JP2012100595A - Cultivation container, method for cultivating fruit vegetable with high sugar content, and tomato with high sugar content - Google Patents
Cultivation container, method for cultivating fruit vegetable with high sugar content, and tomato with high sugar content Download PDFInfo
- Publication number
- JP2012100595A JP2012100595A JP2010252808A JP2010252808A JP2012100595A JP 2012100595 A JP2012100595 A JP 2012100595A JP 2010252808 A JP2010252808 A JP 2010252808A JP 2010252808 A JP2010252808 A JP 2010252808A JP 2012100595 A JP2012100595 A JP 2012100595A
- Authority
- JP
- Japan
- Prior art keywords
- container
- cultivation
- root
- sugar content
- tomato
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Cultivation Of Plants (AREA)
- Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)
Abstract
Description
本発明は、栽培容器、高糖度の果菜の栽培方法、及び高糖度トマトに関する。 The present invention relates to a cultivation container, a method for cultivating high sugar content fruit vegetables, and a high sugar content tomato.
トマト(Solanum lycopersicum)は、栄養価の高い栽培植物であり、広く普及している。このうち、果実体の糖度が高く商品価値が高い、いわゆる「高糖度トマト」を生産するための様々な栽培技術が開発されている。
高糖度トマトは、通常のトマトの栽培品種に対して水ストレスを与えることで生産できる。
たとえば、非特許文献1、及び非特許文献2を参照すると、防根シートや、隔離床等により根域を制限して高糖度トマトを生産する方法が記載されている。
さらに、非特許文献3、非特許文献4、及び非特許文献5を参照すると、点滴灌漑などにより節水することで植物に極端な水ストレスを与える方法が記載されている。
また、非特許文献6を参照すると、養液栽培における養液組成制御によって、塩類ストレスを介した水ストレスを与える方法も記載されている。
Tomato (Solanum lycopersicum) is a cultivated plant with high nutritional value and is widely spread. Among these, various cultivation techniques for producing so-called “high sugar content tomatoes” having high sugar content and high commercial value have been developed.
High sugar content tomatoes can be produced by applying water stress to normal tomato cultivars.
For example, referring to
Furthermore, referring to
Further, referring to
さらに、従来の高濃度トマトの栽培方法として、特許文献1を参照すると、養液栽培期間のうち、少なくとも1週間以上の栽培期間を、EC(電気伝導度)0.5から3.0S/mの範囲の高EC養液を用いて栽培することにより高糖度トマトの生産を実現する栽培方法が開示されている(以下、従来技術1とする。)。
Furthermore, referring to
また、特許文献2を参照すると、硝酸性窒素含有量が0.27mg/L以上、ケイ酸含有量が3.2mg/L以上で、大腸菌群数が1.8MPN/100ml未満で一般細菌数が1/ml以下の海水の希釈液をトマトに与えて栽培することで高糖度トマトの生産を実現する栽培方法が開示されている(以下、従来技術2とする。)。
Further, referring to
また、特許文献3を参照すると、pF1.5から2.0の水分域における有効水分量が250L/m3以上400L/m3以下であり、pF2.0から3.2の水分域における有効水分量が30L/m3以上である培地を、周辺土壌から隔離された状態とし、そこに栽培しようとする植物を植え付け、水又は液肥を供給して栽培する栽培方法が開示されている(以下、従来技術3とする。)。
この従来技術3の栽培方法では、植物が養水分を過剰に吸収し栄養・生殖生長のバランスを崩すことなく、適度な水分条件を維持することが可能となる。この従来技術3では、適当な培地の容量、高さを設定し、水分センサーを用いて給液制御することにより、水分ストレス条件を安定的に維持することが可能となり、高糖度トマトの生産を実現している。
Referring also to
In the cultivation method of this
ここで、従来のトマトの高糖度化に関する栽培方法、及び従来技術1〜3に記載された栽培方法においては、以下のような問題があった:
(1)灌水量を減らすと浸潤域が小さくなり、根系の大部分が乾燥下に曝され、地上部に過剰なストレスが付加されるため、灌水管理が困難であった
(2)養液組成制御による栽培においても、根系全体が高濃度の養液に曝され、同様に灌水管理が困難であるという問題が生じていた
(3)塩ストレス付与による栽培では土壌に塩類が蓄積することによる塩類障害が起こるため、所定の頻度での土壌の入れ替えが必要であった
(4)果実が小果となり生産量が極端に少なくなることがあった
(5)尻腐れ果等の生理障害が多発することがあった
Here, the conventional cultivation methods for increasing the sugar content of tomatoes and the cultivation methods described in the
(1) When the irrigation amount was reduced, the infiltration area became smaller, and most of the root system was exposed to dryness, and excessive stress was added to the above-ground part, so irrigation management was difficult (2) nutrient solution composition Even in controlled cultivation, the whole root system was exposed to a high concentration nutrient solution, and there was a problem that irrigation management was similarly difficult. (3) Salts due to accumulation of salts in soil in cultivation with salt stress Since the failure occurred, it was necessary to replace the soil at a predetermined frequency. (4) Fruits became small and the production amount was extremely reduced. (5) Physiological disorders such as buttocks rot occurred frequently. Happened
この原因として、
(1)生育期が高温・多日照となる夏秋期ではトマトの蒸散・呼吸量が多い
(2)天候よって1日当たりの蒸散量が大きく変動し、精密な灌水管理を要する
(3)根域制限栽培で灌水量を減らすと浸潤域(灌水が及ぶ範囲)が小さくなり、根系の大部分が乾燥条件下に曝される
等の原因が指摘されていた。
これらの問題点が原因で、従来の栽培方法、及び従来技術1〜3に記載された栽培方法を用いてトマトを栽培する実際の栽培現場では、栽培土壌内に植物が生育するために必要である水分を維持しつつ、水ストレスを付加することが求められる。
したがって、水分センサー等を用いた厳密な水分管理が必要となり、高糖度トマトを安定的に生産することは困難であった。
このため、高糖度によって差別化を目的とした一部の生産者に受け入れられたとしても一般的な技術にはなりにくく、高糖度トマトを安定して生産することが難しかった。
As this cause,
(1) Tomato transpiration and respiration are high in summer and autumn when the growing season is hot and sunshine. (2) The amount of transpiration per day varies greatly depending on the weather, and precise irrigation management is required. It has been pointed out that when irrigation is reduced in cultivation, the infiltrated area (the area covered by irrigation) becomes smaller, and most of the root system is exposed to dry conditions.
Due to these problems, in the actual cultivation site where tomato is grown using the conventional cultivation method and the cultivation methods described in the
Therefore, strict moisture management using a moisture sensor or the like is required, and it has been difficult to stably produce a high sugar content tomato.
For this reason, even if it was accepted by some producers aiming at differentiation by high sugar content, it was difficult to become a general technique, and it was difficult to stably produce high sugar content tomatoes.
本発明は、このような状況に鑑みてなされたものであり、上述の課題を解消することを課題とする。 This invention is made | formed in view of such a condition, and makes it a subject to eliminate the above-mentioned subject.
本発明の栽培容器は、培地が収容されて下層根の根域となり、上面が開放された下容器と、前記下容器上に配置され、植物が定植され、上層根の根域となる培地が収容される上容器と、前記上容器に植えられた植物の根を下容器に進入させるための孔とを備えることを特徴とする。
本発明の栽培容器は、前記下容器は、前記上容器より広い面積であり、前記下容器には前記培地が暴露された暴露部が設けられ、前記上容器の前記培地及び前記下容器の前記暴露部に、それぞれ灌水手段を配置し、前記上容器の前記灌水手段と、前記下容器の前記灌水手段の灌水とが、各別に制御されることを特徴とする。
本発明の栽培容器は、前記上容器の培地と前記下容器の培地との容積比は2:1程度であることを特徴とする。
本発明の栽培容器は、前記上容器と前記下容器との間に空隙が設けられていることを特徴とする。
本発明の栽培容器は、前記空隙は、前記下容器に灌水された水又は液肥を前記上容器に浸透させない空隙であることを特徴とする。
本発明の栽培容器は、前記上容器から前記下容器へ前記孔を通して培地が進入するのを規制する規制部が設けられていることを特徴とする。
本発明の栽培容器は、前記規制部は網であり、メッシュの幅が1mm×1mm〜5mm×5mm程度であることを特徴とする。
本発明の栽培容器は、前記上容器から前記下容器への前記孔は、前記植物の根がすべて通らないよう、小さくされていることを特徴とする。
本発明の高糖度の果菜の栽培方法は、高糖度の果菜の栽培方法において、植物体の上層根の根域と下層根の根域とを垂直方向に隔て、着果期からは前記上層根の根域となる培地を乾燥化させることを特徴とする。
本発明の高糖度トマトは、前記高糖度の果菜の栽培方法により栽培された果実体であることを特徴とする。
本発明の高糖度トマトは、前記果実体は、大玉品種においては1果重が100g以上であり、中玉品種においては1果重が30g以上であり、通常の土壌栽培に比べて糖度が1度以上高いことを特徴とする。
The cultivation container of the present invention contains a culture medium and becomes a root region of a lower root, a lower container whose upper surface is opened, a medium placed on the lower container, a plant is planted, and a root region of the upper root is prepared. It is characterized by comprising an upper container to be accommodated and a hole for allowing the root of the plant planted in the upper container to enter the lower container.
In the cultivation container according to the present invention, the lower container has a larger area than the upper container, and the lower container is provided with an exposed portion to which the medium is exposed, and the medium of the upper container and the medium of the lower container are provided. An irrigation means is arranged in each of the exposed portions, and the irrigation means of the upper container and the irrigation of the irrigation means of the lower container are controlled separately.
The cultivation container of the present invention is characterized in that the volume ratio of the culture medium in the upper container and the culture medium in the lower container is about 2: 1.
The cultivation container of the present invention is characterized in that a gap is provided between the upper container and the lower container.
The cultivation container of the present invention is characterized in that the gap is a gap that does not allow water or liquid fertilizer irrigated by the lower container to permeate the upper container.
The cultivation container of the present invention is characterized in that there is provided a restricting portion for restricting a medium from entering through the hole from the upper container to the lower container.
The cultivation container of the present invention is characterized in that the regulation part is a net, and the width of the mesh is about 1 mm × 1 mm to 5 mm × 5 mm.
The cultivation container of the present invention is characterized in that the hole from the upper container to the lower container is made small so that all the roots of the plant do not pass.
The method for cultivating high sugar content fruit vegetables of the present invention is a method for cultivating high sugar content fruit vegetables, in which the root region of the upper root and the root region of the lower root of the plant are separated in the vertical direction, and the upper root from the fruiting stage. It is characterized by drying the culture medium which becomes the root region of.
The high sugar content tomato of the present invention is a fruit body cultivated by the above-described high sugar content fruit vegetable cultivation method.
In the high sugar content tomato of the present invention, the fruit body has a fruit weight of 100 g or more in the large varieties, and has a fruit weight of 30 g or more in the medium varieties, and has a sugar content of 1 compared to normal soil cultivation. It is characterized by a higher degree.
本発明によれば、トマトの着果期以降には上層根の根域となる培地を乾燥化させることで、高糖度のトマトの生育に適した弱い水ストレスを上層根に付加でき、高糖度のトマトを簡単な作業で安定して生産することができる栽培方法、この栽培方法に用いる栽培容器、及びこの栽培方法により生産される高糖度トマトを提供することができる。 According to the present invention, by drying the medium that becomes the root region of the upper layer roots after the tomato fruiting stage, a weak water stress suitable for the growth of tomatoes having a high sugar content can be added to the upper layer roots. The cultivation method which can produce the tomato of this stably by simple operation | work, the cultivation container used for this cultivation method, and the high sugar content tomato produced by this cultivation method can be provided.
<実施の形態>
本発明の発明者は、上述の課題を解決するために鋭意研究を行い、上層根の根域と下層根の根域とを隔て、着果期からは前記上層根の根域となる培地を乾燥化させることで、トマトの作物体に適度の水ストレスを与える栽培方法を確立し、この栽培方法に用いる容器を開発するに至った。
<Embodiment>
The inventor of the present invention has intensively studied to solve the above-mentioned problems, separating the root zone of the upper root from the root zone of the lower root, and from the fruiting stage, a medium that becomes the root zone of the upper root. By making it dry, the cultivation method which gives moderate water stress to the crop body of a tomato was established, and it came to develop the container used for this cultivation method.
本発明の実施の形態に係るトマトの栽培方法においては、植物根を介して湿潤土壌から乾燥土壌へ土壌水分が移動する現象である「hydraulic lift」を用いる。
hydraulic liftは、樹木や草本類で広く報告されている現象である(例えば、Caldwell1, M.M., T.E. Dawson, J.H. Richards、”Hydraulic lift: consequences of water efflux from the roots of plants”、Oeclogia、、、1997、、113、、p.151−161、等を参照)。
hydraulic liftは、植物体内の水分ポテンシャルと、土壌水ポテンシャルの勾配によって発生し、「植物スプリンクラー」と呼ばれている。
この現象を栽培現場へ利用すると、植物が水分を必要としない夜間などに乾燥土壌中に水分を放出することで、軽度の水分ストレスを植物体に付与する栽培が可能になる。
In the tomato cultivation method according to the embodiment of the present invention, “hydraulic lift”, which is a phenomenon in which soil moisture moves from wet soil to dry soil through plant roots, is used.
Hydratic lift is a phenomenon that has been widely reported in trees and herbs (eg, Caldwell1, MM, TE Dawson, JH Richards, “Hydraulic lift: consequences of water ef ef of plants ", Oeclogia, 1997, 113, p. 151-161, etc.).
The hydraulic lift is generated by the gradient between the water potential in the plant body and the soil water potential, and is called “plant sprinkler”.
When this phenomenon is used in a cultivation site, it is possible to perform cultivation in which mild moisture stress is imparted to a plant body by releasing moisture into dry soil at night when the plant does not require moisture.
以下、図面を参照して、本発明の一実施形態について説明する。
図1は、本実施形態のトマト栽培容器1を示す図であり、図1(a)は上方からの斜視図、図1(b)は前方から見た断面図である。
なお、以下の説明で用いる上下、前後、左右の各方向は説明に用いる各図に示している。この上下、前後、左右は説明のために記載したもので、実際の配置と異なってよいことは勿論である。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a view showing a
In addition, each direction of the up-down, front-back, left-right used in the following description is shown in each figure used for description. The top, bottom, front, back, left and right are described for the sake of explanation, and of course may be different from the actual arrangement.
図1に示すように、トマト栽培容器1は、下容器3上に上容器2を配置して構成されている。下容器3は、上端が開放した四角箱状の容器体3Aを前後方向に1列に並べて構成されている。上容器2は、上端が開放した四角箱状を呈しており、下容器3の前後の側板間に架け渡されている。上容器2は、下容器3と同じ前後の長さ、下容器3よりも狭い左右の幅を有しており、下容器3の上端開口部が左右の端部を上方に暴露させるように配置されている。上容器2及び下容器3には、礫、砂、ロックウール、土、樹皮、おがくず、ポリウレタン等である培地5、6が収容される。また、上容器2と下容器3の培地5と培地6との容積比は2:1程度が好適である。
なお、培地5、6に、水分保持剤等を加えることも可能である。特に、上容器の培地5には、水分保持剤を加えることで、植物体に対する水ストレスを適宜調整できる。
As shown in FIG. 1, the
It is also possible to add a moisture retaining agent or the like to the
上容器2の下板21には、下容器3の各容器体3Aと上容器2とを連通させる孔22が形成されている。孔22は、上容器2に定植されたトマト7の根71、72を下容器3に進入させるためのものであり、下板21の左右の縁部に沿って等間隔で複数形成されている。また、孔22は、排水溝を兼ねており、植物の根がすべて通らないよう、小さく構成されている。つまり、上容器2の孔22については、全部の根を下容器に下ろすように大きな孔を開けると、うまく上容器が乾燥せず、水ストレスを与えることができない。このため、小さな孔22を加工し、例えば、植物体7の植えられている箇所から所定間隔離して、配置することが好ましい。また、スリット状の細い孔22を左右の縁部に沿って開口させてもよい。
下板21の上面には、上容器2から下容器3へ孔22を通して培地5が進入するのを規制する規制網23(規制部、規制部材)が配置されている。規制網23としては、例えば、プラスチック網等の目の細かい網を用い、上容器2から下容器3へ水分や液肥は通すものの、培地5は通しにくいように構成することが好適である。この規制網23としては、例えば、メッシュ幅が1mm×1mm〜5mm×5mm程度のプラスチック網を用いることができる。このうち、3mm×3mm程度のプラスチック網を用いることがより好適である。
また、上容器2と下容器3との間で、培地5と培地6とが直接接触しないように、空隙とすることが好適である。これにより、下容器3の培地6に水分や液肥を多く供給して水分含有量を高めても、上容器2の培地5は乾燥状態に保つことができる。
The
On the upper surface of the
Moreover, it is suitable to make it a space | gap so that the
上容器2の培地5上には、灌水チューブ41(灌水手段)が前後方向に沿って配置される。灌水チューブ41は、培地5に定植されたトマト7の左右に1本ずつ配置される。下容器3の培地6上には、上容器2の左右の側壁に沿って、培地5が暴露した暴露部に、灌水チューブ42(灌水手段)が1本ずつ配置される。灌水チューブ41、42の灌水は、それぞれ別に制御することができる。
なお、この灌水チューブ41、42としては、栽培用の点滴チューブ等を用いることができるが、これに限られず、スプリンクラー等も適宜用いることができる。
An irrigation tube 41 (irrigation means) is disposed on the
In addition, as this
トマト栽培容器1では、上容器2の培地5にトマト7を定植し、灌水チューブ41で水分や液肥が培地5に供給(灌水)する。培地5に定植されたトマト7は、培地5に根を張り、その後孔22を通して下容器3の培地6にまで根を延ばす。
この結果、図1に示すように、培地5が上層根71の根域となり、培地6が下層根72の根域となる。培地6が下層根72の根域になった後は、灌水チューブ42からも培地6に水分や液肥を供給する。下層根72は、培地6から水分や液肥を吸収し、吸収した水分や液肥を上層根71側に供給する。上層根71は、培地5から水分や液肥を吸収し、下層根72側から供給された水分や液肥と共に主枝側に供給する。
In the
As a result, as shown in FIG. 1, the
トマト7が着果期になると、その後は灌水チューブ41から培地5への水分や液肥の供給を制限し、培地6のみへ水分や液肥を供給する。これにより、培地5が乾燥化する。
培地6が乾燥化すると、上層根71は、下層根72から供給された水分や液肥を主枝側に供給するだけでなく、余分な水分や液肥を培地5に放出する。すなわち、上容器2の培地5を乾燥層とし、下容器3の培地6を湿潤層とすることで、hydric liftが起こる。
よって、下層根72から水分や液肥の供給を受けられない上層根71も、培地5に放出された水分や液肥の一部を吸収して主枝側に供給することが可能となる。
When the
When the
Therefore, the
このように、上容器2の培地5への水分や液肥の供給を制限することで、高糖度のトマト7の生育に必要な水分や液肥を下層根72から上層根71の主枝側に供給しつつ、余分な水分や液肥が上層根71の主枝に供給されるのを抑えて、上層根71に適度に弱い水ストレスを付加することが可能となる。
In this way, by limiting the supply of water and liquid fertilizer to the medium 5 in the
本実施形態によれば、上容器2の培地5にトマト7を定植することで、上容器2の培地5を上層根71の根域とし、下容器3の培地6を下層根72の根域とすることができる。
このため、着果期以降には培地5を乾燥化させることで、高糖度のトマト7の生育に適した弱い水ストレスを上層根71に付加することが可能となる。よって、高糖度のトマトを簡単な作業で安定して生産することが可能となる。
According to the present embodiment, by planting
For this reason, it is possible to add weak water stress suitable for the growth of the high
以上のように構成することで、以下のような効果を得ることができる。
まず、従来の栽培方法、及び従来技術1〜3に記載された栽培方法においては、高度な管理が必要であり、高糖度によって差別化を目的とした一部の生産者に受け入れられたとしても一般的な技術にはなりにくく、高糖度トマトを安定して生産することが難しかった。
これに対して、本発明の実施の形態に係る栽培容器及び栽培方法は、従来の高糖度トマトの栽培で問題であった灌水管理の煩雑さを解消し、簡便な水管理の下、高糖度トマトの栽培を可能とする。
具体的には、本発明の実施の形態に係る栽培容器及び栽培方法を用いることによって、上層の灌水停止期間中に下層の根からのみ吸水し、上層の乾燥土壌へhydraulic liftによって水を放出する。
この結果、トマト地上部には適度に弱い水ストレスが付加され、例えば、大玉品種のトマトでは1果重が100g以上で平均160g程度の果菜が、中玉品種のトマトでは1果重が30g以上で平均35g程度の果実が生産できる。この際、従来の高糖度トマト生産での問題であった果実重の減少という問題点を解決し、従来の栽培方法に比べ糖度を1度程度以上させることができる。
With the configuration described above, the following effects can be obtained.
First, in the conventional cultivation method and the cultivation method described in the
On the other hand, the cultivation container and cultivation method according to the embodiment of the present invention eliminates the complexity of irrigation management, which has been a problem in the cultivation of conventional high sugar content tomatoes, and has high sugar content under simple water management. Allows tomato cultivation.
Specifically, by using the cultivation container and cultivation method according to the embodiment of the present invention, water is absorbed only from the roots of the lower layer during the period of irrigation of the upper layer, and water is released to the dry soil of the upper layer by a hydraulic lift. .
As a result, moderately weak water stress is applied to the above-ground part of the tomato. For example, a large tomato variety of tomatoes has a fruit weight of 100 g or more and an average of about 160 g of fruit vegetables, and a medium tomato variety of tomatoes has a fruit weight of 30 g or more. Can produce an average of about 35g of fruit. At this time, the problem of reduction in fruit weight, which was a problem in conventional high sugar content tomato production, can be solved, and the sugar content can be increased to about 1 degree or more compared to conventional cultivation methods.
すなわち、本発明の実施の形態に係る栽培方法及び栽培容器を用いることで、従来よりも簡便に、着果期に下容器3を湿潤にし上容器2を乾燥させる灌水法により水ストレスを付加し、果重を大きく減らすことなく、高糖度の果菜を得る栽培方法を提供することができる。これにより、高糖度トマトのような付加価値の高い果菜を得ることができる。
また、塩分を含まない灌水のコントロールだけで植物体に水ストレスを与えられるため、土壌に塩類が蓄積することによる塩類障害が起こらないという効果が得られる。
That is, by using the cultivation method and the cultivation container according to the embodiment of the present invention, water stress is applied by an irrigation method in which the
Moreover, since water stress is given to a plant body only by the irrigation control which does not contain salt, the effect that the salt damage by the accumulation of salt in soil does not occur is acquired.
なお、上記実施形態では、下容器3が上容器2に比べて左右の幅が狭く形成されている場合について説明したが、上容器2と下容器3とが同じ左右の幅に形成されていてもよい。
また、上容器2及び下容器3の形状も四角箱状には限定されない。また、上容器2に植えられたトマト7の根71、72を下容器3に進入させられるのであれば、孔22の形状や大きさや形成位置は任意であり、例えば、上容器2の左右の側板に開口させられていてもよい。
また、管路等の孔を通して上容器2から下容器3に根を進入させてもよい。また、上記実施形態では、上容器2の下板21と培地6との間に空隙が設けられている場合について説明したが、空隙が設けられていなくてもよい。この場合、空隙の代わりに、下容器3から余分な水分が上容器2に進入しないように、溢れた水分を吸収する吸収路や吸収剤を用いる等の構造を適宜用いることができる。
また、下板21の左右の中央部にも孔22が形成されていてもよい。さらに、上容器2及び下容器3に収容された培地5、6への灌水方法は任意であり、灌水チューブ41、42を用いたものには限定されない。
In the above embodiment, the case has been described in which the
Further, the shapes of the
Further, the roots may enter the
Further, holes 22 may be formed in the left and right central portions of the
また、上記実施形態では、高糖度トマトの栽培方法について特に記載したが、本実施形態の栽培方法は、他にも適度に水ストレスを与えて高糖度の果実を得るための各種果菜、果物、植物の栽培方法に適用可能である。たとえば、あまり高糖度でない瓜の品種等であっても、簡便に、水ストレスを与えて高糖度の果菜を得ることができる。また、リンゴ等の樹木にも適用することができる。 Moreover, in the said embodiment, although especially described about the cultivation method of a high sugar content tomato, the cultivation method of this embodiment is various fruit vegetables, fruit, etc. for giving a moderate high water stress and obtaining the fruit of high sugar content. Applicable to plant cultivation methods. For example, even if the varieties of grapes are not so high in sugar content, water vegetables can be easily applied to obtain fruit vegetables with high sugar content. It can also be applied to trees such as apples.
また、図2を参照すると、下容器の上縁部に設けられた段差上に上容器が載置されるように構成され、下容器の土壌と上容器との間に間隙が形成されるようにしてもよい。
また、図2に示すように、下容器の段差に嵌め合わされる段差が上容器に設けられていてもよい。
Referring to FIG. 2, the upper container is configured to be placed on a step provided at the upper edge of the lower container, so that a gap is formed between the soil of the lower container and the upper container. It may be.
Moreover, as shown in FIG. 2, the upper container may be provided with a step that is fitted to the step of the lower container.
以下、本発明の実施の形態に係るトマト栽培容器1を用いて、栽培処理を行い、その結果がどう変化するのかを具体的に実施例として説明する。
しかしながら、本発明は以下の実施例に限定されるものではない。
Hereinafter, the cultivation process is performed using the
However, the present invention is not limited to the following examples.
(栽培条件)
まず、上・下2層の容器に根系を分割して、着果期から上層を乾燥化させ下層にのみ灌水する本発明の実施例1に係るトマトの栽培方法について栽培試験を行った。
トマト(Lycopersicon esculentum Mill.)の供試品種として、中玉品種の"ルイ60"(発売元:タキイ種苗株式会社、台木:"ベスパ")を用い、抑制作型において栽培試験を行った。
栽培は、2010年に、秋田県農林水産技術センター農業試験場内のガラスハウス内で、15度以上を目安に加温して行った。
(Cultivation conditions)
First, the root system was divided into two upper and lower containers, and the cultivation test was conducted on the tomato cultivation method according to Example 1 of the present invention in which the upper layer was dried from the fruiting stage and only the lower layer was watered.
As the test varieties of tomato (Lycopersicon esculentum Mill.), “
Cultivation was carried out in 2010 in a glass house in the Akita Prefectural Agriculture, Forestry and Fisheries Technology Center Agricultural Experiment Station with heating at 15 degrees or more as a guide.
試験は、発明者が製造した50L(50×50×20cm)の上容器の底中央に直径8cmの孔を切り、直径8cmの塩化ビニール管を用いて、50Lまたは25L(50×25×20cm)の下容器と連結した上下2層構造の容器を用いた。
試験区としては、黒ボク土1/2区、黒ボク土1区、砂土1/2区、砂土1区、対照区の5区を設定した。黒ボク土1/2区は、25Lの下容器に黒ボク土18.8Lを充填した処理区である。黒ボク土1区は、50Lの下容器に黒ボク土37.5Lを充填した処理区である。砂土1/2区は、25Lの下容器に砂土18.8Lを充填した処理区である。砂土1区は、50Lの下容器に砂土37.5Lを充填した処理区である。対照区は、50Lの下容器に黒ボク土37.5Lを充填し、上下容器に灌水を継続した完全灌水区である。
いずれの区も、上容器には37.5Lの黒ボク土を充填し、トマトを移植した。
7月13日に播種、8月29日に定植し、5段果房上の本葉2葉を残して摘心する主枝1本仕立てによって栽培し、10月11日から1月8日にかけて収穫した。
施肥は、肥効調節肥入り複合肥料を用いて、株当たり15gの窒素量を基肥として上容器に施用した。
The test was performed by cutting an 8 cm diameter hole in the center of the bottom of a 50 L (50 × 50 × 20 cm) upper container manufactured by the inventor, and using an 8 cm diameter vinyl chloride tube, 50 L or 25 L (50 × 25 × 20 cm). A container having an upper and lower two-layer structure connected to the lower container was used.
As test zones, there were set 5 districts, namely,
In any group, 37.5 L of black soil was filled in the upper container, and tomatoes were transplanted.
Seeded on July 13, planted on August 29, cultivated by tailoring one main branch that leaves two leaves on the 5-stage fruit bunches, harvested from October 11 to January 8 did.
Fertilization was applied to the upper container using 15 g of nitrogen per strain as a basic fertilizer, using a compound fertilizer with fertilizer control.
各区は、定植後から9月11日まで上容器に適宜灌水し、9月12日以降は点滴チューブを用いて、上下容器に1日当たり1500mLを灌水した。
対照区を除く処理区は、10月5日から上容器の灌水を停止して灌水制限を行った。灌水は、上下容器に点滴チューブ(Netafim社製、「Stream Line」)を各2本配置して行った。
In each section, the upper container was appropriately irrigated from after planting to September 11, and 1500 mL per day was irrigated to the upper and lower containers using an infusion tube after September 12.
In the treatment group except the control group, irrigation was restricted by stopping irrigation of the upper container from October 5th. Irrigation was carried out by placing two drip tubes ("Stream Line", manufactured by Netafim) on each of the upper and lower containers.
(測定項目および測定方法)
葉柄水ポテンシャルを、晴天日の11:00から14:00の間に、3段果房上第1葉の小葉を採取してプレッシャーチャンバー法によって測定した。水ポテンシャルは、植物の水分保持力を示す値で、単位はPa(パスカル)であり、水の化学ポテンシャル(j/mol)を水の部分モル体積量(m3/mol)で割った熱力学的ポテンシャルエネルギーを示す。
収穫物調査は、各株の全果実について果実糖度と1果重を測定した。
(Measurement items and measurement methods)
The petiole water potential was measured between 11:00 and 14:00 on a sunny day by collecting the first leaflets on the three-stage fruit tress by the pressure chamber method. The water potential is a value indicating the water retention capacity of the plant, the unit is Pa (pascal), and the thermodynamics obtained by dividing the chemical potential of water (j / mol) by the partial molar volume of water (m 3 / mol). The potential energy.
In the harvest survey, the sugar content and the fruit weight of all the fruits of each strain were measured.
(結果)
図3を参照して、本発明の実施の形態の実施例1における、抑制栽培での葉柄水ポテンシャルの推移の実験結果について説明する。図3の縦軸は、葉柄水ポテンシャル(MPa)を示し、横軸は測定日を示している。各区を示すグラフの誤差線は、標準偏差(n=3)である。
図3によると、砂土1区の葉柄水ポテンシャルは、−1.5MPa以下に低下する株が散見され、トマト地上部には強い水ストレスが付加されていた。
他の処理区の水ポテンシャルも対照区に比べて低く推移し、上容器の灌水制限によってトマト地上部には水ストレスが付加されていた。
(result)
With reference to FIG. 3, the experiment result of transition of the petiole water potential in the restraint cultivation in Example 1 of the embodiment of the present invention will be described. The vertical axis in FIG. 3 indicates the petiole water potential (MPa), and the horizontal axis indicates the measurement date. The error line of the graph showing each section is the standard deviation (n = 3).
According to FIG. 3, strains of the petite water potential in the 1st section of the sandy soil were found to decrease to −1.5 MPa or less, and strong water stress was applied to the tomato above-ground part.
The water potential of the other treatments also remained lower than that of the control, and water stress was added to the above-ground parts of the tomatoes due to the irrigation restriction of the upper container.
この状態での栽培結果を、下記の表1に示す。
砂土1区の1果重は平均32.2gとなり、対照区の54%まで減少し、果実糖度は対照区に比べ2.0度高くなった。
黒ボク1/2区も1果重が平均40.4gとなり、対照区の68%まで減少して、果実糖度は1.3度高くなった。
その他の処理区では、1果重が対照区に比べ有意に減少したが、果実糖度は有意差が認められなかった。
The cultivation results in this state are shown in Table 1 below.
One fruit weight of the 1st section of sand soil averaged 32.2g, decreased to 54% of the control section, and the fruit sugar content was 2.0 degrees higher than the control section.
The average weight of one fruit in the black halves also became 40.4 g, decreased to 68% of the control group, and the fruit sugar content increased by 1.3 degrees.
In the other treatment groups, the fruit weight was significantly decreased as compared with the control group, but the fruit sugar content was not significantly different.
以上の栽培結果から、灌水制限後の葉柄水ポテンシャルとトマトの糖度との関係について検討した。この結果について、図4と図5とを参照して説明する。
図4は、上述のように垂直方向に異なる水分条件の容器を配置した際の、トマトの葉柄水ポテンシャルと果実糖度の関係を示すグラフである。縦軸は、トマト果実の糖度(Brix%)を示す。Brix%は、液中の固形分濃度を表す量で、ショ糖濃度(糖度)を表す。横軸は、葉柄水ポテンシャルを示す。
図5は、同様の配置条件での、トマトの葉柄水ポテンシャルと1果重との関係を示すグラフである。縦軸は、1果重をグラム単位で示し、横軸は葉柄水ポテンシャルを示す。
これらのグラフで示すように、灌水制限後の葉柄水ポテンシャルは、果実糖度と1果重との間に関係があった。すなわち、水ポテンシャルが低下して水ストレスがかかると、果実糖度は増加し、1果重は減少した。
結果として、1果重の減少を抑えながら果実糖度を向上させる最適条件は、−1.3MPa程度であった。この条件を満たすには、上容器と下容器の容積比は2:1程度が適当であった。
From the above cultivation results, the relationship between the petiole water potential after irrigation restriction and the sugar content of tomato was examined. This result will be described with reference to FIG. 4 and FIG.
FIG. 4 is a graph showing the relationship between the tomato petiole water potential and the fruit sugar content when containers with different moisture conditions are arranged in the vertical direction as described above. A vertical axis | shaft shows the sugar content (Brix%) of a tomato fruit. Brix% is an amount representing the solid content concentration in the liquid and represents the sucrose concentration (sugar content). The horizontal axis shows the petiole water potential.
FIG. 5 is a graph showing the relationship between tomato petiole water potential and single fruit weight under similar arrangement conditions. The vertical axis shows the fruit weight in grams, and the horizontal axis shows the petiole water potential.
As shown in these graphs, the petiole water potential after irrigation restriction was related to the fruit sugar content and the fruit weight. That is, when the water potential was lowered and water stress was applied, the fruit sugar content increased and the fruit weight decreased.
As a result, the optimum condition for improving the fruit sugar content while suppressing a decrease in fruit weight was about -1.3 MPa. In order to satisfy this condition, an appropriate volume ratio of the upper container and the lower container was about 2: 1.
この結果から、上・下2層の容器に根系を分割して、着果期から上層を乾燥化させ下層にのみ灌水することで、1果重の減少を最低限に抑えつつ高糖度のトマトの栽培が可能になることが明らかになった。 From this result, the root system is divided into two upper and lower containers, and the upper layer is dried from the fruiting stage and irrigated only to the lower layer. It became clear that it became possible to grow.
(栽培条件)
次に、分割した2根系を水平に配置した栽培法である実施例2のトマトの栽培方法について栽培試験を行った。
供試品種としては、中玉品種の"ルイ60"(発売元:タキイ種苗株式会社、台木:"ベスパ")を用い、抑制作型において栽培試験を行った。
具体的には、乾燥土と湿潤土を水平方向に配置した容器を作成した。この容器では、50L(50×50×20cm)の容器を防水壁で仕切り、その中間にトマトを移植して根系を分割した。
試験区は、分割した根系の容量比と灌水制限の有無により、1:1区、1:4区、1:9区、及び対照区の4区を設定した。このうち、1:1区は、灌水を継続する18.8L容量の根系と灌水制限する18.8L容量の根系からなる試験区である。1:4区は、灌水を継続する7.5L容量の根系と灌水制限する30L容量の根系からなる試験区である。1:9区は、灌水を継続する3.8L容量の根系と灌水制限する33.7L容量の根系からなる試験区である。対照区は、灌水を継続する18.8L容量の2根系からなる完全灌水区である。
(Cultivation conditions)
Next, the cultivation test was done about the cultivation method of the tomato of Example 2 which is the cultivation method which has arrange | positioned the divided | segmented 2 root system horizontally.
As test varieties, “
Specifically, a container in which dry soil and wet soil were arranged in a horizontal direction was prepared. In this container, a 50 L (50 × 50 × 20 cm) container was partitioned by a waterproof wall, and a tomato was transplanted in the middle to divide the root system.
The test groups were divided into four groups: 1: 1, 1: 4, 1: 9, and control, depending on the volume ratio of the divided root system and the presence or absence of irrigation restriction. Among these, the 1: 1 section is a test section consisting of a 18.8 L capacity root system for continuing irrigation and an 18.8 L capacity root system for restricting irrigation. The 1: 4 section is a test section consisting of a 7.5 L root system that continues irrigation and a 30 L root system that restricts irrigation. The 1: 9 section is a test section consisting of a 3.8 L capacity root system for continuing irrigation and a 33.7 L capacity root system for restricting irrigation. The control group is a complete irrigation area consisting of a 18.8 L capacity two-root system that continues irrigation.
灌水は、定植後から9月8日までは適宜行い、9月9日以降は点滴チューブによって2根系に1日1Lを灌水した。
対照区は収穫終了時までこの灌水を継続し、他の処理区は、9月25日の灌水制限以降、容量の少ない根系にのみ1日2Lを灌水した。
その他の栽培条件等は、実施例1と同様である。
Irrigation was performed as appropriate from after planting to September 8, and after September 9, 1 L was perfused into the two root systems with an infusion tube per day.
The control group continued this irrigation until the end of harvesting, and the other treatment groups irrigated 2 L / day only to the root system with less capacity after the irrigation restriction on September 25.
Other cultivation conditions and the like are the same as in Example 1.
(測定項目および測定方法)
測定項目および測定方法は実施例1に従って行った。
(Measurement items and measurement methods)
The measurement items and measurement method were performed according to Example 1.
(結果)
図6を参照して、実施例2の結果について説明する。図6の縦軸は葉柄水ポテンシャルを示し、横軸は測定日を示す。
対照区の葉柄水ポテンシャルは、灌水制限開始前の−0.6MPaから−1.0MPaまで緩やかに低下した。各処理区も同様に推移し、根系の容積比と水ポテンシャルの関係は認められなかった。
これに対して、処理区の果実糖度と1果重も対照区とほぼ同等であり、トマト地上部には水ストレスは付加されなかった。
また、トマト地上部への水ストレスの付加は、乾燥土と湿潤土中にある根量の比率のみならず根系の形態に大きく影響を受けると推察された。
(result)
The result of Example 2 will be described with reference to FIG. The vertical axis in FIG. 6 indicates the petiole water potential, and the horizontal axis indicates the measurement date.
The petiole water potential of the control group gradually decreased from −0.6 MPa to −1.0 MPa before the start of irrigation restriction. Each treatment area changed in the same manner, and no relationship between the volume ratio of the root system and the water potential was observed.
On the other hand, the fruit sugar content and 1 fruit weight of the treated group were almost the same as the control group, and water stress was not added to the tomato above-ground part.
In addition, it was speculated that the addition of water stress to the above-ground part of tomato was greatly influenced by the root system morphology as well as the ratio of the amount of roots in dry and wet soil.
実施例2における栽培結果を、下記の表2に示す。この表2においては、各条件での1果重と乾燥度における有意差は認められなかった。 The cultivation results in Example 2 are shown in Table 2 below. In Table 2, there was no significant difference in the fruit weight and dryness under each condition.
この実施例2の栽培試験のように、分割した2根系が水平(左右)に配置された栽培法では、地上部に十分な水ストレスが付加されず、高糖度のトマトの栽培には不適であった。
すなわち、実施例1のように、上層根の根域と下層根の根域とを隔て、上層根の根域に水ストレスを付加することが重要であることが分かった。
In the cultivation method in which the divided two root systems are arranged horizontally (left and right) as in the cultivation test of Example 2, sufficient water stress is not added to the above-ground part, which is unsuitable for cultivation of high sugar content tomatoes. there were.
That is, as in Example 1, it was found that it is important to add water stress to the root zone of the upper layer root, separating the root zone of the upper layer root and the root region of the lower layer root.
(栽培条件)
次に、実施例3として、簡便な市販容器を改良して上・下2層の栽培を行う栽培方法について栽培試験を行った。
供試品種に中玉品種の"ルイ60"(発売元:タキイ種苗株式会社、台木;"ベスパ")を用い、抑制作型において栽培試験を行った。
(Cultivation conditions)
Next, as Example 3, a cultivation test was conducted on a cultivation method in which a simple commercial container was improved and cultivation of the upper and lower layers was performed.
A test of cultivating was carried out in a control cropping pattern using “
図7を参照して、この実施例3に係る栽培容器について説明する。
試験は、20L容量と30L容量の市販プランター(大和プラスチック社製)を積み重ねた容器を用いた。
具体的には、下容器の30L容量のプランターは、スノコの上に防根透水シートを敷き土壌を充填した。上容器の20L容量のプランターは、下容器からの灌水の流入を防ぐため、底の外側に厚さ2cmの発泡スチロール板を貼った。
また、底の四角に6mm×12cmの孔を開けた。孔の上にはメッシュの幅3mm×3mmのプラスチック網を置き、空隙ができるように加工した。この網により、上容器の土が下容器に流出することを防ぐことができる。
なお、図7に示した上容器及び下容器の寸法の単位は(mm)である。
With reference to FIG. 7, the cultivation container which concerns on this Example 3 is demonstrated.
The test used the container which stacked | stacked the commercial planter (made by Daiwa Plastics) of a 20L capacity | capacitance and a 30L capacity | capacitance.
Specifically, the planter with a capacity of 30 L in the lower container was filled with soil by spreading a root-proof permeable sheet on the slats. In order to prevent inflow of irrigation from the lower container, the planter having a capacity of 20 L in the upper container had a 2 cm thick polystyrene plate attached to the outside of the bottom.
A 6 mm × 12 cm hole was made in the bottom square. A plastic net having a mesh width of 3 mm × 3 mm was placed on the hole and processed so that a void was formed. This net can prevent the soil in the upper container from flowing into the lower container.
In addition, the unit of the dimension of the upper container and lower container shown in FIG. 7 is (mm).
この栽培容器においては、いずれの試験区も、上容器には20Lの黒ボク土を充填し、トマトを移植した。下容器の30L容量のプランターは、防根透水シートを敷き土壌(培地)を充填した。
試験区は、赤玉土区、黒ボク土区、黒ボク土連結区の4区を設けた。赤玉土区は、下容器に赤玉土10Lを充填した試験区である。黒ボク土区は、下容器に黒ボク土10Lを充填した試験区である。また、黒ボク土連結区は、毛管水の影響を明らかにするために、下容器に黒ボク土10Lを充填し、上容器の孔内に黒ボク土を充填して上・下容器間を土壌で連結した試験区である。また、対照区は、下容器に黒ボク土10Lを充填した完全灌水区である。
In this cultivation container, in all the test sections, the upper container was filled with 20 L of black soil and transplanted with tomato. The planter with a capacity of 30 L in the lower container was laid with a root-proof water-permeable sheet and filled with soil (medium).
There were four test zones: Akadama-ku, Kurobokudo-ku and Kurobokudo-linked. Akadama-ku is a test zone in which a lower container is filled with 10 L of red ball soil. The black soil area is a test area in which the lower container is filled with 10 L of black soil. In addition, in order to clarify the influence of capillary water, the Black Meadow Consolidation Zone is filled with 10L of Black Meadow in the lower container and filled with Black Meadow in the hole of the upper container. This is a test zone connected with soil. In addition, the control group is a complete irrigation group in which the lower container is filled with 10 L of black soil.
灌水は、定植以降適宜灌水し、10月6日以降は点滴チューブによって各区の上下容器に1日2Lを灌水した。
対照区を除く処理区は、10月10日から栽培終了時まで上容器への灌水を停止した。
灌水は、上・下容器に点滴チューブ(Netafim社製、「Stream Line」)を各2本配置して行った。
Irrigation was performed appropriately after planting, and after October 6, 2 L per day was irrigated in the upper and lower containers of each section with an infusion tube.
In the treatment group except the control group, irrigation to the upper container was stopped from October 10 until the end of cultivation.
Irrigation was carried out by placing two drip tubes ("Stream Line", manufactured by Netafim) on each of the upper and lower containers.
トマトは、7月17日に播種、8月31日に定植し、5段果房上の本葉2葉を残して摘心する主枝1本仕立てによって栽培し、10月16日から1月14日まで収穫した。
施肥は、肥効調節肥入り複合肥料を用いて、株当たり10gの窒素量を基肥として上容器に施用した。
その他の栽培条件等は、実施例1と同様である。
Tomatoes are sown on July 17th, planted on August 31st, cultivated by tailoring one main branch leaving two leaves on the 5-stage fruit bunches, and from October 16th to January 14th. Harvested until day.
Fertilization was applied to the upper container using 10 g of nitrogen per strain as a basic fertilizer, using a compound fertilizer with fertilizer control.
Other cultivation conditions and the like are the same as in Example 1.
(測定項目および測定方法)
葉柄水ポテンシャルは、晴天日の11:00から13:00の間に、各株の3段果房下の側枝第1葉と第2葉の小葉を採取して、プレッシャーチャンバー法によって測定した。土壌水分率は、TDR(Time domain reflectmetry)プローブ(Decagon社製、「EC−5」)を用い、15分間隔で電圧を記録した。
収穫物調査は、各株の全果実について果実糖度と1果重を測定した。
(Measurement items and measurement methods)
The petiole water potential was measured by the pressure chamber method between 11:00 and 13:00 on a sunny day by collecting the first and second leaflets of the side branch under the three-stage fruit tress of each strain. The soil moisture content was recorded as a voltage at 15-minute intervals using a TDR (Time domain reflectometry) probe (Decagon, “EC-5”).
In the harvest survey, the sugar content and the fruit weight of all the fruits of each strain were measured.
(結果)
これら実施例3の栽培試験の結果について、図8〜図10を参照して説明する。
図8は、実際の栽培例を示す写真である。このように、トマトの植物体が上容器のほぼ中央に植えられている。この上容器の一面に根が生育し、四隅の孔(連結孔)から一部の根が下容器に下りている。
図9は、中玉品種のトマトの葉柄水ポテンシャルの推移を示すグラフである。誤差線は、標準誤差(n=4)を示す。また、縦軸は葉柄ポテンシャルを示し、横軸は測定日を示す。
この結果によると、灌水制限開始後の対照区の葉柄水ポテンシャルは、−0.8MPaから−0.9MPaの間で安定して推移した。
また、対照区を除く各処理区は、上容器の灌水停止後水ポテンシャルが速やかに低下し、10月15日に最低となった。10月10日と10月15日、11月7日の調査では、全ての処理区の水ポテンシャルは対照区に比べて低く、水ストレスが継続して付加されていた。
(result)
The results of the cultivation test of Example 3 will be described with reference to FIGS.
FIG. 8 is a photograph showing an actual cultivation example. Thus, the plant body of tomato is planted in the approximate center of the upper container. Roots grow on one surface of the upper container, and some of the roots descend from the four corner holes (connection holes) to the lower container.
FIG. 9 is a graph showing changes in the petiole water potential of tomatoes of the Nakatama variety. The error line indicates the standard error (n = 4). The vertical axis indicates the petiole potential, and the horizontal axis indicates the measurement date.
According to this result, the petiole water potential of the control group after the start of irrigation restriction was stably changed between -0.8 MPa and -0.9 MPa.
Further, in each treatment group except the control group, the water potential rapidly decreased after the irrigation of the upper container was stopped, and became the lowest on October 15. In the surveys on October 10, October 15, and November 7, the water potential of all the treatment areas was lower than that of the control area, and water stress was continuously added.
図10は、中玉品種のトマトを栽培したプランターの土壌含水率の推移を示すグラフである。図10(a)は上容器土壌の土壌水分率を示す。また、図10(b)は、下容器土壌の土壌水分率を示す。それぞれ、縦軸は土壌含水率(%)を示し、横軸は測定日時を示す。また、矢印は、処理区の上容器の灌水を停止した日を示す。
このように、対照区の上容器の含水率は、28.1〜20.4%の間で変動した。また、対照区の下容器の含水率は、42.6〜35.3%の間で変動した。
これに対して、黒ボク土区と黒ボク土連結区は、上容器の含水率が14%まで緩やかに低下した。黒ボク土区の下容器の含水率は、43.4〜23.3%の間で変動し、黒ボク土連結区の下容器の含水率は、43.7〜24.7%の間で変動した。これらの処理区では、下容器の含水率が対照区の上容器の含水率より高く推移したことから、下容器に十分に灌水された条件下で、トマト地上部に水ストレスが付加されたと推定された。
FIG. 10 is a graph showing the transition of soil moisture content of planters cultivated tomatoes of the Nakatama variety. FIG. 10A shows the soil moisture content of the upper container soil. Moreover, FIG.10 (b) shows the soil moisture content of a lower container soil. In each case, the vertical axis indicates the soil moisture content (%), and the horizontal axis indicates the measurement date and time. Moreover, an arrow shows the day which stopped irrigation of the upper container of the treatment area.
Thus, the water content of the upper container of the control group varied between 28.1 and 20.4%. Moreover, the water content of the lower container of the control group varied between 42.6 and 35.3%.
On the other hand, the water content of the upper container gradually decreased to 14% in the Kuroboku soil and Kuroboku soil connected districts. The water content of the lower container of the black soil area varies between 43.4 and 23.3%, and the water content of the lower container of the black soil area is between 43.7 and 24.7%. It fluctuated. In these treatment groups, the moisture content of the lower container remained higher than the moisture content of the upper container of the control group, so it was estimated that water stress was added to the tomato above-ground part under conditions where the lower container was sufficiently irrigated. It was done.
この実施例3の栽培条件における栽培結果を、下記の表3に示す。
赤玉土区の1果重は平均34.9gとなり、対照区の64%まで減少し、果実糖度は対照区に比べ1.6度高くなった。
黒ボク土区の1果重は平均35.3gとなり、対照区の65%まで減少し、果実糖度は対照区に比べ1.4度高くなった。
黒ボク土連結区の1果重は41.3gとなり、対照区の76%まで減少し、果実糖度は0.4度高くなるにとどまった。
毛管水の影響を除いた赤玉土区と黒ボク土区は、黒ボク土連結区に比べ糖度が高い傾向にあった。
The results of cultivation under the cultivation conditions of Example 3 are shown in Table 3 below.
The average fruit weight of Akadama-ku was 34.9 g, decreased to 64% of the control group, and the fruit sugar content was 1.6 degrees higher than that of the control group.
The average fruit weight of Kuroboku soil was 35.3 g, decreased to 65% of the control, and the fruit sugar content was 1.4 degrees higher than that of the control.
The weight of 1 fruit in the Kuroboku soil connected area was 41.3 g, decreased to 76% of the control area, and the fruit sugar content increased only to 0.4 degrees.
Akatamado and Kurobokudo, excluding the influence of capillary water, tended to have higher sugar content than the Kurobokudo connected district.
これらの結果から、簡便な市販容器を改良して上・下2層の栽培を行うことによって、高糖度のトマトの生産を可能にした。また、上・下の各層は、分離した方が糖度が高い果実を得ることができることが分かった。
本実施例3の栽培方法を適用することによって中玉品種では、1果重が30g以上で、平均35g程度、果実糖度が対照区に比べ約1.5度高いトマトを生産することができた。
From these results, it became possible to produce tomatoes with high sugar content by improving the simple commercial container and cultivating the upper and lower two layers. Moreover, it turned out that the upper and lower layers can obtain fruits having higher sugar content when separated.
By applying the cultivation method of this Example 3, tomato varieties were able to produce tomatoes having a fruit weight of 30 g or more, an average of about 35 g, and a fruit sugar level of about 1.5 degrees higher than that of the control group. .
(栽培条件)
次に、実施例4として、供試品種を大玉品種とした場合において、上・下2層の栽培を行う栽培方法について栽培試験を行った。
供試品種に大玉品種の桃太郎8(発売元:タキイ種苗株式会社、台木:ベスパ)を用い、夏秋作型において栽培試験を行った。
(Cultivation conditions)
Next, as Example 4, when the test varieties were large varieties, a cultivation test was conducted on a cultivation method for cultivating upper and lower two layers.
Using the large varieties Momotaro 8 (release source: Takii Tanae Co., Ltd., Rootstock: Vespa) as a test variety, a cultivation test was conducted in a summer / autumn cropping type.
試験は、実施例3に記載した容器を用いたが、上容器の孔上にプラスチック網を置かず、下容器から毛管水の移動がある条件で実施した。
試験区は、赤玉土区、黒ボク土区、及び対照区の3区を設定した。赤玉土区は、下容器に赤玉土10Lを充填した試験区である。黒ボク土区は、下容器に黒ボク土10Lを充填した試験区である。対照区は、下容器に黒ボク土10Lを充填し、上下容器に灌水を継続した完全灌水区である。
いずれの区も、上容器には20Lの黒ボク土を充填し、トマトを移植した。トマトは5月13日に播種、7月6日に定植を行い、6段果房上の本葉2葉を残して摘心する主枝1本仕立てによって栽培し、8月12日から11月5日にかけて収穫した。
施肥は、肥効調節肥入り複合肥料を用いて、株当たり10gの窒素量を基肥として上容器に施用した。
The test was performed using the container described in Example 3, but without placing a plastic net on the hole of the upper container and under the condition that capillary water was transferred from the lower container.
Three test zones were set, the Akadama soil zone, the Kuroboku soil zone, and the control zone. Akadama-ku is a test zone in which a lower container is filled with 10 L of red ball soil. The black soil area is a test area in which the lower container is filled with 10 L of black soil. The control group is a complete irrigation group in which the lower container is filled with 10 L of black soil and the upper and lower containers are continuously irrigated.
In any section, 20 L of black soil was filled in the upper container, and tomatoes were transplanted. Tomatoes are sown on May 13 and planted on July 6 and cultivated by tailoring one main branch, leaving 2 leaves on the 6-stage fruit bunch, and from August 12 to November 5 Harvested over the day.
Fertilization was applied to the upper container using 10 g of nitrogen per strain as a basic fertilizer, using a compound fertilizer with fertilizer control.
各区は、定植後から8月5日まで上容器に適宜灌水し、8月6日以降は点滴チューブを用いて、上・下容器に1日当たり2L量を灌水した。
対照を除く処理区は、8月13日から栽培終了時まで上容器の灌水を停止して灌水制限を実施した。
灌水は、上・下容器に灌水チューブとして、点滴チューブ(Netafim社製、「Stream Line」)を各2本配置して行った。
その他の栽培条件等は、実施例1と同様である。
In each section, the upper container was appropriately irrigated from the time of planting until August 5, and after August 6, the upper and lower containers were irrigated with an amount of 2 L per day using an infusion tube.
In the treatment group excluding the control, watering of the upper container was stopped from August 13 to the end of cultivation, and the watering was restricted.
Irrigation was performed by placing two drip tubes (“Stream Line”, manufactured by Netafim) as irrigation tubes in the upper and lower containers.
Other cultivation conditions and the like are the same as in Example 1.
(測定項目および測定方法)
葉柄水ポテンシャルは晴天日の11:00から14:00の間に、各株の3段果房下の側枝第1葉の小葉を採取してプレッシャーチャンバー法によって測定した。
土壌水分量は、TDRプローブ(Decagon社製、「EC−5」)を用いて電圧を15分間隔で記録した。
収穫物調査は、各株の全果実について果実糖度と1果重を測定した。
(Measurement items and measurement methods)
The petiole water potential was measured by the pressure chamber method between 11:00 and 14:00 on a fine day, by collecting small leaves of the first leaf of the side branch under the three-stage fruit tress of each strain.
As for the soil moisture content, the voltage was recorded at intervals of 15 minutes using a TDR probe (manufactured by Decagon, "EC-5").
In the harvest survey, the sugar content and the fruit weight of all the fruits of each strain were measured.
(結果)
次に、図11〜図13を参照して、実施例4における栽培試験について説明する。
図11は、上・下2層のプランターで栽培した大玉品種のトマトの葉柄水ポテンシャルを示すグラフである。縦軸は、葉柄水ポテンシャルを示し、横軸は測定日を示す。誤差線は標準偏差(n=4)を示す。
図11の結果によると、赤玉土区と黒ボク土区の葉柄水ポテンシャルは、8月26日に−1.06MPa及び−0.95MPaまで低下した。その後、葉柄水ポテンシャルは、9月18日に−0.8MPaまで上昇した。
これに対して、対照区の葉柄水ポテンシャルは、−0.56MPaから−0.68MPaの間で推移した。
このことから、赤玉土区と黒ボク土区においては、トマト地上部に水ストレスが継続して付加されていたことが分かる。
(result)
Next, the cultivation test in Example 4 is demonstrated with reference to FIGS.
FIG. 11 is a graph showing the petiole water potential of large tomato cultivars cultivated in the upper and lower two-layer planters. The vertical axis shows the petiole water potential, and the horizontal axis shows the measurement date. An error line shows a standard deviation (n = 4).
According to the result of FIG. 11, the petiole water potential of Akadama-ku and Kurobokuchi-ku decreased to −1.06 MPa and −0.95 MPa on August 26. Thereafter, the petiole water potential rose to -0.8 MPa on September 18.
On the other hand, the petiole water potential of the control group changed between -0.56 MPa and -0.68 MPa.
From this, it can be seen that water stress was continuously applied to the above-ground part of the tomatoes in the Akamado and Kurobokudo districts.
図12は、大玉品種のトマトを栽培したプランターの土壌含水率の推移を示すグラフである。図12(a)は上容器の土壌を示し、図12(b)は下容器の土壌の土壌水分率を示す。どちらのグラフも、縦軸は土壌含水率を示し、横軸は測定日を示す。また、矢印は、処理区の上容器の灌水を停止した日を示す。また、図12(b)の灰太線は、処理区の下容器の含水率が対照区の上容器の含水率を下回った期間を示す。
この結果として、対照区の上容器の含水率は、33.7%から20.9%の間で変動した。黒ボク土区は、上容器の含水率が約17%まで緩やかに低下した。黒ボク土区の下容器の含水率は、43.2%から18.7%の間で変動した。黒ボク土区では、下容器の含水率が対照区の上容器の含水率より低くなった日が、灌水停止直後の8月16日から8月28日の13日間計測された。
この間、黒ボク土区では、下容器の潅水量不足が水ストレスの原因となったことも否定できないが、その後は、下容器に十分に灌水された条件下で、トマト地上部に水ストレスが継続して付加されたと推定された。
FIG. 12 is a graph showing the transition of soil moisture content of planters cultivated tomatoes of large varieties. Fig.12 (a) shows the soil of an upper container, FIG.12 (b) shows the soil moisture content of the soil of a lower container. In both graphs, the vertical axis indicates the soil moisture content, and the horizontal axis indicates the measurement date. Moreover, an arrow shows the day which stopped irrigation of the upper container of the treatment area. Moreover, the gray line of FIG.12 (b) shows the period when the moisture content of the lower container of the process area was less than the moisture content of the upper container of a control area.
As a result, the water content of the upper container of the control group varied between 33.7% and 20.9%. In the Kuroboku soil area, the water content of the upper container gradually decreased to about 17%. The water content of the lower container of the black soil area varied between 43.2% and 18.7%. In Kuroboku soil, the day when the moisture content of the lower container was lower than the moisture content of the upper container of the control group was measured for 13 days from August 16 to August 28 immediately after irrigation was stopped.
In the meantime, in the Kuroboku soil area, it cannot be denied that the lack of irrigation in the lower container caused water stress, but thereafter, under the condition that the lower container was sufficiently irrigated, water stress was applied to the tomato ground. It was estimated that it was continuously added.
この実施例4の栽培条件における栽培結果を、下記の表4に示す。
赤玉土区と黒ボク土区の果実糖度は7.3度であり、対照区より約1度高かった。赤玉土区と黒ボク土区の平均1果重は164.4g及び175.8gであり、対照区に比べて約40gの減少にとどまった。
The cultivation results under the cultivation conditions of Example 4 are shown in Table 4 below.
The red sugar content of Akamado and Kurobokudo was 7.3 degrees, about 1 degree higher than the control. The average fruit weight of Akatamado and Kurobokudo was 164.4 g and 175.8 g, which was only a decrease of about 40 g compared to the control.
図13は、上・下2層のプランターで栽培した大玉品種のトマトの果実糖度(a)と1果重(b)の度数分布を示すグラフである。図13(a)は果実の糖度を示す図であり、横軸は果実糖度の階級を示し、縦軸は果実糖度の各階級における果実割合(%)を示す。図13(b)は、1果重を示す図であり、横軸は1加重の階級値を示し、縦軸は1加重の各階級における果実割合を示す。
図13(a)によると、赤玉土区と黒ボク土区は、それぞれ68%と80%の可販果が糖度7度以上の果実であった。
図13(b)によると、赤玉土区と黒ボク土区は、それぞれ95%と99%の可販果が100g以上の果実であった。
このように、1果重の減少を抑えながら果実糖度を上げることができた。
FIG. 13 is a graph showing the frequency distribution of fruit sugar content (a) and fruit weight (b) of tomatoes of large varieties cultivated in upper and lower two-layer planters. FIG. 13 (a) is a diagram showing the sugar content of fruits, the horizontal axis indicates the fruit sugar content class, and the vertical axis indicates the fruit ratio (%) in each fruit sugar content class. FIG.13 (b) is a figure which shows 1 fruit weight, a horizontal axis shows the class value of 1 weight, and a vertical axis | shaft shows the fruit ratio in each class of 1 weight.
According to FIG. 13 (a), in the Akatamachi-ku and Kurobokudo-ku, 68% and 80% of the salesable fruits were fruits having a sugar content of 7 degrees or more, respectively.
According to FIG.13 (b), the red ball soil ward and the Kuroboku soil ward were 95% and 99% of the fruits which were 100g or more, respectively.
Thus, the fruit sugar content could be increased while suppressing a decrease in fruit weight.
このように、本発明の実施例4の栽培方法を用いることによって、大玉品種においても、平均1果重が160gで、果実糖度が対照区に比べ約1度高い7度以上のトマトを生産することができた。
すなわち、大玉品種を用いて本実施例の栽培方法にて栽培を行っても、糖度が高く果重が大きい、すなわち高品質のトマトを栽培できる。
Thus, by using the cultivation method of Example 4 of the present invention, even in a large variety, an average fruit weight of 160 g and a fruit sugar content of about 1 degree higher than that of the control group are produced at 7 degrees or higher. I was able to.
That is, even if it cultivates with the cultivation method of a present Example using a large varieties, it can cultivate a high-quality tomato with high sugar content and a large fruit weight.
以上の結果から、本発明の実施の形態に係る栽培方法のように、上・下2層にプランターを配置し根系を分割して、着果期から上層のみを乾燥化させ下層にのみ十分に灌水を行うことで、作物体に適度の水ストレスを与えることができる。
図14を参照して説明すると、本発明の実施の形態に係る栽培方法では、乾燥地での植物の成長のように、湿潤層となる下層から乾燥層となる上層の根に水を吸い上げて放出する。すなわち、上層部の灌水停止期間中には、下層部の根からのみ吸水し、上層の乾燥層へhydraulic liftによって水を放出することができる。
この結果、トマト自身が水ストレス調節を行うため、適度なストレス処理を簡便に行うことが可能となる。
よって、トマト地上部には適度に弱い水ストレスが付加され、従来の高糖度トマト生産での問題であった果実重の減少という問題点を解決し、慣行の栽培方法に比べ糖度を約1度向上させることができる。
加えて、従来の高糖度トマトの栽培で問題であった灌水管理の煩雑さを解消し、簡便な灌水管理の下、高糖度トマトの栽培が可能となる。
From the above results, like the cultivation method according to the embodiment of the present invention, the planter is arranged in the upper and lower two layers, the root system is divided, and only the upper layer is dried from the fruiting stage, and only the lower layer is sufficient. By performing irrigation, moderate water stress can be applied to the crop body.
Referring to FIG. 14, in the cultivation method according to the embodiment of the present invention, water is sucked up from the lower layer serving as the wet layer to the root of the upper layer serving as the dry layer, like the growth of plants in the dry land. discharge. That is, during the period of stopping irrigation of the upper layer, water can be absorbed only from the root of the lower layer, and water can be released to the upper dry layer by a hydraulic lift.
As a result, since the tomato itself adjusts the water stress, it is possible to easily perform an appropriate stress treatment.
Therefore, moderately weak water stress is added to the above-ground part of the tomato, solving the problem of reducing the fruit weight, which was a problem in conventional high sugar content tomato production, and the sugar content is about 1 degree compared with the conventional cultivation method. Can be improved.
In addition, the complexity of irrigation management, which has been a problem in conventional cultivation of high sugar content tomatoes, is eliminated, and high sugar content tomatoes can be cultivated under simple irrigation management.
なお、上記実施の形態の構成及び動作は例であって、本発明の趣旨を逸脱しない範囲で適宜変更して実行することができることは言うまでもない。 Note that the configuration and operation of the above-described embodiment are examples, and it is needless to say that the configuration and operation can be appropriately changed and executed without departing from the gist of the present invention.
本発明は、トマトを栽培する装置と方法に関し、特に高い糖度を有するトマトを栽培することを可能とするため、産業上利用可能である。 The present invention relates to an apparatus and method for cultivating tomatoes, and can be used industrially because it makes it possible to cultivate tomatoes having a particularly high sugar content.
1 トマト栽培容器
2 上容器
21 下板(隔壁)
22 孔
23 規制網
3 下容器
41、42 灌水チューブ
5、6 培地
71 根(上層根)
72 根(下層根)
1
22
72 roots
Claims (11)
前記下容器上に配置され、植物が定植され、上層根の根域となる培地が収容される上容器と、
前記上容器に植えられた植物の根を下容器に進入可能な孔と
を備えることを特徴とする栽培容器。 A lower container in which the culture medium is contained and becomes the root region of the lower root, and the upper surface is opened;
An upper container placed on the lower container, in which a plant is planted, and a medium serving as a root region of the upper root is stored;
A cultivation container comprising: a hole through which a root of a plant planted in the upper container can enter the lower container.
前記下容器には前記培地が暴露された暴露部が設けられ、
前記上容器の前記培地及び前記下容器の前記暴露部に、それぞれ灌水手段を配置し、
前記上容器の前記灌水手段と、前記下容器の前記灌水手段の灌水とが、各別に制御される
ことを特徴とする請求項1に記載の栽培容器。 The lower container has a larger area than the upper container,
The lower container is provided with an exposed portion to which the medium is exposed,
Arranging irrigation means in the culture medium of the upper container and the exposed part of the lower container,
The cultivation container according to claim 1, wherein the irrigation means of the upper container and the irrigation of the irrigation means of the lower container are controlled separately.
ことを特徴とする請求項1又は2に記載の栽培容器。 The cultivation container according to claim 1 or 2, wherein the volume ratio of the culture medium in the upper container to the culture medium in the lower container is about 2: 1.
ことを特徴とする請求項1乃至3のいずれか1項に記載の栽培容器。 The cultivation container according to any one of claims 1 to 3, wherein a gap is provided between the upper container and the lower container.
ことを特徴とする請求項4に記載の栽培容器。 The cultivation container according to claim 4, wherein the gap is a gap that does not allow water or liquid fertilizer irrigated to the lower container to permeate the upper container.
ことを特徴とする請求項1乃至5のいずれか1項に記載の栽培容器。 The cultivation container according to any one of claims 1 to 5, wherein a restriction part is provided for restricting a medium from entering through the hole from the upper container to the lower container.
ことを特徴とする請求項6に記載の栽培容器。 The cultivation container according to claim 6, wherein the regulation part is a net, and the width of the mesh is about 1 mm x 1 mm to 5 mm x 5 mm.
ことを特徴とする請求項1乃至7のいずれか1項に記載の栽培容器。 The cultivation container according to any one of claims 1 to 7, wherein the hole from the upper container to the lower container is made small so that all the roots of the plant do not pass therethrough.
植物体の上層根の根域と下層根の根域とを垂直方向に隔て、着果期からは前記上層根の根域となる培地を乾燥化させる
ことを特徴とする高糖度の果菜の栽培方法。 In the cultivation method of high sugar content fruit vegetables,
Cultivation of fruit vegetables with high sugar content, characterized in that the root zone of the upper layer root and the root zone of the lower layer root of the plant body are vertically separated, and the medium that becomes the root zone of the upper layer root is dried from the fruiting stage. Method.
ことを特徴とする高糖度トマト。 A high sugar content tomato characterized by being a fruit body cultivated by the method for cultivating high sugar content fruit vegetables according to claim 9.
大玉品種においては1果重が100g以上であり、中玉品種においては1果重が30g以上であり、通常の土壌栽培に比べて糖度が1度以上高い
ことを特徴とする請求項10に記載の高糖度トマト。 The fruit body is
The large fruit varieties have a fruit weight of 100 g or more, the medium fruit varieties have a fruit weight of 30 g or more, and the sugar content is 1 degree or more higher than normal soil cultivation. High sugar content tomato.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010252808A JP5668249B2 (en) | 2010-11-11 | 2010-11-11 | Cultivation container and method for cultivating high sugar content tomato |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010252808A JP5668249B2 (en) | 2010-11-11 | 2010-11-11 | Cultivation container and method for cultivating high sugar content tomato |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012100595A true JP2012100595A (en) | 2012-05-31 |
JP5668249B2 JP5668249B2 (en) | 2015-02-12 |
Family
ID=46391829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010252808A Expired - Fee Related JP5668249B2 (en) | 2010-11-11 | 2010-11-11 | Cultivation container and method for cultivating high sugar content tomato |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5668249B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016096754A (en) * | 2014-11-19 | 2016-05-30 | 株式会社岩や | Wall surface greening panel and wall surface greening facility |
JP2017205028A (en) * | 2016-05-16 | 2017-11-24 | 株式会社Ihi | Irrigation control system for cultivating high sugar content fruit, irrigation control device used therefor, and irrigation control method |
US10745710B2 (en) | 2015-08-06 | 2020-08-18 | University Of Tsukuba | Plant having mutant cyclin F-box gene |
JP2022066836A (en) * | 2020-10-19 | 2022-05-02 | アグリ・コア・システム合同会社 | Cultivation device |
CN117016316A (en) * | 2023-10-10 | 2023-11-10 | 山东永盛农业发展有限公司 | Cultivation method for improving quality of cherry tomatoes |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6474936A (en) * | 1987-09-14 | 1989-03-20 | Sumitomo Cement Co | Culture through pebble by multi-stage bed and device therefor |
JPH02137845U (en) * | 1989-04-17 | 1990-11-16 | ||
JPH11113398A (en) * | 1997-10-21 | 1999-04-27 | Hirofumi Azuma | Culture of vegetable or the like in soil increased in multi-stages |
JP2006197864A (en) * | 2005-01-21 | 2006-08-03 | Mitsuru Engei:Kk | Plant cultivation container, ornamental plant using the same, and method for cultivating plant |
JP2006254776A (en) * | 2005-03-17 | 2006-09-28 | Chubu Electric Power Co Inc | Method and apparatus for hydroponics of plant |
JP2007306846A (en) * | 2006-05-18 | 2007-11-29 | Ehime Univ | Liquid supply controlling device |
WO2008035580A1 (en) * | 2006-09-20 | 2008-03-27 | Mebiol Inc. | Plant cultivation system |
JP2009017828A (en) * | 2007-07-12 | 2009-01-29 | Otomi Noen | Method for cultivating mango in pot, and cultivation pallet used for the same |
JP2009291122A (en) * | 2008-06-04 | 2009-12-17 | Naturalstep Inc | Plant cultivation device and fruit cooling sheet |
-
2010
- 2010-11-11 JP JP2010252808A patent/JP5668249B2/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6474936A (en) * | 1987-09-14 | 1989-03-20 | Sumitomo Cement Co | Culture through pebble by multi-stage bed and device therefor |
JPH02137845U (en) * | 1989-04-17 | 1990-11-16 | ||
JPH11113398A (en) * | 1997-10-21 | 1999-04-27 | Hirofumi Azuma | Culture of vegetable or the like in soil increased in multi-stages |
JP2006197864A (en) * | 2005-01-21 | 2006-08-03 | Mitsuru Engei:Kk | Plant cultivation container, ornamental plant using the same, and method for cultivating plant |
JP2006254776A (en) * | 2005-03-17 | 2006-09-28 | Chubu Electric Power Co Inc | Method and apparatus for hydroponics of plant |
JP2007306846A (en) * | 2006-05-18 | 2007-11-29 | Ehime Univ | Liquid supply controlling device |
WO2008035580A1 (en) * | 2006-09-20 | 2008-03-27 | Mebiol Inc. | Plant cultivation system |
JP2009017828A (en) * | 2007-07-12 | 2009-01-29 | Otomi Noen | Method for cultivating mango in pot, and cultivation pallet used for the same |
JP2009291122A (en) * | 2008-06-04 | 2009-12-17 | Naturalstep Inc | Plant cultivation device and fruit cooling sheet |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016096754A (en) * | 2014-11-19 | 2016-05-30 | 株式会社岩や | Wall surface greening panel and wall surface greening facility |
US10745710B2 (en) | 2015-08-06 | 2020-08-18 | University Of Tsukuba | Plant having mutant cyclin F-box gene |
JP2017205028A (en) * | 2016-05-16 | 2017-11-24 | 株式会社Ihi | Irrigation control system for cultivating high sugar content fruit, irrigation control device used therefor, and irrigation control method |
JP2022066836A (en) * | 2020-10-19 | 2022-05-02 | アグリ・コア・システム合同会社 | Cultivation device |
JP7148090B2 (en) | 2020-10-19 | 2022-10-05 | アグリ・コア・システム合同会社 | cultivation equipment |
CN117016316A (en) * | 2023-10-10 | 2023-11-10 | 山东永盛农业发展有限公司 | Cultivation method for improving quality of cherry tomatoes |
CN117016316B (en) * | 2023-10-10 | 2024-02-13 | 山东永盛农业发展有限公司 | Cultivation method for improving quality of cherry tomatoes |
Also Published As
Publication number | Publication date |
---|---|
JP5668249B2 (en) | 2015-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wan et al. | Effect of drip irrigation with saline water on tomato (Lycopersicon esculentum Mill) yield and water use in semi-humid area | |
CN103975666B (en) | A kind of method being applicable to cotton culture moderate severe salinization soil control salt | |
JP2006320296A (en) | Method for raising tea seedling | |
Arshad et al. | Effect of different levels of NPK fertilizers on the growth and yield of greenhouse cucumber (Cucumis sativus) by using drip irrigation technology | |
JP5668249B2 (en) | Cultivation container and method for cultivating high sugar content tomato | |
CN108377831B (en) | Method for raising seedlings of jungle bamboos by burying nodes | |
CN105746224A (en) | Greenhouse seedling cultivating method for kalopanax septemlobus seeds | |
CN108713438A (en) | A kind of organic Kiwi cultural method | |
CN104082005A (en) | Konjak and okra intercropping cultivation method | |
CN104584973A (en) | Cultivation method for early fruiting and high yield of Carya cathayensis | |
CN107889673A (en) | A kind of tea tree planting method | |
Ningaraju et al. | Effect of drip fertigation on growth and yield of oriental pickling melon (Cucumis melo var. conomon (L.) Makino) under high density planting | |
JP2012060982A (en) | Method for cultivating tomato | |
CN102523895A (en) | Plug substrate rainproof strawberry seedling culturing method and special facility | |
CN103749138B (en) | Cutting propagation method of Michelia macclurei | |
CN108770669A (en) | A kind of breeding method of the excellent container seedling of apocarya | |
CA2923364C (en) | Method for cultivating rape seedlings | |
CN104904537A (en) | Plum tree woodland seedling culturing method | |
Reddy et al. | Performance of watermelon under mulching, subsurface and surface drip irrigation systems in semi-arid region | |
Lorenzo et al. | Irrigation management in perlite | |
Okano et al. | Reuse of drainage water for the production of high quality fruits in single-truss tomato grown in a closed hydroponic system | |
CN202514335U (en) | Special facility of strawberry hole tray matrix for ombrophobous seeding cultivation | |
CN106718096B (en) | Rapid garden building method for grafting and planting kiwi fruits | |
CN105706748A (en) | Cedrela sinensis and cedrela toona grafting propagation method | |
JP5627971B2 (en) | Container culture medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131111 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20131113 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140107 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140307 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140807 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140819 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141016 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141104 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141121 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5668249 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |