JP2012103107A - 配光計測装置、配光計測方法および配光計測プログラム - Google Patents

配光計測装置、配光計測方法および配光計測プログラム Download PDF

Info

Publication number
JP2012103107A
JP2012103107A JP2010251933A JP2010251933A JP2012103107A JP 2012103107 A JP2012103107 A JP 2012103107A JP 2010251933 A JP2010251933 A JP 2010251933A JP 2010251933 A JP2010251933 A JP 2010251933A JP 2012103107 A JP2012103107 A JP 2012103107A
Authority
JP
Japan
Prior art keywords
light source
point
point light
light
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010251933A
Other languages
English (en)
Other versions
JP5565278B2 (ja
Inventor
Eigo Kubota
英吾 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2010251933A priority Critical patent/JP5565278B2/ja
Publication of JP2012103107A publication Critical patent/JP2012103107A/ja
Application granted granted Critical
Publication of JP5565278B2 publication Critical patent/JP5565278B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

【課題】短時間で広い範囲の配光特性を計測することの可能な配光計測装置、配光計測方法および配光計測プログラムを提供する。
【解決手段】点発光原100から発せられた光が投影面30Aに照射されている時にカメラによって撮像された投影面30Aの映像の輝度分布(TF(R,θ))を点発光原100の配光分布(FFP(θ,φ))に変換する変換式を用いて、撮像した映像の輝度分布(TF(R,θ))から点発光原100の配光分布(FFP(θ,φ))が導出される。
【選択図】図3

Description

本発明は、点発光原の配向分布を計測する配光計測装置、配光計測方法および配光計測プログラムに関する。
点発光原を扱う際、一点から発した光の向かっていく方向およびその光度が、配光もしくはFFP(Far Field Pattern)と定義される。球座標系(極座標系)における受光光度の絶対量をFFPabs(θ,φ)とすると、極(θ=0°,φ=0°)の受光光度の絶対量FFPabs(0,0)で規格化した相対光度がFFP(θ,φ)となる(図11)。
LED(Light Emitting Diode)等の固体発光素子においては、そのプロセス要因から個々の形状もしくは特性にバラツキが発生することが経験的に知られている。バラツキの発生する特性の1つとしてFFP(θ,φ)が挙げられる。FFP(θ,φ)の計測には、従来から、ポイント検出機を球状に変位させてFFP(θ,φ)を計測するSwing Arm(Gonio)方式が一般的に用いられている。また、Gonio方式の他には、例えば、f−θレンズやフレネルレンズ等のレンズによる光屈折法を用いた方式が用いられる場合もある(例えば特許文献1)。
特開平08−320273号公報
しかし、Gonio方式では、FFP(θ,φ)の計測時にθおよびφ方向のメカ動作を伴うことから、計測点ごとに計測時間を要し、多点計測に不向きであるという問題があった。また、特許文献1に記載の方式では、レンズ等が専用設計となり、高価になりがちであるばかりか、θ=0°〜±45°程度の狭い範囲でしか配光を計測できないという問題があった。
本発明はかかる問題点に鑑みてなされたもので、その目的は、簡易な方法で、短時間で広い範囲の配光特性を計測することの可能な配光計測装置、配光計測方法および配光計測プログラムを提供することにある。
本発明の配光計測装置は、点発光源から発せられた光を投影する投影面を有する拡散部材と、投影面を撮像する撮像部と、撮像部で撮像された映像を処理する演算部とを備えたものである。演算部は、点発光源から発せられた光が投影面に照射されている時に撮像部によって撮像された投影面の映像の輝度分布を点発光源の配光分布に変換する変換式を用いて、撮像した映像の輝度分布から点発光源の配光分布を導出するようになっている。
本発明の配光計測方法は、点発光源から発せられた光を投影する投影面を有する拡散部材と、投影面を撮像する撮像部と、撮像部で撮像された映像を処理する演算部とを備えた装置の演算部において、点発光源から発せられた光が投影面に照射されている時に撮像部によって撮像された投影面の映像の輝度分布を点発光源の配光分布に変換する変換式を用いて、撮像した映像の輝度分布から点発光源の配光分布を導出するものである。
本発明の配光計測プログラムは、点発光源から発せられた光を投影する投影面を有する拡散部材と、投影面を撮像する撮像部と、撮像部で撮像された映像を処理する演算部とを備えた装置の演算部において、点発光源から発せられた光が投影面に照射されている時に撮像部によって撮像された投影面の映像の輝度分布を点発光源の配光分布に変換する変換式を用いて輝度分布から配光分布を導出することを演算部に実行させるものである。
本発明の配光計測装置、配光計測方法および配光計測プログラムでは、点発光源から発せられた光が投影面に照射されている時に撮像部によって撮像された投影面の映像の輝度分布を点発光源の配光分布に変換する変換式を用いて、撮像した映像の輝度分布から点発光源の配光分布が導出される。つまり、本発明では、カメラをスイングさせたり、専用設計のレンズ等を設置したりするなど、複雑かつ高価な設備を使用しないで、撮像部で投影面を撮像するだけで点発光源の配光分布が導出される。
本発明において、上記の変換式が、例えば、撮像部で撮像された映像を構成する微小領域ごとに2次元座標を割り当てるとともに、個々の微小領域の2次元座標の、点発光源からの位置情報を導出し、導出した位置情報を利用して、撮像部で撮像された映像の輝度分布を点発光源の配光分布に変換するようになっている。
また、本発明において、投影面は、例えば、点発光源の光軸と直交する平坦面、点発光源の光軸と斜めに交差する傾斜面、または、点発光源の光軸を回転軸としたときに回転対称となっている曲面(例えば、球面、放物面など)の一部で構成されている。
ここで、投影面が点発光源の光軸と直交する平坦面で構成されている場合には、演算部は、例えば、以下の式を用いて点発光源の配光分布を導出するようになっている。
FFP(θ,φ)=TF(R,φ)×h2/cos3θ
θ=arctan(R/h)
FFP(θ,φ):点発光源の配光分布
TF(R,φ):点発光源から発せられた光が投影面を照射することにより投影面に生じる投影像
φ:投影像内の任意の箇所と点発光源とを結ぶ線分を、点発光源を含む平面に投影したときの線分と、点発光源を含む平面にXY座標軸を設定したときのX軸とのなす角
R:投影面のうち点発光源の光軸が通過する点から投影像内の任意の箇所までの距離
h:点発光源から投影面までの距離
また、投影面が点発光源の光軸と斜めに交差する傾斜面で構成されている場合には、演算部は、例えば、以下の式を用いて点発光源の配光分布を導出するようになっている。
FFP(θ,φ)=TF(Xsl,y)×h(Xsl2/cos3θ
h(Xsl)=h1−Xsl×sinα
sl=h×tanθ×cosφ/cosα
y=h×tanθ×sinφ
FFP(θ,φ):点発光源の配光分布
TF(Xsl,y):点発光源から発せられた光が投影面を照射することにより投影面に生じる投影像
θ:投影像内の任意の箇所と点発光源とを結ぶ線分と、点発光源の光軸とのなす角
φ:投影像内の任意の箇所と点発光源とを結ぶ線分を、点発光源を含む平面に投影したときの線分と、点発光源を含む平面にXY座標軸を設定したときのX軸とのなす角
h:投影面の法線のうち点発光源を通過する線が投影面を通過する点から点発光源の光軸に垂直に下ろした線分が点発光源の光軸と交差する点と、点発光源との距離
1:投影面のうち点発光源の光軸が通過する点と、点発光源との距離
α:投影面と、点発光源を含む平面とのなす角
また、投影面が点発光源の光軸を回転軸としたときに回転対称となっている球面の一部で構成されており、かつ点発光源が球面の中心点に配置されている場合には、演算部は、例えば、以下の式を用いて点発光源の配光分布を導出するようになっている。
FFP(θ,φ)=TF(R(θ),φ)
R(θ)=r×sinθ
FFP(θ,φ):点発光源の配光分布
TF(R(θ),φ):点発光源から発せられた光が投影面を照射することにより投影面に生じる投影像
θ:投影像内の任意の箇所と点発光源とを結ぶ線分と、点発光源の光軸とのなす角
φ:投影像内の任意の箇所と点発光源とを結ぶ線分を、点発光源を含む平面に投影したときの線分と、点発光源を含む平面にXY座標軸を設定したときのX軸とのなす角
r:球面の半径
また、投影面が点発光源の光軸を回転軸としたときに回転対称となっている球面の一部で構成されており、かつ点発光源が球面の中心点よりも投影面寄りに配置されている場合には、演算部は、例えば、以下の式を用いて点発光源の配光分布を導出するようになっている。
FFP(θ,φ)=TF(R(θ),φ)
R(θ)=r×sin(arccos(h(θ)+Δr)/r)
FFP(θ,φ):点発光源の配光分布
TF(R(θ),φ):点発光源から発せられた光が投影面を照射することにより投影面に生じる投影像
θ:投影像内の任意の箇所と点発光源とを結ぶ線分と、点発光源の法線とのなす角
φ:投影像内の任意の箇所と点発光源とを結ぶ線分を、点発光源を含む平面に投影したときの線分と、点発光源を含む平面にXY座標軸を設定したときのX軸とのなす角
r:球面の半径
h(θ):投影像内の任意の箇所から点発光源の光軸に垂直に下ろした線分が点発光源の光軸と交差する点と点発光源との距離
Δr:球面の中心点と、点発光源との距離
本発明の配光計測装置、配光計測方法および配光計測プログラムによれば、複雑かつ高価な設備を使用しないで、撮像部で投影面を撮像するだけで点発光源の配光分布を導出することができるようにしたので、簡易な方法で、短時間で広い範囲の配光特性を計測することができる。
本発明の第1の実施の形態に係る配光計測装置の概略構成を表す図である。 図1の拡散板の拡散度合いについて説明するための概念図である。 図1の配光計測装置における配光分布の導出方法について説明するための模式図である。 図1の拡散板に入射する光の入射角と反射率との関係の一例を表す特性図である。 図1の拡散板が斜め配置されているときの配向分布の導出方法について説明するための模式図である。 図1の拡散板が球面状となっているときの拡散度合いについて説明するための概念図である。 図6の拡散板を用いた配光計測装置における配光分布の導出方法について説明するための模式図である。 図6の拡散板の点発光原との位置関係を変更した配光計測装置における配光分布の導出方法について説明するための模式図である。 本発明の第2の実施の形態に係る配光計測装置の概略構成を表す図である。 図9の配光計測装置の一変形例を表す図である。 FFPについて説明するための概念図である。
以下、発明を実施するための形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。

1.第1の実施の形態(図1〜図8)
電力印加によって点発光原を発光させている例
2.第2の実施の形態(図9,図10)
励起光の印加によって点発光原を発光させている例
<1.第1の実施の形態>
[構成]
図1は、本発明の第1の実施の形態に係る配光計測装置1の概略構成を表すものである。この配光計測装置1は、例えば、図1に示したように、カメラ10、カメラレンズ20、拡散板30、遮光マスク40、変位計50、XYZθステージ60、Xステージ70,80、および制御部90を備えたものである。XYZθステージ60上には、被計測対象物である点発光原100が載置されている。この配光計測装置1は、図示しないが、点発光原100に電力を印加して点発光原100を発光させる電源装置(例えば、電力源と、点発光原100の電極に接触可能なプローブとを備えた装置)をさらに備えている。なお、カメラ10は、本発明の「撮像装置」の一具体例に相当する。また、拡散板30は、本発明の「拡散部材」の一具体例に相当する。
点発光原100は、例えば、LED(Light Emitting Diode)チップ、LEDチップが内蔵されたLEDパッケージ、LEDチップが実装されたデバイス上のLEDチップ、LEDパッケージが実装されたデバイス上のLEDパッケージ、または、複数のLED素子が形成されたウェハ上の1つのLED素子である。点発光原100は、例えば、OLED(Organic Light Emitting Diode)チップ、OLEDチップが内蔵されたOLEDパッケージ、OLEDチップが実装されたデバイス上のOLEDチップ、OLEDパッケージが実装されたデバイス上のOLEDパッケージ、または、複数のOLED素子が形成されたウェハ上の1つのOLED素子であってもよい。また、点発光原100は、例えば、LD(Laser Diode)チップ、LDチップが内蔵されたLDパッケージ、LDチップが実装されたデバイス上のLDチップ、LDパッケージが実装されたデバイス上のLDパッケージ、または複数のLD素子が形成されたウェハ上の1つのLD素子であってもよい。
カメラ10は、後述の投影面30Aを撮像し、投影面30Aの映像を取得するものである。具体的には、カメラ10は、点発光原100から発せられた光が投影面30Aに照射されている時に投影面30Aを撮像し、投影面30Aの映像(輝度分布情報)を取得するものである。カメラ10は、例えば配光計測装置1の筐体などに固定されており、撮像時に位置を変位させることはない。具体的には、カメラ10は、点発光原100の光軸AX上に配置(固定)されている。カメラ10は、例えば、複数の受光画素が2次元配列された受光面を有する固体撮像素子と、固体撮像素子からの出力信号を映像信号に変換して外部に出力する信号処理回路とを含んで構成されている。上記の固体撮像素子は、例えば、CCD(Charge Coupled Device)イメージセンサまたはCMOS(Complementary Metal Oxide Semiconductor)イメージセンサからなる。上記の信号処理回路は、例えば、ADC(A−Dコンバータ)や、DSP(デジタルシグナルプロセッサ)などを含んで構成されている。カメラレンズ20は、例えば、CCDイメージセンサまたはCMOSイメージセンサ用に設計された汎用レンズである。カメラレンズ20も、カメラ10と同様に、点発光原100の光軸AX上に配置(固定)されている。
拡散板30は、点発光原100から発せられた光を投影する投影面30Aを有する拡散部材である。拡散板30は、平行光を入射させたときの出射光の直線透過成分が出射光の配光特性において無視できる程度に小さい拡散度合いとなっている。拡散板30の拡散度合いは、例えば、図2(A)〜(C)に例示したように、平行光L1を入射角θin=0°,45°,60°で入射させたときに、入射角θinに拘わらず、出射光L2の直線透過成分が出射光L2の配光特性において無視できる程度に小さくなっている、つまり完全拡散(もしくは概ね完全拡散)となっていることが好ましい。拡散板30は、例えば、拡散粒子の配合されたアクリル樹脂もしくはポリカーボネート樹脂などによって構成されている。なお、拡散板30は、オパール拡散ガラスによって構成されていてもよい。拡散板30は、例えば、図1、図2(A)〜(C)に示したように、平板状となっており、投影面30Aが平坦面となっている。また、拡散板30(または投影面30A)は、例えば、点発光原100を含む平面(XY平面)と平行となるように、つまり、点発光原100の光軸AXと直交するように配置されている。
遮光マスク40は、例えば、XYZθステージ60の上面での反射光や拡散板30の下面での反射光がカメラ10に入射するのを低減するものである。遮光マスク40は、例えば、可視光の波長帯の光を吸収する性質を有する材料を含んで構成されており、点発光原100との対向領域に、点発光原100から発せられた光を通過させる開口を有している。変位計50は、点発光源100から投影面30Aまでの距離を計測するものであり、例えば、レーザ変位計や、画像処理によりその距離を推定する装置などによって構成されている。
XYZθステージ60は、点発光原100の位置、特に投影面30Aに対する点発光原100の位置を調整するものである。XYZθステージ60は、例えば、図1に示したように、Xステージ61、Yステージ62、Zステージ63およびθステージ64によって構成されている。Xステージ61は点発光原100をX軸方向に変位させるものであり、Yステージ62は点発光原100をY軸方向に変位させるものであり、Zステージ63は点発光原100をZ軸方向に変位させるものである。また、θステージ64は点発光原100をXY面内においてθ方向に変位させるものである。Xステージ70は、拡散板30の位置をX軸方向に変位させるものである。Xステージ70は、例えば、XYZθステージ60上に点発光原100を載置する際には拡散板30を後退させ、点発光原100の配光特性を計測する際には拡散板30を点発光原100上に移動させるようになっている。Xステージ80は、変位計50の位置をX軸方向に変位させるものである。
制御部90は、配光計測装置1のメカ的な動作を制御するとともに、点発光原100の配光特性を計測する際の演算を行うものである。制御部90は、例えば、図1に示したように、演算部91および配光計測プログラム92を含んで構成されている。演算部91は、例えば、プログラムの命令を解釈し、実行するためのもので、例えばCPU(Central Processing Unit )を含んで構成されている。配光計測プログラム92は、例えば、図示しない記憶部に記憶されている。なお、制御部90は、配光計測装置1と一体に形成されていてもよいが、配光計測装置1とは別体で形成されていてもよい。例えば、制御部90がパーソナルコンピュータからなり、配光計測装置1と有線または無線で通信可能に構成されていてもよい。ただし、この場合には、配光計測装置1は、別体で形成された制御部90との間で、有線または無線を介して制御信号等をやり取り可能なインターフェースを備えていることが必要となる。
配光計測プログラム92は、点発光原100の配光特性の計測のための一連の手順を演算部91に実行させるためのものである。以下に、この一連の手順の詳細について説明する。
[配光特性の計測手順]
配光特性の計測を行うにあたって、まず、ユーザがXYZθステージ60上に点発光原100を載置する。例えば、ユーザは、Xステージ70で拡散板30を後退させ、XYZθステージ60上の所定の位置に点発光原100を載置し、Xステージ70で拡散板30を点発光原100上に移動させる。次に、ユーザは、拡散板30と点発光原100との距離が所定の値となるように、XYZθステージ60を変位させる。その後、ユーザが、配光計測プログラム92を起動する。
すると、演算部91は、配光計測プログラム92の実行を開始する。具体的には、演算部91は、まず、カメラ10に対して所定の補正を実行する。演算部91は、例えば、カメラ10の受光面全域において同一輝度が同一値として正しく捉えられるようにするために、シェーディング補正等を実行する。演算部91は、さらに、例えば、カメラ10の出力信号に含まれ得るオフセットレベルを除去できるようにするために、オフセットレベルを計測する。具体的には、演算部91は、点発光原100が非発光である時にカメラ10に投影面30Aを撮像させ、それによって得られた映像データをオフセットデータとして記憶部に保存する。なお、演算部91は、後のステップで、点発光原100を点灯させ、点発光原100から発せられる光が投影面30Aに照射されている時にカメラ10に投影面30Aを撮像させ、それによって映像データを得た際には、この映像データからオフセットデータを差し引くことにより、オフセットレベルの除去された映像データを得る。
次に、演算部91は、点発光原100を点灯させる。例えば、演算部91は、図示しないが、点発光原100に電力を印加して点発光原100を発光させる電源装置(電力源と、点発光原100の電極に接触可能なプローブとを備えた装置)のプローブを点発光原100の電極に接触させ、点発光原100に電力を供給することにより、点発光原100を発光させる。このとき、点発光原100の発光は、例えば、EL(Electro Luminescence)発光である。続いて、演算部91は、点発光原100から発せられる光が投影面30Aに照射されている時にカメラ10に投影面30Aを撮像させ、それによって発光時の映像データを得る。このとき得られる映像データは、点発光原100から発せられた光が投影面30Aを照射することにより投影面30Aに生じる2次元の投影像(Transfer Function像)であり、投影面30Aの輝度分布情報を含んでいる。以下では、この映像データをTF(R,θ)と表現する。なお、R、θについては、下記の変換式の説明に併せて説明するものとする。
次に、演算部91は、投影面30Aの映像の輝度分布(TF(R,θ))を点発光原100の配光分布(FFP(θ,φ))に変換する変換式を用いて、TF(R,θ)からFFP(θ,φ)を導出する。具体的には、演算部91は、下記の式(1)を用いて、TF(R,θ)からFFP(θ,φ)を導出する。このとき、演算部91は、投影面30Aの点発光原100からの位置情報を利用して、TF(R,θ)からFFP(θ,φ)を導出する。
FFP(θ,φ)=TF(R,φ)×h2/cos3θ…(1)
ここで、θは、本実施の形態では、arctan(R/h)に相当している。Rは、投影面30Aのうち点発光原100の光軸AXが通過する点から投影像(または投影面30A)内の任意の箇所までの距離である。φは、投影像(または投影面30A)内の任意の箇所と点発光原100とを結ぶ線分を、点発光原100を含む平面(XY平面)に投影したときの線分と、点発光原100を含む平面(XY平面)にXY座標軸を設定したときのX軸とのなす角である。なお、φの値は、X軸を基準に反時計回りに大きくなるものとする。hは、点発光原100から投影面30Aまでの距離である。
このように、本実施の形態では、カメラ10による投影面30Aの撮像だけで、点発光原100の配光分布(FFP(θ,φ))が得られる。なお、このようにして得られた点発光原100の配光分布(FFP(θ,φ))は、Gonio方式で得られる配光分布とほぼ一致する。
ところで、点発光原100から発せられた光の全てが投影面30Aを透過する訳ではない。点発光原100から発せられた光のうち所定の角度以上の角度で投影面30Aに入射する光の大部分が、投影面30Aで反射される。例えば、拡散板30が拡散ガラスからなる場合、空中から拡散ガラスに入射する光は、例えば、図4に示したように、入射角が概ね60°を超えたあたりから、反射率が急激に増大し始める。一方で、入射角に対する反射率の変化が小さい角度領域が存在している。例えば、図4では、0°以上60°以下の範囲では、入射角に対する反射率の変化が小さくなっている。このことから、投影面30Aが平坦面となっている場合には、入射角に対する反射率の変化が小さい角度領域における配光特性を計測することが好ましい。なお、入射角に対する反射率の変化が大きい角度領域についても配光特性を計測する場合には、発光時の映像データ(TF(R,θ))に対して、反射率変化による輝度の変化を補償する補正を行うことが好ましい。
[効果]
本実施の形態では、点発光原100から発せられた光が投影面30Aに照射されている時にカメラ10によって撮像された投影面30Aの映像の輝度分布(TF(R,θ))を点発光原100の配光分布(FFP(θ,φ))に変換する変換式(式(1))を用いて、撮像した映像の輝度分布(TF(R,θ))から点発光原100の配光分布(FFP(θ,φ))が導出される。つまり、本実施の形態では、カメラ10をスイングさせたり、専用設計のレンズ等を設置したりするなど、複雑かつ高価な設備を使用しないで、カメラ10で投影面30Aを撮像するだけで点発光源100の配光分布(FFP(θ,φ))が導出される。従って、簡易な方法で、短時間で広い範囲の配光特性を計測することができる。
また、本実施の形態において、発光時の映像データ(TF(R,θ))に対して、反射率変化による輝度の変化を補償する補正を行うようにした場合には、さらに広い範囲の配光特性を計測することができる。
[第1の実施の形態の変形例]
(第1変形例)
上記実施の形態では、拡散板30(または投影面30A)は、点発光原100の光軸AXと直交するように配置されていたが、例えば、図5(A),(B)に示したように、点発光原100の光軸AXと斜めに交差するように配置されていてもよい。なお、以下では、拡散板30(または投影面30A)が、X軸と斜めに交差するとともに、Y軸と平行となるように配置されているものとする。さらに、カメラ10は、点発光原100の光軸AX上に配置(固定)されておらず、例えば、拡散板30(または投影面30A)の法線上に配置(固定)されているものとする。拡散板30(または投影面30A)およびカメラ10が上述したような構成となっている場合には、演算部91は、下記の式(2)〜式(5)を用いて、TF(Xsl,y)からFFP(θ,φ)を導出する。このとき、演算部91は、投影面30Aの点発光原100からの位置情報を利用して、TF(Xsl,y)からFFP(θ,φ)を導出する。
FFP(θ,φ)=TF(Xsl,y)×h(Xsl2/cos3θ…(2)
h(Xsl)=h1−Xsl×sinα…(3)
sl=h×tanθ×cosφ/cosα…(4)
y=h×tanθ×sinφ…(5)
ここで、TF(Xsl,y)は、点発光源100から発せられた光が、斜めに傾いた投影面30Aを照射することにより投影面30Aに生じる投影像である。θは、本変形例では、投影像(または投影面30A)内の任意の箇所と点発光源100とを結ぶ線分と、点発光源100の光軸AXとのなす角である。hは、本変形例では、投影面30Aの法線のうち点発光源100を通過する線が投影面30Aを通過する点から点発光源100の光軸AXに垂直に下ろした線分が点発光源100の光軸AXと交差する点と、点発光源100との距離である。h1は、投影面30Aのうち点発光源100の光軸AXが通過する点と、点発光源100との距離である。
なお、本変形例においても、入射角に対する反射率の変化が大きい角度領域についても配光特性を計測する場合には、発光時の映像データ(TF(Xsl,y))に対して、反射率変化による輝度の変化を補償する補正を行うことが好ましい。
(第2変形例)
また、上記実施の形態では、拡散板30は板状となっていたが、湾曲していてもよい。拡散板30は、例えば、図6(A)〜(C)、図7に示したように、球状となっていてもよい。なお、図7には、作図の便宜上、拡散板30の一部を切り抜いたものが示されている。このとき、拡散板30は、平行光を入射させたときの出射光の直線透過成分が出射光の配光特性において無視できる程度に小さい拡散度合いとなっている。拡散板30の拡散度合いは、例えば、図6(A)〜(C)に例示したように、平行光L1を入射角θin=0°,45°,60°で入射させたときに、入射角θinに拘わらず、出射光L2の直線透過成分が出射光L2の配光特性において無視できる程度に小さくなっている、つまり完全拡散(もしくは概ね完全拡散)となっていることが好ましい。拡散板30は、例えば、拡散粒子の配合されたアクリル樹脂もしくはポリカーボネート樹脂などによって構成されている。なお、拡散板30は、オパール拡散ガラスによって構成されていてもよい。
投影面30Aは、点発光源100の光軸AXを回転軸としたときに回転対称となっている曲面の一部で構成されている。投影面30Aは、例えば、点発光源100の光軸AXを回転軸としたときに回転対称となっている放物面もしくは球面の一部で構成されている。投影面30Aが、点発光源100の光軸AXを回転軸としたときに回転対称となっている球面の一部で構成されると共に、拡散板30(または投影面30A)が、点発光原100が球面の中心点となるように配置されることが好ましい。拡散板30がそのような好ましい構成になっている場合には、演算部91は、下記の式(6),(7)を用いて、TF(R,θ)からFFP(R(θ),φ)を導出する。このとき、演算部91は、投影面30Aの点発光原100からの位置情報を利用して、TF(R(θ),φ)からFFP(θ,φ)を導出する。
FFP(θ,φ)=TF(R(θ),φ)…(6)
R(θ)=r×sinθ…(7)
ここで、TF(R(θ),φ)は、点発光源100から発せられた光が、球状の投影面30Aを照射することにより投影面30Aに生じる投影像である。θは、本変形例では、投影像(または投影面30A)内の任意の箇所と点発光源100とを結ぶ線分と、点発光源100の光軸AXとのなす角である。rは、球面の半径である。
このように、投影面30Aが、点発光源100の光軸AXを回転軸としたときに回転対称となっている球面の一部で構成され、拡散板30(または投影面30A)が、点発光原100が球面の中心点となるように配置されている場合には、点発光原100から発せられた光は全て、入射角に対する反射率の変化が小さい角度領域で入射することになる。これにより、点発光原100から発せられた光のほとんど全てが投影面30Aを透過する。従って、発光時の映像データ(TF(R(θ),φ))に対して、反射率変化による輝度の変化を補償する補正を行わなくても、0°から90°までの配光特性を正確に計測することが可能となる。
(第3変形例)
また、上記第2変形例では、拡散板30(または投影面30A)が、点発光原100が球面の中心点となるように配置されている場合について説明されていたが、例えば、図8(A),(B)に示したように、点発光原100が球面の中心点よりも投影面30A寄りとなるように配置されていてもよい。なお、図8(A)には、作図の便宜上、拡散板30の一部を切り抜いたものが示されている。点発光原100が、点発光原100が球面の中心点よりも投影面30A寄りとなるように配置されている場合には、演算部91は、下記の式(8),(9)を用いて、TF(R(θ),φ)からFFP(θ,φ)を導出する。このとき、演算部91は、投影面30Aの点発光原100からの位置情報を利用して、TF(R(θ),φ)からFFP(θ,φ)を導出する。
FFP(θ,φ)=TF(R(θ),φ)…(8)
R(θ)=r×sin(arccos(h(θ)+Δr)/r)…(9)
ここで、h(θ)は、投影像(または投影面30A)像内の任意の箇所から点発光原100の光軸AXに垂直に下ろした線分が点発光原100の光軸AXと交差する点と、点発光原100との距離である。Δrは、球面の中心点と、点発光原100との距離である。
このように、投影面30Aが、点発光源100の光軸AXを回転軸としたときに回転対称となっている球面の一部で構成され、拡散板30(または投影面30A)が、点発光原100が球面の中心点よりも投影面30A寄りとなるように配置されている場合にも、点発光原100から発せられた光が全て、入射角に対する反射率の変化が小さい角度領域で入射するようにすることが可能である。これにより、点発光原100から発せられた光のほとんど全てが投影面30Aを透過するようにすることができる。従って、発光時の映像データ(TF(R(θ),φ))に対して、反射率変化による輝度の変化を補償する補正を行わなくても、0°から90°までの配光特性を正確に計測することも可能である。
なお、例えば、拡散板30に入射する光の角度(入射角)が60°以下となるように、Δrが√3/2×r以下の値に設定されていてもよい。このようにした場合には、点発光原100から発せられた光がほとんど全て、投影面30Aを透過するようになる。また、点発光原100から発せられた光の一部が投影面30Aで反射される場合には、入射角に対する反射率の変化が小さい角度領域における配光特性を計測してもよい。また、発光時の映像データ(TF(R(θ),φ))に対して、反射率変化による輝度の変化を補償する補正を行って、入射角に対する反射率の変化が大きい角度領域についても配光特性を計測するようにしてもよい。
<2.第2の実施の形態>
[構成]
図9は、本発明の第2の実施の形態に係る配光計測装置2の概略構成を表したものである。配光計測装置2は、例えば、図9に示したように、波長選択フィルタ110と、励起光源120と、ファイバ121と、集光レンズ122とをさらに備えている点で、上記実施の形態およびその変形例に係る配光計測装置1の構成と主に相違する。そこで、以下では、上記実施の形態およびその変形例に係る配光計測装置1との相違点について主に説明し、上記実施の形態およびその変形例に係る配光計測装置1と共通する点についての説明を適宜省略するものとする。
励起光源120、ファイバ121および集光レンズ122は、励起光源120から発せられる光を点発光原100に照射することにより、点発光原100を発光(具体的にはPL(Photo Luminescence)発光)させるものである。励起光源120は、点発光原100の発光光の発光波長とは異なる波長の励起光を出力するようになっており、例えば、点発光原100から発せられる光の波長帯よりも短波長の光を発するようになっている。ファイバ121は、励起光源120から発せられる光を導波させるものである。集光レンズ122は、ファイバ121で導波させた光を集光して、点発光原100に照射するものである。
波長選択フィルタ110は、点発光原100から発せられた光を透過し、励起光源120から発せられる光の波長帯の光を遮断するものである。例えば、励起光源120から発せられる光の波長帯が、点発光原100から発せられた光の波長帯よりも短波長である場合、波長選択フィルタ110は、HPF(ハイパスフィルタ)で構成されている。
[配光特性の計測手順]
配光特性の計測を行うにあたっての準備と、TF(R,θ)からFFP(θ,φ)を導出する方法については、上記第1の実施の形態およびその変形例と同様である。本実施の形態では、点発光原100の点灯方法が上記第1の実施の形態およびその変形例と主に相違している。具体的には、本実施の形態では、点発光源100に励起光を照射することにより点発光原100が発光する。さらに、本実施の形態では、カメラ10の手前に設けられた波長選択フィルタ110によって、励起光が選択的に遮断される。
本実施の形態では、上記実施の形態およびその変形例に係る配光計測装置1と同様の変換式を用いて、点発光原100の配光特性が導出される。例えば、図1に示したように、拡散板30が平板状となっており、投影面30Aが平坦面となっており、かつ拡散板30(または投影面30A)が、点発光原100の光軸AXと直交するように配置されている場合には、演算部91は、上述の式(1)を用いて、TF(R,θ)からFFP(θ,φ)を導出する。なお、この場合に、入射角に対する反射率の変化が大きい角度領域についても配光特性を計測する場合には、発光時の映像データ(TF(R,θ))に対して、反射率変化による輝度の変化を補償する補正を行うことが好ましい。
また、例えば、図5(A),(B)に示したように、拡散板30が、点発光原100の光軸AXと斜めに交差するように配置されていてもよい。このようにした場合には、演算部91は、上述の式(2)〜式(5)を用いて、TF(Xsl,y)からFFP(θ,φ)を導出する。なお、この場合にも、入射角に対する反射率の変化が大きい角度領域についても配光特性を計測する場合には、発光時の映像データ(TF(Xsl,y))に対して、反射率変化による輝度の変化を補償する補正を行うことが好ましい。
また、例えば、図7に示したように、投影面30Aが、点発光源100の光軸AXを回転軸としたときに回転対称となっている球面の一部で構成され、拡散板30(または投影面30A)が、点発光原100が球面の中心点となるように配置されている場合には、演算部91は、上述の式(6),(7)を用いて、TF(R(θ),θ)からFFP(θ,φ)を導出する。
また、例えば、図8(A),(B)に示したように、投影面30Aが、点発光源100の光軸AXを回転軸としたときに回転対称となっている球面の一部で構成され、拡散板30(または投影面30A)が、点発光原100が球面の中心点よりも投影面30A寄りとなるように配置されている場合には、演算部91は、上述の式(8),(9)を用いて、TF(R(θ),θ)からFFP(θ,φ)を導出する。なお、この場合に、入射角に対する反射率の変化が大きい角度領域についても配光特性を計測する場合には、発光時の映像データ(TF(R(θ),θ))に対して、反射率変化による輝度の変化を補償する補正を行うことが好ましい。
[効果]
本実施の形態では、上記第1の実施の形態およびその変形例と同様に、点発光原100から発せられた光が投影面30Aに照射されている時にカメラ10によって撮像された投影面30Aの映像の輝度分布(TF(R,θ))を点発光原100の配光分布(FFP(θ,φ))に変換する変換式を用いて、撮像した映像の輝度分布(TF(R,θ))から点発光原100の配光分布(FFP(θ,φ))が導出される。つまり、本実施の形態でも、カメラ10をスイングさせたり、専用設計のレンズ等を設置したりするなど、複雑かつ高価な設備を使用しないで、カメラ10で投影面30Aを撮像するだけで点発光源100の配光分布(FFP(θ,φ))が導出される。従って、簡易な方法で、短時間で広い範囲の配光特性を計測することができる。
また、本実施の形態においても、発光時の映像データ(TF(R,θ))に対して、反射率変化による輝度の変化を補償する補正を行うようにした場合には、さらに広い範囲の配光特性を計測することができる。
[第2の実施の形態の変形例]
例えば、図10に示したように、上記第2の実施の形態において、カメラ10の光入射面に分光部130が設けられていてもよい。なお、分光部130は、カメラ10と一体に形成されていてもよいし、カメラ10とは別体で形成されていてもよい。また、カメラ10の光入射面に分光部130が設けられている場合には、例えば、図10に示したように、波長選択フィルタ110が省略されてもよい。
ところで、分光部130は、分光部130に入射した光を分光するものであり、例えば、分光部130に入射した光の像を複数の水平ラインで分割した場合に、全水平ラインに対応した分光光(分光された光)をカメラ10に出力するようになっている。分光部130は、例えば、図示しないが、光入射窓にスリットを有しており、さらに、コリメーションミラー、分光エンジンおよびフォーカシングミラーを内部に有している。このような構成の分光部130では、例えば、スリットを通った光は、コリメーションミラーを介して分光エンジンに向かい、分光エンジンで水平1ライン分の光線が分光され、分光光(分光された光)がフォーカシングミラーを介してカメラ10に入射する。
以上、実施の形態およびその変形例を挙げて本発明を説明したが、本発明はこれらの実施の形態等に限定されるものではなく、種々の変形が可能である。
例えば、上記第1の実施の形態において、点発光原100は、光透過部材(図示せず)の下面に所定の光を照射することにより光透過部材に形成された発光スポットであってもよい。また、例えば、点発光原100は、光反射部材(図示せず)の上面に所定の光を照射することにより光反射部材に形成された発光スポットであってもよい。なお、上記の「所定の光」は、例えば、平行光である。
ところで、上記第1および第2の実施の形態において、点発光原100が、ウェハ上の発光素子(例えば、LED素子、OLED素子、LD素子)であった場合、そのウェハ上には、他にも多数の点発光原100が形成されている。このとき、ユーザが、ウェハ上の複数の点発光原100の配光特性について連続して計測しようとした場合には、以下のような手順で計測することになる。
まず、ユーザは、XYZθステージ60上にウェハを載置したのち、拡散板30とウェハとの距離が所定の値となるように、XYZθステージ60を変位させる。その後、ユーザが、配光計測プログラム92を起動する。すると、演算部91は、配光計測プログラム92の実行を開始する。具体的には、演算部91は、まず、上記と同様にして、カメラ10に対して所定の補正を実行したのち、ウェハ上の1つの点発光原100を点灯させる。続いて、演算部91は、点発光原100から発せられる光が投影面30Aに照射されている時にカメラ10に投影面30Aを撮像させ、それによって発光時の映像データ(TF(R=R,θ=θ))を得る。このときのTF(R=R,θ=θ)を便宜的にTF1(R=R,θ=θ)と表記する。次に、演算部91は、点灯している点発光原100を消灯させたのち、XYZθステージ60を変位させて、ウェハ上の他の点発光原100を所定の位置に移動させる。続いて、演算部91は、所定の位置に移動させた点発光原100を点灯させ、上記と同様にして、発光時の映像データ(TF(R=R,θ=θ))を得る。このときのTF(R=R,θ=θ)を便宜的にTF2(R=R,θ=θ)と表記する。演算部91は、これ以降、ウェハ上の残りの点発光原100について、上記と同様にして、発光時の映像データ(TFi(R=R,θ=θ))(1≦i≦N,Nは正の整数)を得る。
次に、演算部91は、既に述べた各種変換式を用いて、上記のようにして収集したN個の映像データ(TFi(R=R,θ=θ))からN個の配光分布(FFPi(θ,φ))を導出する。演算部91は、このようにして得られたN個の配光分布(FFPi(θ,φ))から、ウェハマップを作成する。なお、ウェハマップとは、半導体のウェハレベルの計測特性をウェハ面内分布(マップ)として表示した図を意味している。一般的には、LEDウェハでは、軸上光度(LEDの光軸およびその近傍といった、狭い立体角での光度)をマップ表示(等高線分布表示)し、表示したマップを使って光出力の検査が行われる。
演算部91は、N個の配光分布(FFPi(θ,φ))の中から、例えばユーザによって指定された特定のθmおよびφn(m,nは正の整数)における配光データ(N個のFFPi(θm,φn))を抽出する。さらに、演算部91は、図示しない表示パネルに、N個のFFPi(θm,φn)をマップ表示(等高線分布表示)させる。つまり、演算部91は、軸上に限定されないあらゆる角度におけるウェハ面内分布を表示させることができる。従って、ユーザは、あらゆる角度におけるウェハ面内分布を分析することが可能となる。また、配光計測が広い角度で行われるので、ユーザは、全光束の検査を行うことが可能となり、真の光出力を知ることができる。具体的には、演算部91は、以下の式を用いて、全光束Fluxを得ることができる。
Figure 2012103107
ここで、Ωは、計測対象の点発光原100を中心とした立体角である。Ωhpは、立体角を半球とした積分領域である。FFPabs((θ,φ)は、球座標系(極座標系)における受光光度の絶対量である。
1,2…配光計測装置、10…カメラ、20…カメラレンズ、30…拡散板、30A…投影面、40…遮光マスク、50…変位計、60…XYZθステージ、61…Xステージ、62…Yステージ、63…Zステージ、64…θステージ、70,80…ステージ、90…制御部、91…演算部、92…配光計測プログラム、110…波長選択フィルタ、120…励起光源、121…ファイバ、122…集光レンズ、130…分光部、AX…光軸。

Claims (19)

  1. 点発光源から発せられた光を投影する投影面を有する拡散部材と、
    前記投影面を撮像する撮像部と、
    前記点発光源から発せられた光が前記投影面に照射されている時に前記撮像部によって撮像された前記投影面の映像の輝度分布を前記点発光源の配光分布に変換する変換式を用いて、前記輝度分布から前記配光分布を導出する演算部と
    を備えた配光計測装置。
  2. 前記変換式は、前記投影面の前記点発光源からの位置情報を利用して、前記撮像部で撮像された映像の輝度分布を前記点発光源の配光分布に変換する
    請求項1に記載の配光計測装置。
  3. 前記拡散部材は、平行光を入射させたときの出射光の直線透過成分が出射光の配光特性において無視できる程度に小さい拡散度合いとなっている
    請求項2に記載の配光計測装置。
  4. 前記拡散部材の拡散度合いは、完全拡散となっている
    請求項3に記載の配光計測装置。
  5. 前記投影面は、前記点発光源の光軸と直交する平坦面、前記点発光源の光軸と斜めに交差する傾斜面、または、前記点発光源の光軸を回転軸としたときに回転対称となっている曲面の一部で構成されている
    請求項1ないし請求項4のいずれか一項に記載の配光計測装置。
  6. 前記投影面が前記点発光源の光軸と直交する平坦面で構成され、
    前記演算部は、以下の式を用いて前記点発光源の配光分布を導出する
    請求項3または請求項4に記載の配光計測装置。
    FFP(θ,φ)=TF(R,φ)×h2/cos3θ
    θ=arctan(R/h)
    FFP(θ,φ):前記点発光源の配光分布
    TF(R,φ):前記点発光源から発せられた光が前記投影面を照射することにより前記投影面に生じる投影像
    φ:前記投影像内の任意の箇所と前記点発光源とを結ぶ線分を、前記点発光源を含む平面に投影したときの線分と、前記点発光源を含む平面にXY座標軸を設定したときのX軸とのなす角
    R:前記投影面のうち前記点発光源の光軸が通過する点から前記投影像内の任意の箇所までの距離
    h:前記点発光源から前記投影面までの距離
  7. 前記投影面が前記点発光源の光軸と斜めに交差する傾斜面で構成され、
    前記演算部は、以下の式を用いて前記点発光源の配光分布を導出する
    請求項3または請求項4に記載の配光計測装置。
    FFP(θ,φ)=TF(Xsl,y)×h(Xsl2/cos3θ
    h(Xsl)=h1−Xsl×sinα
    sl=h×tanθ×cosφ/cosα
    y=h×tanθ×sinφ
    FFP(θ,φ):前記点発光源の配光分布
    TF(Xsl,y):前記点発光源から発せられた光が前記投影面を照射することにより前記投影面に生じる投影像
    θ:前記投影像内の任意の箇所と前記点発光源とを結ぶ線分と、前記点発光源の光軸とのなす角
    φ:前記投影像内の任意の箇所と前記点発光源とを結ぶ線分を、前記点発光源を含む平面に投影したときの線分と、前記点発光源を含む平面にXY座標軸を設定したときのX軸とのなす角
    h:前記投影面の法線のうち前記点発光源を通過する線が前記投影面を通過する点から前記点発光源の光軸に垂直に下ろした線分が前記点発光源の光軸と交差する点と、前記点発光源との距離
    1:前記投影面のうち前記点発光源の光軸が通過する点と、前記点発光源との距離
    α:前記投影面と、前記点発光源を含む平面とのなす角
  8. 前記投影面が前記点発光源の光軸を回転軸としたときに回転対称となっている球面の一部で構成され、
    前記点発光源は、前記球面の中心点に配置され、
    前記演算部は、以下の式を用いて前記点発光源の配光分布を導出する
    請求項3または請求項4に記載の配光計測装置。
    FFP(θ,φ)=TF(R(θ),φ)
    R(θ)=r×sinθ
    FFP(θ,φ):前記点発光源の配光分布
    TF(R(θ),φ):前記点発光源から発せられた光が前記投影面を照射することにより前記投影面に生じる投影像
    θ:前記投影像内の任意の箇所と前記点発光源とを結ぶ線分と、前記点発光源の光軸とのなす角
    φ:前記投影像内の任意の箇所と前記点発光源とを結ぶ線分を、前記点発光源を含む平面に投影したときの線分と、前記点発光源を含む平面にXY座標軸を設定したときのX軸とのなす角
    r:前記球面の半径
  9. 前記投影面が前記点発光源の光軸を回転軸としたときに回転対称となっている球面の一部で構成され、
    前記点発光源は、前記球面の中心点よりも前記投影面寄りに配置され、
    前記演算部は、以下の式を用いて前記点発光源の配光分布を導出する
    請求項3または請求項4に記載の配光計測装置。
    FFP(θ,φ)=TF(R(θ),φ)
    R(θ)=r×sin(arccos(h(θ)+Δr)/r)
    FFP(θ,φ):前記点発光源の配光分布
    TF(R(θ),φ):前記点発光源から発せられた光が前記投影面を照射することにより前記投影面に生じる投影像
    θ:前記投影像内の任意の箇所と前記点発光源とを結ぶ線分と、前記点発光源の法線とのなす角
    φ:前記投影像内の任意の箇所と前記点発光源とを結ぶ線分を、前記点発光源を含む平面に投影したときの線分と、前記点発光源を含む平面にXY座標軸を設定したときのX軸とのなす角
    r:前記球面の半径
    h(θ):前記投影像内の任意の箇所から前記点発光源の光軸に垂直に下ろした線分が前記点発光源の光軸と交差する点と、前記点発光源との距離
    Δr:前記球面の中心点と、前記点発光源との距離
  10. 前記点発光源は、LED(Light Emitting Diode)チップ、前記LEDチップが内蔵されたLEDパッケージ、前記LEDチップが実装されたデバイス上のLEDチップ、前記LEDパッケージが実装されたデバイス上のLEDパッケージ、複数のLED素子が形成されたウェハ上の1つのLED素子、OLED(Organic Light Emitting Diode)チップ、前記OLEDチップが内蔵されたOLEDパッケージ、前記OLEDチップが実装されたデバイス上のOLEDチップ、前記OLEDパッケージが実装されたデバイス上のOLEDパッケージ、複数のOLED素子が形成されたウェハ上の1つのOLED素子、LD(Laser Diode)チップ、前記LDチップが内蔵されたLDパッケージ、前記LDチップが実装されたデバイス上のLDチップ、前記LDパッケージが実装されたデバイス上のLDパッケージ、または複数のLD素子が形成されたウェハ上の1つのLD素子である
    請求項1ないし請求項4のいずれか一項に記載の配光計測装置。
  11. 前記点発光源に電力を印加して前記点発光源を発光させる電源装置をさらに備えた
    請求項10に記載の配光計測装置。
  12. 前記点発光源に励起光を照射して前記点発光源を発光させる励起光源をさらに備えた
    請求項10に記載の配光計測装置。
  13. 前記励起光源は、前記点発光源の発光光の発光波長とは異なる波長の励起光を出力する
    請求項12に記載の配光計測装置。
  14. 前記撮像部と前記拡散部材との間に、前記点発光源からの光を透過し、前記励起光を遮断する波長選択フィルタをさらに備えた
    請求項13に記載の配光計測装置。
  15. 前記撮像部は、分光機能を有する
    請求項13または請求項14に記載の配光計測装置。
  16. 前記点発光源は、光透過部材の下面に所定の光を照射することにより前記光透過部材に形成された発光スポット、または光反射部材の上面に所定の光を照射することにより前記光反射部材に形成された発光スポットである
    請求項1ないし請求項4のいずれか一項に記載の配光計測装置。
  17. 前記点発光源と前記拡散部材との間に、前記点発光源との対向部分に開口を有する遮光マスクをさらに備えた
    請求項1ないし請求項4のいずれか一項に記載の配光計測装置。
  18. 点発光源から発せられた光を投影する投影面を有する拡散部材と、前記投影面を撮像する撮像部と、前記撮像部で撮像された映像を処理する演算部とを備えた装置の前記演算部において、前記点発光源から発せられた光が前記投影面に照射されている時に前記撮像部によって撮像された前記投影面の映像の輝度分布を前記点発光源の配光分布に変換する変換式を用いて、前記輝度分布から前記配光分布を導出する
    配光計測方法。
  19. 点発光源から発せられた光を投影する投影面を有する拡散部材と、前記投影面を撮像する撮像部と、前記撮像部で撮像された映像を処理する演算部とを備えた装置において、前記点発光源から発せられた光が前記投影面に照射されている時に前記撮像部によって撮像された前記投影面の映像の輝度分布を前記点発光源の配光分布に変換する変換式を用いて、前記輝度分布から前記配光分布を導出することを前記演算部に実行させる
    配光計測プログラム。
JP2010251933A 2010-11-10 2010-11-10 配光計測装置、配光計測方法および配光計測プログラム Expired - Fee Related JP5565278B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010251933A JP5565278B2 (ja) 2010-11-10 2010-11-10 配光計測装置、配光計測方法および配光計測プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010251933A JP5565278B2 (ja) 2010-11-10 2010-11-10 配光計測装置、配光計測方法および配光計測プログラム

Publications (2)

Publication Number Publication Date
JP2012103107A true JP2012103107A (ja) 2012-05-31
JP5565278B2 JP5565278B2 (ja) 2014-08-06

Family

ID=46393688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010251933A Expired - Fee Related JP5565278B2 (ja) 2010-11-10 2010-11-10 配光計測装置、配光計測方法および配光計測プログラム

Country Status (1)

Country Link
JP (1) JP5565278B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2853193A1 (en) * 2013-09-30 2015-04-01 Canon Kabushiki Kaisha Object information acquiring apparatus
WO2015045893A1 (en) * 2013-09-30 2015-04-02 Canon Kabushiki Kaisha Object information acquiring apparatus
JP2015215300A (ja) * 2014-05-13 2015-12-03 凸版印刷株式会社 光源の配光分布および物体の双方向反射率分布関数測定のための装置、方法、及びプログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6438617A (en) * 1987-08-04 1989-02-08 Yaskawa Denki Seisakusho Kk Measuring apparatus of light distribution
JPH02126130A (ja) * 1988-11-04 1990-05-15 Matsushita Electric Ind Co Ltd 半導体レーザ装置のファーフィールドパターンの検査方法
JPH0438436A (ja) * 1990-06-04 1992-02-07 Hamamatsu Photonics Kk 光源の配光測定装置
JP2002005785A (ja) * 2000-06-26 2002-01-09 Matsushita Electric Works Ltd 赤外線モジュールの特性測定方法
JP2010004035A (ja) * 2008-05-22 2010-01-07 Mitsubishi Chemicals Corp 半導体発光装置、照明装置、および画像表示装置
JP2012098131A (ja) * 2010-11-01 2012-05-24 Unitec Co Ltd 配光特性測定装置、配光特性検査装置、配光特性測定プログラム、配光特性測定方法および配光特性検査方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6438617A (en) * 1987-08-04 1989-02-08 Yaskawa Denki Seisakusho Kk Measuring apparatus of light distribution
JPH02126130A (ja) * 1988-11-04 1990-05-15 Matsushita Electric Ind Co Ltd 半導体レーザ装置のファーフィールドパターンの検査方法
JPH0438436A (ja) * 1990-06-04 1992-02-07 Hamamatsu Photonics Kk 光源の配光測定装置
JP2002005785A (ja) * 2000-06-26 2002-01-09 Matsushita Electric Works Ltd 赤外線モジュールの特性測定方法
JP2010004035A (ja) * 2008-05-22 2010-01-07 Mitsubishi Chemicals Corp 半導体発光装置、照明装置、および画像表示装置
JP2012098131A (ja) * 2010-11-01 2012-05-24 Unitec Co Ltd 配光特性測定装置、配光特性検査装置、配光特性測定プログラム、配光特性測定方法および配光特性検査方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2853193A1 (en) * 2013-09-30 2015-04-01 Canon Kabushiki Kaisha Object information acquiring apparatus
US20150090037A1 (en) * 2013-09-30 2015-04-02 Canon Kabushiki Kaisha Object information acquiring apparatus
WO2015045893A1 (en) * 2013-09-30 2015-04-02 Canon Kabushiki Kaisha Object information acquiring apparatus
CN104510445A (zh) * 2013-09-30 2015-04-15 佳能株式会社 被检体信息获取装置
US9939367B2 (en) 2013-09-30 2018-04-10 Canon Kabushiki Kaisha Object information acquiring apparatus
JP2015215300A (ja) * 2014-05-13 2015-12-03 凸版印刷株式会社 光源の配光分布および物体の双方向反射率分布関数測定のための装置、方法、及びプログラム

Also Published As

Publication number Publication date
JP5565278B2 (ja) 2014-08-06

Similar Documents

Publication Publication Date Title
JP5652536B2 (ja) 計測装置
KR100753885B1 (ko) 촬상 장치
JP5486692B2 (ja) 積分球光度計およびその測定方法
KR101350214B1 (ko) 비접촉식 발광다이오드 검사장치와 이를 이용한 검사방법
JP6883869B2 (ja) 画像検査装置、画像検査方法、及び画像検査装置用部品
TWI338771B (en) Position detecting device, position detecting method, test device and manufacturing device of camera module
US11467261B2 (en) Distance measuring device and moving object
TW200813398A (en) Surface inspection device
US20160252982A1 (en) Methods and apparatus for an optical system outputting diffuse light and having a sensor
WO2012042943A1 (ja) 投光ビームの調整方法
JP2013190394A (ja) パターン照明装置、及び測距装置
JP2006145487A (ja) 形状計測装置用光学系
JP5565278B2 (ja) 配光計測装置、配光計測方法および配光計測プログラム
TWI452270B (zh) 量測裝置及其量測方法
KR101416860B1 (ko) 카메라 렌즈 모듈 이물 검사 시스템
TWI426247B (zh) 光源測量方法
JP2011033508A (ja) 被測定物の特性計測装置、被測定物の特性計測方法、プログラムおよび発光体
KR101447857B1 (ko) 렌즈 모듈 이물 검사 시스템
JP2020064734A (ja) 照明装置
JP7328824B2 (ja) 三次元形状測定装置及び三次元形状測定方法
JP2012098131A (ja) 配光特性測定装置、配光特性検査装置、配光特性測定プログラム、配光特性測定方法および配光特性検査方法
JP2021085815A (ja) 光照射装置、検査システム、及び、光照射方法
JP2018113420A (ja) 発光装置及び発光装置を用いた撮像装置
TWI834843B (zh) 檢查裝置及檢查方法
TW202300859A (zh) 測量裝置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140602

LAPS Cancellation because of no payment of annual fees