JP2012099909A - 撮像装置、放射線撮影装置および放射線撮影システム - Google Patents

撮像装置、放射線撮影装置および放射線撮影システム Download PDF

Info

Publication number
JP2012099909A
JP2012099909A JP2010243800A JP2010243800A JP2012099909A JP 2012099909 A JP2012099909 A JP 2012099909A JP 2010243800 A JP2010243800 A JP 2010243800A JP 2010243800 A JP2010243800 A JP 2010243800A JP 2012099909 A JP2012099909 A JP 2012099909A
Authority
JP
Japan
Prior art keywords
pixels
imaging
area
image sensor
conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010243800A
Other languages
English (en)
Other versions
JP5637816B2 (ja
Inventor
Kazumasa Matsumoto
和正 松本
Yuichi Naito
雄一 内藤
Hidehiko Saito
秀彦 齋藤
Takafumi Yamazaki
貴史 山▲崎▼
Hiroaki Niwa
宏彰 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2010243800A priority Critical patent/JP5637816B2/ja
Priority to US13/279,458 priority patent/US20120105665A1/en
Priority to DE102011085427A priority patent/DE102011085427A1/de
Publication of JP2012099909A publication Critical patent/JP2012099909A/ja
Application granted granted Critical
Publication of JP5637816B2 publication Critical patent/JP5637816B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/667Camera operation mode switching, e.g. between still and video, sport and normal or high- and low-resolution modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/745Circuitry for generating timing or clock signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/7795Circuitry for generating timing or clock signals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14658X-ray, gamma-ray or corpuscular radiation imagers

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】 読み出し範囲を制限した際にイメージセンサのスループットを大きく向上させる。
【解決手段】 撮像装置100のA/D変換器151乃至158は、アナログ信号をデジタル信号に変換する。A/D変換器151乃至158はアナログマルチプレクサ131乃至138を介してイメージセンサ106の列信号線に接続する。四隅のA/D変換器151、154、155、158には4枚の矩形半導体基板が接続する。中央部に近いA/D変換器152、153、156、157には3枚の矩形半導体基板と接続する。そのため、四隅のA/D変換器に比べて中央部に近いA/D変換器の方が、接続する列信号線の数あるいは接続する画素の数が少ない。
【選択図】 図1

Description

本発明は、光をデジタル信号に変換するイメージセンサを用いた撮像装置、放射線撮影装置および放射線撮影システムに関する。
光をデジタル信号に変換するイメージセンサが広く用いられている。また近年放射線撮像の分野では、イメージセンサとX線を光に変換する蛍光体を組み合わせて被写体を撮影するデジタルX線センサが普及している。
画像を得るイメージセンサの多画素化により画質が向上するにつれ、処理負荷が大きくなり受光の開始から画像の出力が完了するまでの速さつまりスループットが低下する。これに対し、光電変換素子で生じるアナログ信号のA/D変換を複数のA/D変換器で並行して行うことで、A/D変換に要する時間を短縮する技術がある(特許文献1)。また、イメージセンサから信号を読み出す範囲を制限することで転送に要する時間を短縮する技術がある(特許文献2)。
特開2002−335446号公報 特開平05−208005号公報
しかしながら、読み出し範囲を狭めてもスループット向上の効果がA/D変換時間により抑制されてしまうという問題がある。
図14に、複数のA/D変換器を用いており、かつ読み出し範囲を中央部付近に限定することができるイメージセンサ1400を示す。撮像領域1401は制限前の読み出し範囲を示す矩形領域である。部分領域1402は撮像領域1401のうち限定された読み出し範囲を示す矩形領域である。担当領域1404a乃至1404dは各A/D変換器に割り当てられた領域であり、各A/D変換器はそれぞれ担当領域内に配置された画素のアナログ信号をA/D変換する。
ここで読み出し範囲を部分領域1402に限定すると、担当領域1403b、1403cをそれぞれ担当する合計2つのA/D変換器により部分領域1402をA/D変換することとなる。このため転送時間はA/D変換の対象となる信号の数の減少分に応じて減少することとなるが、A/D変換時間はA/D変換器の数が減ってしまうため転送時間ほどには減少しないこととなる。このように、読み出し範囲を限定した際には多くのA/D変換器で負荷を分散させることが難しくなる。
加えて、近年の通信技術の向上により転送速度がA/D変換時間に対して大きく向上している。そのため、読み出し範囲を狭めてもA/D変換が転送に追いつかず、スループット向上の効果が抑制されてしまうという問題が発生する。処理能力の高いA/D変換器を用いることや、A/D変換器の使用個数を増やすこともできるが、その場合コストアップしてしまうという問題もある。
そこで本発明は、読み出し範囲を制限した際のA/D変換時間を大きく減少させイメージセンサのスループットを大きく向上させることを目的とする。
そこで本発明に係る撮像装置は、複数の画素が撮像領域内に配置されたイメージセンサと、前記複数の画素から読み出された複数のアナログ信号を前記画素が配置された撮像領域の担当領域毎に分担してA/D変換する複数のA/D変換器と、前記撮像領域のうち所定位置を含む部分領域内の画素に限定して前記アナログ信号を読み出す制御を行う制御手段と、を有し、前記撮像領域内の所定位置に近い担当領域は前記所定位置から遠い前記担当領域よりも小さいことを特徴とする。
本発明にかかる撮像装置では、撮像領域内の所定位置に近い担当領域は所定位置から遠い担当領域よりも小さい。このため、この所定位置を含む部分領域に読み出し範囲を限定した際により多くのA/D変換器で負荷を分散させることができる。これにより、読み出し範囲を限定した際にA/D変換時間を短縮し、読み出し範囲を限定した際のスループットを大きく向上させることができる。
本発明の実施形態に係る放射線撮影システム1を示す。 イメージセンサ106と各A/D変換器毎の担当領域を示す図である。 矩形半導体基板107の構成を示す図である。 イメージセンサ106からアナログ信号を読み出す制御の例を示すタイムチャトである。(a)は11インチモードでの読み出し制御の例を示すタイムチャートである。(b)は6インチモードでの読み出し制御の例を示すタイムチャートである。(c)は6インチモードでのその他の読み出し制御の例を示すタイムチャートである。 イメージセンサ106から得られた画像の切り出しの例を示す図である。(a)は11インチモードの読み出される全画像領域の例を示す図である。(b)は6インチモードで読み出される画像領域の例を示す図である。(c)は情報処理装置101に転送される画像領域の例を示す図である。 本発明の他の実施形態に係るイメージセンサ606を示す図である。 本発明の他の実施形態に係るイメージセンサの画素の構成を示す図である。 本発明の他の実施形態に係る撮像装置800を示す図である。 本発明の他の実施形態に係る放射線撮影システム9を示す。 本発明の他の実施形態に係る矩形半導体基板907の構成を示す図である。 イメージセンサ906からアナログ信号を読み出す制御の例を示すタイムチャートである。(a)は11インチモードでの読み出し制御の例を示すタイムチャートである。(b)は6インチモードでの読み出し制御の例を示すタイムチャートである。 比較例としてのイメージセンサ1206を備える放射線撮影システム50を示す図である。 比較例としてのイメージセンサ1206の読み出し制御を示す図である。(a)は比較例としての11インチモードでの読み出し制御を示すタイムチャートである。(b)は比較例としての6インチモードでの読み出し制御を示すタイムチャートである。(c)は比較例としての6インチモードでのその他の読み出し制御の例を示すタイムチャートである。 発明が解決しようとする課題を説明するための、イメージセンサ1400の読み出し範囲とA/D変換領域との関係を示す図である。
以下、図を参照して本発明を実施するための形態を説明する。
図1乃至図5に基づいて本発明の第1の実施例を説明する。まず図1に基づいて本実施例に係る放射線撮影システム1を説明する。
撮像装置100は被写体を透過した放射線を不図示のシンチレータにより光に変換する。そしてこの光を受光し、受光量に応じたフレーム画像を得る。このフレーム画像は情報処理装置101へ転送される。情報処理装置101はフレーム画像データに画像処理を施す。また、情報処理装置101は画像表示装置102の表示制御部として機能し、画像表示装置102にこの画像処理が施された画像を表示させる。この撮像、転送および表示は順次行われ、被写体の撮影中に動画像データをリアルタイムで表示することができる。もちろん静止画像を撮像し表示させることも可能である。また情報処理装置101は放射線発生装置103と撮像装置100とを同期制御する。
放射線発生装置103は放射線源104による放射線の発生を制御する。放射線源104は例えばX線管であり、放射線発生装置103により管電流および管電圧が制御され、制御に応じた放射線を射出する。また、放射線発生装置103は放射線源104が発生する放射線の照射領域を設定することができる。
なお本実施例では、イメージセンサを受光させ画像を得ることを撮像と呼ぶ。また撮像し、撮像された画像をイメージセンサから転送し、記録媒体または表示器に出力するまでの一連の動作を撮影と呼ぶ。
以下、撮像装置100の構成を説明する。撮像装置100はA/D変換器を複数有するとともに、イメージセンサ106の読み出し範囲を限定する駆動が可能な撮像装置である。
イメージセンサ106は、複数の画素が撮像領域内に配置された撮像素子である。
複数の画素は矩形半導体基板107上に実装されており、矩形半導体基板107が不図示の平面基台上に14列×2行のマトリクス状に複数枚タイリングされ(敷き詰められ)る。
これによりイメージセンサ106が構成されている。短冊状に切り出した各矩形半導体基板107は横約20mm、縦約140mmである。よってこれを横方向14列、縦方向2行のマトリクス状にタイリングしたイメージセンサ106の大きさは、縦約280mm、横約280mmの約11インチ角の正方形となる。
矩形半導体基板107は単独でもエリアセンサとして動作させることが可能である。この矩形半導体基板107はシリコン半導体ウエハから二次元の光電変換素子を短冊状に切り出して作成される。矩形半導体基板107上にはこの光電変換素子で生成されるアナログ信号を取り出す画素回路が形成され、光電変換素子と画素回路により画素が形成される。矩形半導体基板107上にはこの画素が二次元的に等ピッチで複数配列されている。また、矩形半導体基板同士の境界を挟んで隣り合う画素が、矩形半導体基板内で隣り合う画素と同じピッチになるように、矩形半導体基板107がタイリングされている。
アナログマルチプレクサ131乃至138は撮像制御部108の制御信号により画素の出力を基板単位で選択し、それぞれ接続される増幅器141〜148に送る。イメージセンサ106の上辺と下辺部には、マトリクス状に並んだ矩形半導体基板107の不図示の外部端子(電極パット)が一列に並んでいる。矩形半導体基板107の電極パットは不図示のフライングリード式プリント配線板を介してアナログマルチプレクサ131乃至138と接続する。アナログマルチプレクサ131乃至138による基板の選択によりイメージセンサ106から画素の信号の読み出しが実現されることとなる。イメージセンサ106の画素の信号の読み出しは、各マルチプレクサ毎に並行して行われる。
A/D変換器151乃至158はアナログマルチプレクサ131乃至138を介してイメージセンサ106の列信号線に接続する。A/D変換器151乃至158は撮像制御部108からのクロックに従い、増幅器141〜148からのアナログ信号をデジタル信号に変換(A/D変換)する。A/D変換されたデジタル信号は撮像制御部108で合成され、デジタル画像データとして情報処理装置101に転送される。A/D変換器151乃至158のそれぞれにはイメージセンサ106の撮像領域の一部である担当領域が割り当てられる。イメージセンサ106の画素の信号は担当領域毎に各A/D変換器で分担してA/D変換されることとなる。 この点については図2を用いて詳述する。
撮像制御部108は撮像装置100の制御部である。イメージセンサ106の各画素回路や、垂直シフトレジスタ302、水平シフトレジスタ303への駆動タイミングや給電などを撮像制御部108が制御する。また、アナログマルチプレクサ131乃至138、増幅器141乃至148、A/D変換器151乃至158の駆動タイミングや給電なども制御する。
また撮像制御部108は11インチモードで回路を駆動する制御(第一の制御)と、6インチモードでこれら回路を駆動する制御(第二の制御)を選択的に実行することができる。
11インチモードでは、イメージセンサ106の約11インチ角の全撮像領域(第一の領域)に放射線が照射される。撮像制御部108は撮像領域全体の画素から出力を得て画像データを生成し、情報処理装置101に転送する制御(第一の制御)を行う。一方6インチモードでは放射線の照射野が第一の領域に包含される約6.3インチ角の部分領域105に限定される。撮像制御部108はこの部分領域105(第二の領域)内の画素からアナログ信号を読み出し、画像を生成して情報処理装置101に転送する制御(第二の制御)を行う。 この点は図3、4を用い後述する。
図2に基づいてイメージセンサ106に対するA/D変換器151乃至158の割り当てを説明する。図2には、イメージセンサ106の撮像領域170と、A/D変換器151乃至158のそれぞれで分担する担当領域171乃至178が示されている。
担当領域171乃至178は撮像領域170を分割した各小領域であり、担当領域内に配置された画素の信号はその担当領域を受け持つA/D変換器が処理する。例えば、A/D変換器151は担当領域171に配置された画素のアナログ信号をA/D変換する。
担当領域171乃至178は部分領域105の中心位置201に近い担当領域は小さく、中心位置201から遠い担当領域は大きくなるように配置されている。 図2では担当領域171、174、175、178は矩形半導体基板4枚分の領域であるが、担当領域172,173,176,177は3枚分の領域と小さくなっている。担当領域が基板単位で画されており、各A/D変換器はそれぞれ異なる基板に接続することとなるため、制御や実装が簡略化できる。
担当領域が大きいA/D変換器はその分多くの画素と接続するため、処理するアナログ信号の数も多くなる。逆に担当領域が小さいA/D変換器は接続する画素の数も少なく、処理するアナログ信号の数も相対的に少なくなる。処理する信号の数が多ければ多いほどA/D変換の処理時間を増えるため、読み出し領域内をなるべく多くのA/D変換器で、しかもなるべく処理する信号数を分散させることが望ましい。この点で本実施例では、部分領域105の付近には小さな担当領域が多く配置されることとなるため、部分領域105のA/D変換処理を分散させて行うことができる。
このように読み出し範囲を部分領域105に限定した際に、多くのA/D変換器に負荷を分散させて部分領域105を処理することができる。
一般にある領域からのアナログ信号を複数のA/D変換器で並行して処理しようとする場合、最も効率的に処理できるのは、この領域を各A/D変換器に対して均等に分けた場合である。よって、イメージセンサ106の撮像領域170全面をA/D変換器に対して均等に分けた場合、撮像領域170の全面(第一の領域)を最も効率的に処理することができる。本実施例では撮像領域170を均等な担当領域に分けることはせず、中心位置201に近い担当領域を小さくしている。
そのため、撮像領域170全面をA/D変換する際の効率は下がってしまうが、読み出し範囲を部分領域内に限定した場合のA/D変換の効率は均等割りの場合に比べて向上させることができる。
なお、部分領域105でのA/D変換効率を最適化するには、担当領域171、174、175、178を矩形半導体基板5枚分とし、担当領域172,173,176,177を矩形半導体基板2枚分とすべきである。しかしこのように中心位置201に近い担当領域をあまりに小さくしすぎると、中心位置から遠い担当領域を有するA/D変換器の処理時間が増加し、撮像領域170の全面をA/D変換する際の効率が許容できないほど悪くなってしまうことがある。よって各担当領域の大きさは、撮像領域170全面を読み出す際の効率と、部分領域に限定して読み出す際の効率とが要求される仕様や転送効率とに応じて設定される。
なお、図1および図2の例では、部分領域105は撮像領域の中央部分であり、中心位置201はイメージセンサ106または撮像領域170の中心位置と重なっている が、重なっていなくてもよい。要は、限定された読み出し範囲である部分領域105に含まれる所定位置Xに近い担当領域が小さく、遠い担当領域が大きくなるように担当領域が配置されていればよい。
ここで、放射線源104として1焦点型のX線管を用いる場合、イメージセンサ106と共に用いられる散乱線除去グリッドは焦点を有するものが用いられる。この場合には、放射線源104から発せられる放射線の照射野中心は散乱線除去グリッドの中心と重なっている必要がある。このような1焦点型の放射線源と共に用いられる撮像装置の場合には、先述の所定位置Xをイメージセンサ106のA/D変換領域も散乱線除去グリッドの焦点位置と重なる位置とする。
この所定位置に向かって担当領域が小さくなるように各担当領域が配置される。
複数の放射線源をライン状またはアレイ状に並べた複数焦点型のマルチ放射線源を用いる場合には、先述の所定位置Xはどの位置でもよいが、望ましくはイメージセンサ106の中心と略一致させるべきである。
図3に基づいて矩形半導体基板107の構成を詳細に説明する。矩形半導体基板107上には、光電変換素子や画素アンプ301からなる画素が二次元の行列状に配置されている。また、読み出し制御回路として垂直シフトレジスタ302および水平シフトレジスタ303が形成されている。行選択線304は行列状に配置された画素を行毎に選択するための信号を伝送する信号伝送路である。列信号線305は画素からのアナログ信号をイメージセンサ106の外部へと読み出すための信号伝送路であり、行選択線304により選択された画素からの信号を伝送する。
垂直スタート信号VSTは前記垂直シフトレジスタのスタート信号である。垂直クロックCLKVは矩形半導体基板に内蔵される垂直シフトレジスタ302のシフトクロックである。垂直スタート信号VSTと垂直クロックCLKVとの組合せで垂直シフトレジスタの最初の垂直方向の行選択線304が有効となる。垂直クロックCLKVに同期し垂直方向に順次行選択線の有効/無効が切り替わり、行毎に読み出す画素を切り替える。
水平スタート信号HSTは前記水平シフトレジスタのスタート信号である。水平クロックCLKHは矩形半導体基板に内蔵される水平シフトレジスタ303のシフトクロックである。水平スタート信号VSTと水平クロックCLKHとの組合せで水平シフトレジスタの最初の水平方向の列信号線305が有効となる。水平クロックCLKHに同期し水平方向に順次列信号線の有効/無効が切り替わり、矩形半導体基板の1ラインの画素が順次アナログ出力端子に出力される。このように読み出す画素のアナログ信号を列毎に切り替える。
撮像制御部108は垂直スタート信号VSTと垂直クロックCLKVを不図示の外部端子を介して垂直シフトレジスタ302に入力する。また撮像制御部108は水平スタート信号HSTと水平クロックCLKHが外部端子を介して水平シフトレジスタ303に入力する。これら信号に応じて垂直シフトレジスタ302の出力Vnが行選択線304を通じて画素に入力する。また水平シフトレジスタ303の出力Hnは列信号線305に入力される。k番目の垂直クロックCLKVによりk番目の横1ラインの画素の出力が有効となり、l番目の水平クロックCLKHによりl番目の縦1ラインの画素の出力線が有効になる。これによって(k,l)の位置に配置された画素のアナログ信号がアナログ出力線へと伝送される。各A/D変換器はアナログマルチプレクサ、増幅器を介してこの列信号線の少なくとも1つと接続し、接続した画素からのアナログ信号を読み出すこととなる。
上述の構成により実現される放射線撮影システム1の処理を説明する。
撮像制御部108は情報処理装置101を通じて放射線発生装置103と同期し、各モードに合わせて照射範囲を設定する。
撮像制御部108による撮影モードの選択は、情報処理装置101の指示に応じて行う。例えば、マウスまたはキーボードとディスプレイとからなるユーザインタフェースを通じて、操作者が撮影モードを情報処理装置101に入力する。または、外部のサーバー装置等から入力された被写体の撮影部位や病状に応じて情報処理装置101が自動的に撮影モードを決定する。これに応じて情報処理装置101が撮像装置100および放射線発生装置103に対して撮影モードを指示し、撮像制御部108が撮影モードを選択する。また別の例では、情報処理装置101が撮像制御部108に放射線の照射野または撮影されるべき画像の大きさが入力される。 医療分野において診断に用いる画像はライフサイズ(等倍)が原則であるため、画像の大きさは照射野の大きさとほぼ同義である。照射野または画像の大きさが全撮像領域に対応する場合には、撮像制御部108はこの全撮像領域(第一の領域)の画素からアナログ信号を読み出し、画像を生成し、外部に転送する制御(第一の制御)を行う。
照射野または画像の大きさがイメージセンサ106の部分領域に対応する場合には、この部分領域(第二の領域)の画素からアナログ信号を読み出し、画像を生成し、外部に転送する制御(第二の制御)を行う。
11インチモードでも6インチモードでもすべてのA/D変換器151〜158が作動し、照射領域の読み出しを行う。ただし6インチモードでは照射野が絞られるため、四隅のA/D変換領域のうち、有効な画像情報を有するのは中心部に近い1枚の矩形半導体基板のみである。よってA/D変換器151、154、155、158はA/D領域全面をA/D変換する必要はない。後述するが、6インチモードでは中心部に近い3枚の矩形半導体基板のみが読み出しおよびA/D変換の対象となる。
イメージセンサ106のスループットは、A/D変換時間とリセット時間の和か、転送時間かのいずれか大きい方により定まる。このスループットの値は、動画撮影ではフレームレートの最大値となる。
読み出し範囲の一辺が4/7になったとすると、6インチモードでのA/D変換時間はおおよそ3/7ほどとなる。これに対して中央部と周辺部でA/D変換領域が変わらないと仮定すると、A/D変換時間はおおよそ4/7ほどとなる。本実施例のA/D変換時間の方が小さい値となる。本実施例の値は画像データのおおよその削減率である16/49≒2.28/7よりは大きいが、読み出し範囲を限定する効果を大きくすることができる。
このように本実施例では、イメージセンサ106の中央部は接続する画素が少ないA/D変換器が処理する。イメージセンサ106の4頂点を含む四隅の領域は接続する画素が多いA/D変換器が処理する。これにより読み出し範囲を中央部付近に限定した場合にA/D変換時間を大きく減少させることができる。また、全画面読み出しをする場合のスループットは許容される範囲で抑えつつ、照射野を絞って小画角で撮影する場合のスループットを大きく上げることができる。なお、読み出し範囲を中央部ではなく所定の部分領域に絞る場合には、当該部分領域の中心に近いA/D変換領域が四隅のA/D変換領域よりも小さくする。これにより、読み出し範囲を中央部に限定した際にスループットを大きく向上させることができる。
次に図4に基づいて、11インチモードと6インチモードのそれぞれの場合での画像読み出しの例を説明する。
信号SEL1、SEL2はアナログマルチプレクサ131乃至138が接続する基板のうち読み出す基板を選択するための信号である。外側に位置するアナログマルチプレクサ131、134、135、138は、SEL1により制御され、矩形半導体基板4枚のアナログ信号を切り換える。中央付近に位置するアナログマルチプレクサ132、133、136、137は、SEL2により制御され、矩形半導体基板3枚のアナログ信号を切り換える。アナログマルチプレクサ131〜138の入力端子に記載されている番号0〜3は、タイムチャートのSEL1、SEL2の数字と1対1で対応している。例えば、SEL1、SEL2の出力が“0”の時はアナログマルチプレクサの“0”の入力が選択され次段の増幅器に出力される。アナログマルチプレクサ134と135の入力は、SEL1が“3”の時に一番外側の矩形半導体基板の出力が選択されるように構成されている。
垂直スタート信号VSTの“H”の状態で垂直クロックCLKVが立ち上がると、垂直シフトレジスタ302は内部の回路がリセットされる。そして垂直シフトレジスタ302の出力V0に“H”が出力され、行選択線304を通じて画素に入力する。これにより横1ラインの画素出力が有効となる。水平スタート信号HSTが“H”の状態で水平クロックCLKHが立ち上がると、水平シフトレジスタ303は内部の回路がリセットされる。そして水平シフトレジスタ303の出力H0に“H”が出力され、縦1ラインの画素の出力が有効になり、列信号線305に出力される。有効になっている横1ラインの画素のうちH0で選択される画素の出力がアナログ出力端子に出力される。水平クロックCLKHのパルスが順次入力され、水平シフトレジスタ303の“H”出力は、順次H0、H1、・・、とシフトする。H127までシフトしたところで1ラインの読み出しが終了する。次に、垂直シフトクロック信号CLKVが入力され垂直シフトレジスタ302の“H”出力はV1に切り替わる。その後この横1ラインの読み出しを順次行う。以上の行毎の選択と画素の読み出し動作を順次繰り返すことで、矩形半導体基板107の画素の読み出しが行われる。
水平クロックCLKHに同期して矩形半導体基板107の画素出力が順次外部アナログ出力端子に出力される。A/D変換器は水平クロックCLKHに同期するA/D変換クロックCLKADに応じてA/D変換を行う。
A/D変換器は、マルチプレクサの入力を切り換えと同期しながらA/D変換領域内の横手方向の1ラインのA/D変換を行う。この変換を順次外側のラインから中心部のラインへと縦手方向に繰り返す。
この処理を図1左上の4枚の矩形半導体基板で構成されるA/D変換領域を例に説明する。ここではアナログマルチプレクサ134に一番近い横方向の1ラインが矩形半導体基板を横断して読み出され、A/D変換器154によりA/D変換される。横方向1ラインの読み出しが終了後、隣の横方向1ラインの画素が読み出され、A/D変換される。この処理をA/D変換領域全体で行う。A/D変換器が矩形半導体基板が3枚または4枚で構成される1つのA/D変換領域に配置された画素をすべて処理し終わると、A/D変換が終了する。その後、イメージセンサ106はリセット動作を行い、次の読み出しのサイクルへと移る。リセットと並行してデジタル信号から画像データが作成され、情報処理装置101に転送される。
図4(a)は11インチモードの読み出し制御(第一の制御)を示すタイムチャートである。図4(a)で示すように、11インチモードの読み出しは、8つのA/D変換領域の1ライン上の画素が0、1、2の順で読み出される。SEL1が“3”の時は、両端部の矩形半導体基板161〜164が有効なデータとして読み出される。この間、撮像制御部108はA/D変換器151、154、155、158の出力を無視する。撮像制御部108は、有効データのみを組み合わせて合成しイメージセンサ106の上下それぞれ1ラインのデータを生成する。このラインのデータをまとめて画像データを生成し、情報処理装置101に転送する。
図4(b)は6インチモードの読み出し制御(第二の制御)を示すタイムチャートである。6インチモードが11インチモードが異なる点は、一番外側の矩形半導体基板のみ読み出さない点と、上部と下部の部分領域外に配置された画素からのアナログ信号を読み飛ばす点である。
本実施例では、A/D変換器151〜158の全てについてA/D変換を行う矩形半導体基板を3枚とする。これで各A/D変換器が処理する画素数は同じ大きさとなる。四隅のA/D変換器151、154、155、158の変換領域は、照射領域の基板1枚に隣接して連続にタイリングされた照射領域外の基板2枚を含むこととなる。しかしこのようにしても、A/D変換領域の大きさに差はなく、照射野外の基板をA/D変換しない場合とA/D変換時間が変わらない。加えて下記のとおり駆動を単純化できるというメリットがある。
四隅のA/D変換器の処理対象を矩形半導体基板3枚のみとするため、撮像制御部108は四隅のアナログマルチプレクサに一番外側の基板を選択させない。これにより中心から遠い周辺部の矩形半導体基板161〜164を読み出さない制御をする。撮像装置100ではSEL1が“3”の時に一番外側の矩形半導体基板161〜164の出力が選択されるように構成されている。そこでSEL1で3を選択しないことで一番外側の基板をA/D変換の対象から外す。
このように、四隅のA/D変換器に内側3枚をA/D変換させることで撮像装置100の駆動をそろえることができるため、制御が簡単になる。また、四隅のA/D変換器が内側3枚をA/D変換するとしても、内側1枚のみをA/D変換する場合とA/D変換時間は変わらない。よってスループットに与える影響は小さい。
また、読み出し時間を短縮するために、照射野の上側または下側の領域は読み飛ばす処理を行う。A/D変換器152、153、156、157はそれぞれ、照射野の上側または下側の縦384画素、横384画素の照射野外領域を読みとばす。
そして、照射野内の縦512画素、横384画素の領域をA/D変換する。部分領域105の外側(第二の領域外)の画素列384行では、垂直クロックCLKVのパルスを連続して出力し垂直シフトレジスタ302のシフトのみを行う。水平スタート信号HST、水平クロックCLKHを動作させない。図4(b)で言えば、垂直シフトレジスタスタート信号VSTから水平スタート信号HSTまでが読み飛ばしを行っている期間である。この読み飛ばし処理は不要な画素の画像読み出しを行わないので、全ラインを読み出す処理より1行あたりの処理時間を短い。
A/D変換器151、154、155、158についてもA/D変換器152、153、156、157と同様に照射野の上部または下部の領域を読み飛ばす。これにより、6インチモードの部分領域105を含んだ領域のA/D変換が可能である。その後撮像制御部108は、A/D変換されたデジタル信号を組み合わせて合成し1ラインのデータを生成する。このように順次A/D変換され合成される1ラインのデータをまとめて画像データとし、情報処理装置101に転送する。
この6インチモードの読み出しで読み出された画像データは照射野外の画像領域を含んでいる。そこで、読み出した画像から必要な領域を除去して情報処理装置101に画像を転送する処理を行う。 図5は、6インチモードにおける画像の切り出しの方法を示す図である。図5(a)ではイメージセンサ106の全画像領域が11インチモードで読み出される。破線部分の105は6インチモードの照射画像領域である。401、402は、前記読み飛ばし処理により読み出しを行わない領域である。上述の読み出し方法により、図5(b)に示す領域が画像データとして読み出される。読み出された画像データでは、6インチモードの部分領域105の領域外の403〜410の領域を含んでいる。この領域は画像としては不要なので、情報処理装置101への転送時に画像の切り出しを行い、図5(c)に示す領域を転送する。画像の切り出し処理は、フレームメモリに展開された図5(b)画像の一部にアクセスすることにより行われる。
以下、撮像装置100のスループットの計算例を示す。矩形半導体基板107は横約20mm、縦約140mmの短冊状であり、画素がピッチ160μmで横方向に128個、縦方向に896個形成されている場合を例に説明する。
まずは転送レートについて説明する。11インチモードで横方向の画素数は128画素×14枚で1,792、縦方向の画素数は896画素×2枚で1,792となり、総画素数は3,211,264である。6インチモードでは、横方向の画素数は128×8で1,024、縦方向の画素数は512×2で1,024であり、総画素数は1,048,576画素である。A/D変換器の出力が16ビットであると、11インチモードでは1フレームが6,422,528バイト、6インチモードでは2,097,152バイトである。
画像転送インターフェース109が最大約2Gビット/秒である場合、最大転送レートは8ビット10ビットエンコード方式を考慮すると約200Mバイト/秒である。このことから、11インチモードの画像が最大約31フレーム/秒、6インチモードの画像が最大約95フレーム/秒転送可能である。
次に6インチモードでのA/D変換時間とスループットを説明する。矩形半導体基板での読み出しおよびA/D変換器での変換のクロックを20MHzとする。A/D変換時のラインを切り換える帰線時間を1μsec、アナログマルチプレクサの入力切り換え時間を1μsecとする。矩形半導体基板光電変換のリセット駆動に要する時間は1msecである。
以上の条件で、矩形半導体基板4枚分の1ライン512画素の出力を20MHzで読み出しA/D変換するための時間は25.6μsecである。これにアナログマルチプレクサの切り換え時間4μsecと帰線時間1μsecを含め30.6μsecである。縦方向に896回の読み出し走査をし、1フレームごとのリセット駆動1msecを加えると約28.4msecとなる。これが矩形半導体基板4枚の領域、横方向512画素、縦方向画素896画素を1つのA/D変換器でA/D変換するための時間である。
同様に、矩形半導体基板3枚分の1ライン384画素を20MHzで読み出しA/D変換するための時間は19.2μsecである。これに矩形半導体基板3枚分のアナログマルチプレクサの切り換え時間3μsecと帰線時間1μsecを加えると23.2μsecとなる。縦方向に896回の読み出し走査をし、1フレームごとのリセット駆動1msecを含めると約21.8msecとなる。これが矩形半導体基板3枚の領域、横方向384画素、縦方向画素896画素を1つのA/D変換器でA/D変換するための時間である。
撮像装置100はA/D変換器を複数有し並行してA/D変換処理を行うため、信号読み出し時間の律速要因は処理画素数が最も大きいA/D変換器である。11インチモードでの矩形半導体基板4枚の領域のA/D変換時間は28.4msecより、4枚領域の読み出しレートは約35.2回/秒である。矩形半導体基板3枚の領域のA/D変換時間は21.8msecより、3枚領域の読み出しレートは約45.9回/秒である。11インチモードでの最大フレームレートは4枚領域の読み出しレートに依存するため、約35.2フレーム/秒となる。
先述のとおり画像転送インターフェース109の11インチモードでのデータ転送レートは、最大約31フレーム/秒である。よって、放射線撮影システム1の11インチモードでの最大フレームレートは、画像転送インターフェース109の転送能力に律速し、最大約31フレーム/秒となる。
次に6インチモードでのA/D変換時間とスループットを説明する。このセンサでは1ラインの読み飛ばし時間はラインの帰線時間と同じ1μsecとすると読み飛ばしに要する時間は384μsecとなる。
6インチモードでも11インチモードと同様にA/D変換器の変換クロックは20MHz、A/D変換時のラインの帰線時間は1μsecである。アナログマルチプレクサの入力切り換え時間は1μsec、矩形半導体基板の光電変換のリセット駆動時間は1msecである。
矩形半導体基板3枚分の1ライン384画素を20MHzで読み出しA/D変換するための時間は19.2μsecである。これに矩形半導体基板3枚分のアナログマルチプレクサの切り換え時間3μsecと帰線時間1μsecを加えると23.2μsecである。縦方向に512回の読み出し走査をし、読み飛ばしに要する時間384μsecと1フレームごとのリセット駆動1msecを加えると約13.3msecとなる。これが、矩形半導体基板3枚の領域、横方向384画素、縦方向画素896画素を1つのA/D変換器でA/D変換するための時間である。
すべてのA/D変換器が同一面積のA/D変換領域をA/D変換するので6インチモードの部分領域105のA/D変換時間は1つのA/D変換時間と等しい。よってA/D変換時間は約13.3msecとなり、この領域の読み出しレートは約75.4回/秒となる。
このように6インチモードにおける画像転送インターフェース109の転送能力最大約95フレーム/秒に対し、読み出しのレートは約75.4フレーム/秒である。よって6インチモードの放射線撮影システムの最大フレームレートは、A/D変換器での処理が律速要因となり、約75.4フレーム/秒となる。
以上により本実施例1においては、11インチモードでは画像転送インターフェース109の転送能力を最大まで使用し、11インチモードで30フレーム/秒となる。一方で6インチモードでは60フレーム/秒以上のこうフレームレートかつ高精細な動画撮影が可能となる。一般の動画撮影では30フレーム/秒あれば足りるとされている。しかし最近ではビニング処理無しの高精細モードで60フレーム以上のフレームレートが要求されるようになってきている。その場面のひとつは、照射領域を絞った小画角の動画撮影において、心臓などの動きのある臓器を細いカテーテルのガイドワイヤーと共に鮮明に撮影する場面である。本実施例における11インチモードと6インチモードの撮影モードはこれら要求を共に満たすことができる点で非常に有用である。イメージセンサの多画素化、転送速度の高速化が進むと、いずれの撮影モードでもA/D変換器が律速要因となることが考えられる。このような場合では更に、読み出し範囲を限定することによるスループット向上の効果を大きくすることができる。
別の駆動例では、照射野の上側の領域と下側の領域の読み飛ばしを行わない。図4(c)に示すように、SEL1、SEL2の出力パターンは同じになり読み出し駆動が簡略化されると共に、1ラインの画像の読み出しも3/4の時間で完了する。また、SEL1の出力が3にならないことを除けば11インチモードの駆動と同じ駆動となるため、更に読み出し駆動が簡略化される。
また別の駆動例では、外側から数えて三枚の矩形半導体基板は照射野外であるため、これら3枚からの信号はA/D変換しない。これでA/D変換後に転送用の画像を切り出す作業が不要となり、さらにスループットが向上させることができる。
実施例1では、図1に示したように14列×2行に矩形半導体基板をタイリングする例を示したが、特に行の数と列の数を限定するものではない。イメージセンサ606の限定された読み出し範囲の中心に近いA/D変換領域が4頂点を含むA/D変換領域よりも狭い配列であれば良い。図6に矩形半導体基板が14列×4行にマトリクス状にタイリングされて構成されたフラットパネルセンサを示す。図6では、1行にタイリングされた矩形半導体基板を図6の左側から4枚、3枚、3枚、4枚のA/D変換領域に領域分けしている。
イメージセンサ606の不図示の制御回路と矩形半導体基板との接続は、行61にタイリングされている矩形半導体基板は上端部から信号線が引き出される。行64にタイリングされている矩形半導体基板は下端部から信号線が引き出される。行62にタイリングされている矩形半導体基板は、行61と行62の境界部でイメージセンサ606の裏面から信号線が引き出される。行63にタイリングされている矩形半導体基板は、行63と行64の境界部でイメージセンサ606裏面から信号線が引き出される。これら境界部には約50μmの不図示フラットフレキシブルケーブルが取り付けられ、矩形半導体基板端部で直角に曲げられ信号線が引き出される。このように、四隅のA/D変換領域よりも中央部のA/D変換領域を小さくする。
読み出し範囲をイメージセンサ606の全領域60(第一の領域)から中央の部分領域65(第二の領域)に限定した際に実施例1と同様にスループットを大きく向上できる。
本実施例では、11インチモードと6インチモードの二つのモードだけでなく、3つ以上の撮影モードを実行できる。11インチモードの左右端からそれぞれ128画素だけ狭い照射野(第一の領域)を設定して撮影する第三の撮影モードを実行することができる。周辺部のA/D領域を基板4枚分から基板3枚分とすることが可能である。例えば、この場合、矩形半導体基板3枚分の384画素×512画素のA/D変換時間に律速するのでフラットパネルセンサの読み出しの高速化を図ることが可能となる。
また別の例では、情報処理装置101からの指示に応じて任意の部分領域を読み出し領域として設定できる。この場合、情報処理装置101から撮像領域170における任意の部分領域を設定する指示が行われる。この指示に応じて、撮像制御部108はいずれの矩形半導体基板を読み出さず、また矩形半導体基板のいずれの行を読み飛ばすかを設定する。読み出さない矩形半導体基板がある場合には、実施例1のようにアナログマルチプレクサに対して読み飛ばす矩形半導体基板に対応するSEL信号を送信しないよう制御する。また、読み飛ばす行が存在する場合にも、実施例1のように行選択線の選択のみを行い、列信号の選択を行わないで読み飛ばす制御をする。
上記の制御が可能な撮像装置において、一部のA/D変換器の担当領域が他のA/D変換器の担当領域よりも小さくなるようにアナログマルチプレクサとイメージセンサとの間の配線を設定しておく。
このようにしておけば、当該小さな担当領域を一部含むような部分領域を読み出し領域とすれば、より多くのA/D変換器で負荷を分散してA/D変換することができる。これによりA/D変換時間を減らし、スループットを向上させることができる。
本実施例では、イメージセンサ106の全領域(第一の領域)の左右端からそれぞれ128画素狭い照射領域(第二の領域)の撮影をする制御(第二の制御ができる。もちろん実施例1と同様に11インチモードでの撮影制御(第一の制御)および6インチモードでの撮影制御も可能である。この際に使用しない矩形半導体基板の電源を切る、または矩形半導体基板の電源は切らずに画素回路の増幅器の電源を投入しない制御を行う。照射領域外の矩形半導体基板の電源を切る場合は、該当する矩形半導体基板への制御信号もローレベルやハイインピーダンスにする。これにより省電力化が可能になる。
図7は画素回路の一例として矩形半導体基板に二次元に構成される画素回路の1つの画素回路を示す図である。省電力化について、矩形半導体基板の電源は切らずに画素回路の増幅器を作動させないことにより節電する方法を図7の画素回路を用いて説明する。FDアンプ703はフローティングディフュージョン(浮遊拡散領域)に蓄積された電荷を電荷/電圧変換するソースフォロワとして作動する増幅MOSトランジスタである。選択素子701はEN信号によりFDアンプ703を作動させる選択MOSトランジスタである。画素アンプ704はソースフォロワとして作動する増幅MOSトランジスタ(画素アンプ)である。MOSFET702はEN信号により画素アンプ704を作動させる選択MOSトランジスタである。撮像制御部108が出力するEN信号により、FDアンプ703、画素アンプ704が作動状態になる。これにより定電流回路705、706からFDアンプ703、画素アンプ704にそれぞれ0.3μA程度の電流が流れる。照射領域外の矩形半導体基板には、このEN信号をOFFの状態にすることにより、画素回路の増幅器を作動させないように制御する。これにより矩形半導体基板1枚当たり128画素×896画素で計114,688個の画素回路におけるFDアンプ703、画素アンプ704に流れる電流約67mAを節約できる。全体として約269mAの電流を節約できる。
撮像制御部108による画素回路内のアンプへの電源供給については、照射領域内の画素回路のみ行う。なお無効データとしてA/D変換される領域の画素アンプへは電源を行わない制御を行ってもよい。
これにより、読み出し範囲を限定する際に不要な回路への給電を停止することで消費電力を抑えることができる。
本実施例では、MIS型フォトダイオードを用いたフラットパネルセンサに本発明を適用した例を示す。MIS型のセンサでは、大面積ガラス基板上にアモルファスシリコン膜を形成し、光電変換素子、薄膜電界効果型トランジスタを同時にアモルファスシリコン膜上に形成される。
図8はMIS型フラットパネルセンサを用いた撮像装置800の構成を示す図である。撮像制御部813は撮像装置800を制御する。イメージセンサ806はMIS型のイメージセンサである。イメージセンサ806基板上には画素読み出しの垂直シフトレジスタ、水平シフトレジスタは構成されておらず、イメージセンサ806の外部にそれらの回路が構成されている。垂直シフトレジスタ811、812はイメージセンサ806の行選択線が1対1で接続されている。垂直シフトレジスタ811上端部から中心部に向けて行選択信号をシフトする。垂直シフトレジスタ812下端部から中心部に向けて行選択信号をシフトする。アナログマルチプレクサ821〜828は水平シフトレジスタ機能を有し、イメージセンサ806の列毎のアナログ出力信号が1対1で接続されている。四隅のアナログマルチプレクサ821、824、825、828が受け持つ領域は中央部のアナログマルチプレクサ822、823、826、827が受け持つ領域よりも広い。照射野および読み出し範囲を限定すると、この場合読み出しの速度は、処理信号数の少ない中央部のアナログマルチプレクサの読み出し時間に律速する。よって、読み出し範囲を限定することで上述の実施例と同等の効果が得られる。
なお適用対象はPIN型フォトダイオードを用いたフラットパネルセンサでも良い。イメージセンサの画像領域の4頂点を含むA/D変換領域に対し、画像領域中央部のA/D変換領域が狭い限りにおいて、本発明の範囲はイメージセンサの構造に限定されない。
第6の実施例では、アナログマルチプレクサの代わりに矩形半導体基板907上に切り替え素子が設けられている。
図9に基づき第二の実施例の放射線撮影システム9を説明する。なお実施例1と同様の部分については説明を省略する。本実施例では、矩形半導体基板907はアナログマルチプレクサを介さずに直接増幅器に接続している。矩形半導体基板907上にはアナログ出力のイネーブル/ディセーブルを切り換えるアナログスイッチ素子が構成されている。
図10に基づいて矩形半導体基板907の構成を説明する。なお実施例1と同様の部分については説明を省略する。撮像制御部108はチップセレクト信号CSにより矩形半導体基板の出力を制御する。これによりアナログマルチプレクサ無しに矩形半導体基板のアナログ出力線同士をまとめて増幅器に接続する。
本実施例での11インチモードと6インチモードの読み出し方法を、図11のタイムチャートを用いて説明する。ただし、実施例1と同様の部分については説明を省略する。
図11(a)は図9で示したイメージセンサ906の全画像領域(第一の領域)を読み出す11インチモードの読み出し制御(第一の制御)を示すタイムチャートである。図11(b)は部分領域105(第二の領域)の画像を表示する6インチモードの読み出し制御(第二の制御)を示すタイムチャートである。
図11の信号CS0〜CS3は矩形半導体基板のアナログ信号の出力を制御するチップセレクト信号である。図9の矩形半導体基板のアナログ出力信号に振られている番号は、タイムチャートのチップセレクト信号CSの数字と1対1で対応する。例えば、CS0が“H”の間は矩形半導体基板のアナログ出力信号番号“0”のアナログ出力が有効になり、次段の増幅器に出力される。CS1が“H”の時はアナログ出力信号番号“1”のアナログ出力が有効になり、次段の増幅器に出力される。CS0はアナログ出力信号番号“0”の矩形半導体基板に接続される。CS1はアナログ出力信号番号“1”の矩形半導体基板に接続される。CS2はアナログ出力信号番号“2”の矩形半導体基板に接続される。CS3はアナログ出力信号番号“3”の矩形半導体基板に接続される。
チップセレクト信号CS3は一番外側の矩形半導体基板に接続されている。図11(a)に示すように、8つのA/D変換領域の1ライン上の画素がアナログ信号番号0、1、2と順番に読み出される。CS3が“H”の時は、フラットパネルセンサ906の両端部の矩形半導体基板961〜964が読み出される。読み出されたデータは、撮像制御部108の中で並べ替えが行われた後、情報処理装置101に転送される。6インチのモードの時は、図11(b)に示すようにCS0〜CS2が変化しCS3の信号は“L”のままなので、1ラインの画像の読み出しが3/4の時間で完了する。
〔その他の実施例〕
上述の実施例において、放射線撮影システムの1つの装置内で行われている処理を複数の装置で分散させてして実現してもよい。また1つの機能ブロックとしてまとめられている処理を複数の回路または機能ブロックで分散させて実現してもよい。
上述の実施例では、読み出し範囲をイメージセンサの中央部に限定する例を示したが、例えば、所定の部分領域に読み出し範囲を限定することとしてもよい。要は限定された読み出し領域の中心に近い領域を担当するA/D変換器が、四隅の領域を担当するA/D変換器よりも接続する画素数が多い場合には本発明の範囲に含まれる。またこの限りにおいて本発明の適用範囲は上述の記載の実施形態に限られない。
〔比較例〕以下比較例としての放射線撮影システム12を図12に基づき説明する。比較例の撮像装置1200では、両端のA/D変換器に接続する画素の数が少なく、中央部のA/D変換器に接続する画素の数が多くなっている。A/D変換器1251乃至1258はそれぞれマルチプレクサ1231乃至1238を介してイメージセンサ1206に接続する。A/D変換器1251、1254、1255、1258は3枚の矩形半導体基板に接続し、A/D変換器1252、1253、1256、51257は4枚の矩形半導体基板に接続する。使用するA/D変換器の個数を少なくしてコストを抑えられ、11インチモードの撮像装置の駆動と6インチモードの撮像装置の駆動を簡略化できる。
かかる撮像装置1200の駆動を図13のタイムチャートに基づき説明する。図13(a)は11インチモードの駆動例である。実施例1の撮像装置1200とはSEL1とSEL2の信号が逆になっている点で異なる。それ以外は実施例1と同様である。
図13(b)は6インチモードでの駆動例である。この駆動例では、照射領域1205外の領域は読み出しを行わない。よって、読み出し領域はイメージセンサ1206を中心とする横1,024画素、縦1,024画素の領域である。この領域をA/D変換器1252、1253、1256、1257が横512画素、縦512画素ずつA/D変換する。これらA/D変換器において、照射領域外の不要な画素列である384ラインは読み飛ばしを行う。なお、端部のA/D変換器1251、1254、1255、1258は6インチモードでは使われない。撮像制御部108はA/D変換器1251、1254、1255、1258および、これらのA/D変換器に接続する矩形半導体基板、アナログマルチプレクサ、増幅器の給電を停止する。図13(b)はこのときの駆動方法を示すもので、使用しないアナログマルチプレクサ1231、1234、1235、1238のSEL1はハイインピーダンスとなる。同様に、図13(b)には示さないが給電停止状態の素子に接続する信号、VST、CLV、HST、CLKH、CLKADは、LOWレベルまたはハイインピーダンスになる。撮像制御部108は、A/D変換器1252、1253、1256、1257のデータを組み合わせて合成しイメージセンサ1206の上下それぞれ1ラインのデータを生成する。矩形半導体基板4枚からのみの読み出しとなり制御が簡略化される。なお別の例として図13(c)に示すように、照射野の上側および下側の領域を読み飛ばさないこととしてもよい。
実施例1と同様にA/D変換器の変換クロックは20MHz、A/D変換のラインの帰線時間は1μsecである。アナログマルチプレクサの入力切り換え時間は1μsec、矩形半導体基板光電変換のリセット駆動時間は1msecである。1ラインの読み飛ばし時間はラインの帰線時間と同じ1μsecである。以上の条件で、6インチモードの矩形半導体基板4枚の横画素、縦512画素の領域をA/D変換するための時間は、照射領域外の読み飛ばし処理を含め17.1msecとなる。この領域の読み出しレートは約58.6回/秒となるため、6インチモードの照射領域の読み出しフレームレートは約58.6フレーム/秒となる。
実施例1のとおり、6インチモードにおける画像転送インターフェース109の転送能力最大約95フレーム/秒に対し、読み出しのレートは約58.6フレーム/秒である。6インチモードの放射線撮影システムの最大フレームレートは、照射領域1205の読み出しレートが律速要因となり、約58.6フレーム/秒となる。なお、11インチモードでの最大フレームレートは実施例1と同様に31フレーム/秒である。以上のことから、実施例1の方が読み出し範囲を制限した際にスループットを大きく向上させている。
1 放射線撮影システム
100 撮像装置
105 部分領域
106 イメージセンサ
108 撮像制御部
151乃至158 A/D変換器
170 撮像領域
171乃至178 担当領域

Claims (15)

  1. 複数の画素が撮像領域内に配置されたイメージセンサと、
    前記複数の画素から読み出された複数のアナログ信号を前記画素が配置された撮像領域の担当領域毎に分担してA/D変換する複数のA/D変換器と、
    前記撮像領域のうち所定位置を含む部分領域内の画素に限定して前記アナログ信号を読み出す制御を行う制御手段と、を有し、
    前記撮像領域内の所定位置に近い担当領域は前記所定位置から遠い前記担当領域よりも小さいことを特徴とする撮像装置。
  2. 前記撮像領域の第一の領域に配置された画素のアナログ信号を読み出す第一の制御と、前記第一の領域よりも狭い前記部分領域に配置された画素からのアナログ信号を読み出す第二の制御とを選択的に実行する制御手段を更に備えることを特徴とする請求項1に記載の撮像装置。
  3. 前記所定位置は前記撮像領域の中心と略一致することを特徴とする請求項1に記載の撮像装置。
  4. 前記所定位置は前記撮像装置と共に用いられる散乱線除去グリッドの焦点の位置に基づいて定められることを特徴とする請求項1に記載の撮像装置。
  5. 前記撮像領域において前記画素からアナログ信号を読み出す読み出し範囲を設定する設定手段を更に有することを特徴とする請求項1に記載の撮像装置。
  6. 前記A/D変換により得られたデジタル信号に基づいて画像を生成する生成手段を更に備えることを特徴とする請求項1に記載の撮像装置。
  7. 前記A/D変換により得られたデジタル信号に基づく画像を外部に転送する転送手段を更に有することを特徴とする請求項1に記載の撮像装置。
  8. 前記制御手段は前記部分領域の外側に配置された画素を読み飛ばす制御をし、
    前記転送手段は前記外側の列から得られるデジタル信号に基づいて得られる画像領域を除去して転送することを特徴とする請求項7に記載の撮像装置。
  9. 前記イメージセンサは前記複数の画素が行列状に配列されており、前記画素を行毎に選択する信号を伝送する複数の行選択線と、前記選択される行の画素のアナログ信号を読み出す複数の列信号線と、を有し、
    前記複数のA/D変換器は少なくとも1つの前記列信号線に接続することで前記画素と接続することを特徴とする請求項1に記載の撮像装置。
  10. 前記イメージセンサは、前記複数の画素が行列状に配列された基板がタイリングされており、
    前記複数のA/D変換器は、それぞれ異なる前記基板に接続することで前記画素と接続することを特徴とする請求項1に記載の撮像装置。
  11. 複数の画素が撮像領域内に配置されたイメージセンサと、
    前記複数の画素から読み出された複数のアナログ信号を前記画素が配置された前記撮像領域の担当領域毎に分担してA/D変換する複数のA/D変換器と、
    前記撮像領域のうち所定位置を含む部分領域内の画素に限定して前記アナログ信号を読み出す制御を行う制御手段と、を有し、
    複数の前記担当領域は、前記所定位置に向かって該担当領域が小さくなるように配置されることを特徴とする撮像装置。
  12. 複数の画素が撮像領域内に配置されたイメージセンサと、
    前記複数の画素から読み出された複数のアナログ信号を前記画素が配置された前記撮像領域の担当領域毎に分担してA/D変換する複数のA/D変換器と、
    前記撮像領域のうち任意の部分領域内の画素に限定して前記アナログ信号を読み出す制御を行う制御手段と、を有し、
    複数の前記担当領域のうち少なくとも1つが他の前記担当領域よりも小さいことを特徴とする撮像装置。
  13. 受光量に応じたアナログ信号を得る複数の画素を行列状に配置したイメージセンサと、
    前記複数の画素を行毎に選択する信号を伝送する複数の行選択線と、
    前記選択される行の画素のアナログ信号を読み出す複数の列信号線と、
    前記列信号線と接続し前記読み出されるアナログ信号をA/D変換処理する複数のA/D変換器と、
    前記イメージセンサの中央部分の画素に限定して前記アナログ信号を読み出す制御を行う制御手段と、を有し、
    前記イメージセンサの中心に近い画素の信号を処理するA/D変換器に接続する画素の数は、前記イメージセンサの中心から遠い画素の信号を処理するA/D変換器に接続する画素の数よりも小さいことを特徴とする撮像装置。
  14. 請求項1乃至13のいずれか1項に記載の撮像装置と、
    前記制御手段による制御の実行を指示する指示手段と、
    前記指示に応じた前記制御により得られる画像データを表示させる表示制御手段と、
    を有することを特徴とする放射線撮影装置。
  15. 請求項1乃至14のいずれか1項に記載の撮像装置と、
    前記イメージセンサに放射線を照射する放射線源と、
    前記イメージセンサにおける放射線の照射範囲を前記部分領域に設定する設定手段と、
    前記A/D変換により得られたデジタル信号に基づいて画像を生成する生成手段と、
    前記生成された画像を表示する表示手段と、
    を有することを特徴とする放射線撮影システム。
JP2010243800A 2010-10-29 2010-10-29 撮像装置、放射線撮影装置および放射線撮影システム Expired - Fee Related JP5637816B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010243800A JP5637816B2 (ja) 2010-10-29 2010-10-29 撮像装置、放射線撮影装置および放射線撮影システム
US13/279,458 US20120105665A1 (en) 2010-10-29 2011-10-24 Digital image pickup apparatus, radiation imaging apparatus, and radiation imaging system
DE102011085427A DE102011085427A1 (de) 2010-10-29 2011-10-28 Digitale Bildaufnahmevorrichtung, Strahlungsabbildungsvorrichtung und Strahlungsabbildungssystem

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010243800A JP5637816B2 (ja) 2010-10-29 2010-10-29 撮像装置、放射線撮影装置および放射線撮影システム

Publications (2)

Publication Number Publication Date
JP2012099909A true JP2012099909A (ja) 2012-05-24
JP5637816B2 JP5637816B2 (ja) 2014-12-10

Family

ID=45935866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010243800A Expired - Fee Related JP5637816B2 (ja) 2010-10-29 2010-10-29 撮像装置、放射線撮影装置および放射線撮影システム

Country Status (3)

Country Link
US (1) US20120105665A1 (ja)
JP (1) JP5637816B2 (ja)
DE (1) DE102011085427A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016009832A1 (ja) * 2014-07-14 2016-01-21 ソニー株式会社 比較器、ad変換器、固体撮像装置、電子機器、および比較器の制御方法
JPWO2016027729A1 (ja) * 2014-08-20 2017-06-01 ソニー株式会社 信号処理装置、撮像素子、並びに、電子機器
WO2019225122A1 (ja) * 2018-05-25 2019-11-28 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及び固体撮像装置を搭載した電子機器
JP2021029749A (ja) * 2019-08-27 2021-03-01 キヤノン株式会社 放射線撮像装置の制御装置及び制御方法並びに放射線撮像システム
US12015864B2 (en) 2014-07-14 2024-06-18 Sony Group Corporation Comparator, AD converter, solid-state imaging device, electronic apparatus, and method of controlling comparator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022117270B3 (de) 2022-07-12 2023-10-26 Leica Microsystems Cms Gmbh Abbildungsvorrichtung mit einem Kameraadapter, Verfahren und Computerprogrammprodukt

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003198956A (ja) * 2001-12-21 2003-07-11 Canon Inc 撮像装置及びその制御方法
JP2006217274A (ja) * 2005-02-03 2006-08-17 Hamamatsu Photonics Kk 固体撮像装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5063521A (en) * 1989-11-03 1991-11-05 Motorola, Inc. Neuram: neural network with ram
JPH05208005A (ja) 1992-01-31 1993-08-20 Toshiba Corp X線ctスキャナー
US5452004A (en) * 1993-06-17 1995-09-19 Litton Systems, Inc. Focal plane array imaging device with random access architecture
US7003147B2 (en) * 2001-01-12 2006-02-21 Canon Kabushiki Kaisha Image processing apparatus
US20020186813A1 (en) 2001-05-08 2002-12-12 Toshikazu Tamura Image sensing apparatus and image sensing method, X-ray photographing system and its control method
US6895077B2 (en) * 2001-11-21 2005-05-17 University Of Massachusetts Medical Center System and method for x-ray fluoroscopic imaging
WO2006048987A1 (ja) * 2004-11-02 2006-05-11 Japan Science And Technology Agency 撮像装置及びその信号読み出し方法
JP5187550B2 (ja) * 2007-08-21 2013-04-24 ソニー株式会社 撮像装置
KR101495895B1 (ko) * 2008-07-08 2015-02-25 삼성전자주식회사 넓은 동적 범위를 갖는 광전 변환장치 및 광전 변환방법
JP5451051B2 (ja) * 2008-12-12 2014-03-26 キヤノン株式会社 撮像装置及び撮像システム
US8901541B2 (en) * 2009-04-07 2014-12-02 Rohm Co., Ltd. Photoelectric conversion device and image pick-up device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003198956A (ja) * 2001-12-21 2003-07-11 Canon Inc 撮像装置及びその制御方法
JP2006217274A (ja) * 2005-02-03 2006-08-17 Hamamatsu Photonics Kk 固体撮像装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11394912B2 (en) 2014-07-14 2022-07-19 Sony Corporation Comparator, AD converter, solid-state imaging device, electronic apparatus, and method of controlling comparator
KR20170031645A (ko) * 2014-07-14 2017-03-21 소니 주식회사 비교기, ad 변환기, 고체 촬상 장치, 전자 기기, 및 비교기의 제어 방법
JPWO2016009832A1 (ja) * 2014-07-14 2017-04-27 ソニー株式会社 比較器、ad変換器、固体撮像装置、電子機器、および比較器の制御方法
WO2016009832A1 (ja) * 2014-07-14 2016-01-21 ソニー株式会社 比較器、ad変換器、固体撮像装置、電子機器、および比較器の制御方法
US10021331B2 (en) 2014-07-14 2018-07-10 Sony Corporation Comparator, AD converter, solid-state imaging device, electronic apparatus, and method of controlling comparator
US12015864B2 (en) 2014-07-14 2024-06-18 Sony Group Corporation Comparator, AD converter, solid-state imaging device, electronic apparatus, and method of controlling comparator
US11758305B2 (en) 2014-07-14 2023-09-12 Sony Group Corporation Comparator, ad converter, solid-state imaging device, electronic apparatus, and method of controlling comparator
US10944932B2 (en) 2014-07-14 2021-03-09 Sony Corporation Comparator, AD converter, solid-state imaging device, electronic apparatus, and method of controlling comparator
KR102326607B1 (ko) * 2014-07-14 2021-11-16 소니그룹주식회사 비교기, ad 변환기, 고체 촬상 장치, 전자 기기, 및 비교기의 제어 방법
JPWO2016027729A1 (ja) * 2014-08-20 2017-06-01 ソニー株式会社 信号処理装置、撮像素子、並びに、電子機器
US11470269B2 (en) 2018-05-25 2022-10-11 Sony Semiconductor Solutions Corporation Solid-state imaging device and electronic device equipped with solid-state imaging device
WO2019225122A1 (ja) * 2018-05-25 2019-11-28 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及び固体撮像装置を搭載した電子機器
JP7308694B2 (ja) 2019-08-27 2023-07-14 キヤノン株式会社 放射線撮像装置の制御装置及び制御方法並びに放射線撮像システム
JP2021029749A (ja) * 2019-08-27 2021-03-01 キヤノン株式会社 放射線撮像装置の制御装置及び制御方法並びに放射線撮像システム

Also Published As

Publication number Publication date
DE102011085427A1 (de) 2012-05-03
JP5637816B2 (ja) 2014-12-10
US20120105665A1 (en) 2012-05-03

Similar Documents

Publication Publication Date Title
US8785870B2 (en) Imaging apparatus, radiation imaging system, and control method of image sensor
US7514663B2 (en) Imaging apparatus having a read out circuit unit with dual readout operation and method of improving a frame rate
US9354184B2 (en) Imaging apparatus, X-ray detector, and imaging method
CN100484476C (zh) X射线ct装置、辐射检测器和用于读出辐射检测器的电信号的方法
JP6159062B2 (ja) 撮影装置およびその制御方法
US20120008030A1 (en) Solid-state imaging apparatus and imaging system
US20120006993A1 (en) Solid-state imaging apparatus and imaging system
JP5637816B2 (ja) 撮像装置、放射線撮影装置および放射線撮影システム
US20090109311A1 (en) Solid state image pickup device, drive method thereof and camera system
JP2007104219A (ja) 放射線撮影装置及びその制御方法、放射線撮影システム
JP5400507B2 (ja) 撮像装置及び放射線撮像システム
US8953745B2 (en) Solid-state image pickup apparatus and X-ray inspection system
JP2002323570A5 (ja)
US8477907B2 (en) Solid-state image pickup apparatus and X-ray inspection system
JP2021166395A (ja) 撮像素子及び撮像装置
JP2002369078A (ja) 放射線撮像装置及びそれを用いた放射線撮像システム
JP6485675B1 (ja) 固体撮像装置、及びそれを備える撮像装置
JP2007159790A (ja) 放射線撮影装置及び放射線撮影システム
JP2012100081A (ja) 放射線画像撮影装置
JP5627373B2 (ja) 撮像装置、その制御方法及びプログラム
JP6138298B2 (ja) 撮像装置、その制御方法及びプログラム
JP2014044179A (ja) 放射線画像撮影装置および放射線画像撮影システム
JP2011130362A (ja) 放射線画像読取装置
CN109561874B (zh) 固体摄像装置、放射线摄像系统及固体摄像装置控制方法
JP5883102B2 (ja) 撮像装置、その制御方法及びプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140613

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141021

LAPS Cancellation because of no payment of annual fees