JP2012099735A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2012099735A
JP2012099735A JP2010247772A JP2010247772A JP2012099735A JP 2012099735 A JP2012099735 A JP 2012099735A JP 2010247772 A JP2010247772 A JP 2010247772A JP 2010247772 A JP2010247772 A JP 2010247772A JP 2012099735 A JP2012099735 A JP 2012099735A
Authority
JP
Japan
Prior art keywords
circuit
power supply
wiring
voltage
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010247772A
Other languages
English (en)
Inventor
Taihei Shito
泰平 紫藤
Morimichi Fujimitsu
司倫 藤満
Nobuhiro Ohira
信裕 大平
Naoki Kitai
直樹 北井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Memory Japan Ltd
Hitachi Solutions Technology Ltd
Original Assignee
Hitachi ULSI Systems Co Ltd
Elpida Memory Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi ULSI Systems Co Ltd, Elpida Memory Inc filed Critical Hitachi ULSI Systems Co Ltd
Priority to JP2010247772A priority Critical patent/JP2012099735A/ja
Priority to US13/289,599 priority patent/US8847431B2/en
Publication of JP2012099735A publication Critical patent/JP2012099735A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5222Capacitive arrangements or effects of, or between wiring layers
    • H01L23/5225Shielding layers formed together with wiring layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Dram (AREA)

Abstract

【課題】 カップリングノイズを低減すること。
【解決手段】 半導体装置は、第1の回路と、第2の回路と、第1の配線と、一対のシールド線とを含む。第1の回路は、所定電圧を発生する電圧発生回路を含み、所定電圧を出力端に出力する。第1の配線は、第1の回路の出力端を第2の回路の入力端に結線する。一対のシールド線は、第1の配線を挟むように配置され、一方には電圧発生回路および第2の回路の少なくとも一方を駆動する電源電位が供給され、他方には電圧発生回路および第2の回路の少なくとも一方を駆動する接地電位が供給される。
【選択図】 図1

Description

本発明は、半導体装置に関し、特に、半導体チップ上の離れた領域に基準電圧などの所定電圧を伝達する技術に関する。
半導体装置において、例えば、内部電圧生成回路によって生成した基準電圧(VREF)などは、配線によって半導体チップ上に配線された種々の回路に伝達される。基準電圧を必要とする回路は、内部電圧生成回路の近くに配置されているものばかりでない。そのため、基準電圧は、半導体チップ上の離れた領域にも配線によって伝達される場合がある。
この他、各種回路の駆動に必要な命令信号や、記憶回路と入出力回路との間で授受される入出力データ信号なども、配線によって伝達される。
本発明に関連する先行特許文献も種々知られている。
例えば、特許文献1(特開2006−173382号公報)は、データ出力用CMOSドライバを構成するpMOSFET及びnMOSFETのゲートに夫々接続された第1制御信号線及び第2制御信号線を外側から挟むようにして第1接地配線及び第2接地配線を配設した、DRAMチップのデータ出力部を開示している。第1接地配線及び第2接地配線は、第1制御信号線と第2制御信号線のペアと他のペアとの間に介在し、それによって、第1制御信号線と第2制御信号線のペアを他のペアによるノイズからシールドする。
また、特許文献2(特開2000−353785号公報)は、半導体チップ内の他の回路や結合容量の雑音の影響を防ぐことができ、基準電圧を安定して駆動回路に供給することができる、半導体装置を開示している。基準電圧Vの配線の周囲にシールド用の配線を設けている。シールド用配線は、一定電圧(接地)に固定されている。基準電圧Vの配線の、下方にシールド用配線を設けたことにより基板との容量結合による雑音を防止でき、左右にシールド用配線を設けたことにより隣接する配線との容量結合による雑音を防止でき、上方にもシールド用配線を設けることにより、上方の空間を通した容量結合による雑音をも防止できる。
特開2006−173382号公報 特開2000−353785号公報(図42(d)、段落[0151])
配線中を伝達する電圧においては、他の回路や配線からの容量結合による雑音(カップリングノイズ)の影響が小さいことが望ましい。その理由は、半導体チップ内の他の回路から雑音(カップリングノイズ)を受けて基準電圧が変動するのを防ぐためである。
雑音(カップリングノイズ)を低減するための技術として、上述した特許文献1及び2に開示されているように、電圧を伝達する配線に沿ってシールド線を配線する技術が知られている。このシールド線は、比較的変動が少ない接地電位によって固定されることが一般的であり、他の回路や配線からのカップリングノイズを低減できる。
一方、本発明者らの検討によれば、電位が固定されたシールド線を伝達配線に並設するシールド方法に関して、以下の点で改善の余地があることを判明した。すなわち、シールド線を固定している接地電位または電源電位自体にもノイズが生じ得る。
そこで、接地電位または電源電位自体に雑音が発生するメカニズムについて説明する。
図13に、受信側の駆動部と、駆動部内の負荷回路の一部の詳細とを示す。図13(A)は駆動部20を示し、図13(B)は図1(A)の一点鎖線で囲んだ矩形部分の詳細図である。
図13(A)に示されるように、駆動部20は、負荷回路22と、負荷駆動回路24とから構成される。負荷駆動回路24は、その入力端24INで、基準電圧VREFを受けて負荷回路22を駆動する回路である。負荷駆動回路24は、オペアンプから構成される比較回路(RG1)242と、pチャネルMOSFET(metal oxide semiconductor field effect transistor)244とから構成されている。比較回路242はレギュレータとも呼ばれる。比較回路242は、電源電位VDDと接地電位VSSとによって駆動される。比較回路242の出力端子はpチャネルMOSFETのゲート電極に供給されることで、当該MOSFET244は比較回路242の出力電圧(デート電圧)に依存したドレイン電圧を内部生成電圧VPERIとして生成する。内部生成電圧VPERIは比較回路242の非反転入力端子(+)に供給され、反転入力端子(−)に供給される基準電圧VREFと等しくなるように調整される。pチャネルMOSFET244のドレイン電極が、当該負荷駆動回路24の出力端24OUTとなっている。負荷駆動回路24の出力端24OUTは、内部生成電圧VPERIが供給される内部電源線26に接続されている。
負荷回路22は、この内部電源線26と、接地電位VSSが供給される接地線28との間に接続されている。図示の負荷回路22は、第1のフリップフロップ回路FF1と、第2のフリップフロップ回路FF2と、それらの間の接続されたロジック部分222と、から構成されている。図示のロジック部分222は、第1乃至第4のCMOSインバータ回路IV1,IV2,IV3およびIN4から構成されている。第1乃至第4のCMOSインバータ回路IV1〜IV4の各々は、pチャネルMOSFETとnチャネルMOSFETとから構成されている。
図13(B)は、図13(A)の負荷回路22の内、第1乃至第3のインバータ回路IV1〜IV3の部分を詳細に示した回路図である。
図13(B)に示されるように、第1乃至第3のインバータ回路IV1〜IV3の各々において、pチャネルMOSFETのソース電極は内部電源線26に接続され、nチャネルMOSFETのソースは接地線28に接続され、pチャネルMOSFETのドレイン電極とnチャネルMOSFETのドレイン電極は互いに出力ノードに接続され、pチャネルMOSFETのゲート電極とnチャネルMOSFETのゲート電極は互いに入力ノードに接続されている。
第1のインバータ回路IV1の入力ノードは、第1のフリップフロップ回路FF1の出力端に接続されている。第1のインバータ回路IV1の出力ノードは第2のインバータ回路IV2の入力ノードに接続され、第2のインバータ回路IV2の出力ノードは第3のインバータ回路IV3の入力ノードに接続されている。第3のインバータ回路IV3の出力ノードは第4のインバータ回路IV4の入力ノードに接続されている。
図13(B)の例では、第1のインバータ回路IV1の入力ノードは第1の電位VAとなっており、第2のインバータ回路IV2の入力ノードは第2の電位VBとなっており、第3のインバータ回路IV3の入力ノードは第3の電位VCとなっている。この状況において、第1の電位VAが論理“L”レベルすなわち接地電位VSSであるとする。その場合、第2の電位VBは論理“H”レベルすなわち内部生成電圧VPERIとなり、第3の電位VCは論理“L”レベルすなわち接地電位VSSとなる。
この状況において、図14に示されるように、第1の電位VAが論理“L”レベルすなわち接地電位VSSから論理“H”レベルすなわち内部生成電圧VPERIに遷移したとする。
この場合、図13(B)に示されるように、第1および第2のインバータ回路IV1、IV2には貫通電流I0が流れ、第2のインバータ回路IV2の入力ノードから第1のインバータ回路IV1のnチャネルMOSFETのソース電極へ放電電流I1が流れ、第2のインバータ回路IV2のpチャネルMOSFETのソース電極から第3のインバータ回路IV3の入力ノードへ放電電流が流れる。
詳述すると、貫通電流I0は、入力が{(VPERI−VSS)/2}レベル付近にある時の貫通電流である。放電電流I1は、次段を放電する、接地電位VSSへ引き抜く際の電流である。充電電流I2は、次段を充電する、内部生成電圧VPREIへ押し上げる際の電流である。
図14は、負荷回路22における信号遷移の概要を示す波形図である。図14において、横軸は時刻tを示し、縦軸は電圧Vを示す。
図14に示されるように、箇所1では、貫通電流I0及び充電電流I2によって、内部電源線26上の内部生成電圧VPERIは一時的に降下する。同様に、箇所2では、貫通電流I0及び放電電流I1によって、接地線28上の接地電位VSSは一時的に上昇する。これらの内部生成電圧VPERIの下降および接地電位VSSの上昇が、電源配線(内部電源線26および接地線28)への雑音となる。
続いて、シールド線自体にこのようなノイズが生じることのデメリットについて説明する。
図15は図13(A)に示した負荷駆動回路24を示す回路図であり、図16は、この負荷駆動回路24に使用される、比較回路(レギュレータ)であるオペアンプ(RG1)242の周波数‐利得特性の概要を示す特性図である。図16において、横軸は入力信号である基準電圧VREFの周波数f[Hz]を示し、縦軸はオペアンプ(RG1)242の利得G(dB)を示す。利得Gは、(VPERI/VREF)(dB)で表される。
図16において、基準電圧VREFの周波数fが低域の第1の周波数f1であるとき、オペアンプ(RG1)242の利得Gは低域利得G0を持つとする。また、オペアンプ(RG1)242の利得Gが0(dB)であるときの基準電圧VREFの周波数fを、利得ゼロ周波数fuで表す。基準電圧VREFの周波数fが第1の周波数f1より高く、利得ゼロ周波数fuより高い第2の周波数f2のとき、オペアンプ(RG1)242の利得Gは、低域利得G0より低く、0(dB)より高い(すなわち、0<G<G0)。一方、基準電圧VREFの周波数fが利得ゼロ周波数fuより高い第3の周波数f3では、オペアンプ(RG1)242の利得Gは、0(dB)より低い(すなわち、G<0)。
すなわち、入力(基準電圧)VREFの周波数fが高いほど、オペアンプ(RG1)242の利得Gが小さくなる特性を示す。オペアンプ(RG1)242の利得Gが正であれば、オペアンプ(RG1)242は、入力VREFの振動振幅に対して増幅する作用がある。オペアンプ(RG1)242の利得Gが負であれば、オペアンプ(RG1)242は、入力VREFの振動振幅に対して減衰する作用がある。
図17(a)〜(c)に、これらの説明図を示す。図17(a)〜(c)の各々において、横軸は時刻t[s]を表し、縦軸は電圧[V]を表す。
図17(a)は、入力(基準電圧)VREFの周波数fが第1の周波数f1であるときに、負荷駆動回路24から出力される内部生成電圧VPERIの変化特性を示す。図17(b)は、入力(基準電圧)VREFの周波数fが第2の周波数f2であるときに、負荷駆動回路24から出力される内部生成電圧VPERIの変化特性を示す。図17(c)は、入力(基準電圧)VREFの周波数fが第3の周波数f3であるときに、負荷駆動回路24から出力される内部生成電圧VPERIの変化特性を示す。
図17(a)に示されるように、入力(基準電圧)VREFの周波数fが第1の周波数f1であるとき、例えば、入力(基準電圧)VREFが振幅Aで振動したとする。この場合、負荷駆動回路24から出力される内部生成電圧VPERIの振幅はG0倍となる。
一方、図17(b)に示されるように、入力(基準電圧)VREFの周波数fが第1の周波数f1であるときは、図17(a)に示されるときより、負荷駆動回路24から出力される内部生成電圧VPERIの振幅は小さくなる。
さらに、図17(c)に示されるように、入力(基準電圧)VREFの周波数fが第3の周波数f3であるときは、負荷駆動回路24から出力される内部生成電圧VPERIの振幅は減衰に向かい、最終的にはその振幅はゼロになる。
以上より、シールド線を介して入力(基準電圧)VREFにノイズ成分が生じると、入力(基準電圧)VREFの周波数fが利得ゼロ周波数fuより低い(f<fu)周波数帯では、負荷駆動回路24がその雑音を増幅して内部生成電圧VPERIが振動してしまう。そのため、シールド線にはできるだけノイズ成分が加わらないことが求められている。
例えば、内部電圧生成回路にて生成した基準電圧VREFなどは、特に安定に各駆動回路に伝達されることが望まれる。一方、半導体チップの小型化、構成回路の高集積化に伴い、各駆動回路の配置自由度は低下する。このため、内部電圧生成回路から駆動回路までの距離は長くなる傾向にある。このような長距離配線では、上記シールド線自体のノイズの影響はより顕著になってくる。
本発明による半導体装置は、所定電圧を発生する電圧発生回路を含み、所定電圧を出力端に出力する第1の回路と、第2の回路と、第1の回路の出力端を第2の回路の入力端に結線する第1の配線と、第1の配線を挟むように配置された一対のシールド線であって、一方には電圧発生回路および第2の回路の少なくとも一方を駆動する電源電位が供給され、他方には電圧発生回路および第2の回路の少なくとも一方を駆動する接地電位が供給される一対のシールド線と、を有して構成される。
本発明によると、第1の配線が、一方に電源電位が供給され、他方に接地電位が供給される、一対のシールド線で挟まれているので、ノイズ伝達をより効果的にシールドすることができる。
本発明の第1の実施形態に係る半導体装置を示すブロック図である。 図1に示した半導体装置に使用される、負荷駆動回路の構成の詳細を説明するためのブロック図である。 図1に示した半導体装置において、第1の回路(制御部)の送信回路から送出された所定電圧(基準電圧)VREFが、伝達配線を介して、第2の回路(駆動部)の負荷駆動回路へ伝達される様子を示すブロック図である。 図1に示した半導体装置の作用効果を説明するために使用される、第1の実施形態に係る半導体装置を、内部電圧生成回路を省いて示すブロック図である。 図1に図示した半導体装置の、チップ上での具体例であるDRAMの概要を示すブロック図である。 図1に示した半導体装置中の送信回路(送信側ボルテージフォロワ)の出力部分の断面構造を示す横断面図および縦断面図である。 本発明の第2の実施形態に係る半導体装置を示すブロック図である。 本発明の第2の実施形態の第1の変形例に係る半導体装置を示すブロック図である。 本発明の第2の実施形態の第2の変形例に係る半導体装置を示すブロック図である。 本発明の第2の実施形態の第3の変形例に係る半導体装置を示すブロック図である。 本発明の第2の実施形態の第4の変形例に係る半導体装置を示すブロック図である。 図11に示した半導体装置の作用効果を説明するために使用される、第2の実施形態の第4の変形例に係る半導体装置を、内部電圧生成回路を省いて示すブロック図である。 受信側の駆動部のブロック図と、駆動部内の負荷回路の一部の詳細を示す回路図である。 図13に示した負荷回路における信号遷移の概要を示す波形図である。 図13に示した駆動部中の負荷駆動回路を示す回路図である。 図15に示す負荷駆動回路に使用される、比較回路(レギュレータ)であるオペアンプ(RG1)の周波数‐利得特性の概要を示す特性図である。 入力(基準電圧)VREFの周波数fが、それぞれ、第1乃至第3の周波数f1、f2およびf3であるときに、負荷駆動回路から出力される内部生成電圧VPERIの変化特性を示す特性図である。 図1に示した半導体装置の作用効果を説明するために使用される、関連する半導体装置を、内部電圧生成回路を省いて示すブロック図である。
図1を参照して、本発明の第1の実施形態に係る半導体装置1について説明する。
図示の半導体装置1は、送信側に備えられた第1の回路10と、受信側に備えられた第2の回路20とを備える。第1の回路10は出力端10OUTを持ち、第2の回路20は入力端20INを持つ。第1の回路10の出力端10OUTと第2の回路20の入力端20INとは、伝達配線(第1の配線)30を介して接続されている。換言すれば、伝達配線30は、第1の回路10の出力端10OUTを第2の回路20の入力端20INに結線する。
第1の回路10は、基準電圧VREFを発生する内部電圧生成回路12を含む。基準電圧VREFは所定電圧とも呼ばれ、内部電圧生成回路12は電圧発生回路とも呼ばれる。第1の回路10は、内部電圧生成回路(電圧発生回路)12で生成された基準電圧(所定電圧)VREFを出力端10OUTに出力する。
第1の回路10は、送信回路14を有していても良い。図示の送信回路14は、オペアンプからなるボルテージフォロワから構成されている。この技術分野において周知のように、ボルテージフォロワは、インピーダンスを変換して、それに入力する入力電圧と等しい電圧を、そのままその出力電圧として出力する。換言すれば、ボルテージフォロワは、高入力/低出力インピーダンスを持ち、入力電圧に等しい電圧をそのまま出力する回路である。このようなボルテージフォロワは、例えば、非反転入力端子(+)を入力端子とし、出力端子を反転入力端子(−)に直接帰還させた演算増幅器(オペアンプ)などによって構成される。送信回路14は、内部電圧生成回路12で生成された基準電圧VREFに等しい電圧を、そのまま出力電圧VREFとして、伝達配線30に出力する。換言すれば、送信回路14は、第1の回路10の出力端10OUTの電圧を所定電圧VREFと等しくなるように制御する。
詳述すると、送信回路14を構成するオペアンプには、電源電位VDDと接地電位VSSとが供給される。このオペアンプ14の非反転入力端子(+)には基準電圧VREFが供給される。オペアンプ14の反転入力端子(−)は、オペアンプ14の出力端子に接続されている。オペアンプ14の出力端子は、当該第1の回路10の出力端10OUTに接続されている。
第1の回路10は、制御部とも呼ばれる。すなわち、制御部10は、基準電圧VREFによって伝達配線30の電圧を制御する。
第2の回路20は、伝達配線30の電圧によって動作するので、駆動部とも呼ばれる。第2の回路20は、負荷回路22と負荷駆動回路24とから構成される。
次に、図2を参照して、負荷駆動回路24の構成について詳細に説明する。尚、図2では、図1に示した送信回路14と伝達配線30とを省略している。
内部電圧生成回路12で生成した基準電圧VREFは、伝達配線を介して種々の負荷駆動回路24に伝達され、負荷回路22の駆動に用いられる。
負荷駆動回路24の入力端24INは、駆動部20の入力端20INに接続されている(図1参照)。負荷駆動回路24は、その入力端24INで、基準電圧VREFを受けて負荷回路22を駆動する回路である。負荷駆動回路24は、オペアンプから構成される比較回路(制御回路)242と、pチャネルMOSFET244とから構成されている。前述したように、比較回路242はレギュレータとも呼ばれる。
比較回路242には、電源電位VDDと接地電位VSSとが供給される。比較回路242の反転入力端子(−)には基準電圧VREFが供給され、比較回路242の非反転入力端子(+)には内部生成電圧VPERIが供給されている。したがって、内部生成電圧VPERIが基準電圧VREFよりも高いときには、その比較回路242の出力信号の電圧レベルは上昇する。
比較回路242の出力端子は、pチャネルMOSFET(第1トランジスタ)244のゲート電極(制御電極)に接続されている。pチャネルMOSFET244のソース電極(第2主電極)には電源電位VDDが供給され、pチャネルMOSFET244のドレイン電極(第1主電極)は比較回路242の非反転入力端子(+)に接続されている。pチャネルMOSFET244のドレイン電極が、当該負荷駆動回路24の出力端24OUTとなっている。負荷駆動回路24の出力端24OUTは、内部生成電圧VPERIが供給される内部電源線26に接続されている。
pチャネルMOSFET244は、比較回路242の出力信号に応答して、外部電源ノード(汎用パッド)42から内部電源線26へ電流を供給する。言い換えれば、比較回路242は、pチャネルMOSFET244のドレイン電極の電圧(内部生成電圧VPERI)が所定の電圧となるように、pチャネルMOSFET242のソース電極およびゲート電極間の電圧を制御する。以下で、より詳しく説明する。
内部生成電圧VPERIが一定の電圧レベル(基準電圧VREFのレベル)のとき、比較回路242の出力信号は所定の電圧レベルにある。負荷回路22が動作して内部生成電圧VPERIを使用した場合、内部電源線26から負荷回路22へ電流が流れ、内部生成電圧VPERIの電圧レベルは低下する。内部生成電圧VPERIは比較回路242の非反転入力端子(+)に入力されているから、当該内部生成電圧VPERIが低下すると、比較回路242の出力信号の電圧レベルも低下する。この出力信号はpチャネルMOSFET244のゲート電圧であるから、応じてpチャネルMOSFET244のコンダクタンスは増加し、電源電位VDDから内部電源線26に流れる電流が増加する。一方、pチャネルMOSFET244を介して流れる電流が、負荷回路22が消費する電流よりも多くなると、内部生成電圧VPERIの電圧レベルが上昇する。内部生成電圧VPERIの電圧レベルが上昇して基準電圧VREFよりも高くなると、比較回路3の出力信号の電圧レベルが上昇し、pチャネルMOSFET244のコンダクタンスが低下する。これにより、pチャネルMOSFET244から内部電源線26へ流れる電流量は低減または遮断される。即ち、内部生成電圧VPERIが基準電圧VREFよりも高くなった場合には、pチャネルMOSFET244は電流を遮断または供給電流量を低減し、内部生成電圧VPERIが基準電圧VREFよりも低くなった場合には、pチャネルMOSFET244は多くの電流を電源電位VDDから内部電源線26へ供給する。これによって、内部生成電圧VPERIは基準電圧VREFの電圧レベルに維持される。
尚、負荷回路22は、図13に示したような、内部生成電圧VPERIを一方動作電源電圧として動作する回路であってよい。或いは、負荷回路22は、この内部生成電圧VPERIと接地電位VSSから一定の中間電圧(例えば、{(VPERI+VSS)/2})を生成する回路であってもよく、また所定の信号線をこの内部生成電圧VPERIに充電する回路(例えば、センスアンプ)であってもよい。いずれの構成においても、この負荷回路22は、動作時には内部生成電圧VPERIを使用して動作する回路であればよい。
また、内部電圧生成回路12を駆動する電源電位および接地電位は安定している必要がある。そのため、内部電圧生成回路12に電源電位および接地電位を供給する配線は、他の回路に駆動電源を供給する配線とは異なる専用パッド46、48に接続されていることが望ましい(図1参照)。なぜなら、電源または接地電位を供給する配線を専用のパッドに接続することで、他の回路で生じた電源または接地電位のノイズの影響を低減できるからである。このような専用パッド46、48から供給される電源電位および接地電位を、それぞれ、安定電源電位VDDRおよび安定接地電位VSSRと表記する。
図1に戻って、電源電位VDDは汎用パッド42から供給され、接地電位VSSは汎用パッド44から供給される。一方、上述したように、安定電源電位VDDRは送信側に近い専用パッド46から供給され、安定接地電位VSSRは送信側に近い専用パッド48から供給される。
本第1の実施の形態に係る半導体装置1は、伝達配線30を挟むように配置された一対のシールド線50を更に備える。すなわち、一対のシールド線50は、第1のシールド線51と、第2のシールド線52とから構成されている。第1のシールド線51には、汎用パッド42から電源給電配線を介して電源電圧VDDが供給され、第2のシールド線52には、汎用パッド44から電源給電配線を介して接地電位VSSが供給されている。
上述したように、第2の回路(駆動部)20には、汎用パッド42を介して電源電位VDDが供給されており、汎用パッド44を介して電源電位VSSが供給されている。したがって、一対のシールド線50の一方(すなわち、第1のシールド線51)には、第2の回路20を駆動する電源電位VDDが供給され、他方(すなわち、第2のシールド線52)には、第2の回路20を駆動する接地電位VSSが供給されている。
尚、本第1の実施形態では、第1のシールド線51には電源電圧VDDが供給されているが、後述する他の実施形態や変形例で示すように、第1のシールド線51に、電圧発生回路12を駆動する安定電源電圧VDDRを供給するようにしてもよい。同様に、本第1の実施形態では、第2のシールド線52には接地電位VSSが供給されているが、後述する他の実施形態や変形例で示すように、第2のシールド線52に、電圧発生回路12を駆動する安定接地電圧VDDRを供給するようにしてもよい。
また、後で詳述するように、一対のシールド線50は、伝達配線30に沿って絶縁膜90(後述する)を介して配置される。そして、本第1の実施の形態では、一対のシールド線50の一方(すなわち、第1のシールド線51)は、第2の回路20に供給される電源電位VDDによって固定され、他方(すなわち、第2のシールド線52)は、第2の回路20に供給される接地電位VSSによって固定される。
前述したように、第1のシールド線51は、電圧発生回路12に供給される安定電源電位VDDRによって固定されてもよく、第2のシールド線52は、電圧発生回路12に供給される安定接地電位VSSRによって固定されてもよい。
尚、図示の半導体装置1は、半導体チップ(以下、単に「チップ」ともよぶ)60上に形成されている。
すなわち、本第1の実施形態による半導体装置(1)は、所定電圧(VREF)を発生する電圧発生回路(12)を含み、所定電圧(VFER)を出力端(10OUT)に出力する第1の回路(10)と、第2の回路(20)と、第1の回路(10)の出力端(10OUT)を第2の回路(20)の入力端(20IN)に結線する伝達配線(30)と、伝達配線(30)を挟むように配置された一対のシールド線(50)であって、一方(51)には電圧発生回路(12)および第2の回路(20)の少なくとも一方を駆動する電源電位(VDD;VDDR)が供給され、他方(52)には電圧発生回路(12)および第2の回路(20)の少なくとも一方を駆動する接地電位(VSS;VSSR)が供給される一対のシールド線(50)と、を有して構成される。
換言すれば、本第1の実施形態による半導体装置(1)は、所定電圧(VREF)を発生する電圧発生回路(12)を含み、所定電圧(VREF)によって伝達配線(30)の電圧(VREF)を制御する制御部(10)と、伝達配線(30)の電圧(VREF)によって動作する駆動部(20)と、伝達配線(30)に沿って絶縁膜(90)を介して配置された一対のシールド線(50)であって、一方(51)は電圧発生回路(12)および駆動部(20)の少なくとも一方に供給される電源電位(VDD;VDDR)によって固定され、他方(52)は電圧発生回路(12)および駆動部(20)の少なくとも一方に供給される接地電位(VSS;VSSR)によって固定された、一対のシールド線(50)と、を有して構成されている。
このような構成の半導体装置1において、図3に示されるように、第1の回路(制御部)10の送信回路14から送出された所定電圧(基準電圧)VREFは、伝達配線30を介して、第2の回路(駆動部)20の負荷駆動回路24へ伝達される。
すなわち、内部電圧生成回路12から負荷駆動回路24までの距離が離れている場合、送信回路(送信側ボルテージフォロワ)14によってインピーダンス変換してから基準電圧VREFを伝達する。
次に、図4および図18を参照して、本第1の実施形態に係る半導体装置1の作用効果を、関連する半導体装置1’と比較しながら説明する。図4は本第1の実施形態に係る半導体装置1を示すブロック図であり、図18は関連する半導体装置1’を示すブロック図である。但し、図4および図18ともに、第1の回路(制御部)10に備えられている内部電圧生成回路12の図示を省略してある。
最初に、図18を参照して、関連する半導体装置1’の問題点について説明する。関連する半導体装置1’においては、伝達配線30をシールドする一対のシールド線50(51,52)には、両方とも接地電位VSSが供給されている。
このように、一対のシールド線50を接地電位VSSで、長距離シールドした場合、一対のシールド線50上に重畳されたシールドのノイズ成分Nshにより、電源電位VDDとのノイズマージンが減少する。何故なら、VSSノイズ成分NVSSは電源電位VDDとは逆相だからである。その結果、負荷駆動回路24が負荷回路22を駆動した瞬間の接地電位VSSの浮きNfloが、基準電圧VREFにノイズ成分NVSSとして重畳される。
図4を参照すると、本第1の実施形態に係る半導体装置1においては、前述したように、伝達配線30をシールドする一対のシールド配線50では、一方(第1のシールド線)51には電源電位VDDが供給され、他方(第2のシールド線)52には接地電位VSSが供給されている。
このように、一対のシールド線50の一方(第1のシールド線)51を電源電位VDDで、他方(第2のシールド線)52を接地電位VSSで、長距離シールドした場合、一対のシールド線50上には、シールドのノイズ成分Nshが重畳される。VSSノイズ成分NVSSは電源電位VDDとは逆相であり、VDDノイズ成分NVDDは接地電位VSSとは逆相である。そのため、VSSノイズ成分NVSSとVDDノイズ成分NVDDとは逆相同士で打ち消しあい、電源電位VDD、接地電位VSS両方からのノイズマージンNmagを確保することが可能である。
図5は、図1に図示した半導体装置1の、チップ60上での具体例であるダイナミック・ランダムアクセスメモリ(DRAM)の概要を示すブロック図である。
図示のDRAMにおいては、内部電圧生成回路12に、第1乃至第3の送信回路14−1、14−2、14−3が接続されている。
第1の送信回路14−1の入力端は、第1の伝達配線30−1を介して、第1の負荷駆動回路24−1の入力端に接続されている。第1の伝達配線30−1は、一方のシールド線51に電源電圧VDDが供給され、他方のシールド線52に接地電位VSSが供給される、一対のシールド線(51,52)によってシールドされている。第1の負荷駆動回路24−1は、第1の負荷回路22−1としての制御回路を駆動する。この制御回路22−1は、DRAM全体の動作を制御するための回路である。
図示のDRAMは、4つのメモリセルアレイ72を含む。各メモリセルアレイ72は、1ビットを記憶するメモリセルが行(ロー)方向と列(カラム)方向にマトリクス状に多数配置されたものである。外部から供給されるアドレス信号により、メモリセルアレイ72のアクセス対象となるローアドレス又はカラムアドレスが指定される。
各メモリセルアレイ72には、ローデコーダ74が接続されるとともに、リードライトアンプ22−2を介してカラムデコーダ76が接続されている。ローデコーダ74は、アドレス信号により指定されたローアドレスに対応する1本のワード線を選択すると共に、列(カラム)側に配置されたリードライトアンプ22−2を活性化する。一方、カラムデコーダ76は、アドレス信号により指定されたカラムアドレスに対応する1本のビット線(データ線)を選択する。
第2の送信回路14−2の入力端は、第2の伝達配線30−2を介して、第2の負荷駆動回路24−2の入力端に接続されている。第2の伝達配線30−2は、一方のシールド線51に電源電圧VDDが供給され、他方のシールド線52に接地電位VSSが供給される、一対のシールド線(51,52)によってシールドされている。第1の負荷駆動回路24−2は、リードライトアンプ22−2を駆動する。このリードライトアンプ22−2は、第2の負荷回路として動作する。
第3の送信回路14−3の入力端は、第3の伝達配線30−3を介して、第3の負荷駆動回路24−3の入力端に接続されている。第3の伝達配線30−3は、一方のシールド線51に電源電圧VDDが供給され、他方のシールド線52に接地電位VSSが供給される、一対のシールド線(51,52)によってシールドされている。第3の負荷駆動回路24−3は、第3の負荷回路22−3としての入出力回路を駆動する。この入出力回路22−3は、カラムデコーダ76と入出力端子との間で、アドレス信号やデータを入出力する回路である。
このようにメモリ(DRAM)の大容量化、高性能化にともなって、伝達配線長は長くなる傾向にある。
図6(A)および図6(B)を参照して、図1に示した半導体装置1中の送信回路(送信側ボルテージフォロワ)14の出力部分の断面構造について説明する。図6(A)は、送信回路(送信側ボルテージフォロワ)14の出力部分の構造を示す横断面図であり、図6(B)は、図6(A)の線XII-XIIについての縦断面である。尚、図6(A)は図6(B)の第2メタル層についての横断面図である。
図6(B)に示されるように、送信回路(送信側ボルテージフォロア)14の出力部分には、PチャネルMOSFETとNチャネルMOSFETとが形成されている。図6(B)において、紙面に向かって左側にPチャネルMOSFETが形成され、紙面に向かって右側にNチャネルMOSFETが形成されている。
詳述すると、P型基板80内に、高濃度Nウェル層81が形成されている。P型基板80の主面近傍で、P型基板80と高濃度Nウェル層81との境界は素子分離層85で分離されている。この高濃度Nウェル層81内に、Nウェル層82とPウェル層83とが形成されている。図示の例では、紙面に向かって左側にNウェル層82が形成され、紙面に向かって右側にPウェル層83が形成されている。P型基板80の主面と平行な面近傍で、高濃度Nウェル層81とNウェル層82との境界は素子分離層85で分離され、高濃度Nウェル層81とPウェル層83との境界は素子分離層85で分離されている。さらに、P型基板80の主面と平行な面近傍で、Nウェル層82とPウェル層83との境界も素子分離層85で分離されている。
P型基板80の左側の主面近傍にP層86が形成されている。高濃度Nウェル層81の左側の主面近傍に、素子分離層85間にN層87が形成されている。Nウェル層82の左側の主面近傍には、その左端から素子分離層85、N層87、素子分離層85、およびP層86がこの順番に形成されている。一方、Nウェル層82の右側の主面近傍には、素子分離層85に近接してP層86が形成されている。このNウェル層82の主面近傍に形成された一対のP層86間に、P型チャネルが形成される。このP型チャネル上には、ゲート酸化膜88を介してポリメタル層89が形成され、このポリメタル層89上に第1のゲート(G1)91が形成されている。
したがって、Nウェル層82上には、第1のゲート(G1)91を持ち、この第1のゲート(G1)91の左側のP層86をソース、右側のP層86をドレインとする、PチャネルMOSFETが形成される。
Pウェル層83の右側の主面近傍には、その右端から素子分離層85、P層86、素子分離層85、およびN層87がこの順番に形成されている。一方、Pウェル層83の左側の主面近傍には、素子分離層85に近接してN層87が形成されている。このPウェル層83の主面近傍に形成された一対のN層87間に、N型チャネルが形成される。このN型チャネル上には、ゲート酸化膜88を介してポリメタル層89が形成され、このポリメタル層89上に第2のゲート(G2)92が形成されている。
したがって、Pウェル層83上には、第2のゲート(G2)92を持ち、この第2のゲート(G1)92の右側のN層87をソース、左側のN層87をドレインとする、NチャネルMOSFETが形成される。
P型基板80の主面上には、絶縁膜90が形成されている。この絶縁膜90中には、P層86およびN層87に、第1スルーホール93を介して接続された、タングステン層94が形成されている。また、絶縁膜90中には、タングステン層94に第2スルーホール95を介して接続された、第1メタル層96が形成されている。絶縁膜90中には、第1メタル層96に第3スルーホール97を介して、第2メタル層98が形成されている。さらに、絶縁膜90中には、第2メタル層98に第4スルーホール99を介して接続された、第3メタル層101が形成されている。
図6(B)から明らかなように、第2メタル層98に、基準電圧VREFを伝達するための伝達配線30と、第1のシールド線51と、第2のシールド線52とが形成されている。
伝達配線30は、第3スルーホール97、第1メタル層96、第2スルーホール95、タングステン層94、第1スルーホール93を介して、PチャネルMOSFETのドレイン(P層86)およびNチャネルMOSFETのドレイン(N層87)に接続されている。とにかく、送信回路14から出力された基準電圧VREFは、第2メタル層98に形成された伝達配線30によって伝達される。
図6(B)において、第2メタル層98の左側に第1のシールド線51が形成され、右側に第2のシールド線52が形成されている。第1のシールド線51には、第3メタル層101から電源電位VDDが供給されている。また、第2のシールド線52には、第3メタル層101から接地電位VSSが供給されている。したがって、第3メタル層101は電源給電配線として使用され、第1のシールド線51は電源電位VDDに固定され、第2のシールド線52は接地電位VSSに固定される。
また、P型基板80の主面近傍に形成されたP層86には、第3メタル層101から、電源電位VDDが、第4スルーホール99、第2メタル層98、第3スルーホール97、第1メタル層96、第2スルーホール95、タングステン層94、および第1スルーホール93を介して供給される。
同様に、高濃度Nウェル層81の主面近傍に形成されたN層87、Nウェル層82の主面近傍に形成されたN層87、およびNウェル層82の主面近傍に形成されたP層86(ソース)には、第3メタル層101から、電源電位VDDが、第4スルーホール99、第2メタル層98、第3スルーホール97、第1メタル層96、第2スルーホール95、タングステン層94、および第1スルーホール93を介して供給される。
一方、Pウェル層83の主面近傍に形成されたP層86およびN層87(ソース)には、第3メタル層101から、接地電位VSSが、第4スルーホール99、第2メタル層98、第3スルーホール97、第1メタル層96、第2スルーホール95、タングステン層94、および第1スルーホール93を介して供給される。
次に、本発明の第1の実施形態による半導体装置1の特別な技術的特徴(STF)について説明する。
上述したように、本発明の第1の実施形態による半導体装置1では、伝達配線30の両脇に、一方(第1のシールド線)51が電源電位VDD、他方(第2のシールド線)52が接地電位VSSに固定された一対のシールド線50が、伝達配線30を挟むように配置されている。特に、これらシールドを固定する電源電位VDDおよび接地電位VSSは、それぞれ、負荷駆動回路24(第2の回路20)を駆動している電源電位VDDおよび接地電位VSSである。
別言すれば、本発明の第1の実施形態による半導体装置1は、所定電圧VREFを発生する電圧発生回路12を含み、所定電圧VREFを出力端10OUTに出力する第1の回路10と、第2の回路20と、記第1の回路10の出力端10OUTを第2の回路20の入力端20INに結線する伝達配線30と、伝達配線30を挟むように配置された一対のシールド線50であって、一方51には第2の回路20を駆動している電源電位VDDが供給され、他方52には第2の回路20を駆動している接地電位VSSが供給される一対のシールド線50と、を備える。
換言すれば、本発明の第1の実施形態による半導体装置1は、所定電圧VREFを発生する電圧発生回路12を含み、所定電圧VREFによって伝達配線30の電圧を制御する制御部10と、伝達配線30の電圧によって動作する駆動部20と、伝達配線30に沿って絶縁膜90を介して配置された一対のシールド線50であって、一方51は駆動部20に供給される電源電位VDDによって固定され、他方52は駆動部20に供給される接地電位VSSによって固定された、一対のシールド線50と、を備える。
上記特徴によって、伝達配線30への雑音の影響を低減することができる。以下、その理由について詳述する。
伝達配線30に沿って接地電位VSS(又は電源電位VDD)に固定したシールド線を設けること自体(図18参照)は、配線周辺に配置された回路からの雑音や、隣接配線からのカップリングノイズの提供を低減することに効果的である。しかしながら、関連する半導体装置1’では、接地電位VSS(又は電源電位VDD)自体にも雑音が生じることが懸念される。
次に、接地電位VSS(又は電源電位VDD)自体に雑音が生じるメカニズムについて説明する。
図13および図14を参照して説明したように、図14の箇所1では、貫通電流I0及び充電電流I2によって、内部電源線26上の内部生成電圧VPERIは一時的に降下する。同様に、図14の箇所2では、貫通電流I0及び放電電流I1によって、接地線28上の接地電位VSSは一時的に上昇する。これらの内部生成電圧VPERIの下降および接地電位VSSの上昇が、電源配線(内部電源線26および接地線28)への雑音となる。
したがって、伝達配線30の周囲に配置したシールド線を接地電位VSSのみ(又は電源電位VDDのみ)に固定するシールド方法(図18)では、これら固定電位自体に生じる雑音を低減することができない。
そこで、本発明の第1の実施形態に係る半導体装置1では、伝達配線30の両脇に配置した一対のシールド線50のうち、一方(第1のシールド線)51を電源電位VDDに固定し、他方(第2のシールド線)52を接地電位VSSに固定する。特に、雑音の生成源となる負荷駆動回路24を駆動している電源電位VDDおよび接地電位VSSによって、一対のシールド線50を固定する。負荷駆動回路24の駆動時に電源電位VDDおよび接地電位VSSに生じる雑音は、互いに逆相である。
次に、再び、図13および図14を参照して、VDDノイズNVDD(図4参照)とVSSノイズNVSS(図4参照)とが互いに逆相となる理由について説明する。
図13(B)に示されるように、貫通電流I0、放電電流I1、および充電電流I2は、内部生成電圧VPERIが供給される内部電源線26から接地電位VSSが供給される接地線28へ流れる。そのため、図14に示されるように、内部生成電圧VPERIと接地電位VSSとが、互いに逆相の雑音となる。
従って、例えば、一方のシールド線(第2のシールド線)52を固定している接地電位VSSにノイズが生じた場合、他方のシールド線(第1のシールド線)51を固定している電源電位VDDにはこれとは逆相のノイズが生じることになり、伝達配線30に重畳されるカップリングノイズは互いに打ち消しあう。尚、互いに異なる回路を駆動する電源電位および接地電位を供給しても、これらは逆相のノイズにならないので効果がない。このように、本構成によれば、伝達配線30に対する周辺回路や隣接配線からのノイズの低減に加え、シールド線50自体に生じるノイズからのカップリングノイズをも低減することができる。
図7を参照して、本発明の第2の実施形態に係る半導体装置1Aについて説明する。
図示の半導体装置1Aは、受信側に受信回路(受信側ボルテージフォロワ)32を更に設けた点を除いて、図1に示した半導体装置1と同様の構成を有する。図1に示す構成要素と同一の機能を有するものには同一の参照符号を付し、以下では説明の簡略化のために相違点についてのみ説明する。
図示の受信回路32は、送信側に設けた送信回路14と同じ電源電位VDDおよび接地電位VSSで動作する。伝達配線30の電圧は、この受信回路32を介して、第2の回路(駆動部)20に供給される。
受信回路32は、送信側に設けられた送信回路14と同様の構成を有する。図示の受信回路32は、オペアンプからなるボルテージフォロワから構成されている。この技術分野において周知のように、ボルテージフォロワは、インピーダンスを変換して、それに入力する入力電圧と等しい電圧をそのままその出力電圧として出力する。すなわち、ボルテージフォロワは、高入力/低出力インピーダンスを持ち、入力電圧に等しい電圧をそのまま出力する回路である。したがって、受信回路32は、高入力インピーダンスを持ち、伝達配線30の基準電圧(所定電圧)VREFに等しい電圧を、そのまま出力電圧VREFとして、第2の回路(駆動部)20へ送出する。換言すれば、受信回路32は、第2の回路20の入力端20INの電圧を伝達配線30の所定電圧VREFと等しくなるように制御する回路である。
詳述すると、受信回路32を構成するオペアンプには、汎用パッド42を介して電源電位VDDが、汎用パッド44を介して接地電位VSSが供給される。このオペアンプ32の非反転入力端子(+)には、伝達配線30の基準電圧(所定電圧)VREFが供給される。オペアンプ32の反転入力端子(−)は、オペアンプ32の出力端子に接続されている。オペアンプ32の出力端子は、第2の回路20の入力端20INに接続されている
このような構成により、伝達配線30の信号に長距離配線30によって同相ノイズが発生したとしても、電源電位VDD、接地電位VSS、および基準電圧VREFが共に同相なので、受信回路32の入力電位差は変わらない。したがって、受信回路32の出力には影響しない。
次に、本発明の第2の実施形態による半導体装置1Aの特別な技術的特徴について説明する。
上述したように、本発明の第2の実施形態による半導体装置1Aでは、伝達配線30の両脇に、一方(第1のシールド線)51が電源電位VDDに、他方(第2のシールド線)52が接地電位VSSに固定された一対のシールド線50が、伝達配線30を挟むように配置されている。特に、これらシールドを固定する電源電位VDDおよび接地電位VSSは、それぞれ、負荷駆動回路24(第2の回路20)を駆動している電源電位VDDおよび接地電位VSSである。
すなわち、本発明の第2の実施形態に係る半導体装置1Aは、図1に図示した、上記第1の実施形態に係る半導体装置1と同様の特別な技術的特徴(STF)を有している。
上記特徴によって、伝達配線30への雑音の影響を低減することができる。
図8を参照して、本発明の第2の実施形態の第1の変形例に係る半導体装置1Bについて説明する。
図示の半導体装置1Bは、後述するように、送信回路14および受信回路32への給電の仕方が相違する点を除いて、図7に示した半導体装置1Aと同様の構成を有する。図7に示す構成要素と同一の機能を有するものには同一の参照符号を付し、以下では説明の簡略化のために相違点についてのみ説明する。
送信回路(送信用ボルテージフォロワ)14を駆動する電源を、送信側に近い専用パッド46、48から供給している。すなわち、送信回路(送信用ボルテージフォロワ)14には、送信側に近い専用パッド46を介して安定電源電位VDDRが供給され、送信側に近い専用パッド48を介して安定接地電位VSSRが供給されている。このような構成を採用することにより、送信回路(送信用ボルテージフォロワ)14から出力される信号(即ち、伝達対象信号)VREF自体に生じるノイズを低減できる。
このように、第1の変形例に係る半導体装置1Bでは、送信回路14を駆動する電源電位および接地電位は、専用パッド46、47に接続する配線から供給されている。
このとき、受信回路(受信用ボルテージフォロワ)32の駆動電源は、送信回路(送信用ボルテージフォロワ)14の駆動電源と同じパッドから供給されることが前提である。したがって、受信回路(受信用ボルテージフォロワ)32の駆動電源も、送信側に近い専用パッド46、48から電源給電配線101を介して供給される。すなわち、受信回路(受信用ボルテージフォロワ)32には、送信側に近い専用パッド46から電源給電配線101を介して安定電源電位VDDRが供給され、送信側に近い専用パッド48から電源給電配線101を介して安定接地電位VSSRが供給される。
このように、第1の変形例に係る半導体装置1Bでは、受信回路32を駆動する電源電位および接地電位は、送信回路14と同じ専用配線46、48に接続する配線から供給される。
次に、本発明の第2の実施形態の第1の変形例による半導体装置1Bの特別な技術的特徴について説明する。
上述したように、本発明の第2の実施形態の第1の変形例による半導体装置1Bでは、伝達配線30の両脇に、一方(第1のシールド線)51が電源電位VDDに、他方(第2のシールド線)52が接地電位VSSに固定された一対のシールド線50が、伝達配線30を挟むように配置されている。特に、これらシールドを固定する電源電位VDDおよび接地電位VSSは、それぞれ、負荷駆動回路24(第2の回路20)を駆動している電源電位VDDおよび接地電位VSSである。
すなわち、本発明の第2の実施形態の第1の変形例に係る半導体装置1Bは、図1に図示した、上記第1の実施形態に係る半導体装置1と同様の特別な技術的特徴(STF)を有している。
図9を参照して、本発明の第2の実施形態の第2の変形例に係る半導体装置1Cについて説明する。
図示の半導体装置1Cは、後述するように、一対のシールド線50への給電の仕方が相違する点を除いて、図7に示した半導体装置1Aと同様の構成を有する。図7に示す構成要素と同一の機能を有するものには同一の参照符号を付し、以下では説明の簡略化のために相違点についてのみ説明する。
すなわち、一対のシールド線50において、一方(第1のシールド線)51には、送信側に近い専用パッド46を介して安定電源電位VDDRが供給され、他方(第2のシールド線)52には、送信側に近い専用パッド48を介して安定電源電位VSSRが供給されている。
このように、一対のシールド線50を固定する安定電源電位VDDRおよび安定接地電位VSSRを送信側に近い専用パッド46、48から供給することで、一対のシールド線50自体に生じるノイズを低減できる。
このように、第2の変形例に係る半導体装置1Cでは、一対のシールド線50を固定する電源電位および接地電位は、専用パッド46、48に接続する配線から供給されている。
次に、本発明の第2の実施形態の第2の変形例による半導体装置1Cの特別な技術的特徴について説明する。
上述したように、本発明の第2の実施形態の第2の変形例による半導体装置1Cでは、伝達配線30の両脇に、一方(第1のシールド線)51が安定電源電位VDDRに、他方(第2のシールド線)52が安定接地電位VSSRに固定された一対のシールド線50が、伝達配線30を挟むように配置されている。特に、これらシールドを固定する安定電源電位VDDRおよび安定接地電位VSSRは、それぞれ、内部電圧生成回路12を駆動している安定電源電位VDDRおよび安定接地電位VSSRである。
すなわち、本発明の第2の実施形態の第2の変形例に係る半導体装置1Cは、図1に図示した、上記第1の実施形態に係る半導体装置1と同様の特別な技術的特徴(STF)を有している。
図10を参照して、本発明の第2の実施形態の第3の変形例に係る半導体装置1Dについて説明する。
図示の半導体装置1Dは、後述するように、送信回路14、受信回路32、および一対のシールド線50への給電の仕方が相違する点を除いて、図7に示した半導体装置1Aと同様の構成を有する。図7に示す構成要素と同一の機能を有するものには同一の参照符号を付し、以下では説明の簡略化のために相違点についてのみ説明する。
送信回路(送信用ボルテージフォロワ)14を駆動する電源を、送信側に近い専用パッド46、48から供給している。すなわち、送信回路(送信用ボルテージフォロワ)14には、送信側に近い専用パッド46を介して安定電源電位VDDRが供給され、送信側に近い専用パッド48を介して安定接地電位VSSRが供給されている。
同様に、受信回路(受信用ボルテージフォロワ)32の駆動電源も、送信側に近い専用パッド46、48から供給される。すなわち、受信回路(受信用ボルテージフォロワ)32には、送信側に近い専用パッド46から電源給電配線101を介して安定電源電位VDDRが供給され、送信側に近い専用パッド48から電源給電配線101を介して安定接地電位VSSRが供給される。
また、一対のシールド線50において、一方(第1のシールド線)51には、送信側に近い専用パッド46から電源給電配線101を介して安定電源電位VDDRが供給され、他方(第2のシールド線)52には、送信側に近い専用パッド48から電源給電配線101を介して安定接地電位VSSRが供給されている。
すなわち、この第3の変形例は、上記第1の変形例と第2の変形例とを組合せたものに相当する。
このような構成を採用することにより、送信回路(送信用ボルテージフォロワ)14から出力される信号(即ち、伝達対象信号)VREF自体に生じるノイズを低減できる。また、一対のシールド線50を固定する安定電源電位VDDRおよび安定接地電位VSSRを、送信側に近い専用パッド46、48から供給することで、一対のシールド線50自体に生じるノイズを低減できる。
このように、第3の変形例に係る半導体装置1Dでは、送信回路14を駆動する電源電位および接地電位は、専用パッド46、48に接続する配線から供給される。そして、受信回路32を駆動する電源電位および接地電位も、送信側14と同じ専用パッド46、48に接続する配線から供給されている。さらに、一対のシールド線50を固定する電源電位および接地電位も、専用パッド46、48に接続する配線から供給されている。また、内部電圧生成回路12を駆動する電源は、専用パッド46、48に接続する配線から供給されている。
次に、本発明の第2の実施形態の第3の変形例による半導体装置1Dの特別な技術的特徴について説明する。
上述したように、本発明の第2の実施形態の第3の変形例による半導体装置1Dでは、伝達配線30の両脇に、一方(第1のシールド線)51が安定電源電位VDDRに、他方(第2のシールド線)52が安定接地電位VSSRに固定された一対のシールド線50が、伝達配線30を挟むように配置されている。特に、これらシールドを固定する安定電源電位VDDRおよび安定接地電位VSSRは、それぞれ、内部電圧生成回路12を駆動している安定電源電位VDDRおよび安定接地電位VSSRである。
すなわち、本発明の第2の実施形態の第3の変形例に係る半導体装置1Dは、図1に図示した、上記第1の実施形態に係る半導体装置1と同様の特別な技術的特徴(STF)を有している。
図11を参照して、本発明の第2の実施形態の第4の変形例に係る半導体装置1Eについて説明する。
図示の半導体装置1Eは、後述するように、一対のシールド線50を電源給電配線として併用している点を除いて、図10に示した半導体装置1Dと同様の構成を有する。図10に示す構成要素と同一の機能を有するものには同一の参照符号を付し、以下では説明の簡略化のために相違点についてのみ説明する。
図10に示した半導体装置1Dにおいては、内部電圧生成回路12および送信回路14には、送信側に近い専用パッド46、46から、安定電源電位VDDRおよび安定電源電位VSSRが供給されている。そして、一対のシールド線50および受信回路32には、この送信側に近い専用パッド46、48から、電源給電配線101を介して、安定電源電位VDDRおよび安定電源電位VSSRが供給されている。
これに対して、図11に示した半導体装置1Eにおいては、受信回路32および一対のシールド線50には、受信側に近い専用パッド46A、48Aから、安定電源電位VDDRおよび安定電源電位VSSRが供給されている。そして、送信回路14および内部電圧生成回路12には、この受信側に近い専用パッド46A、48Aから、電源給電配線を介してではなく一対のシールド線50を介して、安定電源電位VDDRおよび安定電源電位VSSRが供給されている。
このように、一対のシールド線50を電源給電配線として併用することで、図6(B)に示した、絶縁膜90中に形成した3層メタル配線を簡略化できる。すなわち、電源電位VDDおよび接地電位VSSを供給するための第3メタル層101を省略することができる。
このような構成の半導体装置1Eは、送信部(内部電圧生成回路12、送信回路14)と受信部(受信回路32、負荷駆動回路24、負荷回路22)とが離れている場合に有効である。
尚、図11に示した半導体装置1Eでは、受信側に近い専用パッド46A、48Aから安定電源電位VDDRおよび安定接地電位VSSRを供給しているが、送信側に近い専用パッド46、48から安定電源電位VDDRおよび安定接地電位VSSRを供給するようにしてもよい。この場合、内部電圧生成回路12、送信回路14、および一対のシールド線50には、送信側に近い専用パッド46、48から、安定電源電位VDDRおよび安定電源電位VSSRが供給される。そして、受信回路32には、この送信側に近い専用パッド46、48から、電源給電配線を介してではなく一対のシールド線50を介して、安定電源電位VDDRおよび安定電源電位VSSRが供給されることになる。
長距離にわたる配線層を省略化したい場合には、第4の変形例が有効であり、ノイズの影響をより低減したい場合には、上記第1乃至第3の変形例が有効である。
次に、図12を参照して、本第2の実施形態の第4の変形例に係る半導体装置1Eの作用効果について説明する。図12は、半導体装置1Eを示すブロック図であるが、第1の回路(制御部)10に備えられている内部電圧生成回路12の図示を省略してある。
半導体装置1Eにおいては、前述したように、伝達配線30をシールドする一対のシールド配線50では、一方(第1のシールド線)51には安定電源電位VDDRが供給され、他方(第2のシールド線)52には安定接地電位VSSRが供給されている。
このように、一対のシールド線50の一方(第1のシールド線)51を安定電源電位VDDで、他方(第2のシールド線)52を安定接地電位VSSで、長距離シールドした場合、安定電源VSSR(VDDR)は、電源VDD(VSS)に比べて充放電電流が少なく、変動が小さい。そのため、安定電源電位VDDおよび安定接地電位VSSをシールドとして適用すると、より大きな効果が期待できる。
また、送信側の送信回路14と同じ電源系VDDR−VSSRを用いた受信回路32を用意することで、長距離配線上にて同相ノイズが加わったとしても、受信回路32の入力電位差は変わらないため、受信回路32の出力変動を抑えることができる。
このように、第4の変形例に係る半導体装置1Eでは、一対のシールド線50は、送信回路14、受信回路32、又は、内部電圧生成回路12に電源電位および接地電位を供給するための配線によって構成されている。
次に、本発明の第2の実施形態の第4の変形例による半導体装置1Eの特別な技術的特徴(STF)について説明する。
上述したように、本発明の第2の実施形態の第4の変形例による半導体装置1Eでは、伝達配線30の両脇に、一方(第1のシールド線)51が安定電源電位VDDRに、他方(第2のシールド線)52が安定接地電位VSSRに固定された一対のシールド線50が、伝達配線30を挟むように配置されている。特に、これらシールドを固定する安定電源電位VDDRおよび安定接地電位VSSRは、それぞれ、内部電圧生成回路12を駆動している安定電源電位VDDRおよび安定接地電位VSSRである。
すなわち、本発明の第2の実施形態の第4の変形例に係る半導体装置1Eは、図1に図示した、上記第1の実施形態に係る半導体装置1と同様の特別な技術的特徴(STF)を有している。
以上、本発明を、その実施の形態を参照して特に示し説明してきたが、本発明は上述した実施の形態に限定されない。当業者によって、請求の範囲に規定された本発明の精神と範囲を逸脱せずに、形式や詳細において種々の変形がなされると理解される。
例えば、上記実施の形態では、一対のシールド線50が伝達配線30を挟むように配置するとして説明したが、その配置位置は、伝達配線30に対して左右に配置されていても上下に配置されていても良い。すなわち、本発明の一対のシールド線50は、伝達配線30を挟むように配置されていれば、特定の配置位置に限定されない。
上記第2の実施形態の第1乃至第4の変形例は、第1の実施形態にも適用できる。具体的には、第2の実施形態の第1乃至第4の変形例において、受信回路32を持たない構成であって良い。
また、上記一対のシールド線50は一組だけに限定されず、複数組あっても良い。
さらに、上記実施の形態では、一対のシールド線50によってノイズから保護する伝達配線30には、内部電圧生成回路12で生成した基準電圧VREFを印加して伝送されるとして説明したが、伝達配線30に印加される電圧はこれに限定されない。例えば、各種回路の駆動条件を決める命令信号などであっても良い。
本発明は、様々な半導体装置に搭載することができる。即ち、半導体装置は、それぞれ情報記憶機能を備えたCPU(Central Processing Unit)、MCU(Micro Control Unit)、DSP(Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、ASSP(Application Specific Standard Circuit)等の半導体製品全般に、本願発明が適用できる。また本願を適用したデバイスは、SOC(システムオンチップ)、MCP(マルチチップパッケージ)やPOP(パッケージオンパッケージ)等の半導体装置に適用できる。また、トランジスタは、電界効果トランジスタ(Filed Effect Transistor; FET)であればよく、MOS(Metal Oxide Semiconductor)以外にもMIS(Metal-Insulator Semiconductor)、TFT(Thin Film Transistor)等の様々なFETに適用できる。トランジスタは、FET以外のトランジスタであっても良い。また、Pチャンネル型のトランジスタまたはPMOSトランジスタは、第1導電型のトランジスタ、Nチャンネル型のトランジスタまたはNMOSトランジスタは、第2導電型のトランジスタの代表例である。更に、P型の半導体基板に限らず、N型の半導体基板であっても良いし、SOI(Silicon on Insulator)構造の半導体基板であっても、それ以外の半導体基板であっても良い。
1、1A、1B、1C、1D、1E 半導体装置
10 第1の回路(制御部)
10OUT 出力端
12 内部電圧生成回路(電圧発生回路)
14 送信回路(送信側ボルテージフォロワ)
14−1 第1の送信回路
14−2 第2の送信回路
14−3 第3の送信回路
20 第2の回路(駆動部)
20IN 入力端
22 負荷回路
22−1 制御回路(第1の負荷回路)
22−2 リードライトアンプ(第2の負荷回路)
22−3 入出力回路(第3の負荷回路)
24 負荷駆動回路
24−1 第1の負荷駆動回路
24−2 第2の負荷駆動回路
24−3 第3の負荷駆動回路
242 比較回路(レギュレータ)
244 pチャネルMOSFET
26 内部電源線
28 接地線
30 伝達配線(第1の配線)
30−1 第1の伝達配線(第1の配線)
30−2 第2の伝達配線(第1の配線)
30−3 第3の伝達配線(第1の配線)
32 受信回路(受信側ボルテージフォロワ)
42、44 汎用パッド
46、48 送信側に近い専用パッド
46A、48A 受信側に近い専用パッド
50 一対のシールド線
51 第1のシールド線
52 第2のシールド線
60 半導体チップ(チップ)
72 メモリセルアレイ
74 ローデコーダ
76 カラムデコーダ
80 P型基板
81 高濃度Nウェル層
82 Nウェル層
83 Nウェル層
85 素子分離層
86 P
87 N
88 ゲート酸化膜
89 ポリメタル層
90 絶縁膜
91 第1のゲート
92 第2のゲート
93 第1スルーホール
94 タングステン層
95 第2スルーホール
96 第1メタル層
97 第3スルーホール
98 第2メタル層
99 第4スルーホール
101 第3メタル層
VDD 電源電位
VSS 接地電位
VDDR 安定電源電位
VSSR 安定接地電位
VREF 基準電圧(所定電圧)
VPERI 内部生成電圧

Claims (13)

  1. 所定電圧を発生する電圧発生回路を含み、前記所定電圧を出力端に出力する第1の回路と、
    第2の回路と、
    前記第1の回路の出力端を前記第2の回路の入力端に結線する第1の配線と、
    前記第1の配線を挟むように配置された一対のシールド線であって、一方には前記電圧発生回路および前記第2の回路の少なくとも一方を駆動する電源電位が供給され、他方には前記電圧発生回路および前記第2の回路の少なくとも一方を駆動する接地電位が供給される一対のシールド線と、
    を備えることを特徴とする半導体装置。
  2. 前記第1の回路、前記第2の回路、前記第1の配線、および、前記一対のシールド線は、同一の半導体チップ上に形成されている、
    請求項1に記載の半導体装置。
  3. 前記第1の回路は、更に、前記第1の出力回路の出力端の電位を前記所定電位と等しくなるように制御する送信回路を有し、
    前記送信回路を介して前記第1の配線に前記所定電圧を出力する、
    請求項2に記載の半導体装置。
  4. 前記第1の配線は、受信回路を介して前記第2の回路の入力端に結線され、
    前記受信回路は、前記第2の回路の入力端の電圧を前記第1の配線の所定電圧と等しくなるように制御する回路であり、
    前記受信回路に電源電位および接地電位を供給する配線は、前記送信回路に電源電位および接地電池を供給する配線と同じパッドに接続されている、請求項3に記載の半導体装置。
  5. 前記第1の回路は、前記電圧発生回路として内部電圧生成回路を有し、前記所定電圧は前記内部電圧生成回路で生成される基準電圧である、請求項4に記載の半導体装置。
  6. 前記内部電圧生成回路に電源電位および接地電位を供給する配線は、前記半導体チップ上の他の回路に電源電位および接地電位を供給する配線とは異なるパッドに接続されている、請求項5に記載の半導体装置。
  7. 前記一対のシールド線を固定する前記電源電位および前記接地電位は、前記内部電圧生成回路に電源電位および接地電位を供給する配線が接続された前記パッドから供給されている、請求項6に記載の半導体装置。
  8. 前記送信回路および前記受信回路に電源電位および接地電位を供給する配線は、前記内部電圧生成回路に電源電位および接地電位を供給する配線と同じ前記パッドに接続されている、請求項6に記載の半導体装置。
  9. 前記一対のシールド線を固定する前記電源電位および前記接地電位は、前記内部電圧生成回路、前記送信回路および前記受信回路に電源電位および接地電位を供給する配線が接続された前記パッドから供給されている、請求項8に記載の半導体装置。
  10. 前記一対のシールド線は、前記送信回路、前記受信回路または前記内部電圧生成回路に電源電位および接地電位を供給するための配線の一部を構成する、請求項9に記載の半導体装置。
  11. 前記第2の回路は、前記第1の配線の前記所定電圧を受けて負荷回路を駆動する負荷駆動回路からなる、請求項1乃至10のいずれか1項に記載の半導体装置。
  12. 前記負荷駆動回路は、
    第1および第2主電極ならびに制御電極を有する第1トランジスタと、
    前記第1トランジスタの前記第1主電極の電圧が所定の電圧となるように前記第1トランジスタの前記第2主電極および前記制御電極間の電圧を制御する制御回路と、から構成され、
    前記第1トランジスタの前記第1主電極の電圧を前記負荷回路に供給する、請求項11に記載の半導体装置。
  13. 前記一対のシールド線は複数組ある、請求項1乃至12のいずれか1項に記載の半導体装置。
JP2010247772A 2010-11-04 2010-11-04 半導体装置 Pending JP2012099735A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010247772A JP2012099735A (ja) 2010-11-04 2010-11-04 半導体装置
US13/289,599 US8847431B2 (en) 2010-11-04 2011-11-04 Semiconductor device including a pair of shield lines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010247772A JP2012099735A (ja) 2010-11-04 2010-11-04 半導体装置

Publications (1)

Publication Number Publication Date
JP2012099735A true JP2012099735A (ja) 2012-05-24

Family

ID=46018934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010247772A Pending JP2012099735A (ja) 2010-11-04 2010-11-04 半導体装置

Country Status (2)

Country Link
US (1) US8847431B2 (ja)
JP (1) JP2012099735A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021114668A (ja) * 2020-01-17 2021-08-05 富士電機株式会社 駆動装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5544717B2 (ja) * 2009-01-15 2014-07-09 富士通株式会社 半導体装置及び試験方法
JP2011113575A (ja) * 2009-11-24 2011-06-09 Hitachi Consumer Electronics Co Ltd フレキシブルプリント基板、並びにそれを用いた電子機器及び光ディスク記録装置
EP4216274A3 (en) * 2015-12-29 2023-09-27 Secure-IC SAS System and method for protecting an integrated circuit (ic) device
CN110459191B (zh) * 2019-08-26 2021-11-16 京东方科技集团股份有限公司 移位寄存器单元、栅极驱动电路和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188651A (ja) * 1989-12-18 1991-08-16 Hitachi Ltd 半導体集積回路装置
JPH04123466A (ja) * 1990-09-14 1992-04-23 Hitachi Ltd 半導体装置
JP2000040795A (ja) * 1998-07-23 2000-02-08 Nec Corp 半導体集積回路装置および基準電圧配線のレイアウト方法
JP2007251351A (ja) * 2006-03-14 2007-09-27 Renesas Technology Corp 半導体装置
JP2008071124A (ja) * 2006-09-14 2008-03-27 Oki Electric Ind Co Ltd レギュレータ回路
JP2010145738A (ja) * 2008-12-18 2010-07-01 Seiko Epson Corp ドライバic、電気光学装置及び電子機器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3294590B2 (ja) 1989-03-17 2002-06-24 株式会社日立製作所 半導体装置
JP4970722B2 (ja) 2004-12-16 2012-07-11 エルピーダメモリ株式会社 半導体チップ及び半導体メモリ装置
KR20080041458A (ko) * 2006-11-07 2008-05-13 삼성전자주식회사 내부 클럭 생성 회로 및 그것을 이용한 데이터 드라이버

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188651A (ja) * 1989-12-18 1991-08-16 Hitachi Ltd 半導体集積回路装置
JPH04123466A (ja) * 1990-09-14 1992-04-23 Hitachi Ltd 半導体装置
JP2000040795A (ja) * 1998-07-23 2000-02-08 Nec Corp 半導体集積回路装置および基準電圧配線のレイアウト方法
JP2007251351A (ja) * 2006-03-14 2007-09-27 Renesas Technology Corp 半導体装置
JP2008071124A (ja) * 2006-09-14 2008-03-27 Oki Electric Ind Co Ltd レギュレータ回路
JP2010145738A (ja) * 2008-12-18 2010-07-01 Seiko Epson Corp ドライバic、電気光学装置及び電子機器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021114668A (ja) * 2020-01-17 2021-08-05 富士電機株式会社 駆動装置
JP7358998B2 (ja) 2020-01-17 2023-10-11 富士電機株式会社 駆動装置

Also Published As

Publication number Publication date
US8847431B2 (en) 2014-09-30
US20120112563A1 (en) 2012-05-10

Similar Documents

Publication Publication Date Title
JP4850387B2 (ja) 半導体装置
US7638849B2 (en) Semiconductor device having separated drain regions
KR0137105B1 (ko) 데이터 전송회로, 데이터선 구동회로, 증폭회로, 반도체 집적회로 및 반도체 기억장치
TWI423395B (zh) Semiconductor integrated circuit device
JP2012099735A (ja) 半導体装置
US8759883B2 (en) Semiconductor integrated circuit
JP2007103863A (ja) 半導体デバイス
JP3390875B2 (ja) 半導体装置
JP2006269674A (ja) 半導体集積回路
JP2006339355A (ja) 半導体集積回路装置及びその設計方法
JP3967002B2 (ja) 半導体集積回路
JP2005302832A (ja) 半導体集積回路
US6337506B2 (en) Semiconductor memory device capable of performing stable operation for noise while preventing increase in chip area
US20230410889A1 (en) Semiconductor device and memory
KR102175485B1 (ko) 디커플링 커패시터 회로
KR970005691B1 (ko) 전원노이즈감소를 위한 전원라인구조를 가지는 반도체칩
JP5351796B2 (ja) 半導体回路
JP5030373B2 (ja) 半導体回路
JP2013085272A (ja) 半導体回路
JP2007109983A (ja) 半導体集積回路装置、電子機器及び半導体集積回路装置の製造方法
JP3178437B2 (ja) 半導体装置
JPH05152291A (ja) 半導体集積回路装置
JP4050883B2 (ja) 半導体集積回路装置及び電子機器
US20230135511A1 (en) Semiconductor device
JP2006319268A (ja) 半導体集積回路

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20131015

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20131017

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150318