JP2012069559A - 成膜装置 - Google Patents
成膜装置 Download PDFInfo
- Publication number
- JP2012069559A JP2012069559A JP2010210598A JP2010210598A JP2012069559A JP 2012069559 A JP2012069559 A JP 2012069559A JP 2010210598 A JP2010210598 A JP 2010210598A JP 2010210598 A JP2010210598 A JP 2010210598A JP 2012069559 A JP2012069559 A JP 2012069559A
- Authority
- JP
- Japan
- Prior art keywords
- wafer
- purge gas
- film
- sic heater
- flow path
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Chemical Vapour Deposition (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
【課題】水素又は塩化水素を含むパージガス用いるとともに、SiCヒータを備える成膜装置において、SiCヒータの劣化を抑制することができる技術を提供することを目的とする。
【解決手段】ウエハ70の表面にシリコン膜を成長させる成膜装置10であって、ウエハ70を設置可能なウエハステージ14、16と、ウエハステージ内に配置されており、ウエハ70を加熱するSiCヒータ42と、ウエハ70の被成膜面に、シリコン膜の原料ガスを供給する原料ガス供給手段60、62、64と、ウエハステージ内に形成されており、ウエハの裏面と外周面の少なくとも一部に、水素または塩化水素を含むパージガスを供給するパージガス流路32、30、36と、ウエハステージ内に形成されており、SiCヒータ42に、SiCヒータ42に対して不活性なガスを供給する不活性ガス流路44、48を有している。
【選択図】図1
【解決手段】ウエハ70の表面にシリコン膜を成長させる成膜装置10であって、ウエハ70を設置可能なウエハステージ14、16と、ウエハステージ内に配置されており、ウエハ70を加熱するSiCヒータ42と、ウエハ70の被成膜面に、シリコン膜の原料ガスを供給する原料ガス供給手段60、62、64と、ウエハステージ内に形成されており、ウエハの裏面と外周面の少なくとも一部に、水素または塩化水素を含むパージガスを供給するパージガス流路32、30、36と、ウエハステージ内に形成されており、SiCヒータ42に、SiCヒータ42に対して不活性なガスを供給する不活性ガス流路44、48を有している。
【選択図】図1
Description
本明細書が開示する技術は、ウエハの表面にエピタキシャル膜を成長させる成膜装置に関する。
特許文献1には、ウエハの表面にシリコン膜を成長させる成膜装置が開示されている。この成膜装置は、サセプタと、ヒータと、原料ガス供給手段と、パージガス流路を備えている。サセプタには、ウエハが設置される。ヒータは、ウエハの裏面側に配置されており、ウエハを加熱する。原料ガス供給手段は、ウエハの被成膜面(上面)に、シリコン膜の原料を含む原料ガスを供給する。ヒータによりウエハが加熱され、原料ガス供給手段によりウエハの被成膜面に原料ガスが供給されることで、ウエハの被成膜面上で原料ガスが反応し、被成膜面上にシリコン膜が成長する。パージガス流路は、サセプタとヒータの間の空間内に形成されており、ウエハの裏面や外周面にパージガスを供給する。パージガスによって、ウエハの裏面や外周面上にシリコン膜が成長することが防止される。
上述したパージガスが、ウエハの被成膜面上に流入する場合がある。したがって、パージガスは、ウエハの被成膜面における成膜反応に影響を及ぼさないガスであることが好ましい。特許文献1では、パージガスの例として、水素、アルゴン、ヘリウム及び窒素が挙げられている。このうち、アルゴン、ヘリウム、窒素は、成膜反応に用いられるガスではないので、成長する膜の特性に影響を及ぼすおそれがある。水素は、シリコン膜の原料の1つであるので、成長する膜の特性に影響を及ぼすことはない。また、特許文献1には記載されていないが、塩化水素もパージガスとして使用可能である。塩化水素は、成膜反応で生成されるガスの1つであるので、成長する膜の特性に影響を及ぼすことはない。すなわち、水素と塩化水素は、シリコン膜を成長させる際におけるパージガスとして適切である。これらは、炭化珪素(SiC)膜を成長させる際のパージガスとしても適している。
一方、近年においては、ウエハをより高温まで加熱するために、加熱手段としてSiCヒータ(炭化珪素により発熱体が構成されているヒータ)が用いられることが一般的となっている。SiCヒータは、1400℃以上の耐熱性を有する。SiCヒータによれば、ウエハをより高温まで加熱することができるので、膜の成長速度を向上させることができる。また、高純度なSiCは、不純物を発生させないので、不純物により成膜装置が汚染されることを防止することができる。
上述した特許文献1の加熱手段としてSiCヒータを用い、パージガスとして水素又は塩化水素を用いると、以下の問題が生じる。すなわち、サセプタとヒータの間の空間内のパージガス流路に水素又は塩化水素を供給すると、供給された水素又は塩化水素がSiCヒータと接触する。SiCヒータが高温にある場合において、SiCヒータに水素又は塩化水素が接触すると、SiCと水素又は塩化水素が反応し、SiCヒータが急速に劣化する。これによって、SiCヒータの寿命が極めて短くなるという問題が生じる。この反応を防止するために、SiCヒータの表面を、水素又は塩化水素に対して反応し難い別の材質でコーティングすることも考えられる。しかしながら、SiCと同等以上の耐熱性を有し、かつ、不純物を発生させない材質は現在のところ見当たらない。
以上の実情に鑑み、本明細書では、水素又は塩化水素を含むパージガス用いるとともに、SiCヒータを備える成膜装置において、SiCヒータの劣化を抑制することができる技術を提供することを目的とする。
本明細書が開示する成膜装置は、ウエハの表面にシリコン又は炭化珪素のエピタキシャル膜を成長させる。この成膜装置は、ウエハを設置可能なウエハステージと、ウエハステージ内に配置されており、ウエハを加熱するSiCヒータと、ウエハの被成膜面に、エピタキシャル膜の原料を含む原料ガスを供給する原料ガス供給手段と、ウエハステージ内に形成されており、ウエハの裏面と外周面の少なくとも一方に、水素または塩化水素を含むパージガスを供給するパージガス流路と、ウエハステージ内に形成されており、SiCヒータに、SiCヒータに対して不活性なガスを供給する不活性ガス流路を有している。
なお、ウエハの被成膜面とは、ウエハがウエハステージ上に設置されたときに、ウエハステージと反対側に位置するウエハの表面を意味する。また、ウエハの裏面とは、被成膜面と反対側の面を意味する。
この成膜装置では、SiCヒータによって、ウエハステージに設置されたウエハが加熱される。また、原料ガス供給手段によって、ウエハの被成膜面に原料ガスが供給される。したがって、ウエハの被成膜面上において原料ガスが反応し、被成膜面上にエピタキシャル膜が成長する。また、ウエハの裏面と外周面の少なくとも一方には、パージガス流路によってパージガスが供給される。パージガスによって、ウエハの裏面や外周面上にエピタキシャル膜が成長することが防止される。また、この半導体装置では、不活性ガスをSiCヒータに供給する不活性ガス流路が、ウエハステージ内に形成されている。不活性ガスはSiCヒータに対して不活性であるので、不活性ガスはSiCヒータと反応しない。また、SiCヒータに不活性ガスが供給されることで、パージガスがSiCヒータの周囲に流入することが抑制される。これによって、パージガスがSiCヒータと反応することが抑制され、SiCヒータの劣化が抑制される。
上述した成膜装置は、ウエハステージ内においてパージガス流路と不活性ガス流路が分離されており、SiCヒータが不活性ガス流路内に配置されていることが好ましい。
このような構成によれば、パージガスがSiCヒータの周囲に流入することを防止することができる。したがって、パージガスによるSiCヒータの劣化を防止することができる。
このような構成によれば、パージガスがSiCヒータの周囲に流入することを防止することができる。したがって、パージガスによるSiCヒータの劣化を防止することができる。
上述した成膜装置は、パージガス流路が、パージガスを半導体ウエハの裏面に沿って噴射するノズルを備えていることが好ましい。
このような構成によれば、パージガスが半導体ウエハの裏面に沿って噴射されることによって、ベルヌーイ効果によりウエハがウエハステージに吸着される。これによって、ウエハをより確実にウエハステージに固定することができる。
このような構成によれば、パージガスが半導体ウエハの裏面に沿って噴射されることによって、ベルヌーイ効果によりウエハがウエハステージに吸着される。これによって、ウエハをより確実にウエハステージに固定することができる。
実施例に係る成膜装置の特徴を以下に列記する。
(特徴1) サセプタのウエハが設置される位置の直下に、第1空間が形成されている。第1空間はサセプタの上面に開口している。ウエハ載置部にウエハが載置されると、開口が塞がれる。第1空間は、パージガス流路の一部を構成している。
(特徴2)第1空間の直下に、第2空間が形成されている。第2空間は、分離板によって第1空間から分離されている。第2空間内には、SiCヒータが設置されている。第2空間は、不活性ガス流路の一部を構成している。
(特徴3)分離板は、SiCにより構成されている。
(特徴4)SiCヒータはSiCからなる発熱体に通電することで発熱体を昇温させる。
(特徴1) サセプタのウエハが設置される位置の直下に、第1空間が形成されている。第1空間はサセプタの上面に開口している。ウエハ載置部にウエハが載置されると、開口が塞がれる。第1空間は、パージガス流路の一部を構成している。
(特徴2)第1空間の直下に、第2空間が形成されている。第2空間は、分離板によって第1空間から分離されている。第2空間内には、SiCヒータが設置されている。第2空間は、不活性ガス流路の一部を構成している。
(特徴3)分離板は、SiCにより構成されている。
(特徴4)SiCヒータはSiCからなる発熱体に通電することで発熱体を昇温させる。
図1は、実施例に係る成膜装置10の概略断面図を示している。成膜装置10は、シリコンウエハ70の表面にシリコンのエピタキシャル層を成長させる。図1に示すように、成膜装置10は、チャンバ12を備えている。チャンバ12の底面には、排気管28が接続されている。排気管28の他端は、図示しない排気ポンプに接続されている。排気ポンプを作動させることで、チャンバ12内のガスをチャンバ12外へ排気することができる。チャンバ12内には、サセプタ14とサセプタ支持部材16を備えるウエハステージが設置されている。
サセプタ支持部材16は、筒状の部材である。サセプタ支持部材16は、直径が大きい大径部と、大径部の下側に形成されており、直径が小さい軸部18を備えている。チャンバ12の底部には、軸受部20が形成されている。軸部18は軸受部20に挿入されている。これによって、サセプタ支持部材16は、図1の矢印80に示すように回転可能にチャンバ12に取り付けられている。サセプタ支持部材16は、図示しない駆動装置によって回転させることができる。サセプタ14は、サセプタ支持部材16の最上部に取り付けられている。サセプタ14は、サセプタ支持部材16と共に回転する。
サセプタ14とサセプタ支持部材16に囲まれた空間内には、上部空間30と下部空間40が形成されている。上部空間30と下部空間40は、これらの間に配置された分離板50によって仕切られている。サセプタ14とサセプタ支持部材16に囲まれた空間内では、上部空間30と下部空間40は連通していない。
サセプタ14の上面には、シリコンウエハ70が載置される載置面14aが形成されている。上部空間30は、載置面14aの中央に開口している。載置面14aにシリコンウエハ70が載置されると、開口が閉じられる。サセプタ14とサセプタ支持部材16に囲まれた空間内には、軸部18の中心に沿って伸びるパージガス供給管32が設置されている。パージガス供給管32は分離板50を貫通しており、パージガス供給管32の先端は上部空間30内に位置している。パージガス供給管32の先端には、サセプタ14の半径方向に沿ってガスを噴射するノズルが形成されている。パージガス供給管32の基端は、パージガス供給装置34に接続されている。パージガス供給装置34は、パージガス供給管32内にパージガス(本実施例では、水素ガス)を供給する。サセプタ14とサセプタ支持部材16の外周壁には、上部空間30とその外部の空間とを連通する流路36が形成されている。流路36は、サセプタ14とサセプタ支持部材16の半径方向に伸びている。パージガス供給装置34により供給されるパージガスは、パージガス供給管32、上部空間30、及び、流路36を通って、チャンバ12内へ流れる。すなわち、サセプタ14とサセプタ支持部材16に囲まれた空間内には、パージガス供給管32、上部空間30、及び、流路36によって、パージガスをシリコンウエハ70の裏面に供給するパージガス流路が形成されている。
下部空間40内には、SiCヒータ42が設置されている。SiCヒータ42は、SiCからなる発熱体を備えている。発熱体は、中央に貫通孔が形成された略ドーナツ形状を備えている。発熱体は、中央の貫通孔にパージガス供給管32が挿通された状態で、下部空間40内に設置されている。SiCヒータ42を作動させると、発熱体に電流が流れて、発熱体が発熱する。下部空間40内には、不活性ガス供給管44が設置されている。不活性ガス供給管44は、先端をSiCヒータ42に向けた状態で設置されている。不活性ガス供給管44の基端は、不活性ガス供給装置46に接続されている。不活性ガス供給装置46は、不活性ガス供給管44内に、SiCに対して不活性な不活性ガス(本実施例では、アルゴン)を供給する。サセプタ支持部材16の底壁には、下部空間40とその外部の空間とを連通する流路48が形成されている。不活性ガス供給装置46により供給される不活性ガスは、不活性ガス供給管44、下部空間40、及び、流路48を通って、チャンバ12内へ流れる。すなわち、サセプタ14とサセプタ支持部材16に囲まれた空間内には、不活性ガス供給管44、下部空間40、及び、流路48によって、不活性ガスをSiCヒータ42に供給する不活性ガス流路が形成されている。
チャンバ12の最上部には、シャワーヘッド60が設置されている。シャワーヘッド60は、チャンバ12内に連通する多数の噴射孔を備えている。シャワーヘッド60には、原料ガス供給管62が接続されている。原料ガス供給管62の基端には、原料ガス供給装置64が接続されている。原料ガス供給装置64は、原料ガス供給管62内に、シリコン膜の原料ガス(本実施例では、トリクロロシラン(SiHCl3)と水素(H2)とホスフィン(PH3)の混合ガス)を供給する。なお、トリクロロシランと水素は、シリコンウエハ70の表面で互いに反応してシリコン膜を形成するガスであり、ホスフィンは、形成するシリコン膜中にリンをドーピングするためのドーパントガスである。なお、他の不純物をドーピングする場合にはドーパントガスを適宜変更することができる。例えば、ボロンをドーピングする場合には、ホスフィンに換えて、ジボラン(B2H6)をドーピングガスに用いることができる。原料ガス供給装置64が供給する原料ガスは、原料ガス供給管62とシャワーヘッド60内を通って、噴射孔からチャンバ12内へ噴射される。
次に、成膜装置10によって、シリコンウエハ70の表面にシリコン膜をエピタキシャル成長させる成膜処理について説明する。
成膜処理を行う際には、最初に、サセプタ14の載置面14a上にシリコンウエハ70を載置する。これによって、上部空間30の開口がシリコンウエハ70によって塞がれる。次に、排気ポンプを作動させて、チャンバ12内を減圧する。以後、排気ポンプを継続して作動させて、チャンバ12内を減圧した状態に維持する。次に、原料ガス供給装置64からキャリアガス(水素)を流し、排気管28の下部に設置されている図示していない圧力調整バルブでチャンバ12内の圧力を所定圧力に調整する。
成膜処理を行う際には、最初に、サセプタ14の載置面14a上にシリコンウエハ70を載置する。これによって、上部空間30の開口がシリコンウエハ70によって塞がれる。次に、排気ポンプを作動させて、チャンバ12内を減圧する。以後、排気ポンプを継続して作動させて、チャンバ12内を減圧した状態に維持する。次に、原料ガス供給装置64からキャリアガス(水素)を流し、排気管28の下部に設置されている図示していない圧力調整バルブでチャンバ12内の圧力を所定圧力に調整する。
次に、パージガス供給装置34と不活性ガス供給装置46を作動させる。パージガス供給装置34を作動させると、パージガスが、パージガス供給管32から上部空間30内に噴射される。これにより、上部空間30内がパージガスで満たされる。上部空間30内のパージガスは、流路48を通って外部に排出され、排気管28からチャンバ12外へ排出される。なお、この際に、上部空間30内の圧力を、チャンバ12内の圧力以下となるように調整する。不活性ガス供給装置46を作動させると、不活性ガスが、不活性ガス供給管44から下部空間40内に噴射される。これにより、下部空間40内が不活性ガスで満たされる。下部空間40内の不活性ガスは、流路48を通ってサセプタ14の外部に排出され、排気管28からチャンバ12外へ排出される。なお、この際に、下部空間40内の圧力を、チャンバ12内の圧力より高くなるように調整する。これによって、チャンバ12から下部空間40内にガスが流入しないようにする。パージガス供給装置34と不活性ガス供給装置46は、以後、継続して動作させる。
次に、図示しない駆動装置を作動させて、サセプタ支持部材16を介して、サセプタ14を高速回転させる。また、SiCヒータ42を作動させる。SiCヒータ42が昇温すると、SiCヒータ42からの熱が、分離板50を介してシリコンウエハ70に伝わる。これによって、シリコンウエハ70が加熱される。また、原料ガス供給装置64を作動させる。原料ガス供給装置64を作動させると、原料ガスが、シャワーヘッド60からチャンバ12内に噴射される。原料ガスは、図1の矢印82に示すように、シャワーヘッド60からシリコンウエハ70の被成膜面に向けて噴射される。シリコンウエハ70は高速回転しているので、シリコンウエハ70の被成膜面に到達した原料ガスは、図1の矢印84に示すように、被成膜面に沿ってシリコンウエハ70の外周側に向かって流れる。外周まで到達した原料ガスは、チャンバ12内を下側に向かって流れ、排気管28からチャンバ12外に排出される。原料ガスがシリコンウエハ70の被成膜面に沿って流れているときには、原料ガスがシリコンウエハ70によって加熱される。これによって、原料ガス、すなわち、トリクロロシランと水素が、以下の反応式に示す成膜反応を起こす。
SiHCl3+H2→Si+3HCl
上記成膜反応により生成されるシリコンは、シリコンウエハ70の被成膜面に固着する。これにより、被成膜面上にシリコン膜がエピタキシャル成長する。また、シリコン膜が成長する際には、ホスフィン中のリンがシリコン膜中に取り込まれる。このため、成長するシリコン膜はn型のシリコン膜となる。また、上記の反応式に示すように、反応後には副生成物として塩化水素(HCl)のガスが生成される。
SiHCl3+H2→Si+3HCl
上記成膜反応により生成されるシリコンは、シリコンウエハ70の被成膜面に固着する。これにより、被成膜面上にシリコン膜がエピタキシャル成長する。また、シリコン膜が成長する際には、ホスフィン中のリンがシリコン膜中に取り込まれる。このため、成長するシリコン膜はn型のシリコン膜となる。また、上記の反応式に示すように、反応後には副生成物として塩化水素(HCl)のガスが生成される。
上述したように、成膜時には、上部空間30内がパージガスで満たされている。このため、シリコンウエハ70の裏面側に原料ガスがまわり込むことが抑制される。これによって、シリコンウエハ70の裏面にシリコン膜が成長することが抑制される。また、パージガス供給管32は、シリコンウエハ70の裏面に沿ってパージガスを噴射する。このようにパージガスが噴射されることで、ベルヌーイ効果によってシリコンウエハ70がサセプタ14に吸着固定される。これによって、シリコンウエハ70がサセプタ14上で動くことが防止される。また、流路36から上部空間30の外部に排出されたパージガスの一部が、シリコンウエハ70の被成膜面側に流れる場合がある。しかしながら、パージガスは水素であり、上述したように原料ガス中には水素が含まれている。したがって、被成膜面上にパージガスが到達しても、成長する膜の特性に影響を及ぼすことはない。
また、上述したように、成膜時には、下部空間40内が不活性ガスで満たされている。このため、SiCヒータ42の周囲にパージガスが流入することが防止される。不活性ガスは、SiCに対して不活性である。このため、SiCヒータ42の周囲が不活性ガスで満たされた状態で、SiCヒータ42を昇温させても、SiCヒータ42はガスと反応しない。これにより、SiCヒータ42がパージガスと反応することが防止される。したがって、SiCヒータ42の劣化を防止することができる。
以上に説明したように、この成膜装置10では、SiCヒータ42の周囲が不活性ガスで満たされることにより、パージガスがSiCヒータ42の周囲に流入することが防止される。したがって、パージガスとの反応によるSiCヒータ42の劣化を防止することができる。このため、SiCヒータ42を従来よりも高温(例えば、1400℃以上)まで昇温させることができる。これにより、シリコンウエハ70をより高温に加熱し、シリコン膜の成長速度を向上させることができる。
なお、上述した実施例では、パージガスとして水素を用いたが、塩化水素を用いてもよい。上記反応式に示されるように、シリコンウエハ70の被成膜面で成膜反応が生じると、塩化水素が生成される。このように、塩化水素は被成膜面近傍に存在しているので、パージガスとして供給された塩化水素が被成膜面に到達しても、成長する膜の特性に悪影響を及ぼすことがない。また、上部空間30内に塩化水素を供給することによっても、シリコンウエハ70の裏面側に原料ガスが流入することを抑制し、裏面へのシリコン膜の成長を抑制することができる。特に、塩化水素はシリコンをエッチングするので、裏面へのシリコン膜の成長をより抑制することができる。また、水素と塩化水素の両方を含むガスをパージガスとして用いることもできる。
また、上述した実施例では、上部空間30と下部空間40が分離板50により分離されていたが、分離板50が存在せず、上部空間30と下部空間40が繋がっていてもよい。このような構成でも、SiCヒータ42の周囲に不活性ガスが供給することで、パージガスがSiCヒータ42の周囲に流入することを抑制することができる。これにより、SiCヒータ42の劣化を抑制することができる。また、分離板50を取り除くことで、SiCヒータ42によりシリコンウエハ70を直接加熱できるため、加熱効率を向上させることができる。
また、上述した実施例では、原料ガスとしてトリクロロシランと水素の混合ガスを用いたが、他のガスを用いてもよい。例えば、ジクロロシラン(SiH2Cl2)と水素の混合ガスを用いてもよい。
また、上述した実施例では、シリコンウエハ上にシリコン膜を成長させる処理について説明したが、実施例の技術は炭化珪素ウエハ上に炭化珪素膜を成長させる処理にも適用することができる。この場合には、原料ガスとして、モノシラン(SiH4)に、プロパン(C3H8)、エチレン(C2H4)、または、アセチレン(C2H2)等を適宜混合したガスを用いることができる。この場合にも、パージガスとして水素または塩化水素を用いれば、パージガスが被成膜面に到達しても成長する膜の特性に影響を及ぼすことがない。
また、上述した実施例では、パージガスをシリコンウエハ70の裏面に供給した。しかしながら、図2に示すように、パージガスがシリコンウエハ70の外周面に供給されるようにパージガス流路が形成されていてもよい。なお、図2では、図1と対応する部分について図1と同じ参照番号を付している。図2では、パージガス供給管32から供給されるパージガスが、流路130を通ってシリコンウエハ70の外周面に供給される。このような構成でも、シリコンウエハ70の外周面や裏面にシリコン膜が成長することを抑制することができる。また、シリコンウエハの裏面と外周面の両方にパージガスを供給してもよい。
以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例をさまざまに変形、変更したものが含まれる。
本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
10:成膜装置
12:チャンバ
14:サセプタ
14a:載置面
16:サセプタ支持部材
18:軸部
20:軸受部
28:排気管
30:上部空間
32:パージガス供給管
34:パージガス供給装置
36:流路
40:下部空間
42:SiCヒータ
44:不活性ガス供給管
46:不活性ガス供給装置
48:流路
50:分離板
60:シャワーヘッド
62:原料ガス供給管
64:原料ガス供給装置
70:シリコンウエハ
12:チャンバ
14:サセプタ
14a:載置面
16:サセプタ支持部材
18:軸部
20:軸受部
28:排気管
30:上部空間
32:パージガス供給管
34:パージガス供給装置
36:流路
40:下部空間
42:SiCヒータ
44:不活性ガス供給管
46:不活性ガス供給装置
48:流路
50:分離板
60:シャワーヘッド
62:原料ガス供給管
64:原料ガス供給装置
70:シリコンウエハ
Claims (3)
- ウエハの表面にシリコン又は炭化シリコンのエピタキシャル膜を成長させる成膜装置であって、
ウエハを設置可能なウエハステージと、
ウエハステージ内に配置されており、ウエハを加熱するSiCヒータと、
ウエハの被成膜面に、エピタキシャル膜の原料を含む原料ガスを供給する原料ガス供給手段と、
ウエハステージ内に形成されており、ウエハの裏面と外周面の少なくとも一方に、水素または塩化水素を含むパージガスを供給するパージガス流路と、
ウエハステージ内に形成されており、SiCヒータに、SiCヒータに対して不活性なガスを供給する不活性ガス流路、
を有していることを特徴とする成膜装置。 - ウエハステージ内において、パージガス流路と不活性ガス流路が分離されており、
SiCヒータが、不活性ガス流路内に配置されていることを特徴とする請求項1に記載の成膜装置。 - パージガス流路が、パージガスを半導体ウエハの裏面に沿って噴射するノズルを備えていることを特徴とする請求項1または2に記載の成膜装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010210598A JP2012069559A (ja) | 2010-09-21 | 2010-09-21 | 成膜装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010210598A JP2012069559A (ja) | 2010-09-21 | 2010-09-21 | 成膜装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012069559A true JP2012069559A (ja) | 2012-04-05 |
Family
ID=46166522
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010210598A Pending JP2012069559A (ja) | 2010-09-21 | 2010-09-21 | 成膜装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012069559A (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014209534A (ja) * | 2013-03-22 | 2014-11-06 | 株式会社東芝 | 半導体製造装置、半導体製造方法、および半導体ウェーハホルダ |
JP2017011182A (ja) * | 2015-06-24 | 2017-01-12 | 株式会社デンソー | 炭化珪素半導体のエピタキシャル成長装置 |
JP2020004760A (ja) * | 2018-06-25 | 2020-01-09 | グローバルウェーハズ・ジャパン株式会社 | エピタキシャルシリコンウェーハの製造方法 |
WO2021185769A1 (de) * | 2020-03-18 | 2021-09-23 | Aixtron Se | Suszeptor für einen cvd-reaktor |
KR20220089897A (ko) * | 2020-12-22 | 2022-06-29 | (주)아이작리서치 | 원자층 증착 장치 |
-
2010
- 2010-09-21 JP JP2010210598A patent/JP2012069559A/ja active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014209534A (ja) * | 2013-03-22 | 2014-11-06 | 株式会社東芝 | 半導体製造装置、半導体製造方法、および半導体ウェーハホルダ |
US20170044686A1 (en) * | 2013-03-22 | 2017-02-16 | Kabushiki Kaisha Toshiba | Semiconductor manufacturing apparatus and semiconductor wafer holder |
JP2017011182A (ja) * | 2015-06-24 | 2017-01-12 | 株式会社デンソー | 炭化珪素半導体のエピタキシャル成長装置 |
JP2020004760A (ja) * | 2018-06-25 | 2020-01-09 | グローバルウェーハズ・ジャパン株式会社 | エピタキシャルシリコンウェーハの製造方法 |
JP6998839B2 (ja) | 2018-06-25 | 2022-01-18 | グローバルウェーハズ・ジャパン株式会社 | エピタキシャルシリコンウェーハの製造方法 |
WO2021185769A1 (de) * | 2020-03-18 | 2021-09-23 | Aixtron Se | Suszeptor für einen cvd-reaktor |
CN115298351A (zh) * | 2020-03-18 | 2022-11-04 | 艾克斯特朗欧洲公司 | 用于cvd反应器的基座 |
KR20220089897A (ko) * | 2020-12-22 | 2022-06-29 | (주)아이작리서치 | 원자층 증착 장치 |
KR102508891B1 (ko) * | 2020-12-22 | 2023-03-10 | (주)아이작리서치 | 원자층 증착 장치 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101478331B1 (ko) | 에피택셜 탄화규소 단결정 기판의 제조 방법 | |
US9053834B2 (en) | Silicon carbide single crystal and manufacturing method of the same | |
KR101154639B1 (ko) | 반도체 제조장치와 반도체 제조방법 | |
JP5562409B2 (ja) | 半導体装置の製造方法及び基板製造方法及び基板処理装置 | |
JP6792083B2 (ja) | 気相成長装置、及び、気相成長方法 | |
TWI689617B (zh) | 成膜方法 | |
JP2012069559A (ja) | 成膜装置 | |
JP2011205059A (ja) | 半導体装置の製造方法及び基板製造方法及び基板処理装置 | |
JP7365761B2 (ja) | 気相成長装置 | |
JP4885000B2 (ja) | 気相成長装置および気相成長方法 | |
US11692266B2 (en) | SiC chemical vapor deposition apparatus | |
JP2010037157A (ja) | 単結晶成膜方法 | |
JP2006028625A (ja) | Cvd装置 | |
JP2010153483A (ja) | 成膜装置、及び、成膜方法 | |
JP2011151118A (ja) | 半導体製造装置および半導体製造方法 | |
JP2011198840A (ja) | 成膜装置および成膜方法 | |
JP2011077476A (ja) | エピタキシャル成長用サセプタ | |
WO2020158657A1 (ja) | 成膜装置及び成膜方法 | |
JP5252896B2 (ja) | 気相成長装置及び気相成長方法 | |
KR101931170B1 (ko) | 탄화 규소의 제조방법 및 제조장치 | |
WO2019188248A1 (ja) | 成膜装置及び成膜方法 | |
WO2017047244A1 (ja) | 炭化珪素エピタキシャル基板の製造方法および炭化珪素エピタキシャル成長装置 | |
JP2009135157A (ja) | 気相成長装置及び気相成長方法 | |
JP2024094170A (ja) | 炭化珪素ウェハの製造装置 | |
KR101224567B1 (ko) | 화학 기상 증착 장치용 서셉터 및 에피택셜 웨이퍼의 제조방법 |