embodiment. It was implemented by fixing the conductor layer 3 on the lower surface side of the insulating circuit board 4 and the film-like solder to a predetermined position of the cooler 9 with a jig and heating.
  • the solder thickness between the conductor layer 3 on the lower surface side of the insulated circuit board 4 and the cooler 9 is adjusted to be 0.25 mm. Therefore, the solder protrudes from the exposed flat portion 31 of the conductor layer 3 on the lower surface side of the insulated circuit board 4, and a taper of the solder is formed along the exposed portion of the side surface portion 32 of the conductor layer 3 by 0.5 mm. It was.
  • FIG. 21 the result of having observed the taper shape of the corner
  • a portion of the conductor layer 3 covered with the mold resin 7 or the bonding material 8 is indicated by a dotted line.
  • the solder resist 10 When the solder resist 10 is not formed, the spread of the solder cannot be regulated, so that the amount of solder supplied to the corner of the conductor layer 3 is small and the taper height at the corner tends to be low. However, since the solder resist 10 is formed, the solder resist 10 acts as a dam with respect to the solder, and the solder spreads in a substantially square shape. As a result, since the solder also wraps around the exposed corners of the conductor layer 3, it is possible to ensure a taper height. And the reliability of the power module 300 improves.
  • FIG. 22 is a schematic plan view showing another solder resist shape of the power module according to Embodiment 2 of the present invention.
  • FIG. 23 is a schematic plan view showing another solder resist shape of the power module according to Embodiment 2 of the present invention.
  • FIG. 24 is a schematic cross-sectional structure diagram showing another corner portion of the power module according to Embodiment 2 of the present invention.
  • the conductor layer 3 is indicated by a dotted line.
  • the solder resist 10 has an inner side dimension of 18 mm and an opening in the central region.
  • a projecting portion pointed from the inside to the outside in which the opening from the inside toward the outside widens.
  • the distance between the side portion of the conductor layer 3 and the side portion of the solder resist 10 is 1.0 mm.
  • the shape of the protruding portion of the solder resist 10 is not limited to a shape with a sharp tip as shown in FIG. 22, but may have a round shape (a shape with a curvature) as shown in FIG. .
  • the solder is formed in the shape of the opening of the solder resist 10. For this reason, by making the tip of the protruding portion of the opening of the solder resist 10 round, it is possible to relieve the thermal stress acting on the solder during the temperature cycle test, and the reliability of the power module 300 is improved.
  • the conductor layer 3 on the lower surface side of the insulating circuit board 4 and the cooler 9 are joined using film-like solder having a size of 16 mm ⁇ 16 mm and a thickness of 0.3 mm.
  • the conductor layer 3 on the lower surface side of the insulating circuit board 4 and the film-like solder were fixed with a jig at a predetermined position of the cooler 9 and heated.
  • the solder thickness between the conductor layer 3 on the lower surface side of the insulated circuit board 4 and the cooler 9 is adjusted to be 0.25 mm. Therefore, the solder protrudes outward from the exposed flat portion 31 of the conductor layer 3 on the lower surface side of the insulated circuit board 4, and forms a taper of the solder along the exposed portion of the side surface portion 32 of the conductor layer 3 by 0.5 mm. It became.
  • FIG. 24 shows the result of observing the tapered shape of the corner (corner portion) of the exposed conductor layer 3 after joining the conductor layer 3 on the lower surface side of the insulated circuit board 4 and the cooler 9.
  • a portion of the conductor layer 3 covered with the mold resin 7 or the bonding material 8 is indicated by a dotted line.
  • the solder also wraps around the exposed corner of the conductor layer 3. Further, as shown in FIG. 22 and FIG. 23, in the vicinity of the inner corner of the solder resist 10, since the protrusion is provided, the solder further wraps around the protrusion, and the uniform height. Can be formed. That is, the height of the solder in the side surface portion 32 of the conductor layer 3 is formed high (closer to the lower surface side of the insulating substrate 1 on which the conductor layer 3 is formed). Therefore, since the taper height of the conductor layer corner portion where the thermal stress is maximized during the temperature cycle test is secured, it is possible to prevent the peeling of the solder due to the stress relaxation effect of the taper, and the reliability of the power module 300 is improved.
  • the opening shape of the solder resist 10 be a shape approximately 1.0 mm larger than the outer shape of the conductor layer 3.
  • FIG. 25 is a schematic plan view showing another power module according to Embodiment 2 of the present invention.
  • a power module 400 includes an insulated circuit board 4 sealed with two mold resins 7 on a cooler 9.
  • a solder resist 10 is formed on the outer periphery of the conductor layer 3 on the lower surface side of each insulating circuit board 4. In this way, by adjusting the size of the cooler 9, it is possible to arrange the insulated circuit board 4 sealed with a plurality of mold resins 7.
  • a part of the side surface portion 32 of the conductor layer 3 on the lower surface side of the insulating circuit board 4 sealed with the mold resin 7 is also sealed with the mold resin 7. Since the planar portion 31, the side surface portion 32, and the cooler 9 of the conductor layer 3 exposed from the above are joined by the joining material 8, it is possible to suppress the occurrence of peeling at the metal joining portion. As a result, it becomes possible to improve the reliability of the power module.
  • the shape of the joint portion obtained by joining the flat portion 31, the side surface portion 32, and the cooler 9 of the conductor layer 3 exposed from the mold resin 7 with the joining material 8 is a tapered shape, the thermal stress at the metal joint portion is reduced. Generation
  • production can be suppressed and it becomes possible to improve the reliability of a power module.
  • solder resist 10 it is possible to form a tapered shape also at the corners of the conductor layer 3, to suppress the generation of thermal stress at the metal joint, and to improve the reliability of the power module. It becomes possible.
  • the shape of the solder resist 10 formed on the upper surface of the cooler 9 is a shape provided with a protruding portion in which the corner portion of the solder resist 10 protrudes from the inner side to the outer side, A taper shape with a uniform height can be formed, generation of thermal stress at the metal joint can be suppressed, and the reliability of the power module can be improved.
  • Embodiment 3 FIG.
  • the third embodiment is different in that the electrode terminal 6 used in the first and second embodiments is protruded from the upper surface side of the power module to the outside of the mold resin 7.
  • the electrode terminal 6 since the electrode terminal 6 is protruded from the upper surface side of the mold resin 7, the power module can be downsized while the reliability of the conductor layer 3 on the lower surface side of the insulating circuit board 4 and the cooler 9 is ensured. It becomes possible. Since other points are the same as those in the first embodiment or the second embodiment, detailed description thereof is omitted.
  • FIG. 26 is a schematic plan view showing a power module according to Embodiment 3 of the present invention.
  • FIG. 27 is a schematic cross-sectional structure diagram showing a power module according to Embodiment 3 of the present invention.
  • FIG. 27 is a schematic cross-sectional view taken along the alternate long and short dash line CC in FIG.
  • a power module 500 includes an insulating circuit board 4, a semiconductor element 5, an electrode terminal 6, a mold resin 7, a bonding material 8, a cooler 9, and a solder resist 10.
  • the structure is the same as that of the second embodiment except that the electrode terminal 6 has a protruding structure protruding from the upper surface side of the mold resin 7 to the outside.
  • the mold resin sealing with the electrode terminal 6 protruding upward is performed by, for example, forming a cavity for storing the electrode terminal 6 in the upper mold, and inserting the electrode terminal 6 therein. And do it.
  • the electrode terminal 6 is processed into a predetermined shape.
  • the power module 500 can be manufactured in the same manner as in the second embodiment. Further, as in the first embodiment, a power module structure that does not use the solder resist 10 can be realized. With such a structure, the power module can be reduced in size while ensuring the reliability of the conductor layer 3 on the lower surface side of the insulated circuit board 4, the cooler 9, and the joint.
  • a part of the side surface portion 32 of the conductor layer 3 on the lower surface side of the insulating circuit board 4 sealed with the mold resin 7 is also sealed with the mold resin 7. Since the planar portion 31, the side surface portion 32, and the cooler 9 of the conductor layer 3 exposed from the above are joined by the joining material 8, it is possible to suppress the occurrence of peeling at the metal joining portion. As a result, it becomes possible to improve the reliability of the power module.
  • the shape of the joint portion obtained by joining the flat portion 31, the side surface portion 32, and the cooler 9 of the conductor layer 3 exposed from the mold resin 7 with the joining material 8 is a tapered shape, the thermal stress at the metal joint portion is reduced. Generation
  • production can be suppressed and it becomes possible to improve the reliability of a power module.
  • solder resist 10 it is possible to form a tapered shape also at the corners of the conductor layer 3, to suppress the generation of thermal stress at the metal joint, and to improve the reliability of the power module. It becomes possible.
  • the shape of the solder resist 10 formed on the upper surface of the cooler 9 is a shape in which the corner portion of the solder resist 10 protrudes to the outer peripheral side, a tapered shape having a uniform height at the corner portion of the conductor layer 3 is also formed. It can be formed, the generation of thermal stress at the metal joint can be suppressed, and the reliability of the power module can be improved.
  • the electrode terminal 6 is protruded from the upper surface side of the mold resin 7 to the outside of the mold resin 7, the power of the conductor layer 3 on the lower surface side of the insulated circuit board 4, the cooler 9, and the joint is ensured.
  • the module can be miniaturized.
  • Embodiment 4 the power module according to the first to third embodiments described above is applied to a power converter.
  • the present invention is not limited to a specific power converter, hereinafter, a case where the present invention is applied to a three-phase inverter will be described as a fourth embodiment.
  • FIG. 28 is a block diagram showing a configuration of a power conversion system to which the power conversion device according to Embodiment 4 of the present invention is applied.
  • the power supply 1000 is a DC power supply and supplies DC power to the power converter 2000.
  • the power supply 1000 can be composed of various types.
  • the power source 1000 can be composed of a direct current system, a solar battery, or a storage battery, and can be composed of a rectifier circuit or an AC / DC converter connected to the alternating current system. Also good.
  • the power supply 1000 may be configured by a DC / DC converter that converts DC power output from the DC system into predetermined power.
  • the power conversion device 2000 is a three-phase inverter connected between the power supply 1000 and the load 3000, converts DC power supplied from the power supply 1000 into AC power, and supplies AC power to the load 3000. As shown in FIG. 13, the power conversion device 2000 converts a DC power input from the power supply 1000 into an AC power and outputs a main conversion circuit 2001, and a control signal for controlling the main conversion circuit 2001. And a control circuit 2003 for outputting to the computer.
  • the load 3000 is a three-phase motor driven by AC power supplied from the power converter 2000.
  • the load 3000 is not limited to a specific application, and is an electric motor mounted on various electric devices.
  • the load 3000 is used as an electric motor for a hybrid vehicle, an electric vehicle, a railway vehicle, an elevator, or an air conditioner.
  • the main conversion circuit 2001 includes a switching element and a free wheel diode (not shown) built in the power module 2002, and converts the DC power supplied from the power supply 1000 into AC power by switching the switching element.
  • the load 3000 is supplied.
  • the main conversion circuit 2001 according to the present embodiment is a two-level three-phase full bridge circuit, and includes six switching elements and respective switching elements. It can be composed of six anti-parallel diodes.
  • the main conversion circuit 2001 is configured by a power module 2002 corresponding to any one of the above-described first to third embodiments, in which each switching element and each free-wheeling diode are incorporated.
  • the six switching elements are connected in series for each of the two switching elements to constitute upper and lower arms, and each upper and lower arm constitutes each phase (U phase, V phase, W phase) of the full bridge circuit.
  • the output terminals of the upper and lower arms that is, the three output terminals of the main conversion circuit 2001 are connected to the load 3000.
  • the main conversion circuit 2001 includes a drive circuit (not shown) for driving each switching element.
  • the drive circuit may be built in the power module 2002 or a drive circuit may be provided separately from the power module 2002. The structure provided may be sufficient.
  • the drive circuit generates a drive signal for driving the switching element of the main conversion circuit 2001 and supplies it to the control electrode of the switching element of the main conversion circuit 2001. Specifically, in accordance with a control signal from a control circuit 2003 described later, a drive signal for turning on the switching element and a drive signal for turning off the switching element are output to the control electrode of each switching element.
  • the drive signal When the switching element is maintained in the ON state, the drive signal is a voltage signal (ON signal) that is equal to or higher than the threshold voltage of the switching element, and when the switching element is maintained in the OFF state, the drive signal is a voltage that is equal to or lower than the threshold voltage of the switching element.
  • Signal (off signal) When the switching element is maintained in the ON state, the drive signal is a voltage signal (ON signal) that is equal to or higher than the threshold voltage of the switching element, and when the switching element is maintained in the OFF state, the drive signal is a voltage that is equal to or lower than the threshold voltage of the switching element.
  • Signal (off signal) When the switching element is maintained in the ON state, the drive signal is a voltage signal (ON signal) that is equal to or higher than the threshold voltage of the switching element, and when the switching element is maintained in the OFF state, the drive signal is a voltage that is equal to or lower than the threshold voltage of the switching element.
  • Signal (off signal) When the switching element is maintained in the ON state,
  • the control circuit 2003 controls the switching element of the main conversion circuit 2001 so that desired power is supplied to the load 3000. Specifically, based on the power to be supplied to the load 3000, the time (ON time) during which each switching element of the main converter circuit 2001 is to be turned on is calculated. For example, the main conversion circuit 2001 can be controlled by PWM control that modulates the ON time of the switching element according to the voltage to be output. Then, a control command (control signal) is supplied to the drive circuit included in the main conversion circuit 2001 so that an ON signal is output to the switching element that should be turned on at each time point and an OFF signal is output to the switching element that should be turned off. Is output. In accordance with this control signal, the drive circuit outputs an ON signal or an OFF signal as a drive signal to the control electrode of each switching element.
  • the power module according to the first to third embodiments is applied as the power module 2002 of the main conversion circuit 2001, thereby improving reliability. be able to.
  • the present invention is not limited to this, and can be applied to various power conversion devices.
  • a two-level power converter is used.
  • a three-level or multi-level power converter may be used.
  • the present invention is applied to a single-phase inverter. You may apply.
  • the present invention can be applied to a DC / DC converter or an AC / DC converter.
  • the power conversion device to which the present invention is applied is not limited to the case where the load described above is an electric motor.
  • the power source of an electric discharge machine, a laser processing machine, an induction heating cooker, or a non-contact power supply system It can also be used as a device, and can also be used as a power conditioner for a photovoltaic power generation system, a power storage system, or the like.
  • the invention may be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

The present invention provides a power module which has improved reliability with respect to a metal bonding part between a cooling device and an insulated circuit board that is sealed with a mold resin. A power module which is characterized by being provided with: an insulating substrate (1) which comprises conductor layers (2, 3) on the upper surface and the lower surface, while having a semiconductor element (5) mounted on the conductor layer (2) on the upper surface, and wherein the conductor layer (3) on the lower surface has a flat surface part (31) on the lower side and a lateral surface part (32) on the lateral side; a sealing resin (7) which seals the insulating substrate (1) so that the flat surface part (31) and a part of the lateral surface part (32) are exposed therefrom; a bonding material (8) which is bonded to the flat surface part (31) and the part of the lateral surface part (32) exposed from the sealing resin (7); and a cooling device (9) which is bonded to the insulating substrate (1), with the bonding material (89 being interposed therebetween.

Description

パワーモジュール、その製造方法および電力変換装置Power module, manufacturing method thereof, and power conversion device
 この発明は、冷却器を備えたモールド樹脂封止型のパワーモジュール、その製造方法およびこのパワーモジュールを備えた電力変換装置に関する。 The present invention relates to a molded resin-encapsulated power module provided with a cooler, a manufacturing method thereof, and a power conversion device provided with the power module.
 従来のパワーモジュールは、セラミック基板の一方の面に接触した導体にはんだ付けされた能動素子がモールド樹脂で封止され、セラミック基板の他方の面に形成された導体膜を有し、モールド樹脂は、セラミック基板の導体膜が形成された面の周縁部を覆い、導体膜と冷却器とが接合されたパワーモジュールが開示されている(例えば、特許文献1)。 In the conventional power module, an active element soldered to a conductor in contact with one surface of a ceramic substrate is sealed with a mold resin, and has a conductor film formed on the other surface of the ceramic substrate. A power module is disclosed in which the peripheral portion of the surface of the ceramic substrate on which the conductor film is formed is covered and the conductor film and the cooler are joined (for example, Patent Document 1).
特開2003-031765号公報(第13頁、第12図)JP 2003-031765 (page 13, FIG. 12)
 しかしながら、従来のパワーモジュールでは、セラミック基板をモールド樹脂封止したパワーモジュールのセラミック基板の導体層露出部と冷却器との金属接合部は、パワーモジュールと冷却器との熱膨張係数の差が大きく、温度サイクルなどの熱応力で金属接合部に剥離が発生するという問題点があった。 However, in the conventional power module, the difference in the thermal expansion coefficient between the power module and the cooler is large at the metal joint portion between the conductor layer exposed portion of the ceramic substrate and the cooler of the power module in which the ceramic substrate is sealed with mold resin. There is a problem that peeling occurs at the metal joint due to thermal stress such as temperature cycle.
 この発明は、上述のような問題を解決するためになされたもので、モールド樹脂封止された絶縁回路基板と冷却器との金属接合部の信頼性を向上したパワーモジュールを得ることを目的としている。 The present invention has been made to solve the above-described problems, and an object thereof is to obtain a power module in which the reliability of a metal joint portion between an insulating circuit board sealed with a mold resin and a cooler is improved. Yes.
 この発明に係るパワーモジュールは、上面と下面とに導体層を有し、上面の導体層上に半導体素子が搭載された絶縁基板と、下面の導体層は下側に平面部、側面に側面部をそれぞれ有し、平面部と側面部の一部とを露出して絶縁基板を封止する封止樹脂と、封止樹脂から露出した平面部と側面部の一部とに接合する接合材と、接合材を介して絶縁基板と接合された冷却器と、を備えたことを特徴とする。 The power module according to the present invention has a conductor layer on an upper surface and a lower surface, an insulating substrate on which a semiconductor element is mounted on the upper conductor layer, and the lower conductor layer has a flat portion on a lower side and a side portion on a side surface. And a sealing resin that seals the insulating substrate by exposing the flat surface portion and a part of the side surface portion, and a bonding material that bonds the flat surface portion exposed from the sealing resin and a part of the side surface portion. And a cooler bonded to the insulating substrate through a bonding material.
 この発明によれば、絶縁回路基板と冷却器との金属接合部での剥離の発生を抑制でき、パワーモジュールの信頼性を向上させることが可能となる。 According to this invention, it is possible to suppress the occurrence of peeling at the metal joint between the insulating circuit board and the cooler, and to improve the reliability of the power module.
この発明の実施の形態1におけるパワーモジュールを示す平面構造模式図である。It is a planar structure schematic diagram which shows the power module in Embodiment 1 of this invention. この発明の実施の形態1におけるパワーモジュールを示す断面構造模式図である。It is a cross-sectional structure schematic diagram which shows the power module in Embodiment 1 of this invention. この発明の実施の形態1におけるパワーモジュールの製造工程を示す断面構造模式図である。It is a cross-sectional structure schematic diagram which shows the manufacturing process of the power module in Embodiment 1 of this invention. この発明の実施の形態1におけるパワーモジュールの製造工程を示す断面構造模式図である。It is a cross-sectional structure schematic diagram which shows the manufacturing process of the power module in Embodiment 1 of this invention. この発明の実施の形態1におけるパワーモジュールの製造工程を示す断面構造模式図である。It is a cross-sectional structure schematic diagram which shows the manufacturing process of the power module in Embodiment 1 of this invention. この発明の実施の形態1におけるパワーモジュールの製造工程を示す断面構造模式図である。It is a cross-sectional structure schematic diagram which shows the manufacturing process of the power module in Embodiment 1 of this invention. この発明の実施の形態1におけるパワーモジュールの製造工程を示す断面構造模式図である。It is a cross-sectional structure schematic diagram which shows the manufacturing process of the power module in Embodiment 1 of this invention. この発明の実施の形態1におけるパワーモジュールの製造工程を示す断面構造模式図である。It is a cross-sectional structure schematic diagram which shows the manufacturing process of the power module in Embodiment 1 of this invention. この発明の実施の形態1におけるパワーモジュールの製造工程を示す断面構造模式図である。It is a cross-sectional structure schematic diagram which shows the manufacturing process of the power module in Embodiment 1 of this invention. この発明の実施の形態1におけるパワーモジュールの製造工程を示す断面構造模式図である。It is a cross-sectional structure schematic diagram which shows the manufacturing process of the power module in Embodiment 1 of this invention. この発明の実施の形態1におけるパワーモジュールの製造工程を示す断面構造模式図である。It is a cross-sectional structure schematic diagram which shows the manufacturing process of the power module in Embodiment 1 of this invention. この発明の実施の形態1におけるパワーモジュールの絶縁基板端部を示す断面構造模式図である。It is a cross-sectional structure schematic diagram which shows the insulated substrate edge part of the power module in Embodiment 1 of this invention. この発明の実施の形態1におけるパワーモジュールの導体層厚さと導体層側面露出長さとの関係図である。It is a related figure of the conductor layer thickness and conductor layer side surface exposure length of the power module in Embodiment 1 of this invention. この発明の実施の形態1における他のパワーモジュールを示す断面構造模式図である。It is a cross-sectional structure schematic diagram which shows the other power module in Embodiment 1 of this invention. この発明の実施の形態2におけるパワーモジュールを示す平面構造模式図である。It is a plane structure schematic diagram which shows the power module in Embodiment 2 of this invention. この発明の実施の形態2におけるパワーモジュールを示す断面構造模式図である。It is a cross-sectional structure schematic diagram which shows the power module in Embodiment 2 of this invention. この発明の実施の形態2におけるパワーモジュールを示す製造工程の断面構造模式図である。It is a cross-sectional structure schematic diagram of the manufacturing process which shows the power module in Embodiment 2 of this invention. この発明の実施の形態2におけるパワーモジュールを示す製造工程の断面構造模式図である。It is a cross-sectional structure schematic diagram of the manufacturing process which shows the power module in Embodiment 2 of this invention. この発明の実施の形態2におけるパワーモジュールを示す製造工程の断面構造模式図である。It is a cross-sectional structure schematic diagram of the manufacturing process which shows the power module in Embodiment 2 of this invention. この発明の実施の形態2におけるパワーモジュールのソルダーレジスト形状を示す平面構造模式図である。It is a plane structure schematic diagram which shows the soldering resist shape of the power module in Embodiment 2 of this invention. この発明の実施の形態2におけるパワーモジュールの角部を示す断面構造模式図である。It is a cross-sectional structure schematic diagram which shows the corner | angular part of the power module in Embodiment 2 of this invention. この発明の実施の形態2におけるパワーモジュールの他のソルダーレジスト形状を示す平面構造模式図である。It is a plane structure schematic diagram which shows the other soldering resist shape of the power module in Embodiment 2 of this invention. この発明の実施の形態2におけるパワーモジュールの他のソルダーレジスト形状を示す平面構造模式図である。It is a plane structure schematic diagram which shows the other soldering resist shape of the power module in Embodiment 2 of this invention. この発明の実施の形態2におけるパワーモジュールの他の角部を示す断面構造模式図である。It is a cross-sectional structure schematic diagram which shows the other corner | angular part of the power module in Embodiment 2 of this invention. この発明の実施の形態2における他のパワーモジュールを示す平面構造模式図である。It is a plane structure schematic diagram which shows the other power module in Embodiment 2 of this invention. この発明の実施の形態3におけるパワーモジュールを示す平面構造模式図である。It is a plane structure schematic diagram which shows the power module in Embodiment 3 of this invention. この発明の実施の形態3におけるパワーモジュールを示す断面構造模式図である。It is a cross-sectional structure schematic diagram which shows the power module in Embodiment 3 of this invention. この発明の実施の形態4における電力変換装置を適用した電力変換システムの構成を示すブロック図である。It is a block diagram which shows the structure of the power conversion system to which the power converter device in Embodiment 4 of this invention is applied.
 はじめに、本発明のパワーモジュールの全体構成について、図面を参照しながら説明する。なお、図は模式的なものであり、示された構成要素の正確な大きさなどを反映するものではない。また、同一の符号を付したものは、同一またはこれに相当するものであり、このことは明細書の全文において共通することである。 First, the overall configuration of the power module of the present invention will be described with reference to the drawings. The drawings are schematic and do not reflect the exact size of the components shown. Moreover, what attached | subjected the same code | symbol is the same or it corresponds, This is common in the whole text of a specification.
実施の形態1.
 図1は、この発明の実施の形態1におけるパワーモジュールを示す平面構造模式図である。図2は、この発明の実施の形態1におけるパワーモジュールを示す断面構造模式図である。図1中の一点鎖線AAにおける断面構造模式図が図2である。図において、パワーモジュール100は、絶縁回路基板4、半導体素子5、電極端子6、封止樹脂であるモールド樹脂7、接合材8、冷却器9を備えている。
Embodiment 1 FIG.
1 is a schematic plan view showing a power module according to Embodiment 1 of the present invention. FIG. 2 is a schematic cross-sectional structure diagram showing the power module according to Embodiment 1 of the present invention. FIG. 2 is a schematic diagram of a cross-sectional structure taken along one-dot chain line AA in FIG. In the figure, a power module 100 includes an insulating circuit board 4, a semiconductor element 5, an electrode terminal 6, a molding resin 7 that is a sealing resin, a bonding material 8, and a cooler 9.
 絶縁回路基板4は、絶縁基板であるセラミック板1とセラミック板1の上面および下面に形成された導体層2,3を備えている。セラミック板1としては、窒化ケイ素(Si)、窒化アルミ(AlN)、アルミナ、Zr含有アルミナを用いることができる。特に、熱伝導性の点からAlN、Siが好ましく、材料強度の点からSiがより好ましい。 The insulated circuit board 4 includes a ceramic plate 1 that is an insulated substrate and conductor layers 2 and 3 formed on the upper and lower surfaces of the ceramic plate 1. As the ceramic plate 1, silicon nitride (Si 3 N 4 ), aluminum nitride (AlN), alumina, or Zr-containing alumina can be used. In particular, AlN and Si 3 N 4 are preferable from the viewpoint of thermal conductivity, and Si 3 N 4 is more preferable from the viewpoint of material strength.
 セラミック板1の両面(上面、下面)に形成されている導体層2,3は、寸法(大きさ)、厚みがともに同じである金属を用いている。ただし、導体層2,3には、それぞれ電気回路が形成されるため、パターン形状が異なる場合がある。また、導体層2,3の大きさは、セラミック板1よりも小さい。導体層2,3の大きさをセラミック板1よりも小さくすることで、導体層2,3間の沿面距離を拡げる(確保)ことができる。さらに、導体層3の大きさをセラミック板1よりも小さくすることで、セラミック板1の下側に封止樹脂7を回り込ませることができる。導体層2,3としては、電気伝導、熱伝導性に優れた金属、例えば、アルミニウムおよびアルミニウム合金、銅および銅合金を用いることができる。特に、熱伝導、電気伝導の観点から銅を用いるのが好ましい。 The conductor layers 2 and 3 formed on both surfaces (upper surface and lower surface) of the ceramic plate 1 are made of metal having the same dimensions (size) and thickness. However, since an electric circuit is formed on each of the conductor layers 2 and 3, the pattern shape may be different. The conductor layers 2 and 3 are smaller than the ceramic plate 1. By making the size of the conductor layers 2 and 3 smaller than that of the ceramic plate 1, the creeping distance between the conductor layers 2 and 3 can be increased (secured). Further, by making the size of the conductor layer 3 smaller than that of the ceramic plate 1, the sealing resin 7 can be made to wrap around the ceramic plate 1. As the conductor layers 2 and 3, metals having excellent electrical conductivity and thermal conductivity, for example, aluminum and aluminum alloys, copper and copper alloys can be used. In particular, it is preferable to use copper from the viewpoints of heat conduction and electric conduction.
 セラミック板1の上面側の導体層2上には、半導体素子5が、例えば、接合材8としてはんだを介して電気的に接合されている。ここで、例えば半導体素子5としては、大電流を制御するMOSFET(Metal Oxide Semiconductor Field Effect Transistor)のような電力制御用半導体素子(スイッチング素子)や還流用のダイオード等が用いられる。 On the conductor layer 2 on the upper surface side of the ceramic plate 1, the semiconductor element 5 is electrically joined, for example, as a joining material 8 via solder. Here, as the semiconductor element 5, for example, a power control semiconductor element (switching element) such as a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) that controls a large current, a free-wheeling diode, or the like is used.
 半導体素子5を構成する材料としては、例えば、珪素(Si)以外に炭化珪素(SiC)が適用可能である。これらを基板材料として用いたSi半導体素子またはSiC半導体素子が適用される。 As a material constituting the semiconductor element 5, for example, silicon carbide (SiC) can be applied in addition to silicon (Si). Si semiconductor elements or SiC semiconductor elements using these as substrate materials are applied.
 SiC半導体素子は、Si半導体素子と比較して非常に硬いため、SiC半導体素子厚は0.08~0.2mmであることが好ましい。SiC半導体素子厚を0.08mmより薄くするためには、非常に硬いSiCウエハを研削するため時間と費用がかかる。また、SiC半導体素子厚が0.2mmより厚い場合は、SiC半導体素子の放熱性の低下や封止樹脂との界面の熱応力が大きくなる。そのため、SiC半導体素子の厚みは0.08~0.2mmの範囲とすることが良い。 Since the SiC semiconductor element is very hard as compared with the Si semiconductor element, the thickness of the SiC semiconductor element is preferably 0.08 to 0.2 mm. In order to reduce the thickness of the SiC semiconductor element to less than 0.08 mm, it takes time and cost to grind a very hard SiC wafer. Further, when the thickness of the SiC semiconductor element is larger than 0.2 mm, the heat dissipation of the SiC semiconductor element is lowered and the thermal stress at the interface with the sealing resin is increased. Therefore, the thickness of the SiC semiconductor element is preferably in the range of 0.08 to 0.2 mm.
 半導体素子5と絶縁回路基板4の上面側の導体層2との接合は、通常は接合材8として、はんだが用いられる。また、接合材8は、はんだ以外に焼結銀や液相拡散材料が適用可能である。焼結銀や液相拡散材料は、はんだ材料と比較して溶融温度が高く、冷却器9と絶縁回路基板4の下面側の導体層3との接合時に再溶融することがなく、半導体素子5と絶縁回路基板4の接合信頼性が向上する。 Solder is usually used as the bonding material 8 for bonding the semiconductor element 5 and the conductor layer 2 on the upper surface side of the insulating circuit board 4. In addition to the solder, the bonding material 8 may be sintered silver or a liquid phase diffusion material. Sintered silver or a liquid phase diffusion material has a melting temperature higher than that of a solder material, and does not remelt when the cooler 9 and the conductor layer 3 on the lower surface side of the insulated circuit board 4 are joined. And the bonding reliability of the insulating circuit board 4 is improved.
 さらに、焼結銀や液相拡散材料は、はんだより溶融温度が高いため、パワーモジュール100の動作温度の高温化が可能となる。焼結銀は、熱伝導性がはんだより良好なため、半導体素子5の放熱性が向上して信頼性が向上する。液相拡散材料は、焼結銀より低荷重で接合できるためプロセス性が良好で、接合荷重による半導体素子5へのダメージの影響が防止可能となる。 Furthermore, since sintered silver and liquid phase diffusion materials have a higher melting temperature than solder, the operating temperature of the power module 100 can be increased. Since sintered silver has better thermal conductivity than solder, the heat dissipation of the semiconductor element 5 is improved and the reliability is improved. Since the liquid phase diffusion material can be bonded with a lower load than sintered silver, the processability is good, and the influence of damage to the semiconductor element 5 due to the bonding load can be prevented.
 電極端子6は、半導体素子5上の所定の電極端子6接合位置に接合される。また、電極端子6は、絶縁回路基板4の上面側の導体層2上の所定の電極端子6接合位置にも接合される。電極端子6は、モールド樹脂7の側面側から外部へ突出した構造になっている。電極端子6は、例えば、厚み0.5mmの銅板を、エッチングや金型打ち抜きなどで所定の形状に加工したものが使用可能である。 The electrode terminal 6 is bonded to a predetermined electrode terminal 6 bonding position on the semiconductor element 5. The electrode terminal 6 is also bonded to a predetermined electrode terminal 6 bonding position on the conductor layer 2 on the upper surface side of the insulated circuit board 4. The electrode terminal 6 has a structure protruding from the side surface of the mold resin 7 to the outside. As the electrode terminal 6, for example, a copper plate having a thickness of 0.5 mm processed into a predetermined shape by etching or die punching can be used.
 半導体素子5が接合されていない絶縁回路基板4の下面側の導体層3は、セラミック板1と接する面の反対側である下側に平面部31、側面に側面部32をそれぞれ備える。そして、導体層3は、導体層3の下側の平面部31と側面の側面部32の一部とが露出するようにモールド樹脂7で封止される。露出した導体層3の平面部31と側面部32の一部とは、接合材8を用いて冷却器9に接合されている。ここで、導体層3は、導体層3の平面部31だけでなく、導体層3の側面部32の一部にも接合材8が形成されている。この導体層3の側面部32において、接合材8の形成位置(高さ)としては、モールド樹脂7の冷却器9側となる部分(モールド樹脂7の底部)と接する位置まで形成される。しかしながら、接合材8の形成位置として、モールド樹脂7上に接合材8が接触して(這い上がって)いても良く、また、モールド樹脂7と接合材8とが接触せずに、側面部32上で離れて形成されていても良い。 The conductor layer 3 on the lower surface side of the insulated circuit board 4 to which the semiconductor element 5 is not bonded includes a flat surface portion 31 on the lower side opposite to the surface in contact with the ceramic plate 1 and a side surface portion 32 on the side surface. The conductor layer 3 is sealed with the mold resin 7 so that the lower flat portion 31 and a part of the side portion 32 on the side surface are exposed. The exposed flat portion 31 and part of the side surface portion 32 of the conductor layer 3 are bonded to the cooler 9 using the bonding material 8. Here, in the conductor layer 3, the bonding material 8 is formed not only on the flat surface portion 31 of the conductor layer 3 but also on a part of the side surface portion 32 of the conductor layer 3. In the side surface portion 32 of the conductor layer 3, the bonding material 8 is formed to a position (height) that contacts the portion of the mold resin 7 on the cooler 9 side (the bottom portion of the mold resin 7). However, as a position where the bonding material 8 is formed, the bonding material 8 may come into contact (climb up) on the mold resin 7, and the side surface portion 32 may be formed without contact between the mold resin 7 and the bonding material 8. It may be formed away from the top.
 モールド樹脂7は、絶縁基板1、導体層2および上記の導体層3の側面部32の一部を封止する。モールド樹脂7は、例えば、シリカ粒子が充填されたエポキシ樹脂/フェノール樹脂硬化剤系のモールド樹脂が使用可能である。 Mold resin 7 seals a part of insulating substrate 1, conductor layer 2, and side surface portion 32 of conductor layer 3 described above. As the mold resin 7, for example, an epoxy resin / phenol resin curing agent type mold resin filled with silica particles can be used.
 絶縁回路基板4の下面側の導体層3と冷却器9との接合材8は、例えば、はんだが使用可能である。はんだとしては、Sn-Sb組成系のはんだ材が接合信頼性の観点で好ましい。絶縁回路基板4の下面側の導体層3と冷却器9との接合は、半導体素子5と絶縁回路基板4との接合の場合と同様に、はんだ以外に焼結銀や液相拡散材料が適用可能である。そして、導体層3の側面部32と冷却器9との接合部のはんだ形状は、傾斜を持たせたテーパー(フィレット)形状となる。このことより、導体層3の外周部(周縁部)でのはんだの熱応力が緩和され、はんだの剥離が抑制される。ここで、接合材8であるはんだのテーパー形状は、導体層3の側面部32の絶縁基板1側から冷却器9の外周側へ向かって拡がる(裾引き)形状である。すなわち、導体層3の側面部32と冷却器9との接合部のはんだ形状は、断面視において、絶縁基板1側の幅よりも冷却器9側の幅が広い形状である。 For example, solder can be used as the bonding material 8 between the conductor layer 3 on the lower surface side of the insulating circuit board 4 and the cooler 9. As the solder, a Sn—Sb composition type solder material is preferable from the viewpoint of bonding reliability. For joining the conductor layer 3 on the lower surface side of the insulated circuit board 4 and the cooler 9, sintered silver or a liquid phase diffusion material is applied in addition to the solder as in the case of joining the semiconductor element 5 and the insulated circuit board 4. Is possible. And the solder shape of the junction part of the side part 32 of the conductor layer 3 and the cooler 9 becomes a taper (fillet) shape which gave the inclination. As a result, the thermal stress of the solder at the outer peripheral portion (peripheral portion) of the conductor layer 3 is relaxed, and the peeling of the solder is suppressed. Here, the taper shape of the solder, which is the bonding material 8, is a shape that expands from the insulating substrate 1 side of the side surface portion 32 of the conductor layer 3 toward the outer peripheral side of the cooler 9 (bottoming). That is, the solder shape of the joint portion between the side surface portion 32 of the conductor layer 3 and the cooler 9 is a shape in which the width on the cooler 9 side is wider than the width on the insulating substrate 1 side in a sectional view.
 液相拡散材料としては、Cu-Sn組成系、Cu-Ag組成系の材料が接合信頼性の観点で好ましい。焼結銀は熱伝導性がはんだより良好なため、パワーモジュール100の放熱性が向上して信頼性が向上する。また、液相拡散材料は、焼結銀より低荷重で接合できるためプロセス性が良好で、接合荷重によるパワーモジュール100へのダメージの影響が防止可能となる。 As the liquid phase diffusion material, a Cu—Sn composition system material or a Cu—Ag composition system material is preferable from the viewpoint of bonding reliability. Since sintered silver has better thermal conductivity than solder, the heat dissipation of the power module 100 is improved and the reliability is improved. In addition, since the liquid phase diffusion material can be bonded with a lower load than sintered silver, the processability is good, and the influence of damage to the power module 100 due to the bonding load can be prevented.
 冷却器9は、例えば、アルミニウムおよびアルミニウム合金、銅および銅合金、AlSiCなどのアルミニウムとセラミックスからなる複合材料を用いることができる。特に、熱伝導性、加工性、軽量の点からアルミニウムおよびアルミニウム合金が好ましい。冷却器9の内部には、冷却のための冷媒を流すための流路が形成されている。図2においては、複数の冷却ピン91を設けることで、より効率的に冷却することが可能となる。冷却器9の構造としては、この構造に限定されるものではなく、冷却可能な構造であれば適用可能である。 The cooler 9 can be made of, for example, a composite material made of aluminum and ceramics such as aluminum and aluminum alloy, copper and copper alloy, and AlSiC. In particular, aluminum and aluminum alloys are preferable from the viewpoints of thermal conductivity, workability, and light weight. Inside the cooler 9, a flow path for flowing a cooling refrigerant is formed. In FIG. 2, it is possible to cool more efficiently by providing a plurality of cooling pins 91. The structure of the cooler 9 is not limited to this structure, and any structure that can be cooled is applicable.
 次に、上述のように構成された本実施の形態1のパワーモジュール100の製造方法について説明する。 Next, a method for manufacturing the power module 100 of the first embodiment configured as described above will be described.
 図3から図11は、この発明の実施の形態1におけるパワーモジュールの各製造工程を示す断面構造模式図である。図3は、この発明の実施の形態1におけるパワーモジュールの製造工程を示す断面構造模式図である。図4は、この発明の実施の形態1におけるパワーモジュールの製造工程を示す断面構造模式図である。図5は、この発明の実施の形態1におけるパワーモジュールの製造工程を示す断面構造模式図である。図6は、この発明の実施の形態1におけるパワーモジュールの製造工程を示す断面構造模式図である。図7は、この発明の実施の形態1におけるパワーモジュールの製造工程を示す断面構造模式図である。図8は、この発明の実施の形態1におけるパワーモジュールの製造工程を示す断面構造模式図である。図9は、この発明の実施の形態1におけるパワーモジュールの製造工程を示す断面構造模式図である。図10は、この発明の実施の形態1におけるパワーモジュールの製造工程を示す断面構造模式図である。図11は、この発明の実施の形態1におけるパワーモジュールの製造工程を示す断面構造模式図である。図3から図11の工程を経ることにより、パワーモジュール100を製造することができる。 FIGS. 3 to 11 are schematic cross-sectional views showing the manufacturing steps of the power module according to Embodiment 1 of the present invention. FIG. 3 is a schematic cross-sectional structure diagram illustrating the manufacturing process of the power module according to Embodiment 1 of the present invention. FIG. 4 is a schematic cross-sectional structure diagram showing the manufacturing process of the power module in the first embodiment of the present invention. FIG. 5 is a schematic cross-sectional structure diagram illustrating the manufacturing process of the power module according to Embodiment 1 of the present invention. FIG. 6 is a schematic cross-sectional structure diagram illustrating the manufacturing process of the power module according to Embodiment 1 of the present invention. FIG. 7 is a schematic cross-sectional structure diagram showing the manufacturing process of the power module according to Embodiment 1 of the present invention. FIG. 8 is a schematic cross-sectional structure diagram illustrating the manufacturing process of the power module according to Embodiment 1 of the present invention. FIG. 9 is a schematic cross-sectional structure diagram illustrating the manufacturing process of the power module according to Embodiment 1 of the present invention. FIG. 10 is a schematic cross-sectional structure diagram showing the manufacturing process of the power module according to Embodiment 1 of the present invention. FIG. 11 is a schematic cross-sectional structure diagram showing the manufacturing process of the power module in the first embodiment of the present invention. The power module 100 can be manufactured through the steps of FIGS.
 はじめに、図3に示すように、セラミック板1の上面に導体層2を、下面に導体層3を形成する(絶縁回路基板形成工程)。セラミック板1と導体層2,3との接合は、ロウ付け等により行う。このとき、導体層2,3は、大きさ、厚さが同じ金属層を用いて形成する。導体層2,3のセラミック板1上での形成位置は、セラミック板1を挟んで対称となる(同じ)位置である。ただし、導体層2,3には、それぞれ電気回路が形成されるため、パターン形状が異なる場合がある。なお、導体層3は、絶縁回路基板4の下面側の導体層3のセラミック板1と接する面の反対側である平面部31と導体層3の側面部32と有する。 First, as shown in FIG. 3, the conductor layer 2 is formed on the upper surface of the ceramic plate 1, and the conductor layer 3 is formed on the lower surface (insulating circuit board forming step). The ceramic plate 1 and the conductor layers 2 and 3 are joined by brazing or the like. At this time, the conductor layers 2 and 3 are formed using metal layers having the same size and thickness. The formation positions of the conductor layers 2 and 3 on the ceramic plate 1 are symmetrical (same) positions with the ceramic plate 1 interposed therebetween. However, since an electric circuit is formed on each of the conductor layers 2 and 3, the pattern shape may be different. The conductor layer 3 has a flat surface portion 31 opposite to the surface of the conductor layer 3 on the lower surface side of the insulated circuit board 4 that is in contact with the ceramic plate 1 and a side surface portion 32 of the conductor layer 3.
 次に、図4に示すように、絶縁回路基板4の上面の導体層2上の所定の位置(半導体素子5配置領域または、電極端子6配置領域)に、半導体素子5と電極端子6とを接合材8であるはんだを用いて電気的に接合する。また、半導体素子5上の所定の位置(電極端子6配置領域)に電極端子6を接合材8であるはんだを用いて電気的に接合する(部材接合工程)。このように、絶縁回路基板4上に、半導体素子5と電極端子6とを接合することで、電気回路が形成される。 Next, as shown in FIG. 4, the semiconductor element 5 and the electrode terminal 6 are placed at predetermined positions (semiconductor element 5 arrangement region or electrode terminal 6 arrangement region) on the conductor layer 2 on the upper surface of the insulating circuit substrate 4. It electrically joins using the solder which is the joining material 8. FIG. In addition, the electrode terminal 6 is electrically bonded to a predetermined position on the semiconductor element 5 (electrode terminal 6 arrangement region) using solder which is the bonding material 8 (member bonding step). Thus, an electrical circuit is formed by joining the semiconductor element 5 and the electrode terminal 6 on the insulating circuit substrate 4.
 次に、トランスファーモールド装置(図示せず)を用いて、所定形状に加工した金型内に前工程で作製した絶縁回路基板4を固定してモールド樹脂7で封止する。この後のモールド封止工程では、絶縁回路基板4の下金型12への設置と下金型12の上部へ上金型11の配置とモールド樹脂7の圧入と圧入したモールド樹脂7の硬化とを行う。 Next, using a transfer mold apparatus (not shown), the insulated circuit board 4 produced in the previous step is fixed in a mold processed into a predetermined shape and sealed with a mold resin 7. In the subsequent mold sealing step, the insulating circuit board 4 is placed on the lower mold 12, the upper mold 11 is placed on the lower mold 12, the mold resin 7 is press-fitted, and the press-fitted mold resin 7 is cured. I do.
 図5に示すように、下金型12を準備(下金型設置工程)し、導体層2上に半導体素子5と電極端子6とを接合した絶縁回路基板4の導体層3を下金型12に形成したはめ込み部である下金型キャビティー13にはめ込む(絶縁回路基板設置工程)。この下金型キャビティー13は、絶縁回路基板4の下面側の導体層3のセラミック板1と接する面の反対側である下側の平面部31と導体層3の側面の側面部32の一部とをはめ込むためのものである。下金型キャビティー13内にはめ込まれた導体層3の部分(平面部31と側面部32の一部)は、樹脂封止後、モールド樹脂7では封止されず、モールド樹脂7から露出した領域となる。また、導体層3の下金型キャビティー13から露出した部分は、樹脂封止後、モールド樹脂7で封止される。 As shown in FIG. 5, the lower mold 12 is prepared (lower mold installation step), and the conductor layer 3 of the insulated circuit board 4 in which the semiconductor element 5 and the electrode terminal 6 are joined on the conductor layer 2 is formed in the lower mold. 12 is inserted into the lower mold cavity 13 which is an inset portion formed in the insulating portion 12 (insulating circuit board installation step). The lower mold cavity 13 includes a lower flat portion 31 on the opposite side of the surface of the conductor layer 3 on the lower surface side of the insulating circuit board 4 that is in contact with the ceramic plate 1 and a side portion 32 on the side surface of the conductor layer 3. It is for fitting the part. The portion of the conductor layer 3 (a part of the flat surface portion 31 and the side surface portion 32) fitted in the lower mold cavity 13 is not sealed with the mold resin 7 after the resin sealing, and is exposed from the mold resin 7. It becomes an area. Further, the portion exposed from the lower mold cavity 13 of the conductor layer 3 is sealed with a mold resin 7 after sealing with resin.
 次に、図6の示すように、下金型12と上金型11とを合わせて上下の金型を閉じることで絶縁回路基板4を上金型11と下金型12との内部に配置する。このとき、上金型11と下金型12とは、電極端子6の一部を金型の側面から突出させた状態で固定される(上金型設置工程)。このように電極端子6を金型の側面から突出させることで、モールド樹脂7で封止後に、電極端子6をモールド樹脂7の外部へと露出させることができる。このとき、電極端子6はモールド樹脂7(図示せず)からの突出位置に合わせて屈曲部を有する構成としても良い。 Next, as shown in FIG. 6, the lower mold 12 and the upper mold 11 are combined and the upper and lower molds are closed to dispose the insulating circuit board 4 inside the upper mold 11 and the lower mold 12. To do. At this time, the upper mold 11 and the lower mold 12 are fixed in a state where a part of the electrode terminal 6 protrudes from the side surface of the mold (upper mold installation step). Thus, by projecting the electrode terminal 6 from the side surface of the mold, the electrode terminal 6 can be exposed to the outside of the mold resin 7 after sealing with the mold resin 7. At this time, the electrode terminal 6 may be configured to have a bent portion in accordance with a protruding position from the mold resin 7 (not shown).
 次に、図7に示すように、内部に絶縁回路基板4を配置した金型内へモールド樹脂7を圧入する。図においては、矢印で示した右側から左側へ向かってモールド樹脂7が圧入される途中の状態を示している。モールド樹脂7としては、例えば、シリカ粒子が充填されたエポキシ樹脂/フェノール樹脂硬化剤系の樹脂(熱膨張係数12ppm/K)を用いることができる(樹脂封止工程)。また、樹脂材料に合わせた条件(圧力等)で金型内へモールド樹脂7を圧入することでモールド樹脂7により封止できる。 Next, as shown in FIG. 7, a mold resin 7 is press-fitted into a mold in which the insulating circuit board 4 is disposed. In the drawing, a state in which the mold resin 7 is being press-fitted from the right side to the left side indicated by an arrow is shown. As the mold resin 7, for example, an epoxy resin / phenol resin curing agent resin (thermal expansion coefficient 12 ppm / K) filled with silica particles can be used (resin sealing step). Moreover, it can seal with the mold resin 7 by pressing-in the mold resin 7 in a metal mold | die on the conditions (pressure etc.) according to the resin material.
 次に、図8に示すように、モールド樹脂7の圧入の完了後、金型内に絶縁回路基板4を配置したそのままの状態で圧入したモールド樹脂7の硬化処理を実施する。例えば、モールド樹脂7の硬化処理条件としては、180℃、3分間の条件で行う(第一の樹脂硬化工程)。このように硬化処理を行うことで圧入されたモールド樹脂7が硬化される。 Next, as shown in FIG. 8, after the press-fitting of the mold resin 7 is completed, the mold resin 7 that has been press-fitted in the state where the insulating circuit board 4 is disposed in the mold is cured. For example, the curing treatment condition for the mold resin 7 is performed at 180 ° C. for 3 minutes (first resin curing step). Thus, the press-fitted mold resin 7 is cured by performing the curing process.
 次に、図9に示すように、上下の金型内からモールド樹脂7での封止が完了した絶縁回路基板4を取り出す(絶縁回路基板取出工程)。このとき、モールド樹脂7は、絶縁回路基板4の上面側の全面と絶縁回路基板4の下面側の導体層3の側面部32の一部とを封止した状態となっている。そして、導体層3の平面部31と側面部32の一部とはモールド樹脂7から露出した状態となっている。この導体層3の側面部32のモールド樹脂7の位置は、絶縁回路基板4を下金型12へ配置するときに、導体層3を設置した下金型キャビティー13のはめ込み量(深さ)により決定される。 Next, as shown in FIG. 9, the insulating circuit board 4 that has been sealed with the mold resin 7 is taken out from the upper and lower molds (insulating circuit board removing step). At this time, the mold resin 7 is in a state in which the entire upper surface side of the insulating circuit substrate 4 and a part of the side surface portion 32 of the conductor layer 3 on the lower surface side of the insulating circuit substrate 4 are sealed. The planar portion 31 and part of the side surface portion 32 of the conductor layer 3 are exposed from the mold resin 7. The position of the mold resin 7 on the side surface portion 32 of the conductor layer 3 is such that when the insulating circuit board 4 is placed on the lower mold 12, the amount of insertion (depth) of the lower mold cavity 13 in which the conductor layer 3 is installed. Determined by.
 すなわち、この下金型キャビティー13の深さが、導体層3の側面部32のモールド樹脂7からの露出量を決定する。そして、この下金型キャビティー13の深さを調整することで、所望の特性(剥離特性、絶縁特性)を得ることができる。 That is, the depth of the lower mold cavity 13 determines the exposure amount of the side surface portion 32 of the conductor layer 3 from the mold resin 7. Then, by adjusting the depth of the lower mold cavity 13, desired characteristics (peeling characteristics, insulating characteristics) can be obtained.
 さらに、図9に示した上下の金型から取り出したモールド樹脂7で封止された絶縁回路基板4は、オーブン中で175℃、6時間の条件でモールド樹脂7の硬化処理を行う(第二の樹脂硬化工程)。これらの工程を経ることにより、モールド樹脂7で封止された絶縁回路基板4が完成する。 Further, the insulating circuit board 4 sealed with the mold resin 7 taken out from the upper and lower molds shown in FIG. 9 is subjected to a curing treatment of the mold resin 7 in an oven at 175 ° C. for 6 hours (second process). Resin curing step). Through these steps, the insulated circuit board 4 sealed with the mold resin 7 is completed.
 次に、図10に示すように、モールド樹脂7で樹脂封止された絶縁回路基板4は、接合材8を介して、冷却器9の所定の位置へ治具を用いて固定される(冷却器配置工程)。 Next, as shown in FIG. 10, the insulating circuit board 4 resin-sealed with the mold resin 7 is fixed to a predetermined position of the cooler 9 with a jig through the bonding material 8 (cooling). Container placement step).
 絶縁回路基板4と接合材8とを冷却器9に固定後、図11に示すように、リフロー炉を用いて接合材8をリフローすることで接合材8が溶融し、モールド樹脂7から露出した絶縁回路基板4の下面側の導体層3の平面部31と側面部32の一部(露出部)と冷却器9とが接合材8を介して接合される(冷却器接合工程)。 After fixing the insulating circuit board 4 and the bonding material 8 to the cooler 9, the bonding material 8 is melted and exposed from the mold resin 7 by reflowing the bonding material 8 using a reflow furnace as shown in FIG. 11. The plane portion 31 and part of the side surface portion 32 (exposed portion) of the conductor layer 3 on the lower surface side of the insulated circuit board 4 are bonded to the cooler 9 via the bonding material 8 (cooler bonding step).
 以上の主要な製造工程を経ることで、パワーモジュール100が製造できる。 The power module 100 can be manufactured through the above main manufacturing processes.
 次に、上記の製造工程を用いて試作した本実施の形態1のパワーモジュール100の導体層3の厚さと導体層3の露出量を変えたときの剥離特性および絶縁特性について説明する。 Next, the peeling characteristics and the insulating characteristics when the thickness of the conductor layer 3 and the exposure amount of the conductor layer 3 of the power module 100 of the first embodiment manufactured using the above manufacturing process are changed will be described.
 評価に用いたパワーモジュール100の基本構造は、以下の通りである。 The basic structure of the power module 100 used for the evaluation is as follows.
 半導体素子5としては、Si半導体素子を用いる。そして、外形が20mm×20mmの絶縁回路基板4の所定の位置に0.1mm厚のSi半導体素子をはんだで接合する。そして、電極端子6を絶縁回路基板4、Si半導体素子の所定の位置にはんだ接合する。 As the semiconductor element 5, a Si semiconductor element is used. Then, a 0.1 mm-thick Si semiconductor element is joined to a predetermined position of the insulated circuit board 4 having an outer shape of 20 mm × 20 mm with solder. Then, the electrode terminal 6 is soldered to a predetermined position of the insulating circuit board 4 and the Si semiconductor element.
 絶縁回路基板4の仕様は、厚さ0.32mmのSiのセラミック板1の両面に厚さ0.7mmで大きさが16mm×16mmの導体層2,3である銅パターンが形成されている。ここで、導体層2,3の大きさは、セラミック板1大きさよりも小さく、セラミック板1から、導体層2,3がはみ出すことはない。 Specifications of the insulating circuit board 4, the copper pattern is formed is a conductive layer 2 and 3 of 16 mm × 16 mm in thickness 0.7mm size on both surfaces of the ceramic plate 1 of a thickness of 0.32 mm Si 3 N 4 ing. Here, the size of the conductor layers 2 and 3 is smaller than the size of the ceramic plate 1, and the conductor layers 2 and 3 do not protrude from the ceramic plate 1.
 トランスファーモールド封止に用いる下金型12には、大きさ16mm×16mmで深さ0.5mmの絶縁回路基板4の下面側の導体層3の平面部31と側面部32の一部とをはめ込む下金型キャビティー13が形成されている。このため、絶縁回路基板4のセラミック板1の全面がモールド樹脂7で封止され、セラミック板1に形成された下面側の導体層3の下側の平面部31と側面部32のうちの平面部31の表面からセラミック板1に向かって高さ0.5mmを露出させてモールド樹脂7で封止される(導体層3の側面部32のセラミック板1から下側へ0.2mmの位置までをモールド樹脂7で封止した)。 The lower mold 12 used for transfer mold sealing is fitted with the flat portion 31 and part of the side portion 32 of the conductor layer 3 on the lower surface side of the insulating circuit board 4 having a size of 16 mm × 16 mm and a depth of 0.5 mm. A lower mold cavity 13 is formed. For this reason, the entire surface of the ceramic plate 1 of the insulating circuit board 4 is sealed with the mold resin 7, and the plane of the lower planar portion 31 and the side portion 32 formed on the lower surface of the conductor layer 3 formed on the ceramic plate 1. A height of 0.5 mm is exposed from the surface of the portion 31 toward the ceramic plate 1 and is sealed with a mold resin 7 (from the ceramic plate 1 of the side surface portion 32 of the conductor layer 3 to a position of 0.2 mm downward) Was sealed with mold resin 7).
 絶縁回路基板4の下面側の導体層3と冷却器9との接合は、接合材8として大きさ16mm×16mm、厚さ0.3mmのフィルム状のはんだを使用する。そして、冷却器9の所定位置に、絶縁回路基板4の下面側の導体層3とフィルム状のはんだとを冶具で固定して、リフロー炉で加熱することにより接合した。 For joining the conductor layer 3 on the lower surface side of the insulating circuit board 4 and the cooler 9, a film-like solder having a size of 16 mm × 16 mm and a thickness of 0.3 mm is used as the bonding material 8. Then, the conductor layer 3 on the lower surface side of the insulating circuit board 4 and the film-like solder were fixed to a predetermined position of the cooler 9 with a jig, and joined by heating in a reflow furnace.
 絶縁回路基板4の下面側の導体層3と冷却器9との接合時、はんだは、絶縁回路基板4の下面側の導体層3の下金型12の下金型キャビティー13内にはめ込まれていたモールド樹脂7から露出した部分(平面部31と側面部32の一部)と接合する。 When the conductor layer 3 on the lower surface side of the insulated circuit board 4 and the cooler 9 are joined, the solder is inserted into the lower mold cavity 13 of the lower mold 12 of the conductor layer 3 on the lower surface side of the insulated circuit board 4. It joins with the part (a part of plane part 31 and side part 32) exposed from mold resin 7 which had been.
 ここで、冷却器9は、アルミニウム製で、大きさ60mm×60mm、厚さ15mmの外形で、外形20mm×20mmの絶縁回路基板4が6個接合できる大きさである。 Here, the cooler 9 is made of aluminum, and has a size of 60 mm × 60 mm and a thickness of 15 mm, and is capable of joining six insulated circuit boards 4 having a size of 20 mm × 20 mm.
 絶縁回路基板4の下面側の導体層3と冷却器9との接合時に、絶縁回路基板4の下面側の導体層3と冷却器9との間のはんだ厚は、0.25mmとなるように調整している。そのため、はんだが絶縁回路基板4の露出した下面側の導体層3の平面部31からはみ出し、下面側の導体層3の側面部32の0.5mm露出した部分に沿ってはんだが形成される。導体層3の側面部32に形成されたはんだ形状は、セラミック板1側から冷却器9へ向かうテーパー形状であり、冷却器9上面で冷却器9の外周部へ向かって拡がる裾引き(フィレット)形状である。すなわち、導体層3の側面部32と冷却器9との接合部のはんだ形状は、断面視において、絶縁基板1側の幅よりも冷却器9側の幅が広い形状である。 When the conductor layer 3 on the lower surface side of the insulated circuit board 4 and the cooler 9 are joined, the solder thickness between the conductor layer 3 on the lower surface side of the insulated circuit board 4 and the cooler 9 is 0.25 mm. It is adjusted. Therefore, the solder protrudes from the exposed flat surface portion 31 of the conductor layer 3 on the lower surface side of the insulated circuit board 4 and is formed along the 0.5 mm exposed portion of the side surface portion 32 of the lower surface side conductor layer 3. The solder shape formed on the side surface portion 32 of the conductor layer 3 is a taper shape from the ceramic plate 1 side toward the cooler 9, and a skirt (fillet) extending toward the outer peripheral portion of the cooler 9 on the upper surface of the cooler 9. Shape. That is, the solder shape of the joint portion between the side surface portion 32 of the conductor layer 3 and the cooler 9 is a shape in which the width on the cooler 9 side is wider than the width on the insulating substrate 1 side in a sectional view.
 絶縁回路基板4の下面側の導体層3と冷却器9との間のはんだ厚の調整は、冷却器9の表面上(上面)にワイヤボンダで0.25mmのボンディングワイヤのスペーサを形成することで、厚さが0.25mmとなるよう制御した。 The solder thickness between the conductor layer 3 on the lower surface side of the insulated circuit board 4 and the cooler 9 is adjusted by forming a 0.25 mm bonding wire spacer on the surface (upper surface) of the cooler 9 with a wire bonder. The thickness was controlled to be 0.25 mm.
 図12は、この発明の実施の形態1におけるパワーモジュールの絶縁基板端部を示す断面構造模式図である。図において、絶縁回路基板4の下面側の導体層3の厚さをt(mm)、モールド樹脂7封止後の絶縁回路基板4の下面側の導体層3の側面部32でモールド樹脂7からの導体層3の露出長さをL(mm)とした。 FIG. 12 is a schematic cross-sectional structure diagram showing the end portion of the insulating substrate of the power module according to Embodiment 1 of the present invention. In the figure, the thickness of the conductor layer 3 on the lower surface side of the insulated circuit board 4 is t (mm), and the side surface portion 32 of the conductor layer 3 on the lower surface side of the insulated circuit board 4 after sealing with the mold resin 7 The exposed length of the conductor layer 3 was L (mm).
 表1に、試作したパワーモジュールの仕様と温度サイクル試験剥離判定結果、絶縁試験判定結果を示す。 Table 1 shows the specifications of the prototype power module, the temperature cycle test peeling determination result, and the insulation test determination result.
 評価サンプル例1~18は、絶縁回路基板4の下面側の導体層3の厚さ(t)および導体層3の側面部32でのモールド樹脂7からの露出長さ(L)が異なるだけで、上記と同様の方法でパワーモジュールを試作した。導体層3の側面部32のモールド樹脂7からの露出長さは、下金型キャビティー13の深さによって決定される。 Evaluation sample examples 1 to 18 differ only in the thickness (t) of the conductor layer 3 on the lower surface side of the insulated circuit board 4 and the exposed length (L) from the mold resin 7 on the side surface portion 32 of the conductor layer 3. A power module was prototyped by the same method as described above. The exposed length of the side surface portion 32 of the conductor layer 3 from the mold resin 7 is determined by the depth of the lower mold cavity 13.
 試作したパワーモジュールの絶縁回路基板4の下面側の導体層3と冷却器9とのはんだ接合部の剥離判定は、超音波映像装置FineSAT(日立エンジニアリングアンドサービス社製)で行った。そして、剥離観察は、初期と温度サイクル試験(-40~125℃、各30分)を1000サイクル後に行った。 Separation determination of the solder joint between the conductor layer 3 on the lower surface side of the insulated circuit board 4 of the prototype power module and the cooler 9 was performed with an ultrasonic imaging apparatus FineSAT (manufactured by Hitachi Engineering & Service). The peeling observation was performed after 1000 cycles of the initial and temperature cycle tests (−40 to 125 ° C., 30 minutes each).
 表1には、温度サイクル後に剥離が観察されない場合は「OK」、剥離が観察された場合は「NG」で評価結果を示した。 Table 1 shows the evaluation results as “OK” when no peeling was observed after the temperature cycle, and “NG” when peeling was observed.
 また、試作したパワーモジュールの温度サイクル試験(-40~125℃、各30分)を1000サイクル後に、絶縁回路基板4の上面側の導体層2と冷却器9との間に電圧3.0kVを1分間印加して、絶縁回路基板4の上面側の導体層2と冷却器9との絶縁が確保できた場合は「OK」、絶縁破壊した場合は「NG」で評価結果を示した。 Further, after 1000 cycles of the temperature cycle test (−40 to 125 ° C., 30 minutes each) of the prototype power module, a voltage of 3.0 kV was applied between the conductor layer 2 on the upper surface side of the insulating circuit board 4 and the cooler 9. When the insulation between the conductor layer 2 on the upper surface side of the insulating circuit board 4 and the cooler 9 was ensured by applying for 1 minute, the evaluation result was shown as “OK”, and when the insulation breakdown, “NG”.
Figure JPOXMLDOC01-appb-T000001
 図13は、この発明の実施の形態1におけるパワーモジュールの導体層厚さと導体層側面露出長さとの関係図である。表1における温度サイクル試験後の剥離判定と絶縁試験判定において、共に判定が「OK」となった条件について示している。
Figure JPOXMLDOC01-appb-T000001
FIG. 13 is a relationship diagram between the conductor layer thickness and the conductor layer side surface exposed length of the power module according to Embodiment 1 of the present invention. Table 1 shows the conditions for which the determination was “OK” in both the peel determination and the insulation test determination after the temperature cycle test.
 図13において、グラフ中の「黒丸」は、導体層3の各厚さtにおいて、温度サイクル試験判定で合格判定となる導体層3の側面部32の露出長さLを示している。この「黒丸」より下の露出長さLの領域は、温度サイクル試験判定で不合格となる領域で、この「黒丸」より上の露出長さLの領域は、温度サイクル試験判定で合格となる領域である。温度サイクル試験で合格判定となる導体層3の側面部32の露出長さLは、導体層3の厚さtと相関があり、以下で示されることがわかった。 In FIG. 13, “black circles” in the graph indicate the exposed length L of the side surface portion 32 of the conductor layer 3 that becomes a pass determination in the temperature cycle test determination at each thickness t of the conductor layer 3. The region of the exposure length L below the “black circle” is a region that fails the temperature cycle test determination, and the region of the exposure length L above the “black circle” passes the temperature cycle test determination. It is an area. It has been found that the exposed length L of the side surface portion 32 of the conductor layer 3 that is determined to pass in the temperature cycle test has a correlation with the thickness t of the conductor layer 3 and is shown below.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、導体層3の側面部32の露出長さLは、はんだのテーパー(フィレット)高さとなる。導体層3の側面部32へのはんだの形状をテーパー形成とすることにより、導体層3の外周部(周縁部)でのはんだの熱応力が緩和され、絶縁回路基板4と冷却器9との金属接合部でのはんだの接合信頼性が向上する。 Here, the exposed length L of the side surface portion 32 of the conductor layer 3 is the taper (fillet) height of the solder. By making the shape of the solder on the side surface portion 32 of the conductor layer 3 tapered, the thermal stress of the solder on the outer peripheral portion (peripheral portion) of the conductor layer 3 is relieved, and the insulation circuit substrate 4 and the cooler 9 are Solder joint reliability at the metal joint is improved.
 しかし、テーパー高さが低い場合は、はんだの熱応力の緩和効果が十分ではなく、絶縁回路基板4と冷却器9とのはんだ接合部(金属接合部)に剥離が発生する。これらより、導体層3の側面部32の露出長さLには、導体層3の厚さtに対して適正な領域があることがわかる。 However, when the taper height is low, the thermal stress relaxation effect of the solder is not sufficient, and peeling occurs at the solder joint (metal joint) between the insulating circuit board 4 and the cooler 9. From these, it can be seen that the exposed length L of the side surface portion 32 of the conductor layer 3 has an appropriate region with respect to the thickness t of the conductor layer 3.
 図13のグラフ中の「黒四角」は、導体層3の各厚さtにおいて、絶縁試験で合格判定となる導体層3の側面部32の露出長さLを示している。この「黒四角」より下の露出長さLの領域は、絶縁試験判定で合格となる領域、この「黒四角」より上の露出長さLの領域は、絶縁試験判定で不合格となる領域である。絶縁試験で合格判定となる導体層の側面部32の露出長さLは、導体層厚tと相関があり、以下で示されることがわかった。 “Black squares” in the graph of FIG. 13 indicate the exposed length L of the side surface portion 32 of the conductor layer 3 that is determined to pass in the insulation test at each thickness t of the conductor layer 3. The region of the exposure length L below the “black square” is a region that passes the insulation test determination, and the region of the exposure length L above the “black square” is a region that fails the insulation test determination. It is. It has been found that the exposed length L of the side surface portion 32 of the conductor layer, which is determined to pass in the insulation test, has a correlation with the conductor layer thickness t and is shown below.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで、パワーモジュール100の絶縁破壊経路は、電界強度が最大となる半導体素子5が搭載された絶縁回路基板4の上面側の導体層2の端部を起点にセラミック板1とモールド樹脂7との界面から冷却器9に到る。 Here, the dielectric breakdown path of the power module 100 is based on the ceramic plate 1 and the mold resin 7 starting from the end of the conductor layer 2 on the upper surface side of the insulated circuit board 4 on which the semiconductor element 5 having the maximum electric field strength is mounted. From the interface to the cooler 9.
 このため、絶縁回路基板4をモールド樹脂7で封止することにより、モールド樹脂7で封止しない場合と比較して、絶縁耐圧は大きく向上する。しかしながら、セラミック板1とモールド樹脂7との界面に剥離やクラックが発生するとモールド樹脂7で封止しない状態に近づくため絶縁特性が低下する。温度サイクル試験後に、絶縁試験判定で合格するためには、温度サイクル試験で、セラミック板1とモールド樹脂7との界面の剥離やクラックを防止する必要がある。 Therefore, by sealing the insulating circuit board 4 with the mold resin 7, the withstand voltage is greatly improved as compared with the case where the insulating circuit board 4 is not sealed with the mold resin 7. However, if peeling or cracking occurs at the interface between the ceramic plate 1 and the mold resin 7, the insulating properties are deteriorated because it approaches a state where the mold resin 7 is not sealed. In order to pass the insulation test determination after the temperature cycle test, it is necessary to prevent peeling and cracking at the interface between the ceramic plate 1 and the mold resin 7 in the temperature cycle test.
 導体層3の厚さtと導体層3の側面部32の露出長さLとの差が、絶縁回路基板4のセラミック板1の下面側に接着している(下面側を封止している)モールド樹脂7の厚さとなる。 The difference between the thickness t of the conductor layer 3 and the exposed length L of the side surface portion 32 of the conductor layer 3 is adhered to the lower surface side of the ceramic plate 1 of the insulating circuit substrate 4 (the lower surface side is sealed). ) The thickness of the mold resin 7 is obtained.
 絶縁回路基板4のセラミック板1の下面側のモールド樹脂7の厚さが薄い場合は、モールド樹脂7成形時にセラミック板1と金型との間隔が狭く、十分なモールド樹脂7の注入(浸入)が出来ず、セラミック板1とモールド樹脂7との間に剥離やボイドが発生する。 When the thickness of the mold resin 7 on the lower surface side of the ceramic plate 1 of the insulating circuit board 4 is thin, the gap between the ceramic plate 1 and the mold is narrow at the time of molding the mold resin 7 and sufficient injection (intrusion) of the mold resin 7 is performed. Peeling and voids are generated between the ceramic plate 1 and the mold resin 7.
 また、温度サイクル試験では、この部分のモールド樹脂7の厚さが薄い場合は、モールド樹脂7の強度が不足して、セラミック板1とモールド樹脂7との間に剥離やクラックが発生する。 Further, in the temperature cycle test, when the thickness of the mold resin 7 in this portion is thin, the strength of the mold resin 7 is insufficient, and peeling or cracking occurs between the ceramic plate 1 and the mold resin 7.
 このように、モールド樹脂7の厚さが薄い場合は、モールド樹脂7の成形不良や温度サイクル試験でのセラミック板1とモールド樹脂7との間に剥離やクラックで絶縁不良が発生する。そのため、絶縁回路基板4のセラミック板1の下面側に接着しているモールド樹脂7の樹脂厚には下限値があり、厚さとして0.2mm以上必要であることがわかった。 As described above, when the thickness of the mold resin 7 is small, a molding failure of the mold resin 7 or an insulation failure occurs due to peeling or cracking between the ceramic plate 1 and the mold resin 7 in the temperature cycle test. Therefore, it has been found that the resin thickness of the mold resin 7 adhered to the lower surface side of the ceramic plate 1 of the insulating circuit board 4 has a lower limit value, and the thickness is required to be 0.2 mm or more.
 以上より、絶縁回路基板4と冷却器9との接合信頼性とパワーモジュール100の絶縁信頼性の両方を確保するためには、導体層3の側面部32の露出長さLに適正値があり、式(3)を満たす必要があることがわかった。また、導体層3の厚さが0.4mmの場合、両方の試験を合格する領域はなかった。 From the above, in order to ensure both the bonding reliability between the insulating circuit board 4 and the cooler 9 and the insulating reliability of the power module 100, the exposed length L of the side surface portion 32 of the conductor layer 3 has an appropriate value. It was found that the formula (3) needs to be satisfied. Moreover, when the thickness of the conductor layer 3 was 0.4 mm, there was no area | region which passed both tests.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 導体層3の厚さが厚くなると、絶縁回路基板4と冷却器9との接合信頼性とパワーモジュール100の絶縁信頼性の両方を確保可能な領域は増加する。しかしながら、絶縁回路基板4の製造上の制約や絶縁回路基板4自体の温度サイクル試験耐性の制約から導体層3の厚さの上限にも制約がある。 As the thickness of the conductor layer 3 increases, the area where both the bonding reliability between the insulating circuit board 4 and the cooler 9 and the insulation reliability of the power module 100 can be secured increases. However, the upper limit of the thickness of the conductor layer 3 is also restricted due to restrictions in manufacturing the insulated circuit board 4 and restrictions on the temperature cycle test resistance of the insulated circuit board 4 itself.
 導体層3をエッチングで製造する場合、導体層3の厚さに比例してエッチング時間が長くなり製造コストが高くなる。また、導体層3を厚くすると、セラミック板1と導体層3との界面で熱応力が大きくなり、絶縁回路基板4単体での温度サイクル試験でもセラミック板1の割れが発生する。このため、導体層3の厚さの上限値は1.0mmである。 When the conductor layer 3 is manufactured by etching, the etching time is increased in proportion to the thickness of the conductor layer 3 and the manufacturing cost is increased. When the conductor layer 3 is thickened, thermal stress increases at the interface between the ceramic plate 1 and the conductor layer 3, and cracking of the ceramic plate 1 occurs even in a temperature cycle test with the insulated circuit board 4 alone. For this reason, the upper limit of the thickness of the conductor layer 3 is 1.0 mm.
 図14は、この発明の実施の形態1における他のパワーモジュールを示す断面構造模式図である。図において、パワーモジュール200は、冷却器9の上に2つのモールド樹脂7で封止された絶縁回路基板4を備えている。このように、冷却器9の大きさを調整することで、複数個のモールド樹脂7で封止された絶縁回路基板4を配置することが可能となる。 FIG. 14 is a schematic cross-sectional view showing another power module according to Embodiment 1 of the present invention. In the figure, the power module 200 includes an insulated circuit board 4 sealed with two mold resins 7 on a cooler 9. In this way, by adjusting the size of the cooler 9, it is possible to arrange the insulated circuit board 4 sealed with a plurality of mold resins 7.
 以上のように構成されたパワーモジュールにおいては、モールド樹脂7で封止された絶縁回路基板4の下面側の導体層3の側面部32の一部をモールド樹脂7で封止し、モールド樹脂7から露出した導体層3の平面部31と側面部32の一部と冷却器9とを接合材8で接合したので、この金属接合部での剥離の発生が抑制できる。その結果、パワーモジュールの信頼性を向上させることが可能となる。 In the power module configured as described above, a part of the side surface portion 32 of the conductor layer 3 on the lower surface side of the insulating circuit substrate 4 sealed with the mold resin 7 is sealed with the mold resin 7. Since the planar portion 31 and part of the side surface portion 32 of the conductor layer 3 exposed from above and the cooler 9 are joined by the joining material 8, the occurrence of peeling at the metal joining portion can be suppressed. As a result, it becomes possible to improve the reliability of the power module.
 また、モールド樹脂7から露出した導体層3の側面部32の一部と冷却器9とを接合材8で接合した接合部の形状をテーパー(フィレット)形状としたので、金属接合部での熱応力の発生が抑制でき、パワーモジュールの信頼性を向上させることが可能となる。 In addition, since the shape of the joined portion obtained by joining a part of the side surface portion 32 of the conductor layer 3 exposed from the mold resin 7 and the cooler 9 with the joining material 8 is a taper (fillet) shape, the heat at the metal joined portion The generation of stress can be suppressed, and the reliability of the power module can be improved.
実施の形態2.
 本実施の形態2においては、実施の形態1で用いた絶縁回路基板4の下面側の導体層3と冷却器9との接合形成において、冷却器9の上面にソルダーレジスト10を形成した点が異なる。このように、冷却器9の上面にソルダーレジスト10を形成したので、導体層3と冷却器9との接合時の接合材8の流動領域を制限することができ、確実に導体層3の側面部32の露出領域を接合材8で覆うことができる。その結果、パワーモジュールの信頼性を向上させることが可能となる。なお、その他の点については、実施の形態1と同様であるので、詳しい説明は省略する。
Embodiment 2. FIG.
In the second embodiment, the solder resist 10 is formed on the upper surface of the cooler 9 when the conductor layer 3 on the lower surface side of the insulated circuit board 4 used in the first embodiment and the cooler 9 are joined. Different. Thus, since the solder resist 10 is formed on the upper surface of the cooler 9, the flow region of the bonding material 8 at the time of bonding between the conductor layer 3 and the cooler 9 can be restricted, and the side surface of the conductor layer 3 is surely The exposed region of the portion 32 can be covered with the bonding material 8. As a result, it becomes possible to improve the reliability of the power module. Since other points are the same as those in the first embodiment, detailed description thereof is omitted.
 図15は、この発明の実施の形態2におけるパワーモジュールを示す平面構造模式図である。図16は、この発明の実施の形態2におけるパワーモジュールを示す断面構造模式図である。図15中の一点鎖線BBにおける断面構造模式図が図16である。図において、パワーモジュール300は、絶縁回路基板4、半導体素子5、電極端子6、封止樹脂であるモールド樹脂7、接合材8、冷却器9、ソルダーレジスト10を備えている。ソルダーレジスト10を形成した以外は、実施の形態1と同様である。 FIG. 15 is a schematic plan view showing the power module according to Embodiment 2 of the present invention. FIG. 16 is a schematic cross-sectional structure diagram showing a power module according to Embodiment 2 of the present invention. FIG. 16 is a schematic diagram of a cross-sectional structure taken along one-dot chain line BB in FIG. In the figure, a power module 300 includes an insulating circuit board 4, a semiconductor element 5, an electrode terminal 6, a molding resin 7 as a sealing resin, a bonding material 8, a cooler 9, and a solder resist 10. Except that the solder resist 10 is formed, it is the same as the first embodiment.
 ソルダーレジスト10は、冷却器9の上面である絶縁回路基板4の下面側の導体層3が接合材8で接合される面に形成されている。ソルダーレジスト10は、冷却器9の上面で接合材8の外周部を囲む領域に設けられている。このとき、ソルダーレジスト10は、接合材8と所定の間隔を設けて形成されている。そのため、ソルダーレジスト10は、接合材8が所定の間隔をあけて配置できるように中央領域に開口部101を有している。ソルダーレジスト10の目的は、接合材8が冷却器9の上面で拡がる領域を制限するために配置する。すなわち、ソルダーレジスト10は、導体層3の側面部32に形成される接合材8を、精度良くテーパー形状とできる位置に配置される。 The solder resist 10 is formed on a surface where the conductor layer 3 on the lower surface side of the insulating circuit board 4 which is the upper surface of the cooler 9 is bonded by the bonding material 8. The solder resist 10 is provided in a region surrounding the outer periphery of the bonding material 8 on the upper surface of the cooler 9. At this time, the solder resist 10 is formed with a predetermined distance from the bonding material 8. Therefore, the solder resist 10 has an opening 101 in the central region so that the bonding material 8 can be arranged at a predetermined interval. The purpose of the solder resist 10 is arranged to limit the region where the bonding material 8 spreads on the upper surface of the cooler 9. That is, the solder resist 10 is disposed at a position where the bonding material 8 formed on the side surface portion 32 of the conductor layer 3 can be accurately tapered.
 ソルダーレジスト10は、冷却器9への接着性や耐熱性が確保可能であれば、一般的な市販品が適用可能である。 As the solder resist 10, a general commercial product can be applied as long as adhesion to the cooler 9 and heat resistance can be secured.
 次に、ソルダーレジスト10を用いた場合の製造工程について説明する。 Next, the manufacturing process when the solder resist 10 is used will be described.
 図17は、この発明の実施の形態2におけるパワーモジュールの製造工程を示す断面構造模式図である。図18は、この発明の実施の形態2におけるパワーモジュールの製造工程を示す断面構造模式図である。図19は、この発明の実施の形態2におけるパワーモジュールの製造工程を示す断面構造模式図である。実施の形態1のパワーモジュール100の製造工程において、図17は図9の製造工程の後に実施し、図18、図19は、図10、図11に示した製造工程と置き換えることで、ソルダーレジスト10を用いたパワーモジュール300を製造することができる。 FIG. 17 is a schematic cross-sectional structure diagram showing the manufacturing process of the power module in the second embodiment of the present invention. FIG. 18 is a schematic cross-sectional structure diagram showing the manufacturing process of the power module in the second embodiment of the present invention. FIG. 19 is a schematic cross-sectional structure diagram showing the manufacturing process of the power module according to Embodiment 2 of the present invention. In the manufacturing process of the power module 100 of the first embodiment, FIG. 17 is performed after the manufacturing process of FIG. 9, and FIGS. 18 and 19 are replaced with the manufacturing process shown in FIGS. The power module 300 using 10 can be manufactured.
 図3から図9の製造工程の後に、図17に示すように、ソルダーレジスト10は、冷却器9の上面の外周部に形成される。(ソルダーレジスト形成工程)。このとき、ソルダーレジスト10は、冷却器9の上面の中央領域に開口部101を有して形成される。 3 to FIG. 9, the solder resist 10 is formed on the outer peripheral portion of the upper surface of the cooler 9 as shown in FIG. 17. (Solder resist forming step). At this time, the solder resist 10 is formed with the opening 101 in the central region of the upper surface of the cooler 9.
 次に、図10の換わりに図18に示すように、接合材8は、ソルダーレジスト10で囲まれた開口部101内に配置される。そして、モールド樹脂7で樹脂封止された絶縁回路基板4は、接合材8を介して、ソルダーレジスト10で外周部を覆われた冷却器9の上面の中央領域の所定の位置へ治具を用いて固定される(冷却器配置工程)。 Next, as shown in FIG. 18 instead of FIG. 10, the bonding material 8 is disposed in the opening 101 surrounded by the solder resist 10. Then, the insulating circuit board 4 encapsulated with the mold resin 7 is bonded to a predetermined position in the central region of the upper surface of the cooler 9 whose outer periphery is covered with the solder resist 10 via the bonding material 8. It is fixed using (cooler arrangement process).
 モールド樹脂7で樹脂封止された絶縁回路基板4を接合材8を介して冷却器9へ固定後、図11の換わりに図19に示すように、リフロー炉を用いて接合材8をリフローすることで接合材8が溶融し、モールド樹脂7から露出した絶縁回路基板4の下面側の導体層3の平面部31と側面部32の一部(露出部)と冷却器9とが接合される(冷却器接合工程)。 After fixing the insulating circuit board 4 resin-sealed with the mold resin 7 to the cooler 9 via the bonding material 8, the bonding material 8 is reflowed using a reflow furnace as shown in FIG. 19 instead of FIG. As a result, the bonding material 8 is melted, and the flat portion 31 and the portion (exposed portion) of the side surface portion 32 of the conductor layer 3 on the lower surface side of the insulating circuit substrate 4 exposed from the mold resin 7 are bonded to the cooler 9. (Cooler joining process).
 このとき、接合材8は、冷却器9の上面の外周部にソルダーレジスト10を配置したことで、リフロー時の拡がる範囲(領域)が制限される。すなわち、ソルダーレジスト10の開口部101の内部で拡がることになる。ソルダーレジスト10によって、接合材8は、拡散が制限され導体層3の周辺角部へ集まることで、導体層3の側面部32の露出部を確実に覆うことができる。 At this time, the bonding material 8 has the solder resist 10 disposed on the outer peripheral portion of the upper surface of the cooler 9, so that the range (region) that is expanded during reflow is limited. That is, it expands inside the opening 101 of the solder resist 10. Due to the solder resist 10, the bonding material 8 is restricted in diffusion and gathers at the peripheral corners of the conductor layer 3, so that the exposed portion of the side surface portion 32 of the conductor layer 3 can be reliably covered.
 また、ソルダーレジスト10を形成したことで、導体層3の角部においても、接合材8が十分に供給される。そのため、この角部においても、接合材8のテーパー(フィレット)形状が形成し易くなる。 Further, since the solder resist 10 is formed, the bonding material 8 is sufficiently supplied also at the corners of the conductor layer 3. Therefore, it becomes easy to form the taper (fillet) shape of the bonding material 8 also in this corner portion.
 次に、上記の製造工程で作製されたパワーモジュール300について、説明する。 Next, the power module 300 produced in the above manufacturing process will be described.
 図20は、この発明の実施の形態2におけるパワーモジュールのソルダーレジスト形状を示す平面構造模式図である。図21は、この発明の実施の形態2におけるパワーモジュールの角部を示す断面構造模式図である。図において、導体層3を点線で示している。 FIG. 20 is a schematic plan view showing the solder resist shape of the power module according to Embodiment 2 of the present invention. FIG. 21 is a schematic cross-sectional structure diagram showing a corner portion of the power module according to Embodiment 2 of the present invention. In the figure, the conductor layer 3 is indicated by a dotted line.
 図20に示すように、ソルダーレジスト10は、内側の一辺が21mmの寸法で中央領域が開口している。そして、導体層3の辺部分とソルダーレジスト10の辺部との間隔は2.5mmである。 As shown in FIG. 20, the solder resist 10 has a dimension of 21 mm on the inner side and an opening in the central region. The distance between the side portion of the conductor layer 3 and the side portion of the solder resist 10 is 2.5 mm.
 絶縁回路基板4の下面側の導体層3と冷却器9との接合は、接合材8として実施の形態1と同様に大きさが16mm×16mm、厚さが0.3mmのフィルム状のはんだを使用して、冷却器9の所定位置に、絶縁回路基板4の下面側の導体層3とフィルム状のはんだとを治具で固定して、加熱することにより実施した。 For joining the conductor layer 3 on the lower surface side of the insulating circuit board 4 and the cooler 9, a film-like solder having a size of 16 mm × 16 mm and a thickness of 0.3 mm is used as the bonding material 8 as in the first embodiment. It was implemented by fixing the conductor layer 3 on the lower surface side of the insulating circuit board 4 and the film-like solder to a predetermined position of the cooler 9 with a jig and heating.
 絶縁回路基板4の下面側の導体層3と冷却器9との接合後、絶縁回路基板4の下面側の導体層3と冷却器9との間のはんだ厚は0.25mmとなるように調整しているため、はんだが絶縁回路基板4の下面側の導体層3の露出した平面部31からはみ出し、導体層3の側面部32の0.5mm露出した部分に沿ってはんだのテーパーが形成された。 After joining the conductor layer 3 on the lower surface side of the insulated circuit board 4 and the cooler 9, the solder thickness between the conductor layer 3 on the lower surface side of the insulated circuit board 4 and the cooler 9 is adjusted to be 0.25 mm. Therefore, the solder protrudes from the exposed flat portion 31 of the conductor layer 3 on the lower surface side of the insulated circuit board 4, and a taper of the solder is formed along the exposed portion of the side surface portion 32 of the conductor layer 3 by 0.5 mm. It was.
 図21には、絶縁回路基板4の下面側の導体層3と冷却器9との接合後の露出した導体層3の側面部32の角部(コーナー部)のテーパー形状を観察した結果を示す。図において、モールド樹脂7または接合材8に覆われている部分の導体層3を点線で示している。大きさが16mm×16mm、厚さが0.3mmのフィルム状のはんだが0.25mmの厚さまで押し潰される時には、はんだは円形状に広がって行く。 In FIG. 21, the result of having observed the taper shape of the corner | angular part (corner part) of the side part 32 of the exposed conductor layer 3 after joining the conductor layer 3 of the lower surface side of the insulated circuit board 4 and the cooler 9 is shown. . In the drawing, a portion of the conductor layer 3 covered with the mold resin 7 or the bonding material 8 is indicated by a dotted line. When a film-like solder having a size of 16 mm × 16 mm and a thickness of 0.3 mm is crushed to a thickness of 0.25 mm, the solder spreads in a circular shape.
 ソルダーレジスト10を形成しない場合は、はんだの拡がりを規制できないため、導体層3の角部へのはんだの供給量が少なく角部でのテーパー高さが低くなる傾向にある。しかしながら、ソルダーレジスト10を形成したことで、ソルダーレジスト10がはんだに対してダムの役割をしてほぼ正方形の形ではんだが拡がる。その結果、露出した導体層3の角部にもはんだが回り込むので、テーパー高さを確保することが可能となる。そして、パワーモジュール300の信頼性が向上する。 When the solder resist 10 is not formed, the spread of the solder cannot be regulated, so that the amount of solder supplied to the corner of the conductor layer 3 is small and the taper height at the corner tends to be low. However, since the solder resist 10 is formed, the solder resist 10 acts as a dam with respect to the solder, and the solder spreads in a substantially square shape. As a result, since the solder also wraps around the exposed corners of the conductor layer 3, it is possible to ensure a taper height. And the reliability of the power module 300 improves.
 図22は、この発明の実施の形態2におけるパワーモジュールの他のソルダーレジスト形状を示す平面構造模式図である。図23は、この発明の実施の形態2におけるパワーモジュールの他のソルダーレジスト形状を示す平面構造模式図である。図24は、この発明の実施の形態2におけるパワーモジュールの他の角部を示す断面構造模式図である。図において、導体層3を点線で示している。 FIG. 22 is a schematic plan view showing another solder resist shape of the power module according to Embodiment 2 of the present invention. FIG. 23 is a schematic plan view showing another solder resist shape of the power module according to Embodiment 2 of the present invention. FIG. 24 is a schematic cross-sectional structure diagram showing another corner portion of the power module according to Embodiment 2 of the present invention. In the figure, the conductor layer 3 is indicated by a dotted line.
 図22において、ソルダーレジスト10は、内側の一辺が18mmの寸法で中央領域が開口している。ソルダーレジスト10の接合材8と対向する角部において内側から外側へ向かう開口が拡がった突出部(内側から外側へ尖った)を備えている。導体層3の辺部分とソルダーレジスト10の辺部との間隔は1.0mmである。 Referring to FIG. 22, the solder resist 10 has an inner side dimension of 18 mm and an opening in the central region. In the corner portion of the solder resist 10 facing the bonding material 8, there is provided a projecting portion (pointed from the inside to the outside) in which the opening from the inside toward the outside widens. The distance between the side portion of the conductor layer 3 and the side portion of the solder resist 10 is 1.0 mm.
 ソルダーレジスト10の突出部の形状は、図22に示したような先端が尖った形状だけでなく、図23に示すように、先端が丸い形状(曲率を持たせた形状)であってもよい。はんだは、ソルダーレジスト10の開口部の形状で成形される。このため、ソルダーレジスト10の開口部の突出部の先端を丸い形状とすることで、温度サイクル試験時にはんだに作用する熱応力を緩和可能となりパワーモジュール300の信頼性が向上する。 The shape of the protruding portion of the solder resist 10 is not limited to a shape with a sharp tip as shown in FIG. 22, but may have a round shape (a shape with a curvature) as shown in FIG. . The solder is formed in the shape of the opening of the solder resist 10. For this reason, by making the tip of the protruding portion of the opening of the solder resist 10 round, it is possible to relieve the thermal stress acting on the solder during the temperature cycle test, and the reliability of the power module 300 is improved.
 絶縁回路基板4の下面側の導体層3と冷却器9との接合は、実施の形態1と同様に大きさが16mm×16mm、厚さが0.3mmのフィルム状のはんだを使用して、冷却器9の所定位置に、絶縁回路基板4の下面側の導体層3とフィルム状のはんだとを治具で固定して、加熱することにより実施した。 As in the first embodiment, the conductor layer 3 on the lower surface side of the insulating circuit board 4 and the cooler 9 are joined using film-like solder having a size of 16 mm × 16 mm and a thickness of 0.3 mm. The conductor layer 3 on the lower surface side of the insulating circuit board 4 and the film-like solder were fixed with a jig at a predetermined position of the cooler 9 and heated.
 絶縁回路基板4の下面側の導体層3と冷却器9との接合後、絶縁回路基板4の下面側の導体層3と冷却器9との間のはんだ厚は0.25mmとなるように調整しているため、はんだが絶縁回路基板4の下面側の導体層3の露出した平面部31から外側へはみ出し、導体層3の側面部32の0.5mm露出した部分に沿ってはんだのテーパー形成となった。 After joining the conductor layer 3 on the lower surface side of the insulated circuit board 4 and the cooler 9, the solder thickness between the conductor layer 3 on the lower surface side of the insulated circuit board 4 and the cooler 9 is adjusted to be 0.25 mm. Therefore, the solder protrudes outward from the exposed flat portion 31 of the conductor layer 3 on the lower surface side of the insulated circuit board 4, and forms a taper of the solder along the exposed portion of the side surface portion 32 of the conductor layer 3 by 0.5 mm. It became.
 図24には、絶縁回路基板4の下面側の導体層3と冷却器9との接合後の露出した導体層3の角部(コーナー部)のテーパー形状を観察した結果を示す。図において、モールド樹脂7または接合材8に覆われている部分の導体層3を点線で示している。大きさが16mm×16mm、厚さが0.3mmのフィルム状のはんだが、0.25mmの厚まで押し潰される時に、はんだは円形状に広がって行く。しかしながら、ソルダーレジスト10を形成したことで、ソルダーレジスト10がはんだに対してダムの役割をしてほぼ正方形の形ではんだが広がる。 FIG. 24 shows the result of observing the tapered shape of the corner (corner portion) of the exposed conductor layer 3 after joining the conductor layer 3 on the lower surface side of the insulated circuit board 4 and the cooler 9. In the drawing, a portion of the conductor layer 3 covered with the mold resin 7 or the bonding material 8 is indicated by a dotted line. When a film-like solder having a size of 16 mm × 16 mm and a thickness of 0.3 mm is crushed to a thickness of 0.25 mm, the solder spreads in a circular shape. However, since the solder resist 10 is formed, the solder resist 10 acts as a dam with respect to the solder, and the solder spreads in a substantially square shape.
 このため、はんだは、導体層3の露出した角部にも回り込む。さらに、図22、図23に示したようにソルダーレジスト10の内側の角部近傍においては、突出部を設けた形状をしていることで、さらにこの突出部へはんだが回り込み、均一な高さのテーパーが形成可能となる。つまり、導体層3の側面部32におけるはんだの高さが高く形成される(導体層3が形成されている絶縁基板1の下面側に近づく)。そのため、温度サイクル試験時に熱応力が最大となる導体層コーナー部のテーパー高さが確保されているので、テーパーの応力緩和効果ではんだの剥離が防止可能となりパワーモジュール300の信頼性が向上する。 Therefore, the solder also wraps around the exposed corner of the conductor layer 3. Further, as shown in FIG. 22 and FIG. 23, in the vicinity of the inner corner of the solder resist 10, since the protrusion is provided, the solder further wraps around the protrusion, and the uniform height. Can be formed. That is, the height of the solder in the side surface portion 32 of the conductor layer 3 is formed high (closer to the lower surface side of the insulating substrate 1 on which the conductor layer 3 is formed). Therefore, since the taper height of the conductor layer corner portion where the thermal stress is maximized during the temperature cycle test is secured, it is possible to prevent the peeling of the solder due to the stress relaxation effect of the taper, and the reliability of the power module 300 is improved.
 このことより、均一な高さのテーパーを形成するためには、導体層3の外形よりも1.0mm程度大きな形状でソルダーレジスト10の開口形状とすることが好ましい。 For this reason, in order to form a taper having a uniform height, it is preferable that the opening shape of the solder resist 10 be a shape approximately 1.0 mm larger than the outer shape of the conductor layer 3.
 図25は、この発明の実施の形態2における他のパワーモジュールを示す平面構造模式図である。図において、パワーモジュール400は、冷却器9の上に2つのモールド樹脂7で封止された絶縁回路基板4を備えている。それぞれの絶縁回路基板4の下面側の導体層3の外周部には、ソルダーレジスト10が形成されている。このように、冷却器9の大きさを調整することで、複数個のモールド樹脂7で封止された絶縁回路基板4を配置することが可能となる。 FIG. 25 is a schematic plan view showing another power module according to Embodiment 2 of the present invention. In the figure, a power module 400 includes an insulated circuit board 4 sealed with two mold resins 7 on a cooler 9. A solder resist 10 is formed on the outer periphery of the conductor layer 3 on the lower surface side of each insulating circuit board 4. In this way, by adjusting the size of the cooler 9, it is possible to arrange the insulated circuit board 4 sealed with a plurality of mold resins 7.
 以上のように構成されたパワーモジュールにおいては、モールド樹脂7で封止された絶縁回路基板4の下面側の導体層3の側面部32の一部もモールド樹脂7で封止し、モールド樹脂7から露出した導体層3の平面部31と側面部32と冷却器9とを接合材8で接合したので、この金属接合部での剥離の発生が抑制できる。その結果、パワーモジュールの信頼性を向上させることが可能となる。 In the power module configured as described above, a part of the side surface portion 32 of the conductor layer 3 on the lower surface side of the insulating circuit board 4 sealed with the mold resin 7 is also sealed with the mold resin 7. Since the planar portion 31, the side surface portion 32, and the cooler 9 of the conductor layer 3 exposed from the above are joined by the joining material 8, it is possible to suppress the occurrence of peeling at the metal joining portion. As a result, it becomes possible to improve the reliability of the power module.
 また、モールド樹脂7から露出した導体層3の平面部31と側面部32と冷却器9とを接合材8で接合した接合部の形状をテーパー形状としたので、金属接合部での熱応力の発生が抑制でき、パワーモジュールの信頼性を向上させることが可能となる。 Further, since the shape of the joint portion obtained by joining the flat portion 31, the side surface portion 32, and the cooler 9 of the conductor layer 3 exposed from the mold resin 7 with the joining material 8 is a tapered shape, the thermal stress at the metal joint portion is reduced. Generation | occurrence | production can be suppressed and it becomes possible to improve the reliability of a power module.
 さらに、ソルダーレジスト10を用いることで、導体層3の角部においてもテーパー形状を形成することができ、金属接合部での熱応力の発生が抑制でき、パワーモジュールの信頼性を向上させることが可能となる。 Furthermore, by using the solder resist 10, it is possible to form a tapered shape also at the corners of the conductor layer 3, to suppress the generation of thermal stress at the metal joint, and to improve the reliability of the power module. It becomes possible.
 また、冷却器9の上面に形成するソルダーレジスト10の形状を、ソルダーレジスト10の角部を内部側から外部側へ突出した突出部を備えた形状としたので、導体層3の角部においても高さが均一なテーパー形状を形成することができ、金属接合部での熱応力の発生が抑制でき、パワーモジュールの信頼性を向上させることが可能となる。 Moreover, since the shape of the solder resist 10 formed on the upper surface of the cooler 9 is a shape provided with a protruding portion in which the corner portion of the solder resist 10 protrudes from the inner side to the outer side, A taper shape with a uniform height can be formed, generation of thermal stress at the metal joint can be suppressed, and the reliability of the power module can be improved.
実施の形態3.
 本実施の形態3においては、実施の形態1,2で用いた電極端子6において、パワーモジュールの上面側からモールド樹脂7外部へ突出させた点が異なる。このように、電極端子6をモールド樹脂7の上面側から突出させたので、絶縁回路基板4の下面側の導体層3と冷却器9との信頼性を確保したまま、パワーモジュールの小型化が可能となる。なお、その他の点については、実施の形態1または実施の形態2と同様であるので、詳しい説明は省略する。
Embodiment 3 FIG.
The third embodiment is different in that the electrode terminal 6 used in the first and second embodiments is protruded from the upper surface side of the power module to the outside of the mold resin 7. Thus, since the electrode terminal 6 is protruded from the upper surface side of the mold resin 7, the power module can be downsized while the reliability of the conductor layer 3 on the lower surface side of the insulating circuit board 4 and the cooler 9 is ensured. It becomes possible. Since other points are the same as those in the first embodiment or the second embodiment, detailed description thereof is omitted.
 図26は、この発明の実施の形態3におけるパワーモジュールを示す平面構造模式図である。図27は、この発明の実施の形態3におけるパワーモジュールを示す断面構造模式図である。図26中の一点鎖線CCにおける断面構造模式図が図27である。図において、パワーモジュール500は、絶縁回路基板4、半導体素子5、電極端子6、モールド樹脂7、接合材8、冷却器9、ソルダーレジスト10を備えている。 FIG. 26 is a schematic plan view showing a power module according to Embodiment 3 of the present invention. FIG. 27 is a schematic cross-sectional structure diagram showing a power module according to Embodiment 3 of the present invention. FIG. 27 is a schematic cross-sectional view taken along the alternate long and short dash line CC in FIG. In the figure, a power module 500 includes an insulating circuit board 4, a semiconductor element 5, an electrode terminal 6, a mold resin 7, a bonding material 8, a cooler 9, and a solder resist 10.
 電極端子6がモールド樹脂7の上面側から外部へ突出した上出し構造になっている以外は、実施の形態2と同じ構造である。 The structure is the same as that of the second embodiment except that the electrode terminal 6 has a protruding structure protruding from the upper surface side of the mold resin 7 to the outside.
 図27に示すように、電極端子6が上出し構造でのモールド樹脂封止は、例えば、上金型に電極端子6の収納用のキャビティーを形成しておき、そこに電極端子6を挿入して行う。モールド樹脂7の硬化後、電極端子6を所定の形状に加工する。他の工程は、実施の形態2と同様にして、パワーモジュール500を作製できる。また、実施の形態1のように、ソルダーレジスト10を用いないパワーモジュールの構造についても実現可能である。このような構造としたので、絶縁回路基板4の下面側の導体層3と冷却器9と接合部の信頼性を確保したまま、パワーモジュールの小型化が可能となる。 As shown in FIG. 27, the mold resin sealing with the electrode terminal 6 protruding upward is performed by, for example, forming a cavity for storing the electrode terminal 6 in the upper mold, and inserting the electrode terminal 6 therein. And do it. After the mold resin 7 is cured, the electrode terminal 6 is processed into a predetermined shape. In other steps, the power module 500 can be manufactured in the same manner as in the second embodiment. Further, as in the first embodiment, a power module structure that does not use the solder resist 10 can be realized. With such a structure, the power module can be reduced in size while ensuring the reliability of the conductor layer 3 on the lower surface side of the insulated circuit board 4, the cooler 9, and the joint.
 以上のように構成されたパワーモジュールにおいては、モールド樹脂7で封止された絶縁回路基板4の下面側の導体層3の側面部32の一部もモールド樹脂7で封止し、モールド樹脂7から露出した導体層3の平面部31と側面部32と冷却器9とを接合材8で接合したので、この金属接合部での剥離の発生が抑制できる。その結果、パワーモジュールの信頼性を向上させることが可能となる。 In the power module configured as described above, a part of the side surface portion 32 of the conductor layer 3 on the lower surface side of the insulating circuit board 4 sealed with the mold resin 7 is also sealed with the mold resin 7. Since the planar portion 31, the side surface portion 32, and the cooler 9 of the conductor layer 3 exposed from the above are joined by the joining material 8, it is possible to suppress the occurrence of peeling at the metal joining portion. As a result, it becomes possible to improve the reliability of the power module.
 また、モールド樹脂7から露出した導体層3の平面部31と側面部32と冷却器9とを接合材8で接合した接合部の形状をテーパー形状としたので、金属接合部での熱応力の発生が抑制でき、パワーモジュールの信頼性を向上させることが可能となる。 Further, since the shape of the joint portion obtained by joining the flat portion 31, the side surface portion 32, and the cooler 9 of the conductor layer 3 exposed from the mold resin 7 with the joining material 8 is a tapered shape, the thermal stress at the metal joint portion is reduced. Generation | occurrence | production can be suppressed and it becomes possible to improve the reliability of a power module.
 さらに、ソルダーレジスト10を用いることで、導体層3の角部においてもテーパー形状を形成することができ、金属接合部での熱応力の発生が抑制でき、パワーモジュールの信頼性を向上させることが可能となる。 Furthermore, by using the solder resist 10, it is possible to form a tapered shape also at the corners of the conductor layer 3, to suppress the generation of thermal stress at the metal joint, and to improve the reliability of the power module. It becomes possible.
 また、冷却器9の上面に形成するソルダーレジスト10の形状を、ソルダーレジスト10の角部を外周側へ突出した形状としたので、導体層3の角部においても高さが均一なテーパー形状を形成することができ、金属接合部での熱応力の発生が抑制でき、パワーモジュールの信頼性を向上させることが可能となる。 Moreover, since the shape of the solder resist 10 formed on the upper surface of the cooler 9 is a shape in which the corner portion of the solder resist 10 protrudes to the outer peripheral side, a tapered shape having a uniform height at the corner portion of the conductor layer 3 is also formed. It can be formed, the generation of thermal stress at the metal joint can be suppressed, and the reliability of the power module can be improved.
 さらに、電極端子6をモールド樹脂7の上面側からモールド樹脂7外部へ突出させたので、絶縁回路基板4の下面側の導体層3と冷却器9と接合部の信頼性を確保したまま、パワーモジュールの小型化が可能となる。 Furthermore, since the electrode terminal 6 is protruded from the upper surface side of the mold resin 7 to the outside of the mold resin 7, the power of the conductor layer 3 on the lower surface side of the insulated circuit board 4, the cooler 9, and the joint is ensured. The module can be miniaturized.
実施の形態4.
 本実施の形態4は、上述した実施の形態1から3にかかるパワーモジュールを電力変換装置に適用したものである。本発明は特定の電力変換装置に限定されるものではないが、以下、実施の形態4として、三相のインバータに本発明を適用した場合について説明する。
Embodiment 4 FIG.
In the fourth embodiment, the power module according to the first to third embodiments described above is applied to a power converter. Although the present invention is not limited to a specific power converter, hereinafter, a case where the present invention is applied to a three-phase inverter will be described as a fourth embodiment.
 図28は、この発明の実施の形態4における電力変換装置を適用した電力変換システムの構成を示すブロック図である。 FIG. 28 is a block diagram showing a configuration of a power conversion system to which the power conversion device according to Embodiment 4 of the present invention is applied.
 図28に示す電力変換システムは、電源1000、電力変換装置2000、負荷3000を備える。電源1000は、直流電源であり、電力変換装置2000に直流電力を供給する。電源1000は種々のもので構成することが可能であり、例えば、直流系統、太陽電池、蓄電池で構成することができるし、交流系統に接続された整流回路やAC/DCコンバータで構成することとしてもよい。また、電源1000を、直流系統から出力される直流電力を所定の電力に変換するDC/DCコンバータによって構成することとしてもよい。 28 includes a power supply 1000, a power conversion device 2000, and a load 3000. The power supply 1000 is a DC power supply and supplies DC power to the power converter 2000. The power supply 1000 can be composed of various types. For example, the power source 1000 can be composed of a direct current system, a solar battery, or a storage battery, and can be composed of a rectifier circuit or an AC / DC converter connected to the alternating current system. Also good. The power supply 1000 may be configured by a DC / DC converter that converts DC power output from the DC system into predetermined power.
 電力変換装置2000は、電源1000と負荷3000の間に接続された三相のインバータであり、電源1000から供給された直流電力を交流電力に変換し、負荷3000に交流電力を供給する。電力変換装置2000は、図13に示すように、電源1000から入力される直流電力を交流電力に変換して出力する主変換回路2001と、主変換回路2001を制御する制御信号を主変換回路2001に出力する制御回路2003とを備えている。 The power conversion device 2000 is a three-phase inverter connected between the power supply 1000 and the load 3000, converts DC power supplied from the power supply 1000 into AC power, and supplies AC power to the load 3000. As shown in FIG. 13, the power conversion device 2000 converts a DC power input from the power supply 1000 into an AC power and outputs a main conversion circuit 2001, and a control signal for controlling the main conversion circuit 2001. And a control circuit 2003 for outputting to the computer.
 負荷3000は、電力変換装置2000から供給された交流電力によって駆動される三相の電動機である。なお、負荷3000は特定の用途に限られるものではなく、各種電気機器に搭載された電動機であり、例えば、ハイブリッド自動車や電気自動車、鉄道車両、エレベーター、もしくは、空調機器向けの電動機として用いられる。 The load 3000 is a three-phase motor driven by AC power supplied from the power converter 2000. Note that the load 3000 is not limited to a specific application, and is an electric motor mounted on various electric devices. For example, the load 3000 is used as an electric motor for a hybrid vehicle, an electric vehicle, a railway vehicle, an elevator, or an air conditioner.
 以下、電力変換装置2000の詳細を説明する。主変換回路2001は、パワーモジュール2002に内蔵されたスイッチング素子と還流ダイオードを備えており(図示せず)、スイッチング素子がスイッチングすることによって、電源1000から供給される直流電力を交流電力に変換し、負荷3000に供給する。主変換回路2001の具体的な回路構成は種々のものがあるが、本実施の形態にかかる主変換回路2001は2レベルの三相フルブリッジ回路であり、6つのスイッチング素子とそれぞれのスイッチング素子に逆並列された6つの還流ダイオードから構成することができる。主変換回路2001は、各スイッチング素子や各還流ダイオードを内蔵する上述した実施の形態1から3のいずれかに相当するパワーモジュール2002によって構成する。6つのスイッチング素子は2つのスイッチング素子ごとに直列接続され上下アームを構成し、各上下アームはフルブリッジ回路の各相(U相、V相、W相)を構成する。そして、各上下アームの出力端子、すなわち主変換回路2001の3つの出力端子は、負荷3000に接続される。 Hereinafter, details of the power conversion device 2000 will be described. The main conversion circuit 2001 includes a switching element and a free wheel diode (not shown) built in the power module 2002, and converts the DC power supplied from the power supply 1000 into AC power by switching the switching element. The load 3000 is supplied. Although there are various specific circuit configurations of the main conversion circuit 2001, the main conversion circuit 2001 according to the present embodiment is a two-level three-phase full bridge circuit, and includes six switching elements and respective switching elements. It can be composed of six anti-parallel diodes. The main conversion circuit 2001 is configured by a power module 2002 corresponding to any one of the above-described first to third embodiments, in which each switching element and each free-wheeling diode are incorporated. The six switching elements are connected in series for each of the two switching elements to constitute upper and lower arms, and each upper and lower arm constitutes each phase (U phase, V phase, W phase) of the full bridge circuit. The output terminals of the upper and lower arms, that is, the three output terminals of the main conversion circuit 2001 are connected to the load 3000.
 また、主変換回路2001は、各スイッチング素子を駆動する駆動回路(図示なし)を備えているが、駆動回路はパワーモジュール2002に内蔵されていてもよいし、パワーモジュール2002とは別に駆動回路を備える構成であってもよい。駆動回路は、主変換回路2001のスイッチング素子を駆動する駆動信号を生成し、主変換回路2001のスイッチング素子の制御電極に供給する。具体的には、後述する制御回路2003からの制御信号に従い、スイッチング素子をオン状態にする駆動信号とスイッチング素子をオフ状態にする駆動信号とを各スイッチング素子の制御電極に出力する。スイッチング素子をオン状態に維持する場合、駆動信号はスイッチング素子の閾値電圧以上の電圧信号(オン信号)であり、スイッチング素子をオフ状態に維持する場合、駆動信号はスイッチング素子の閾値電圧以下の電圧信号(オフ信号)となる。 The main conversion circuit 2001 includes a drive circuit (not shown) for driving each switching element. However, the drive circuit may be built in the power module 2002 or a drive circuit may be provided separately from the power module 2002. The structure provided may be sufficient. The drive circuit generates a drive signal for driving the switching element of the main conversion circuit 2001 and supplies it to the control electrode of the switching element of the main conversion circuit 2001. Specifically, in accordance with a control signal from a control circuit 2003 described later, a drive signal for turning on the switching element and a drive signal for turning off the switching element are output to the control electrode of each switching element. When the switching element is maintained in the ON state, the drive signal is a voltage signal (ON signal) that is equal to or higher than the threshold voltage of the switching element, and when the switching element is maintained in the OFF state, the drive signal is a voltage that is equal to or lower than the threshold voltage of the switching element. Signal (off signal).
 制御回路2003は、負荷3000に所望の電力が供給されるよう主変換回路2001のスイッチング素子を制御する。具体的には、負荷3000に供給すべき電力に基づいて主変換回路2001の各スイッチング素子がオン状態となるべき時間(オン時間)を算出する。例えば、出力すべき電圧に応じてスイッチング素子のオン時間を変調するPWM制御によって主変換回路2001を制御することができる。そして、各時点においてオン状態となるべきスイッチング素子にはオン信号を、オフ状態となるべきスイッチング素子にはオフ信号が出力されるよう、主変換回路2001が備える駆動回路に制御指令(制御信号)を出力する。駆動回路は、この制御信号に従い、各スイッチング素子の制御電極にオン信号又はオフ信号を駆動信号として出力する。 The control circuit 2003 controls the switching element of the main conversion circuit 2001 so that desired power is supplied to the load 3000. Specifically, based on the power to be supplied to the load 3000, the time (ON time) during which each switching element of the main converter circuit 2001 is to be turned on is calculated. For example, the main conversion circuit 2001 can be controlled by PWM control that modulates the ON time of the switching element according to the voltage to be output. Then, a control command (control signal) is supplied to the drive circuit included in the main conversion circuit 2001 so that an ON signal is output to the switching element that should be turned on at each time point and an OFF signal is output to the switching element that should be turned off. Is output. In accordance with this control signal, the drive circuit outputs an ON signal or an OFF signal as a drive signal to the control electrode of each switching element.
 以上のように構成された本実施の形態4に係る電力変換装置においては、主変換回路2001のパワーモジュール2002として実施の形態1から3にかかるパワーモジュールを適用するため、信頼性向上を実現することができる。 In the power conversion device according to the fourth embodiment configured as described above, the power module according to the first to third embodiments is applied as the power module 2002 of the main conversion circuit 2001, thereby improving reliability. be able to.
 本実施の形態では、2レベルの三相インバータに本発明を適用する例を説明したが、本発明は、これに限られるものではなく、種々の電力変換装置に適用することができる。本実施の形態では、2レベルの電力変換装置としたが3レベルやマルチレベルの電力変換装置であっても構わないし、単相負荷に電力を供給する場合には単相のインバータに本発明を適用しても構わない。また、直流負荷等に電力を供給する場合にはDC/DCコンバータやAC/DCコンバータに本発明を適用することも可能である。 In this embodiment, an example in which the present invention is applied to a two-level three-phase inverter has been described. However, the present invention is not limited to this, and can be applied to various power conversion devices. In the present embodiment, a two-level power converter is used. However, a three-level or multi-level power converter may be used. When power is supplied to a single-phase load, the present invention is applied to a single-phase inverter. You may apply. In addition, when power is supplied to a direct current load or the like, the present invention can be applied to a DC / DC converter or an AC / DC converter.
 また、本発明を適用した電力変換装置は、上述した負荷が電動機の場合に限定されるものではなく、例えば、放電加工機やレーザー加工機、又は誘導加熱調理器や非接触器給電システムの電源装置として用いることもでき、さらには太陽光発電システムや蓄電システム等のパワーコンディショナーとして用いることも可能である。 In addition, the power conversion device to which the present invention is applied is not limited to the case where the load described above is an electric motor. For example, the power source of an electric discharge machine, a laser processing machine, an induction heating cooker, or a non-contact power supply system It can also be used as a device, and can also be used as a power conditioner for a photovoltaic power generation system, a power storage system, or the like.
 上述した実施の形態は、すべての点で例示であって制限的なものではないと解されるべきである。本発明の範囲は、上述した実施形態の範囲ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更を含むものである。 It should be understood that the above-described embodiment is illustrative in all points and not restrictive. The scope of the present invention is shown not by the scope of the above-described embodiment but by the scope of the claims, and includes all modifications within the meaning and scope equivalent to the scope of the claims.
 また、上記の実施形態に開示されている複数の構成要素を適宜組み合わせることにより発明を形成してもよい。 Further, the invention may be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiment.
 1 セラミック板、2,3 導体層、4 絶縁回路基板、5 半導体素子、6 電極端子、7 モールド樹脂、8 接合材、9 冷却器、10 ソルダーレジスト、11 上金型、12 下金型、13 下金型キャビティー、31 導体層3の平面部、32 導体層3の側面部、91 冷却ピン、100,200,300,400,500,2002 パワーモジュール、101 開口部、1000 電源、2000 電力変換装置、2001 主変換回路、2003 制御回路、3000 負荷。 1 ceramic plate, 2, 3 conductor layer, 4 insulated circuit board, 5 semiconductor element, 6 electrode terminal, 7 mold resin, 8 bonding material, 9 cooler, 10 solder resist, 11 upper mold, 12 lower mold, 13 Lower mold cavity, 31 plane portion of conductor layer 3, 32 side surface portion of conductor layer 3, 91 cooling pin, 100, 200, 300, 400, 500, 2002 power module, 101 opening, 1000 power source, 2000 power conversion Equipment, 2001 main conversion circuit, 2003 control circuit, 3000 load.

Claims (12)

  1. 上面と下面とに導体層を有し、前記上面の前記導体層上に半導体素子が搭載された絶縁基板と、
    前記下面の前記導体層は下側に平面部、側面に側面部をそれぞれ有し、前記平面部と前記側面部の一部とを露出して前記絶縁基板を封止する封止樹脂と、
    前記封止樹脂から露出した前記平面部と前記側面部の一部とに接合する接合材と、
    前記接合材を介して前記絶縁基板と接合された冷却器と、
    を備えたことを特徴とするパワーモジュール。
    An insulating substrate having a conductor layer on an upper surface and a lower surface, and a semiconductor element mounted on the conductor layer on the upper surface;
    The conductive layer on the lower surface has a flat surface portion on the lower side and a side surface portion on the side surface, a sealing resin that seals the insulating substrate by exposing the flat surface portion and a part of the side surface portion;
    A bonding material bonded to the flat portion exposed from the sealing resin and a part of the side surface;
    A cooler bonded to the insulating substrate via the bonding material;
    A power module comprising:
  2. 前記接合材は、前記側面部における形状がテーパー形状であることを特徴とする請求項1に記載のパワーモジュール。 The power module according to claim 1, wherein the bonding material has a tapered shape in the side surface portion.
  3. 前記側面部における形状は、断面視において、前記絶縁基板側の幅よりも前記冷却器側の幅が広いことを特徴とする請求項2に記載のパワーモジュール。 The power module according to claim 2, wherein the shape of the side surface portion is wider on the cooler side than on the insulating substrate side in a sectional view.
  4. 前記上面の前記導体層および前記半導体素子と接続する電極端子を備えたことを特徴とする請求項1から請求項3のいずれか1項に記載のパワーモジュール。 The power module according to any one of claims 1 to 3, further comprising an electrode terminal connected to the conductor layer on the upper surface and the semiconductor element.
  5. 前記電極端子は、前記封止樹脂の側面側から外部へ突出したことを特徴とする請求項4に記載のパワーモジュール。 The power module according to claim 4, wherein the electrode terminal protrudes outward from a side surface side of the sealing resin.
  6. 前記電極端子は、前記封止樹脂の上面側から外部へ突出したことを特徴とする請求項4に記載のパワーモジュール。 The power module according to claim 4, wherein the electrode terminal protrudes from the upper surface side of the sealing resin to the outside.
  7. 前記冷却器の上面で前記接合材の外周部を囲む領域に設けられたソルダーレジストと、
    を備えたことを特徴とする請求項1から請求項6のいずれか1項に記載のパワーモジュール。
    A solder resist provided in a region surrounding the outer periphery of the bonding material on the upper surface of the cooler;
    The power module according to any one of claims 1 to 6, further comprising:
  8. 前記ソルダーレジストは、前記接合材の角部と対向する角部において内側から外側へ向かう突出部を備えたことを特徴とする請求項7に記載のパワーモジュール。 The power module according to claim 7, wherein the solder resist includes a protruding portion that extends from the inner side to the outer side at a corner portion facing the corner portion of the bonding material.
  9. 前記導体層の露出した前記側面部の長さをL(mm)とし、前記導体層の厚さをt(mm)としたとき、前記長さLが、t-0.2≧L≧1/3×tの範囲であることを特徴とする請求項1から請求項8のいずれか1項に記載のパワーモジュール。 When the length of the exposed side surface portion of the conductor layer is L (mm) and the thickness of the conductor layer is t (mm), the length L is t−0.2 ≧ L ≧ 1 / The power module according to claim 1, wherein the power module is in a range of 3 × t.
  10. 上面と下面とに導体層を有する絶縁基板の前記下面の前記導体層の側面の側面部の一部を露出して前記下面の前記導体層を下金型のはめ込み部にはめ込む絶縁回路基板設置工程と、
    前記絶縁基板と露出した前記側面部の一部とを封止樹脂で封止する樹脂封止工程と、
    前記封止樹脂から露出した前記下面の前記導体層の下側の平面部と前記側面部の一部とを接合材を介して冷却器と接合する冷却器接合工程と、
    を備えたことを特徴とするパワーモジュールの製造方法。
    Insulating circuit board installation step of exposing a part of the side surface of the side surface of the conductor layer on the lower surface of the insulating substrate having a conductor layer on the upper surface and the lower surface and fitting the conductor layer on the lower surface into the fitting portion of the lower mold When,
    A resin sealing step of sealing the insulating substrate and a part of the exposed side surface portion with a sealing resin;
    A cooler joining step of joining a lower flat portion of the lower surface of the conductive layer exposed from the sealing resin and a part of the side face portion to a cooler via a joining material;
    A method for manufacturing a power module, comprising:
  11. 前記冷却器の上面に開口部を有するソルダーレジストを形成するソルダーレジスト形成工程と、
    を備えたことを特徴とする請求項10に記載のパワーモジュールの製造方法。
    A solder resist forming step of forming a solder resist having an opening on the upper surface of the cooler;
    The method for manufacturing a power module according to claim 10, comprising:
  12. 請求項1から請求項9のいずれか1項に記載のパワーモジュールを有し、入力される電力を変換して出力する主変換回路と、
    前記主変換回路を制御する制御信号を前記主変換回路に出力する制御回路と、
    を備えた電力変換装置。
    A main conversion circuit that has the power module according to any one of claims 1 to 9 and converts and outputs input power;
    A control circuit for outputting a control signal for controlling the main conversion circuit to the main conversion circuit;
    The power converter provided with.
PCT/JP2017/029727 2016-09-29 2017-08-21 Power module, method for producing same and electric power converter WO2018061517A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-191502 2016-09-29
JP2016191502A JP2019207897A (en) 2016-09-29 2016-09-29 Power module, manufacturing method of the same, and electric power conversion system

Publications (1)

Publication Number Publication Date
WO2018061517A1 true WO2018061517A1 (en) 2018-04-05

Family

ID=61760509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029727 WO2018061517A1 (en) 2016-09-29 2017-08-21 Power module, method for producing same and electric power converter

Country Status (2)

Country Link
JP (1) JP2019207897A (en)
WO (1) WO2018061517A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6644196B1 (en) * 2019-02-01 2020-02-12 三菱電機株式会社 Semiconductor device, method of manufacturing the same, and power converter
JP6698965B1 (en) * 2019-06-06 2020-05-27 三菱電機株式会社 Semiconductor device, power converter, and method of manufacturing semiconductor device
JP2020098821A (en) * 2018-12-17 2020-06-25 富士電機株式会社 Semiconductor device and method of manufacturing semiconductor device
JPWO2021220357A1 (en) * 2020-04-27 2021-11-04
WO2022137701A1 (en) * 2020-12-22 2022-06-30 日立Astemo株式会社 Electric circuit element and power converting apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023073752A1 (en) * 2021-10-25 2023-05-04 三菱電機株式会社 Semiconductor device, power conversion device, and method for manufacturing semiconductor device
WO2024116873A1 (en) * 2022-11-29 2024-06-06 ローム株式会社 Semiconductor module

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227336A (en) * 2007-03-15 2008-09-25 Hitachi Metals Ltd Semiconductor module, circuit board used therefor
JP2012129336A (en) * 2010-12-15 2012-07-05 Fuji Electric Co Ltd Semiconductor device and manufacturing method of the same
JP2013225556A (en) * 2012-04-20 2013-10-31 Mitsubishi Electric Corp Semiconductor device and manufacturing method therefor
JP2014146645A (en) * 2013-01-28 2014-08-14 Mitsubishi Electric Corp Semiconductor device
WO2016031462A1 (en) * 2014-08-28 2016-03-03 富士電機株式会社 Power semiconductor module
JP2016092233A (en) * 2014-11-05 2016-05-23 富士電機株式会社 Semiconductor device
WO2016158020A1 (en) * 2015-04-01 2016-10-06 富士電機株式会社 Semiconductor module

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227336A (en) * 2007-03-15 2008-09-25 Hitachi Metals Ltd Semiconductor module, circuit board used therefor
JP2012129336A (en) * 2010-12-15 2012-07-05 Fuji Electric Co Ltd Semiconductor device and manufacturing method of the same
JP2013225556A (en) * 2012-04-20 2013-10-31 Mitsubishi Electric Corp Semiconductor device and manufacturing method therefor
JP2014146645A (en) * 2013-01-28 2014-08-14 Mitsubishi Electric Corp Semiconductor device
WO2016031462A1 (en) * 2014-08-28 2016-03-03 富士電機株式会社 Power semiconductor module
JP2016092233A (en) * 2014-11-05 2016-05-23 富士電機株式会社 Semiconductor device
WO2016158020A1 (en) * 2015-04-01 2016-10-06 富士電機株式会社 Semiconductor module

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020098821A (en) * 2018-12-17 2020-06-25 富士電機株式会社 Semiconductor device and method of manufacturing semiconductor device
JP7188049B2 (en) 2018-12-17 2022-12-13 富士電機株式会社 semiconductor equipment
JP6644196B1 (en) * 2019-02-01 2020-02-12 三菱電機株式会社 Semiconductor device, method of manufacturing the same, and power converter
WO2020157965A1 (en) * 2019-02-01 2020-08-06 三菱電機株式会社 Semiconductor device and method for manufacturing same, and power conversion device
JP6698965B1 (en) * 2019-06-06 2020-05-27 三菱電機株式会社 Semiconductor device, power converter, and method of manufacturing semiconductor device
WO2020245998A1 (en) * 2019-06-06 2020-12-10 三菱電機株式会社 Semiconductor device, power conversion device, and manufacturing method of semiconductor device
JPWO2021220357A1 (en) * 2020-04-27 2021-11-04
WO2022137701A1 (en) * 2020-12-22 2022-06-30 日立Astemo株式会社 Electric circuit element and power converting apparatus

Also Published As

Publication number Publication date
JP2019207897A (en) 2019-12-05

Similar Documents

Publication Publication Date Title
WO2018061517A1 (en) Power module, method for producing same and electric power converter
US10559538B2 (en) Power module
US11227808B2 (en) Power module and method for fabricating the same, and power conversion device
CN109727960B (en) Semiconductor module, method for manufacturing the same, and power conversion device
JP2006134990A (en) Semiconductor apparatus
CN109698179B (en) Semiconductor device and method for manufacturing semiconductor device
US20150035132A1 (en) Method for manufacturing semiconductor device and semiconductor device
JP7091878B2 (en) Power modules, power converters, and methods for manufacturing power modules
JP2021141275A (en) Electrical circuit body, power conversion device, and electrical circuit body manufacturing method
JP6826665B2 (en) Semiconductor devices, manufacturing methods for semiconductor devices, and power conversion devices
JP6644196B1 (en) Semiconductor device, method of manufacturing the same, and power converter
JP4096741B2 (en) Semiconductor device
CN111033736A (en) Power module, method for manufacturing same, and power conversion device
JP6952889B2 (en) Power semiconductor modules, their manufacturing methods, and power converters
US20220108969A1 (en) Power semiconductor module and power conversion apparatus
US11652032B2 (en) Semiconductor device having inner lead exposed from sealing resin, semiconductor device manufacturing method thereof, and power converter including the semiconductor device
US11887903B2 (en) Power semiconductor device, method for manufacturing power semiconductor device, and power conversion apparatus
US20240030087A1 (en) Semiconductor device, method of manufacturing semiconductor device, and power conversion device
JP7487614B2 (en) Semiconductor device, manufacturing method thereof, and power conversion device
WO2023073752A1 (en) Semiconductor device, power conversion device, and method for manufacturing semiconductor device
JP2008027935A (en) Power semiconductor device
JP2023173556A (en) Method for manufacturing semiconductor module, method for manufacturing power conversion system, semiconductor module, power conversion system
CN117438386A (en) Semiconductor device, method for manufacturing semiconductor device, and power conversion device
JP2022098587A (en) Electric circuit body and power conversion device
JP2024006808A (en) Electric circuit body and power conversion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855475

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17855475

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP