WO2011105370A1 - 半導体装置の製造方法及び基板製造方法及び基板処理装置 - Google Patents
半導体装置の製造方法及び基板製造方法及び基板処理装置 Download PDFInfo
- Publication number
- WO2011105370A1 WO2011105370A1 PCT/JP2011/053844 JP2011053844W WO2011105370A1 WO 2011105370 A1 WO2011105370 A1 WO 2011105370A1 JP 2011053844 W JP2011053844 W JP 2011053844W WO 2011105370 A1 WO2011105370 A1 WO 2011105370A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas supply
- gas
- supply port
- reaction chamber
- supplied
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45563—Gas nozzles
- C23C16/45578—Elongated nozzles, tubes with holes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/32—Carbides
- C23C16/325—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02529—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/0257—Doping during depositing
- H01L21/02573—Conductivity type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S438/00—Semiconductor device manufacturing: process
- Y10S438/931—Silicon carbide semiconductor
Definitions
- the present invention relates to a method for manufacturing a semiconductor device, a method for manufacturing a semiconductor device, and a substrate processing apparatus having a step of processing a substrate, and in particular, a method of manufacturing a semiconductor device, including a step of forming a silicon carbide (SiC) film on a substrate, and
- the present invention relates to a substrate manufacturing method and a substrate processing apparatus.
- Silicon carbide is particularly attracting attention as an element material for power devices. On the other hand, it is known that silicon carbide is more difficult to produce a crystal substrate and a device than silicon (Si).
- a plurality of substrates are arranged in a plane on a plate-shaped susceptor, heated to 1500 ° C. to 1800 ° C., and a source gas used for film formation is reacted from one place.
- a silicon carbide film was grown on the substrate by supplying it into the room.
- Patent Document 1 deposition of deposits due to source gas on the surface facing the susceptor and destabilization of silicon carbide film growth due to generation of source gas convection, in order to solve these problems, A vacuum film forming apparatus and a thin film forming method are disclosed in which a surface for holding a substrate is arranged to face downward.
- An object of the present invention is to provide a semiconductor device manufacturing method, a substrate manufacturing method, and a substrate processing apparatus capable of solving the above-described problems and forming a silicon carbide film in which impurities are uniformly doped on a substrate. To do.
- a nozzle, and a second gas supply nozzle having one or more second gas supply ports in a region where the plurality of substrates are stacked, and the direction in which the first gas supply port is provided and the second A direction in which the gas supply port is provided is a method for manufacturing a semiconductor device in a substrate processing apparatus provided so as to intersect before reaching the substrate, and a step of carrying the plurality of substrates into a reaction chamber; At least a silicon-containing gas and a chlorine-containing gas, or silicon and a chlorine-containing gas are supplied into the reaction chamber from the first gas supply port, and at least a carbon-containing gas and a reducing gas are supplied from the second gas supply port.
- a reaction chamber in which a plurality of substrates are stacked at a predetermined interval, and at least a silicon-containing gas and a chlorine-containing gas, or silicon and a chlorine-containing gas are supplied into the reaction chamber.
- 1 gas supply system a second gas supply system for supplying at least a carbon-containing gas and a reducing gas into the reaction chamber, a third gas supply system for supplying at least an impurity gas into the reaction chamber,
- a second gas supply nozzle having one or more second gas supply ports in a layered region and the first gas supply system includes at least the silicon-containing gas and the chlorine-containing material from the first gas supply port. Gas or silicon and chlorine-containing gas is supplied into the reaction chamber, and the second gas supply system supplies at least the carbon-containing gas and the reducing gas from the second gas supply port into the reaction chamber.
- the third gas supply system supplies at least the impurity gas from the first gas supply port or the second gas supply port into the reaction chamber, and the substrate is carbonized in which impurities are doped.
- a reaction chamber in which a plurality of substrates are stacked at a predetermined interval, and a first chamber having one or more first gas supply ports in a region where the plurality of substrates are stacked.
- the anti Supplying to the chamber further supplying an impurity gas from the first gas supply port or the second gas supply port into the reaction chamber, and forming a silicon carbide film doped with impurities on the substrate; And a step of unloading a plurality of substrates from the reaction chamber.
- the present invention it is possible to provide a substrate processing apparatus capable of forming a silicon carbide film doped with uniform impurities on a substrate.
- 1 is a perspective view of a semiconductor manufacturing apparatus 10 to which a first embodiment of the present invention is applied.
- 1 is a side sectional view of a semiconductor manufacturing apparatus 10 to which a first embodiment of the present invention is applied.
- 1 is a top sectional view of a semiconductor manufacturing apparatus 10 to which a first embodiment of the present invention is applied.
- the control structure of each part which comprises the semiconductor manufacturing apparatus 10 with which 1st Embodiment of this invention is applied is shown.
- 1 schematically shows a processing furnace 40 and its peripheral structure of a semiconductor manufacturing apparatus 10 to which a first embodiment of the present invention is applied.
- the top view of the reaction chamber structure to which 1st Embodiment of this invention is applied is shown.
- FIG. 5 shows (a) in-plane distribution of film thickness and (b) distribution on a film thickness field monitor line when a film is formed by rotating a wafer in the reaction chamber configuration according to the first embodiment of the present invention.
- positioned the even number gas supply nozzle alternately with the 1st and 2nd supply nozzle in 2nd Embodiment of this invention is shown.
- FIG. 6 shows an in-plane distribution of film thickness when film formation is performed in the case of a reaction chamber configuration in which an even number of gas supply nozzles are alternately arranged in the first and second supply nozzles in the second embodiment of the present invention.
- the figure which compared the distribution of the value of C / Si on the monitor line when forming into a film by the reaction chamber structure in 2nd Embodiment and 3rd Embodiment of this invention is shown.
- the relationship between the C / Si value and the n-type impurity concentration in a silicon carbide film doped with an n-type impurity is shown.
- substrate is shown typically.
- the reaction chamber structure using the gas supply nozzle which has the branch pipe which provided the 1st and 2nd gas supply port in 4th Embodiment of this invention is shown, (a) is a top view of reaction chamber structure.
- FIG. 1 is an example of a semiconductor manufacturing apparatus 10 for forming a silicon carbide epitaxial film according to the first embodiment of the present invention, and is shown in a perspective view.
- the semiconductor manufacturing apparatus 10 as the substrate processing apparatus is a batch type vertical heat treatment apparatus, and includes a housing 12 in which main parts are arranged.
- a hoop (hereinafter referred to as a pod) 16 is used as a wafer carrier as a substrate container for storing a wafer 14 as a substrate made of silicon (Si) or silicon carbide (SiC). Is done.
- a pod stage 18 is disposed on the front side of the housing 12, and the pod 16 is conveyed to the pod stage 18. For example, 25 wafers 14 are stored in the pod 16 and set on the pod stage 18 with the lid closed.
- a pod transfer device 20 is arranged on the front side in the housing 12 and at a position facing the pod stage 18. In the vicinity of the pod transfer device 20, a pod transfer device 22, a pod opener 24, and a substrate number detector 26 are arranged.
- the pod transfer device 22 is arranged above the pod opener 24 and configured to hold a plurality of pods 16 mounted thereon.
- the substrate number detector 26 is disposed adjacent to the pod opener 24.
- the pod transfer device 20 transfers the pod 16 among the pod stage 18, the pod transfer device 22, and the pod opener 24.
- the pod opener 24 opens the lid of the pod 16, and the substrate number detector 26 detects the number of wafers 14 in the pod 16 with the lid opened.
- the substrate transfer machine 28 has an arm (tweezer) 32 and has a structure that can be rotated up and down by a driving means (not shown).
- the arm 32 can take out five wafers, and by moving the arm 32, the wafer 14 is transferred between the pod 16 and the boat 30 placed at the position of the pod opener 24.
- the boat 30 is made of a heat-resistant material such as carbon graphite or silicon carbide, and is configured so that a plurality of wafers 14 are aligned in a horizontal posture and aligned with each other and stacked and held vertically.
- a boat heat insulating portion 34 as a disk-shaped heat insulating member made of a heat resistant material such as quartz or silicon carbide is disposed at the lower part of the boat 30, and heat from the heated body 48 described later is processed. It is comprised so that it may become difficult to be transmitted to the downward side of the furnace 40 (refer FIG. 2).
- a processing furnace 40 is disposed in the upper part on the back side in the housing 12.
- the boat 30 loaded with a plurality of wafers 14 is loaded into the processing furnace 40 and subjected to heat treatment.
- a gas supply nozzle 60 having a first gas supply port 68 for supplying at least a silicon-containing gas and a chlorine-containing gas, at least a carbon-containing gas and a reducing gas, for example, hydrogen gas and a doping gas, for example, an n-type impurity.
- a gas supply nozzle 70 having a second gas supply port 72 for supplying a doping gas and an exhaust port 90 are shown as representative examples. Also shown are a third gas supply port 360 and a second gas exhaust port 390 for supplying an inert gas between the reaction tube 42 and the heat insulating material 54 forming the reaction chamber.
- the processing furnace 40 includes a reaction tube 42 that forms, for example, a cylindrical reaction chamber 44.
- the reaction tube 42 is made of a heat-resistant material such as quartz or silicon carbide, and is formed in, for example, a cylindrical shape having a closed upper end and an opened lower end.
- a reaction chamber 44 is formed in a hollow cylindrical portion inside the reaction tube 42, and the wafers 14 are aligned in a horizontal posture and aligned with each other by the boat 30 as a substrate made of silicon or silicon carbide. It is configured so that it can be stored while being stacked and held in the vertical direction.
- a manifold is disposed concentrically with the reaction tube 42.
- the manifold is made of, for example, stainless steel and is formed in a cylindrical shape with an upper end and a lower end opened. This manifold is provided to support the reaction tube 42. An O-ring is provided as a seal member between the manifold and the reaction tube 42.
- the manifold is supported by a holding body (not shown), so that the reaction tube 42 is installed vertically.
- a reaction vessel is formed by the reaction tube 42 and the manifold.
- the processing furnace 40 includes a heated body 48 to be heated.
- the heated body 48 is disposed in the reaction chamber 44, and the heated body 48 is heated by a magnetic field generated by an induction coil 50 provided outside the reaction tube 42. As the heated body 48 generates heat, the inside of the heated body 48 is heated.
- a temperature sensor (not shown) is provided as a temperature detector for detecting the temperature in the reaction chamber 44.
- a temperature control unit 52 is electrically connected to the induction coil 50 and the temperature sensor, and the inside of the object to be heated 48 is adjusted by adjusting the power supply to the induction coil 50 based on the temperature information detected by the temperature sensor.
- the temperature is controlled at a predetermined timing so as to have a predetermined temperature distribution (see FIG. 4).
- a structure is provided between the first and second gas supply nozzles 60 and 70 and the first gas exhaust port 90 in the reaction chamber 44 and between the heated object 48 and the wafer 14.
- An object 400 is preferably provided.
- the structures 400 are provided at the opposing positions.
- the structure 400 is preferably made of a heat insulating material, for example, carbon felt as an example, to improve the heat resistance of the processing furnace, or to suppress generation of particles due to deterioration of the structure 400, for example. be able to.
- a first gas supply nozzle and a second gas supply nozzle that extend to the array region of the substrate are provided, and gas that contributes to film formation is supplied to the inside of the heated body 48, respectively.
- a silicon carbide epitaxial film doped with n-type impurities is formed on the wafer 14 as a substrate, the present invention is not limited to this.
- the first gas supply nozzle, the second gas supply nozzle, or the first gas supply A first gas supply port or a second gas supply port for supplying gas for each of the nozzle and the second gas supply nozzle is provided outside the array region of the substrate, and the gas contributing to film formation is supplied to the object to be heated 48.
- a silicon carbide epitaxial film in which n-type impurities are doped may be formed on the wafer 14 serving as a substrate, which is supplied to the inside.
- a heat insulating material 54 made of carbon felt or the like that is difficult to be induction-heated is provided between the heated body 48 and the reaction tube 42.
- a heat insulating material 54 made of carbon felt or the like that is difficult to be induction-heated.
- an outer heat insulating wall having, for example, a water cooling structure is provided outside the induction coil 50 so as to suppress the heat in the reaction chamber 44 from being transmitted to the outside so as to surround the reaction chamber 44.
- a magnetic shield that prevents the magnetic field generated by the induction coil 50 from leaking outside is provided outside the outer heat insulating wall.
- a first gas supply port 68 installed between the heating body 48 and the wafer 14 and supplying at least a silicon-containing gas and a chlorine-containing gas and provided in at least one gas supply nozzle 60 and At least one second gas supply nozzle 70 provided in the reaction chamber is different from the first gas supply nozzle, and at least carbon-containing gas and reducing gas, for example, hydrogen gas and impurity gas, for example, ,
- the second gas supply port 72 for supplying the n-type impurity gas, the first gas exhaust port 90, and the third gas supply port 360, the second gas between the reaction tube 42 and the heat insulating material 54.
- An exhaust port 390 is disposed.
- the first gas supply port 68 that supplies at least silicon (SiH 4 ) gas as the silicon-containing gas and hydrogen chloride (HCl) gas as the chlorine-containing gas through the first gas supply nozzle 60
- the first gas supply nozzle 60 is made of carbon graphite and is provided inside the heated body 48, and is attached to the manifold so as to penetrate the manifold.
- a plurality of first gas supply nozzles 60 may be provided.
- the gas supply nozzle 60 is connected to the first gas line 222.
- the first gas line 222 includes, for example, mass flow controllers (hereinafter referred to as MFC) 211a, 211b and valves as flow controllers (flow control means) for silane gas and hydrogen chloride gas, respectively.
- MFC mass flow controllers
- 211b valves as flow controllers (flow control means) for silane gas and hydrogen chloride gas, respectively.
- flow controllers flow control means for silane gas and hydrogen chloride gas
- the supply flow rate, concentration, and partial pressure of silane gas and hydrogen chloride gas can be controlled in the reaction chamber 44.
- the valves 212a and 212b and the MFCs 211a and 211b are electrically connected by a gas flow rate control unit 78, and are controlled at a predetermined timing so that the flow rate of the supplied gas becomes a predetermined flow rate (FIG. 4).
- the first gas supply system is configured as the gas supply system.
- HCl gas is exemplified as the chlorine-containing gas, but chlorine (Cl 2 ) gas may be used.
- a rare gas, a hydrogen-containing gas, or the like may be supplied as a carrier gas to the film formation contributing gas described above.
- the rare gas include helium (He) gas, neon (Ne) gas, argon (Ar) gas, krypton (Kr) gas, and xenon (Xe) gas
- the hydrogen-containing gas include hydrogen gas. Is done.
- a rare gas is supplied as a carrier gas. This is a hydrogen-containing gas.
- the silicon-containing gas is decomposed in the gas supply nozzle due to the reduction effect of the hydrogen gas, and a silicon film is deposited in the gas supply nozzle.
- argon gas is supplied as a carrier gas. Since argon gas is less expensive than other rare gases such as helium gas, the running cost when operating a substrate processing apparatus for forming a silicon carbide epitaxial film can be reduced.
- the silicon-containing gas and the chlorine-containing gas are supplied.
- a gas containing silicon and chlorine for example, tetrachlorosilane (SiCl 4 ) gas, trichlorosilane (SiHCl 3 ) gas, Chlorosilane (SiH 2 Cl 2 ) gas may be supplied, more preferably, tetrachlorosilane gas may be supplied, and formation of a film in the gas supply nozzle can be suppressed and gas consumption can be suppressed. Can be fed into the reaction chamber.
- a second gas supply port that supplies at least a propane (C 3 H 8 ) gas as a carbon-containing gas and a hydrogen-containing gas such as hydrogen (H 2 ) gas as a reducing gas through the second gas supply nozzle 70.
- 72 is made of carbon graphite, for example, and is provided inside the heated body 48, and the second gas supply nozzle 70 is attached to the manifold so as to penetrate the manifold.
- a plurality of second gas supply nozzles 70 may be provided.
- the second gas supply nozzle 70 is connected to the second gas line 260.
- This second gas line 260 is connected to a propane gas source 210d via a MFC 211c and a valve 212c as a carbon-containing gas, for example, via propane gas, and as a reducing gas, for example, a hydrogen gas source via a MFC 211d and a valve 212d as a reducing gas. 210d.
- the supply flow rate, concentration, and partial pressure of propane gas and hydrogen gas can be controlled in the reaction chamber 44.
- the valves 212c and 212d and the MFCs 211c and 211d are electrically connected by a gas flow rate control unit 78, and are controlled at a predetermined timing so that the flow rate of the supplied gas becomes a predetermined flow rate (see FIG. 4). ),
- gas sources 210c and 210d of propane gas and hydrogen gas, valves 212c and 212d, MFCs 211c and 211d, a gas line 260, a second gas supply nozzle 70 and a second gas supply port 72. 2 gas supply systems are configured.
- propane gas is exemplified as the carbon-containing gas, but ethylene (C 2 H 4 ) gas, acetylene (C 2 H 2 ) gas, or the like may be used.
- the H 2 gas as the reducing gas is not limited thereto, it may be supplied to the gas containing hydrogen.
- the silicon-containing gas is supplied through the first gas supply nozzle 60, and the hydrogen gas that is the reducing gas is supplied from the second gas supply nozzle 70.
- a gas supply nozzle is provided in the reaction chamber 44 in order to improve the uniformity between the wafers 14 as in this embodiment, if the reducing gas is supplied together with the silicon-containing gas, decomposition of the silicon-containing gas is promoted. As a result, the silicon film may be deposited in the gas supply nozzle. In this case, although the silicon-containing gas is consumed upstream, the deposition in the gas supply nozzle and the consumption of the silicon-containing gas can be suppressed by separately supplying the silicon-containing gas and the reducing gas. .
- the carbon-containing gas is further supplied via the second gas supply nozzle 70 and supplied separately from the silicon-containing gas.
- the deposition of the SiC film in the gas supply nozzle can be suppressed, the gas supply port is blocked, and the generation of particles and contaminants due to peeling of the formed film is also suppressed. Can do.
- the silicon-containing gas and the carbon-containing gas may be supplied via the same gas supply nozzle. . Thereby, since a silicon-containing gas and a carbon-containing gas can be mixed in advance, a uniform film can be formed on the wafer 14.
- n-type impurity gas such as nitrogen (N 2 ) gas is supplied into the reaction chamber 44 through the second gas supply nozzle 70 as a gas for doping at least an n-type impurity.
- the nitrogen gas source 210f is connected to the second gas line 260 via the MFC 211f and the valve 212f as a flow rate controller (flow rate control means).
- the supply flow rate, concentration, and partial pressure of nitrogen gas as the n-type impurity gas can be controlled in the reaction chamber 44.
- the valve 212f and the MFC 211f are electrically connected by a gas flow rate control unit 78, and are controlled at a predetermined timing so that the flow rate of the supplied gas becomes a predetermined flow rate (see FIG. 4).
- a nitrogen gas source 210f, a valve 212f, an MFC 211f, a gas line 260, a gas supply nozzle 70, and a gas supply port 72 provided in at least one of the gas supply nozzles 70 constitute a third gas supply system as a gas supply system.
- nitrogen (N 2 ) gas is exemplified as the n-type impurity gas.
- nitrogen-containing gas such as ammonia (NH 3 ) gas may be used. These gases may be used in combination.
- Nitrogen gas is an inert gas in a hydrogen atmosphere, and is easy to use when forming an n-type doped silicon carbide film having a doping amount of, for example, about 10 15 cm ⁇ 3 to 10 18 cm ⁇ 3 .
- ammonia gas is an example of a nitrogen-containing gas that is easily decomposed in the gas phase.
- a mixed gas containing ammonia gas for example, a mixed gas of ammonia gas and nitrogen gas, a silicon carbide film is used. The amount of impurities doped therein can be controlled.
- a method for forming a silicon carbide epitaxial film in which an n-type impurity is doped on a wafer 14 as a substrate using an n-type impurity gas is described.
- a p-type impurity is doped.
- a silicon carbide epitaxial film in which p-type impurities are uniformly doped can be formed.
- the first gas supply nozzle 60 and the first gas supply nozzle 60 are provided to supply gas to the plurality of wafers 14 as a substrate that is aligned in the horizontal direction on the boat 30 and aligned in the center and stacked and held in the vertical direction.
- a first gas supply port 68 and a second gas supply port 72 may be provided for each wafer 14 in the substrate arrangement region.
- the present invention is not limited to this, and in each of the first gas supply nozzle 60 and the second gas supply nozzle 70, at least one first gas supply port 68 and second gas supply port 72 are provided in the substrate arrangement region. May be. Further, in each of the first gas supply nozzle and the second gas supply nozzle, the first gas supply port 68 and the second gas supply port 72 may be provided in the arrangement region of the substrate for every several wafers.
- the silicon-containing gas and the chlorine-containing gas are supplied from the first gas supply nozzle 60, and the carbon-containing gas, the reducing gas, and the n-type impurity gas are supplied from the second gas supply nozzle 70.
- a gas supply nozzle may be provided for each gas type.
- the valve 212e is opened and the gas supply pipe 240 is opened. And is supplied into the reaction chamber 44 from the third gas supply port 360.
- the rare gas argon gas as the inert gas supplied from the third gas supply port 360 passes between the heat insulating material 54 and the reaction tube 42 in the reaction chamber 44 and is exhausted from the second gas exhaust port 390. Is done.
- argon gas is exemplified as the inert gas.
- the present invention is not limited to this, and from an inert gas such as helium (He) gas, neon (Ne) gas, krypton (Kr), or xenon (Xe). At least one gas or two or more gases selected from these rare gas groups may be supplied.
- the silicon-containing gas, the carbon-containing gas, the reducing gas, and the n-type impurity gas are supplied to the inside of the heated body 48 from the first gas supply port or the second gas supply port, respectively.
- the carrier gas may be supplied together with a rare gas such as argon gas. Thereby, the source gas can be supplied uniformly into the reaction chamber.
- the first gas exhaust port 90 is positioned at the gas supply nozzle 60 connected to the first gas supply port 68 and the gas supply nozzle 70 connected to the second gas supply port 72.
- the gas exhaust pipe 230 connected to the first gas exhaust port 90 is provided so as to pass through the manifold.
- a vacuum exhaust device 220 such as a vacuum pump is connected to the downstream side of the gas exhaust pipe 230 through a pressure sensor (not shown) as a pressure sensor and an APC (Auto Pressure Controller, hereinafter referred to as APC) valve 214 as a pressure regulator.
- APC Auto Pressure Controller
- a pressure control unit 98 is electrically connected to the pressure sensor and the APC valve 214, and the pressure control unit performs processing by adjusting the opening of the APC valve 214 based on the pressure detected by the pressure sensor. Control is performed at a predetermined timing so that the pressure in the furnace 40 becomes a predetermined pressure (see FIG. 4).
- the third gas supply port 360 is disposed between the reaction tube 42 and the heat insulating material 54, and is attached so as to penetrate the manifold.
- a gas exhaust port 390 is disposed between the reaction tube 42 and the heat insulating material 54 and is disposed so as to be located on the opposite surface with respect to the third gas supply port 360, and the manifold has a second gas exhaust port.
- a gas exhaust pipe 230 connected to 390 is provided so as to penetrate therethrough.
- the third gas supply port 360 is supplied with, for example, a rare gas such as argon gas as an inert gas, and as a gas contributing to silicon carbide epitaxial film growth, for example, a silicon-containing gas, a carbon-containing gas, a chlorine-containing gas, or
- a rare gas such as argon gas as an inert gas
- a gas contributing to silicon carbide epitaxial film growth for example, a silicon-containing gas, a carbon-containing gas, a chlorine-containing gas, or
- the mixed gas is prevented from entering between the reaction tube 42 and the heat insulating material 54, and the inner wall of the reaction tube 42 or the outer wall of the heat insulating material 54 is prevented from deteriorating or adhering to by-products. be able to.
- the inert gas supplied between the reaction tube 42 and the heat insulating material 54 is used as a pressure sensor and a pressure regulator as a pressure detector (not shown) on the downstream side of the gas exhaust tube 230 from the second gas exhaust port 390.
- the air is exhausted from the vacuum exhaust device 220 such as a vacuum through the APC valve 214.
- a pressure control unit is electrically connected to the pressure sensor and the APC valve 214, and the pressure control unit adjusts the opening degree of the APC valve 214 based on the pressure detected by the pressure sensor to thereby react the reaction chamber. It is configured to control at a predetermined timing so that the pressure in 44 becomes a predetermined pressure (see FIG. 4).
- FIG. 5 shows a schematic view of the processing furnace 40 and its peripheral structure.
- a seal cap 102 is provided as a furnace port lid for secretly closing the lower end opening of the processing furnace 40.
- the seal cap 102 is made of a metal such as stainless steel and is formed in a disk shape.
- an O-ring as a seal material that comes into contact with the lower end of the processing furnace 40 is provided.
- the seal cap 102 is provided with a rotating machine 218.
- the rotating shaft 106 of the rotating mechanism 218 is connected to the boat 30 through the seal cap 102, and is configured to rotate the wafer 14 by rotating the boat 30.
- the seal cap 102 is configured to be moved up and down in the vertical direction by an elevating motor 122, which will be described later, as an elevating mechanism directed to the outside of the processing furnace 40, whereby the boat 30 is carried into and out of the processing furnace 40.
- a drive control unit 108 is electrically connected to the rotation mechanism 218 and the lifting motor 122, and is configured to control at a predetermined timing so as to perform a predetermined operation (see FIG. 4).
- a lower substrate 112 is provided on the outer surface of the load lock chamber 110 as a spare chamber.
- the lower substrate 112 is provided with a guide shaft 116 that fits with the lifting platform 114 and a ball screw 118 that is screwed with the lifting platform 114.
- the upper substrate 120 is provided on the upper ends of the guide shaft 116 and the ball screw 118 erected on the lower substrate 112.
- the ball screw 118 is rotated by a lift motor 122 provided on the upper substrate 120.
- the lifting platform 114 is moved up and down by the rotation of the ball screw 118.
- a hollow elevating shaft 124 is vertically suspended from the elevating platform 114, and the connecting portion between the elevating platform 114 and the elevating shaft 124 is airtight.
- the elevating shaft 124 moves up and down together with the elevating table 114.
- the elevating shaft 124 penetrates the top plate 126 of the load lock chamber 110.
- the through hole of the top plate 126 through which the elevating shaft 124 penetrates has a sufficient margin so as not to contact the elevating shaft 124.
- a bellows 128 is provided as a stretchable hollow elastic body so as to cover the periphery of the lifting shaft 124 in order to keep the load lock chamber 110 airtight.
- the bellows 128 has a sufficient amount of expansion and contraction that can accommodate the amount of elevation of the lifting platform 114, and the inner diameter of the bellows 128 is sufficiently larger than the outer shape of the lifting shaft 124, so that it does not come into contact with the expansion and contraction of the bellows 128. Has been.
- a lifting substrate 130 is fixed horizontally to the lower end of the lifting shaft 124.
- a drive unit cover 132 is airtightly attached to the lower surface of the elevating substrate 130 via a seal member such as an O-ring.
- the elevating board 130 and the drive unit cover 132 constitute a drive unit storage case 134. With this configuration, the inside of the drive unit storage case 134 is isolated from the atmosphere in the load lock chamber 110.
- a rotation mechanism 218 of the boat 30 is provided inside the drive unit storage case 134, and the periphery of the rotation mechanism 218 is cooled by the cooling mechanism 136.
- the power cable 138 is led from the upper end of the elevating shaft 124 through the hollow portion of the elevating shaft 124 to the rotating mechanism 218 and connected thereto.
- a cooling water flow path 140 is formed in the cooling mechanism 136 and the seal cap 102.
- the cooling water pipe 142 is led from the upper end of the elevating shaft 124 through the hollow portion of the elevating shaft 124 to the cooling flow path 140 and connected thereto.
- the drive unit storage case 134 is raised and lowered via the elevating table 114 and the elevating shaft 124.
- the seal cap 102 provided in an airtight manner on the elevating substrate 130 closes the furnace port 144, which is an opening of the processing furnace 40, so that wafer processing is possible.
- the boat 30 is lowered together with the seal cap 102, and the wafer 14 can be carried out to the outside.
- FIG. 4 shows a control configuration of each part constituting the semiconductor manufacturing apparatus 10 for forming a silicon carbide epitaxial film.
- the temperature control unit 52, the gas flow rate control unit 78, the pressure control unit 98, and the drive control unit 108 constitute an operation unit and an input / output unit, and are electrically connected to a main control unit 150 that controls the entire semiconductor manufacturing apparatus 10. ing.
- These temperature control unit 52, gas flow rate control unit 78, pressure control unit 98, and drive control unit 108 are configured as a controller 152.
- the silicon-containing gas, the chlorine-containing gas, and the n-type impurity gas are supplied from the first gas supply port 68, and at least the carbon-containing gas, the reducing gas, and BR> d are supplied from the second gas supply port 72.
- the supplied gas flows parallel to the wafer 14 made of silicon or silicon carbide and flows toward the first exhaust port 90, so that the entire wafer 14 is efficiently and uniformly exposed to the gas. .
- a carbonization in which a substrate such as a wafer 14 made of silicon carbide or the like is doped with an n-type impurity for example.
- a method for forming a silicon epitaxial film will be described. In the following description, the operation of each part constituting the heat treatment apparatus 10 is controlled by the controller 152.
- the pod 16 is transferred from the pod stage 18 to the pod transfer device 20 by the pod transfer device 20 and stocked in the pod transfer device 22.
- the pod 16 stocked in the pod transport device 22 is transported and set by the pod transport device 20 to the pod opener 24, the pod opener 24 is opened by the pod opener 24, and the substrate number detector 26 detects the pod 16. The number of wafers 14 accommodated in is detected.
- the wafer 14 is taken out from the pod 16 at the position of the pod opener 24 by the substrate transfer device 28 and transferred to the boat 30.
- the boat 30 holding the plurality of wafers 14 is loaded into the reaction chamber 44 by the lifting / lowering operation of the lifting / lowering table 114 and the lifting / lowering shaft 124 by the lifting / lowering motor 122 (boat loading). )
- the seal cap 102 is in a state of sealing the lower end of the manifold via the O-ring.
- the reaction chamber 44 is evacuated by the evacuation device 220 so that the pressure in the reaction chamber 44 becomes a predetermined pressure (degree of vacuum). At this time, the pressure in the reaction chamber 44 is measured by a pressure sensor, and the APC valve 214 communicating with the first gas exhaust port 90 and the second gas exhaust port 390 is feedback-controlled based on the measured pressure. . Further, the heated body 48 is heated by induction heating by the induction coil 50 as a magnetic field generating section so that the inside of the wafer 14 and the heated body 48 is at a predetermined temperature. At this time, the current supply to the induction coil 50 is feedback-controlled based on the temperature information detected by the temperature sensor so that the inside of the heated body 48 has a predetermined temperature distribution. Subsequently, the wafer 30 is rotated in the circumferential direction by rotating the boat 30 by the rotation mechanism 218.
- the silicon-containing gas and the chlorine-containing gas contributing to the growth reaction of the silicon carbide epitaxial film doped with the n-type impurity are respectively supplied from the gas supply ports 68 from the gas sources 210a and 210b, and the carbon-containing gas and the reduction gas are reduced.
- the gas H2 gas and the n-type impurity gas are supplied from the gas sources 210c, 210d, and 210f from the gas supply port 72, and an n-type impurity doped silicon carbide film is formed by epitaxial growth.
- the valves 212a, 212b are opened, and the respective gases are supplied to the gas supply pipe 222, The gas flows through the first gas supply nozzle 60 and is supplied from the first gas supply port 68.
- the valves 212c, 212d, 212f Is opened, and each gas is circulated through the gas supply pipe 260, is circulated with the second gas supply nozzle 70, and is supplied from the second gas supply port 72.
- the gas supplied from the first gas supply port 68 and the second gas supply port 72 passes through the inside of the heated body 48 in the reaction chamber 44 and is exhausted from the gas exhaust port 90 through the gas exhaust pipe 230. .
- the gas supplied from the first gas supply port 68 and the second gas supply port 72 comes into contact with the wafer 14 made of silicon carbide or the like when passing through the inside of the heated body 48, and reaches the surface of the wafer 14.
- a silicon carbide epitaxial film doped with an n-type impurity is grown.
- the valve 212e is opened, and the gas supply pipe 240 is circulated. Then, the gas is supplied into the reaction chamber 44 from the third gas supply port 360.
- the rare gas argon gas as the inert gas supplied from the third gas supply port 360 passes between the heat insulating material 54 and the reaction tube 42 in the reaction chamber 44 and is exhausted from the second gas exhaust port 390. Is done.
- the silicon-containing gas and the chlorine-containing gas are supplied from the first gas supply nozzle, and the carbon-containing gas, the hydrogen-containing gas that is the reducing gas, and the n-type impurity gas are supplied from the second gas supply nozzle.
- the first and second gas supply nozzles are supplied from gas supply ports provided in the height direction at the same interval as the wafer stacking interval, and are formed on the wafer 14 as a substrate made of silicon carbide (SiC) or the like.
- SiC silicon carbide
- a silicon carbide film doped with n-type impurities is formed.
- gas mixing is promoted when the first gas supply port 68 and the second gas supply port 72 are directed in directions in which the gas flows ejected from the first gas supply port 68 and the second gas supply port 72 intersect each other.
- FIG. 7 shows the distribution of the molar fraction of acetylene (C 2 H 2 ) gas on the wafer 14 which is the substrate when the reaction gas is supplied in the reaction chamber configuration in the present embodiment.
- FIG. 8 shows the concentration distribution of silicon gas and acetylene gas in the portion (monitor line) indicated by the dotted line in FIG. As shown in FIGS. 7 and 8, the gas supplied from the first gas supply port and the second gas supply port flows on the surface of the wafer 14 to form a desired film on the wafer 14.
- FIG. 9 shows the in-plane distribution of the film thickness of the formed film (a) when the film is formed without rotating the wafer in the reaction chamber configuration in the first embodiment, and (b) is a dotted line in (a).
- the film thickness distribution on the monitor line shown in FIG. 9 it can be seen that the deviation in the concentration distribution of the source gas on the surface of the wafer 14 greatly affects the film thickness of the film to be formed. Thus, in the manufacture of semiconductor devices, it becomes a factor that causes a decrease in yield.
- impurities are taken into the silicon carbide film
- the impurities are taken into either the carbon site or the silicon site in the silicon carbide film.
- nitrogen is doped as an n-type impurity.
- carbon is adsorbed on the silicon site of the silicon carbide film and replaced with carbon that is to be taken into the silicon carbide film, so that nitrogen is taken into the silicon carbide film and a silicon carbide film doped with n-type impurities is formed. Is done.
- aluminum is taken into the film by replacing silicon that is adsorbed on the carbon sites of the silicon carbide film and is about to be taken into the silicon carbide film.
- a silicon carbide film doped with type impurities is formed.
- a value of C / Si which is a ratio between the concentration distribution of carbon contained in the film forming contribution gas in contact with the surface of the wafer 14 and the concentration distribution of silicon, is formed.
- the portion where the C / Si value is large that is, when the carbon concentration is relatively higher than silicon
- the concentration of the nitrogen raw material (for example, N 2 or N atom) in the gas phase becomes relatively small, the probability of replacing the carbon adsorbing species that is the nitrogen adsorbing species on the silicon carbide film surface is reduced, and the silicon carbide film The number of nitrogen incorporated into the is reduced. That is, it can be seen that the n-type impurity is difficult to be doped in the portion where the value of C / Si is large.
- aluminum is doped as a p-type impurity, for example, the tendency is opposite to that when n-type impurity is doped.
- FIG. 17 shows the relationship between the value of C / Si, which is the ratio of the concentration distribution of the carbon-containing gas, which is the main component of the deposition-contributing gas, and the concentration distribution of the silicon-containing gas, and the n-type doping atoms doped in the silicon carbide film.
- the relationship is shown (Basics and applications of SiC semiconductors, authors Moto Okumura, Kazuaki Kojima, Kenji Fukuda, publisher ED Research, page 27, Fig. 4.5). From this, it can be seen that when the value of C / Si in the source gas is increased, doping of the n-type impurity is inhibited in the silicon carbide film.
- an n-type impurity gas such as nitrogen gas is supplied together with the carbon-containing gas from a second gas supply nozzle to which a carbon-containing gas is supplied.
- a p-type impurity gas such as trimethylaluminum gas is supplied together with the silicon-containing gas from a first gas supply nozzle to which a silicon-containing gas is supplied.
- the trimethylaluminum gas is positively supplied to the portion of the wafer 14 where the C / Si value is small, that is, the portion where the silicon concentration is relatively high, so that the aluminum concentration is high.
- the aluminum concentration distribution relative to the portion of the wafer 14 where the value of C / Si is large can be made uniform. Thereby, the in-plane uniformity of the concentration distribution of the p-type impurity in the silicon carbide film doped with the p-type impurity formed on the wafer 14 is improved.
- the seal cap 102 is lowered by the lifting motor 122 to open the lower end of the manifold, and the processed wafer 14 is carried out from the lower end of the manifold to the outside of the reaction tube 42 while being held by the boat 30 (boat unloading).
- the boat 30 waits at a predetermined position until all the wafers 14 supported by the boat 30 are cooled.
- the substrate transfer device 28 takes out the wafer 14 from the boat 30 and transfers it to the empty pod 16 set in the pod opener 24. And accommodate.
- the pod 16 containing the wafer 14 is transferred to the pod transfer device 22 or the pod stage 18 by the pod transfer device 20. In this way, a series of operations of the semiconductor manufacturing apparatus 10 is completed.
- the plurality of wafers 14 made of silicon carbide or the like are aligned in a horizontal posture and aligned with each other in the center and are stacked and held in the vertical direction.
- a silicon carbide epitaxial film can be grown.
- the first gas supply nozzle and the second gas supply nozzle are arranged so that the first and second gas supply ports 68 and 72 can eject the gas toward the center of the wafer 14, respectively. It is preferable to alternately provide one gas supply nozzle and second gas supply nozzle. Thereby, the deviation of supply gas is suppressed and the film thickness in-plane uniformity is further improved.
- the first gas supply nozzle and the second gas supply nozzle have a cylindrical shape.
- the present invention is not limited thereto, and may be a rectangular tube shape or a polygonal shape, preferably
- the shape of the gas supply nozzle is preferably such that a part thereof is along the inner peripheral surface of the heated object. Thereby, it can suppress forming a film
- a rare gas argon gas as the inert gas.
- the present invention is not limited to this, but helium (He) gas, neon (Ne) gas, krypton (Kr) gas, xenon (Xe). Gas may be used.
- At least one of the following effects is achieved.
- the impurity gas together with the reaction gas By supplying the impurity gas together with the reaction gas, the uniformity of the impurity concentration of the silicon carbide film doped with impurities formed on the wafer can be improved.
- the silicon-containing gas and the carbon-containing gas can be supplied into the reaction chamber 44 by different gas supply nozzles, respectively, so that the silicon carbide film is formed in the gas supply nozzle.
- the first gas supply nozzle and the second gas supply nozzle are provided to suppress the growth of the deposited film in the nozzle, and the reaction chamber 44 is doped with impurities having a good in-plane distribution.
- the first gas supply nozzle and the second gas supply nozzle are used. We examined the number and layout of installations.
- FIG. 10 and 11 are made of, for example, silicon carbide using a plurality of gas supply nozzles as a substrate for the purpose of improving the in-plane uniformity of the impurity doping amount of the silicon carbide film doped with the impurity to be formed.
- FIG. 10 is a top view of the reaction chamber configuration arranged in the circumferential direction with respect to the wafer 14, and FIG. 10 has even-numbered gas supply nozzles alternately arranged for the first gas supply nozzle and the second supply nozzle.
- FIG. 11 shows a top view of the reaction chamber configuration in this case, and FIG. 11 shows a first gas supply nozzle, a second gas supply nozzle, a first gas supply nozzle, and a second gas centering on one second gas supply nozzle.
- 1 shows an example of a top view of a reaction chamber configuration in which an odd number of gas supply nozzles are alternately arranged with the supply nozzles.
- FIG. 12 shows an in-plane distribution of the thickness of the silicon carbide film formed when the film is formed in the reaction chamber configuration of FIG.
- the silicon-containing gas supplied from the first gas supply nozzle and the second gas supply nozzle are arranged. Since the carbon-containing gas supplied from the gas supply nozzle is efficiently mixed, the film thickness uniformity of the formed silicon carbide film can be improved. This improves the in-plane uniformity of the thickness of the silicon carbide film to be formed, and the deviation of the C / Si value in the plane of the silicon carbide film is reduced. Even when the formed silicon carbide film is formed, the impurity can be easily uniformly doped, and the in-plane uniformity of the impurity concentration in the silicon carbide film doped with the impurity can be improved.
- the first gas supply nozzle and the second gas supply nozzle are provided with one or more first gas supply ports and second gas supply ports in the height direction at the same interval as the wafer stacking interval. Since the gas can be efficiently supplied to the plurality of wafers 14 that are stacked and held in a horizontal posture with their centers aligned, the silicon carbide formed on the plurality of wafers 14 can be supplied. The uniformity between the thicknesses of the surfaces can be improved, and the uniformity between the thicknesses of the silicon carbide films doped with impurities formed on a plurality of wafers can be improved.
- the first and second gas supply nozzles are configured in plural, and the second gas supply nozzles are provided at both ends.
- the silicon-containing gas, the carbon-containing gas, and the impurity-containing gas are induced to flow on the wafer 14 by the reducing gas supplied from the second gas supply nozzle, for example, hydrogen gas.
- the reducing gas supplied from the second gas supply nozzle for example, hydrogen gas.
- At least one or more of the following effects can be achieved.
- (1) By providing a reaction chamber configuration in which a plurality of first and second gas supply nozzles are provided, the supplied silicon-containing gas and carbon-containing gas can be efficiently mixed.
- (2) Since the number of locations where the silicon-containing gas and the carbon-containing gas are mixed is increased by (1), the in-plane uniformity of the film thickness of the silicon carbide film doped with the impurity to be formed can be improved.
- FIGS. 13A to 13C An example of a reaction chamber configuration for supplying the wafer after efficiently mixing is shown.
- FIG. 13A shows a case where the first and second gas supply ports facing each other are provided at different heights
- FIG. 13B shows a case where a cylindrical gas supply nozzle is applied.
- FIG. 14 shows the flow calculation of the reaction gas when the height position of the first gas supply port is different from the height position of the second gas supply port in the reaction chamber configuration of the present embodiment. Results are shown.
- hydrogen containing silicon-containing gas and chlorine-containing gas supplied from the first gas supply port for example, hydrogen containing silicon-containing gas and chlorine-containing gas supplied from the first gas supply port, and carbon-containing gas and reducing gas supplied from the second gas supply port. Since the gas and the n-type impurity-containing gas easily form a spiral gas flow between the first gas supply nozzle and the second gas supply nozzle, the above-mentioned gas mixing can be promoted.
- the film thickness uniformity of the silicon carbide film doped with the n-type impurity formed on the wafer can be improved, and the n-type impurity can be uniformly doped. it can.
- the heights of the first gas supply port and the second gas supply port are set as follows. In the case where they are provided at the same height, for example, a silicon carbide film is expected to be formed at any gas supply port by reacting in the vicinity of any gas supply port. This may cause clogging due to the formation of a film at the gas supply port of the first gas supply nozzle or the second gas supply nozzle or both, or particles due to the formed film. Can be mentioned.
- the gas supply nozzle to be applied is a polygonal gas supply nozzle as shown in FIG. As shown in FIG. 13B, for example, when a cylindrical gas supply nozzle is applied, there is a gap between the inner wall of the object to be heated 48 and the gas supply nozzle.
- a gas that contributes to film formation (source gas) such as gas may be leaked and sufficient mixing cannot be promoted, or the mixed source gas leaked from the gap reacts to be part of the reaction chamber other than the wafer.
- source gas source gas
- a pentagonal gas supply nozzle has been described as an example of a polygonal gas supply nozzle.
- the shape of the gas supply nozzle is preferably a cylindrical heated body 48.
- the inner wall of the gas supply nozzle has a shape along the inner wall as a part of the gas supply nozzle.
- a part of the shape of the gas supply nozzle is A shape having an arc may be used.
- FIG. 15 shows an in-plane distribution of C / Si values of the silicon carbide film formed when the film is formed in the reaction chamber configuration of the present embodiment.
- the silicon carbide film formed on the wafer 14 is a film having a small C / Si deviation, and the impurity is uniformly doped when forming the silicon carbide film doped with the impurity. can do.
- FIG. 16 shows the C / Si ratio on the monitor line in the configuration of the gas supply nozzle shown in the second embodiment, and the C / Si ratio on the monitor line in the configuration of the gas supply nozzle shown in the third embodiment. Is shown. As can be seen from FIG. 16, it can be seen that the C / Si ratio is more uniform in the gas supply nozzle configuration in the third embodiment than in the gas supply nozzle configuration in the second embodiment.
- At least one of the following effects is achieved. (1) By providing the first gas supply port and the second gas supply port which face each other, gas mixing can be promoted before reaching the wafer and then supplied to the wafer. (2) In (1), by providing the first gas supply port and the second gas supply port with different heights, a spiral shape is formed in the gap between the first gas supply nozzle and the second gas supply nozzle. Since the gas flow can be easily formed, the gas can be supplied to the wafer after promoting the mixing of the gas before reaching the wafer.
- the first gas supply nozzle 60 extending in the arrayed region of the wafer 14 that is the substrate is parallel to the surface of the wafer 14, and the second A silicon-containing gas and a chlorine-containing gas are supplied from a first gas supply port 68 provided in one or more first branch nozzles that extend in the direction of the gas supply port 70 and branch, thereby supplying a first gas.
- the second gas supply nozzle 70 which is provided at a position different from the nozzle and extends to the arrayed area of the wafer 14 is parallel to the surface of the wafer 14 and is connected to the first gas supply port 60.
- nitrogen gas and reducing gas for example, hydrogen gas
- nitrogen gas and reducing gas for example, hydrogen gas
- the silicon carbide film formed on the wafer 14 has a uniform film thickness, and nitrogen, which is an impurity, is formed. Can be uniformly doped.
- the influence of the boat column 30a supporting the wafer 14 can be reduced. Specifically, it is as follows. The wafer 14 is supported by a plurality of boat pillars 30a and is rotated to make the in-plane film thickness uniform. As a result, the boat column 30a passes in front of the gas supply port.
- the gas supply is hindered by the boat pillar 30a
- the gas supply in a wide range or densely is realized by providing a plurality of gas supply ports in parallel to the wafer 14 as shown in FIG. As a result, the influence of the boat column can be reduced.
- the wafer 14 may be separated from the boat column 30a using the wafer holder 300 as shown in FIG. 19C.
- the wafer holder 300 has an annular first wafer holder 300a, and the wafer 14 is held by the first wafer holder 300a. Thereby, the distance between the wafer 14 and the boat column 30a can be separated by the wafer holder 300a, and the influence of the boat column 30a can be reduced.
- a so-called face-down method for film formation is employed, and the upper surface side of the wafer 14 is covered with the first wafer holder 300a.
- the first branch nozzle and the second branch nozzle may be provided alternately. Accordingly, the silicon-containing gas and the chlorine-containing gas supplied from the first gas supply, the carbon-containing gas from the second gas supply nozzle, the nitrogen gas as the n-type impurity atom, and the hydrogen gas as the reducing gas, Can be made uniform on the monitor line (in a direction perpendicular to the gas flow).
- the pair of first branch nozzles and second branch nozzles be disposed between the wafers 14 arranged in the height direction.
- the conditions for each wafer 14 can be made the same, and the uniformity between the wafers can be improved.
- the ratio of carbon to silicon (C / Si) is important. In particular, when the carbon concentration is high, the film quality is deteriorated.
- the first gas supply port 68 for supplying the silicon-containing gas is closer to the film formation surface of the wafer 14 than the second gas supply port 72 for supplying the carbon-atom-containing gas in order to make the environment easy to become silicon-rich. . Therefore, in the present embodiment, the first branch nozzle and the second branch nozzle are arranged in this order from the top in the space between the wafers 14.
- the ratio can be made uniform.
- the line on the film formation surface in the direction perpendicular to the monitor line shown in FIG. 19A will be specifically described as a second monitor line.
- the supply is started with the ratio (C / Si) of the silicon atom-containing gas to the carbon atom-containing gas being 0.5.
- C / Si on the second monitor line is constant at 0.5 unless gas consumption is considered.
- gas consumption is taken into consideration, the silicon atom-containing gas and the carbon atom-containing gas are consumed in the same way, so that the mixing ratio changes on the side closer to and far from the gas supply nozzle. For example, if the silicon atom-containing gas is supplied at 100 and the carbon atom-containing gas is supplied at 50, the silicon atoms and the carbon atom-containing gas are consumed and decreased in the same manner as the distance from the gas supply port is increased.
- the silicon atom-containing gas is consumed up to 60
- the carbon atom-containing gas is consumed up to 10.
- the side closer to and far from the gas supply nozzle Si / C can be made uniform, and the impurity concentration can be made uniform. This will be described below.
- the gas supplied from the second branch nozzle gradually diffuses in the gas flow supplied from the first branch nozzle close to the second monitor line. Therefore, if gas consumption in the middle is not considered, the concentration of the gas supplied from the second branch nozzle on the second monitor line increases as the distance from the branch nozzle increases.
- the decrease in the carbon atom-containing gas may be made smaller than the decrease in the silicon atom-containing gas on the second monitor line.
- the second monitor line The carbon atom-containing gas is gradually replenished by diffusion, and the decrease in the carbon atom-containing gas can be reduced with respect to the decrease in the silicon atom-containing gas.
- the flow rate of the gas flow supplied from the first gas supply port 68 is changed.
- the speed may be set such that the gas supplied from the second gas supply port 72 gradually diffuses while passing through the film formation surface of the wafer 14.
- the flow rate of the gas supplied from the first gas supply port may be controlled.
- the flow rate of the carrier gas of the silicon element-containing gas is increased, or the size of the first gas supply port 68 is increased. One way is to make it smaller.
- the gas supply port is provided with a plurality of hole-shaped gas supply ports.
- the present invention is not limited to this, and may be a slit shape.
- the influence of the boat column can be reduced by densely arranging the gas supply ports provided in the branch pipe.
- the silicon carbide film doped with impurities can be made uniform.
- the reaction gas is prevented from entering the gap between the object to be heated and the nozzle. Can do.
- a reaction chamber in which a plurality of substrates are stacked at a predetermined interval, a first gas supply nozzle having one or more first gas supply ports in a region in which the plurality of substrates are stacked, and the plurality of substrates are stacked.
- a second gas supply nozzle having one or more second gas supply ports in a region to be provided, and a direction in which the first gas supply port is provided and a direction in which the second gas supply port is provided Is a method of manufacturing a semiconductor device in a substrate processing apparatus provided to cross before reaching the substrate, Carrying the plurality of substrates into a reaction chamber; At least a silicon-containing gas and a chlorine-containing gas, or silicon and a chlorine-containing gas are supplied into the reaction chamber from the first gas supply port, and at least a carbon-containing gas and a reducing gas are supplied from the second gas supply port.
- Process A step of unloading the plurality of substrates from the reaction chamber.
- One or more first gas supply systems are connected to the first gas supply system, or connected to the first gas supply system and the third gas supply system, and the plurality of substrates are stacked.
- a first gas supply nozzle having one gas supply port; One or more first gas supply systems connected to the second gas supply system, or connected to the second gas supply system and the third gas supply system, and in the region where the plurality of substrates are stacked.
- a second gas supply nozzle having two gas supply ports; The first gas supply system supplies at least the silicon-containing gas and the chlorine-containing gas or the silicon and chlorine-containing gas from the first gas supply port into the reaction chamber, and the second gas supply The system supplies at least the carbon-containing gas and the reducing gas into the reaction chamber from the second gas supply port, and the third gas supply system includes the first gas supply port or the second gas supply port.
- a reaction chamber in which a plurality of substrates are stacked at a predetermined interval, a first gas supply nozzle having one or more first gas supply ports in a region in which the plurality of substrates are stacked, and the plurality of substrates are stacked.
- a second gas supply nozzle having one or more second gas supply ports in a region to be provided, and a direction in which the first gas supply port is provided and a direction in which the second gas supply port is provided Is a substrate manufacturing method in a substrate processing apparatus provided to cross before reaching the substrate, Carrying the plurality of substrates into a reaction chamber; At least a silicon-containing gas and a chlorine-containing gas, or silicon and a chlorine-containing gas are supplied into the reaction chamber from the first gas supply port, and at least a carbon-containing gas and a reducing gas are supplied from the second gas supply port.
- Process A step of unloading the plurality of substrates from the reaction chamber.
- Appendix 6 The method of manufacturing a semiconductor device according to appendix 1, wherein the first gas supply nozzle and the second gas supply nozzle have shapes curved along the inner periphery of the object to be heated.
- Appendix 7 The method for manufacturing a semiconductor device according to appendix 6, wherein the first gas supply nozzle and the second gas supply nozzle are cylindrical.
- Appendix 8 The method of manufacturing a semiconductor device according to appendix 6, wherein the first gas supply nozzle and the second gas supply nozzle are polygonal.
- Appendix 9 The method of manufacturing a semiconductor device according to appendix 6, wherein the first gas supply nozzle and the second gas supply nozzle have a circular arc shape in a part thereof.
- the first gas supply port is provided in the direction in which the second gas supply nozzle is installed, and the second gas supply port is provided in the direction in which the first gas supply nozzle is installed.
- Appendix 11 The method of manufacturing a semiconductor device according to appendix 10, wherein the first gas supply port and the second gas supply port are provided at positions facing each other.
- Appendix 12 The method of manufacturing a semiconductor device according to appendix 10, wherein the height position of the first gas supply port is different from the height position of the second gas supply port.
- the height position of the first gas supply port and the height position of the second gas supply port are the same in the radial direction of the wafer 14, and the vertical position (height) of the wafer 14 is determined.
- a manufacturing method of a semiconductor device provided differently.
- Appendix 15 The method for manufacturing a semiconductor device according to appendix 1, wherein a heat insulating material is provided between a reaction tube forming a reaction chamber and an object to be heated.
- the first gas supply nozzle includes the first gas supply port, and includes a plurality of first branch pipes extending in a direction parallel to the surface of the substrate, and the second gas supply nozzle
- the nozzle is provided with the second gas supply port and has a plurality of second branch pipes extending in a direction parallel to the surface of the substrate, and the plurality of first branch pipes and the plurality of second branch pipes are , A manufacturing method of a semiconductor device arranged side by side in the stacking direction of the plurality of substrates.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
次に本発明の第1実施形態を図面に基づいて説明する。図1は本発明の第1実施形態に係る炭化珪素エピタキシャル膜を成膜する半導体製造装置10の一例であり、斜視図にて示す。この基板処理装置としての半導体製造装置10は、バッチ式縦型熱処理装置であり、主要部が配置される筐体12を有する。半導体製造装置10には、例えば、シリコン(Si)又は炭化珪素(SiC)等で構成された基板としてのウエハ14を収納する基板収納器としてフープ(以下、ポッドという)16が、ウエハキャリアとして使用される。この筐体12の正面側には、ポッドステージ18が配置されており、このポッドステージ18にポッド16が搬送される。ポッド16には、例えば25枚のウエハ14が収納され、蓋が閉じられた状態でポッドステージ18にセットされる。
なお、このマニホールドと反応管42との間にはシール部材としてOリングが設けられている。このマニホールドが図示しない保持体に支持されることにより、反応管42は垂直に据えつけられた状態になっている。この反応管42とマニホールドにより反応容器が形成されている。
好ましくはキャリアガスとして希ガスを供給すると良い。これは水素含有ガスとして、例えば、水素ガスをキャリアガスとして供給した場合、水素ガスの還元効果により、シリコン含有ガスはガス供給ノズル内にて分解してしまい、ガス供給ノズル内にシリコン膜が堆積し、ガス供給ノズル内またはガス供給口の閉塞やパーティクル発生の要因となるためである。
更に好ましくは、キャリアガスとしてアルゴンガスを供給することが良い。アルゴンガスは、ヘリウムガス等の他の希ガスよりも安価であるため、炭化珪素エピタキシャル膜を形成する基板処理装置を運用する際のランニングコストを低減することが出来る。
なお、シリコン含有ガスと還元ガスを分離して供給することで充分にガス供給内の堆積を防止できる場合は、シリコン含有ガスと炭素含有ガスとを同じガス供給ノズルを介して供給しても良い。これにより、シリコン含有ガスと炭素含有ガスとを予め混合しておくことができるためウエハ14に均一な膜を形成できる。
窒素ガスは、水素雰囲気中では不活性なガスであり、例えば、1015cm-3~1018cm-3程度のドーピング量のn型ドーピング炭化珪素膜を形成する場合に用いやすい。
一方、アンモニアガスは気相中で分解されやすい窒素含有ガスの一例であり、このようなガス、若しくはアンモニアガスを含む混合ガス、例えば、アンモニアガスと窒素ガスの混合ガスを用いることで炭化珪素膜中への不純物のドーピング量を制御することができる。
図5は処理炉40及びその周辺構造の概略図を示す。処理炉40の下方には、この処理炉40の下端開口を機密に閉塞するための炉口蓋体としてシールキャップ102が設けられている。シールキャップ102は例えばステンレス等の金属で構成されており、円盤状に形成されている。シールキャップ102の上面には処理炉40の下端と当接するシール材としてのOリングが設けられている。シールキャップ102には回転機218が設けられている。回転機構218の回転軸106はシールキャップ102を貫通してボート30に接続されており、このボート30を回転させることで、ウエハ14を回転させるように構成されている。シールキャップ102は処理炉40の外側に向けられた昇降機構として後述する昇降モータ122によって垂直方向に昇降されるように構成されており、これにより、ボート30を処理炉40に対し搬入搬出することが可能となっている。回転機構218及び昇降モータ122には、駆動制御部108が電気的に接続されており、所定の動作をするよう所定のタイミングにて制御するよう構成されている(図4参照)。
また、ウエハ14及び被加熱体48の内側が所定の温度となるように磁場発生部としての誘導コイル50によって誘導加熱された被加熱体48により加熱される。この際、被加熱体48の内側が所定の温度分布となるように温度センサが検出した温度情報に基づき誘導コイル50への通電具合がフィードバック制御される。続いて、回転機構218により、ボート30が回転されることでウエハ14が周方向に回転される。
また、炭素含有ガス及び還元ガスであるH2ガス及びn型不純物ガスとは、所定の流量となるように、対応するMFC211c、211d、211fの開度が調整された後、バルブ212c、212d、212fが開かれ、それぞれのガスがガス供給管260流通して、第2のガス供給ノズル70と流通して第2のガス供給口72より供給される。
また、図6に示すように、第1のガス供給口68と第2のガス供給口72を夫々から噴出したガス流が交差するような方向に向けるとガスの混合が促進される。
図7および図8に示すように、第1のガス供給口及び第2のガス供給口から供給されたガスは、ウエハ14表面を流れることでウエハ14に所望の膜を形成するのであるが、ウエハを流れる間に、第1のガス供給口より供給されるシリコン含有ガスと塩素含有ガスと、第2のガス供給ノズルより供給される炭素含有ガスと還元ガスとして水素ガスとn型ドーピングガスとして例えば窒素ガスとがうまく混合しない為にウエハ14において、第1のガス供給ノズルが配置された箇所に近い領域は気相中に含有するシリコン濃度が高く(シリコンリッチ)、第2のガス供給ノズルが配置された箇所に近い領域は炭素濃度が高く(炭素リッチ)になっている。
図9に示されるように、ウエハ14表面に原料ガスの濃度分布に偏差が生じることによって、形成される膜の膜厚に大きく影響することがわかり、ウエハ14の中央部が凸の膜厚分布になり、半導体装置の製造において、歩留まりの低下を招く要因となる。
しかし、上述のようなウエハ面内においてシリコンと炭素との濃度分布に偏差を生じている場合、炭化珪素膜にn型不純物またはp型不純物をドーピングする際に問題になり、不純物の濃度分布に影響する。
不純物が炭化珪素膜中に取り込まれるとき、不純物は、炭化珪素膜に於ける炭素サイトか、シリコンサイトのどちらかに取り込まれることが知られており、n型不純物として、例えば、窒素がドーピングされる場合は、炭化珪素膜のシリコンサイトに吸着し炭化珪素膜に取り込まれようとする炭素と置き換わることで、窒素が炭化珪素膜中に取り込まれ、n型不純物がドーピングされた炭化珪素膜が形成される。
また、p型不純物として、例えば、アルミニウムがドーピングされる場合は、炭化珪素膜の炭素サイトに吸着し炭化珪素膜に取り込まれようとするシリコンと置き換わることで、アルミニウムが膜中に取り込まれ、p型不純物がドーピングされた炭化珪素膜が形成される。
これらはサイトコンペティションの原理と云われている。
(1)形成される炭化珪素膜を構成するシリコンと炭素との比が、炭化珪素膜の面内分布に偏差を生じた場合において、不純物をドーピングする際に、不純物と置き換わる元素が含有される反応ガスとともに不純物ガスを供給することで、ウエハに形成される不純物がドーピングされた炭化珪素膜の不純物濃度の均一性を向上することが出来る。
(2)p型不純物がドーピングされた炭化珪素膜を形成する際に、第1のガス供給ノズルから少なくともシリコン含有ガスと塩素含有ガスとp型不純物ガスとを反応室44内へ供給し、第2のガス供給ノズルから少なくとも炭素含有ガスと還元ガスとを反応室44内へ供給して、ウエハに形成されるp型不純物がドーピングされた炭化珪素膜におけるp型不純物の濃度の面内均一性を向上することが出来る。
(3)n型不純物原子がドーピングされた炭化珪素膜を形成する際に、第1のガス供給ノズルから少なくともシリコン含有ガスと塩素含有ガスとを反応室44内へ供給し、第2のガス供給ノズルから少なくとも炭素含有ガスと還元ガスとn型不純物ガスとを反応室44内へ供給して、ウエハに形成されるn型不純物がドーピングされた炭化珪素膜におけるn型不純物の濃度の面内均一性を向上することが出来る。
(4)(1)~(3)により、シリコン含有ガスと炭素含有ガスとを異なるガス供給ノズルによりそれぞれ反応室44内へ供給することができるので、ガス供給ノズル内での炭化珪素膜の形成を抑制することができる。
(5)(4)により、堆積する炭化珪素膜によるノズル内の閉塞を抑制することができる。
(6)(4)により、堆積する炭化珪素膜に起因するパーティクルの発生を抑制することができる。
(7)(1)~(3)により、シリコン含有ガスと還元ガスとを異なるガス供給ノズルによりそれぞれ反応室44内供給することができるので、ガス供給ノズル内でのシリコン含有ガスの分解を抑制することができる。
(8)(7)により、ガス供給ノズル内でのシリコン含有ガスの消費を抑制することができる。
(9)(7)により、シリコン含有ガスのガス供給ノズル内でのシリコン膜の堆積を抑制することができる。
(10)(7)により、堆積するシリコン膜に起因するパーティクルの発生を抑制することができる。
(11)上記の効果により、一度の処理にての基板に対して不純物がドーピングされた炭化珪素エピタキシャル膜の成長を行うことができる。
次に第2実施形態について説明する。
第1実施形態では、第1のガス供給ノズル及び第2のガス供給ノズルを設けることでノズル内での堆積膜の成長を抑制し、反応室44内では面内分布の良好な不純物がドーピングされた炭化珪素膜の成長を行っていたが、第2実施形態では、更に効率良く反応室44内で炭化珪素エピタキシャル膜の成長を行う為に、第1のガス供給ノズル及び第2のガス供給ノズルの設置する数や配置について検討した。
図12に示すように。本実施形態により、被加熱体48の内側に第1のガス供給ノズル及び第2のガス供給ノズルをそれぞれ複数本配置することにより、第1のガス供給ノズルから供給されるシリコン含有ガスと第2のガス供給ノズルから供給される炭素含有ガスとを効率良く混合するため、形成される炭化珪素膜の膜厚均一性が向上することができる。
これにより、形成される炭化珪素膜の膜厚の面内均一性を向上させるとともに、炭化珪素膜の面内におけるC/Siの値の偏差が小さくなるため、不純物ガスを添加して不純物がドーピングされた炭化珪素膜を形成する際においても、均一に不純物をドーピングすることが容易にでき、不純物がドーピングされた炭化珪素膜における不純物濃度の面内均一性を向上することができる。
(1)第1及び第2のガス供給ノズルを複数本設けられた反応室構成にすることで、供給されるシリコン含有ガスと炭素含有ガスとを効率良く混合することができる。
(2)(1)により、シリコン含有ガスと炭素含有ガスとの混合する箇所が増えるので、形成される不純物がドーピングされた炭化珪素膜の膜厚の面内均一性を向上することができる。
(3)(1)により、形成される膜のC/Siの値の面内分布が均一になるため、不純物の面内均一性を向上することができる。
(4)(1)において、被加熱体48の内側に複数の第1のガス供給ノズル及び第2のガス供給ノズルとを交互に並べて設ける際に、第2のガス供給ノズルを両端に設けることにより、シリコン含有ガスと炭素含有ガスと不純物含有ガスとをウエハに効率的に供給することができる。
(5)(4)において、ウエハ以外の反応室内で膜を形成することを抑制することができる。
(6)(4)において、ウエハ以外の反応室内に形成される膜が起因となるパーティクルの発生を抑制することができる
次に第3実施形態について説明する。
第3実施形態では、第1のガス供給ノズル及び第2のガス供給ノズルから供給されるシリコン含有ガスと炭素含有ガスとを効率良く混合し供給するため、第1のガス供給口及び第2のガス供給口とを設ける位置について検討した。
図13(a)~(c)に示すように、第1のガス供給ノズルから供給されるシリコン含有ガスと第2のガス供給ノズルから供給される炭素含有ガスとをウエハ14に到達する前に効率良く混合してから、ウエハへ供給するための反応室構成の例を示す。図13(a)は対向する第1及び第2のガス供給口の高さ位置を異ならせて設けた場合、図13(b)は円筒状のガス供給ノズルを適用した場合、図13(c)は多角形状のガス供給ノズルを適用した場合を示している。
図14は、本実施形態の反応室構成において、第1のガス供給口の高さ位置と第2のガス供給口の高さ位置とを異ならせて設けた場合の、反応ガスの流れ計算の結果を示している。
これにより、図14に示すように、第1のガス供給口から供給されるシリコン含有ガスと塩素含有ガスと、第2のガス供給口から供給される炭素含有ガスと還元ガスである、例えば水素ガスとn型不純物含有ガスとが、第1のガス供給ノズルと第2のガス供給ノズルの間に渦状のガス流を形成しやすくなるので、上述のガスの混合を促進することができ、この混合されたガスがウエハへ流れることでウエハに形成されるn型不純物がドーピングされた炭化珪素膜の膜厚の膜厚均一性を向上することができ、均一にn型不純物をドーピングすることができる。
これにより、被加熱体48とガス供給ノズルとの間に反応ガスが侵入することを低減することができるので、第1のガス供給口68及び第2のガス供給口72から供給された反応ガスは混合された後、効率良く基板へ供給することができる。また、これにより、被加熱体48とガス供給ノズルとの間に、膜が形成されることが抑制され、形成される膜が起因となるパーティクル発生の虞を低減することができる。
(1)対向した第1ガス供給口及び第2のガス供給口を設けることにより、ウエハへ到達する前にガスの混合を促進した後、ウエハへ供給することができる。
(2)(1)において、第1のガス供給口及び第2のガス供給口の高さを異ならせて設けることにより、第1のガス供給ノズルと第2のガス供給ノズルの間隙に渦状のガス流を形成しやすくすることができるので、ウエハへ到達する前にガスの混合を促進した後、ウエハへ供給することができる。
(3)(2)において、ウエハの積層方向に対し、第1のガス供給口及び第2のガス供給口を積層方向に交互に設けることにより、渦状のガス流を効率良く形成しやすくすることが出来るので、ウエハへ到達する前にガスの混合を促進した後、ウエハへ供給することができる。
(4)(1)において、ガス供給ノズルの形状を被加熱体の内壁に沿うような形状にすることにより、被加熱体とノズルとの間の隙間に反応ガスが侵入することを抑制することができる。
(5)(4)において、侵入した反応ガスが反応して形成された膜がパーティクルの発生要因になることを抑制する。
次に第4実施形態について説明する。
第4実施形態では、第1のガス供給ノズル及び第2のガス供給ノズルから供給されるシリコン含有ガスと炭素含有ガスとを効率良く混合し供給するため、ガス供給ノズルの構成について検討した。
特に、図19(b)に示すような第1の分岐管、第2の分岐管を介して供給することで、ウエハ14を支えるボート柱30aの影響も軽減できる。具体的に説明すると次の通りである。ウエハ14は、複数のボート柱30aで支持され、面内膜厚の均一化のため回転している。そうすると、ボート柱30aがガス供給口の前を通過することになる。この場合、ボート柱30aによりガス供給が阻害されるが、図19のようにウエハ14に対し並行方向に複数のガス供給口を設けることで、広い範囲での、又は、密にガス供給を実現でき、結果としてボート柱の影響を小さくすることができる。
(1)ガス供給ノズルに設けられた分岐管により、第1のガス供給口と第2のガス供給口を高さ方向に並べることによりウエハへ到達する前にガスの混合を促進した後、ウエハへ供給することができる。
(2)(1)において、分岐管に設けられたガス供給口を密に配置することで、ボート柱の影響を軽減できる。
(3)(1)において、第1のガス供給口をウエハの成膜面に近い側に配置することにより、不純物ドーピングされた炭化珪素膜の均一化を図れる。
(4)(1)において、ガス供給ノズルの形状を被加熱体の内壁に沿うような形状にすることにより、被加熱体とノズルとの間の隙間に反応ガスが侵入することを抑制することができる。
以下に、本実施形態に係る好ましい態様を付記する。
複数の基板が所定の間隔で積層される反応室と、前記複数の基板が積層される領域に1以上の第1のガス供給口を有する第1のガス供給ノズルと、前記複数の基板が積層される領域に1以上の第2のガス供給口を有する第2のガス供給ノズルと、を備え、前記第1のガス供給口が設けられる方向と前記第2のガス供給口が設けられる方向とが、前記基板に達する前に交差するように設けられた基板処理装置における半導体装置の製造方法であって、
前記複数の基板を反応室内に搬入する工程と、
前記第1のガス供給口から、少なくともシリコン含有ガスと塩素含有ガスと、もしくは、シリコンおよび塩素含有ガスを前記反応室内へ供給し、前記第2のガス供給口から、少なくとも炭素含有ガスと還元ガスとを前記反応室内へ供給し、前記第1のガス供給口または前記第2のガス供給口から更に不純物ガスを前記反応室内へ供給し、前記基板に不純物がドーピングされた炭化珪素膜を形成する工程と、
前記複数の基板を前記反応室から搬出する工程と、を有する半導体装置の製造方法。
複数の基板が所定の間隔で積層される反応室と、
前記反応室内に少なくともシリコン含有ガスと塩素含有ガスと、もしくは、シリコンおよび塩素含有ガスを供給する第1のガス供給系と、
前記反応室内に少なくとも炭素含有ガスと還元ガスとを供給する第2のガス供給系と、
前記反応室内に少なくとも不純物ガスを供給する第3のガス供給系と、
前記第1のガス供給系に接続されるか、若しくは、前記第1のガス供給系及び前記第3のガス供給系に接続されるとともに、前記複数の基板が積層される領域に1以上の第1のガス供給口を有する第1のガス供給ノズルと、
前記第2のガス供給系に接続されるか、若しくは、前記第2のガス供給系及び前記第3のガス供給系に接続されるとともに、前記複数の基板が積層される領域に1以上の第2のガス供給口を有する第2のガス供給ノズルと、
前記第1のガス供給系は、前記第1のガス供給口から少なくとも前記シリコン含有ガスと前記塩素含有ガスと、もしくは、シリコンおよび塩素含有ガスを前記反応室内へ供給し、前記第2のガス供給系は、前記第2のガス供給口から少なくとも前記炭素含有ガスと前記還元ガスとを前記反応室内へ供給し、前記第3のガス供給系は、前記第1のガス供給口または前記第2のガス供給口から、少なくとも前記不純物ガスを前記反応室内へ供給して前記基板に不純物がドーピングされた炭化珪素膜が形成されるよう制御するコントローラと、を備え、
前記第1のガス供給口が設けられる方向と前記第2のガス供給口が設けられる方向とが、前記基板に達する前に交差するよう設けられている基板処理装置。
複数の基板が所定の間隔で積層される反応室と、前記複数の基板が積層される領域に1以上の第1のガス供給口を有する第1のガス供給ノズルと、前記複数の基板が積層される領域に1以上の第2のガス供給口を有する第2のガス供給ノズルと、を備え、前記第1のガス供給口が設けられる方向と前記第2のガス供給口が設けられる方向とが、前記基板に達する前に交差するように設けられた基板処理装置における基板製造方法であって、
前記複数の基板を反応室内に搬入する工程と、
前記第1のガス供給口から、少なくともシリコン含有ガスと塩素含有ガスと、もしくは、シリコンおよび塩素含有ガスを前記反応室内へ供給し、前記第2のガス供給口から、少なくとも炭素含有ガスと還元ガスとを前記反応室内へ供給し、前記第1のガス供給口または前記第2のガス供給口から更に不純物ガスを前記反応室内へ供給し、前記基板に不純物がドーピングされた炭化珪素膜を形成する工程と、
前記複数の基板を前記反応室から搬出する工程と、を有する基板製造方法。
付記1において、更に第1のガス供給ノズルに希ガスを供給する半導体装置の製造方法。
付記4において、第1のガス供給ノズルにアルゴンガスを供給する半導体装置の製造方法。
付記1において、第1のガス供給ノズル及び第2のガス供給ノズルの形状は被加熱体の内周に沿うように湾曲した形状である半導体装置の製造方法。
付記6において、第1のガス供給ノズル及び第2のガス供給ノズルが円筒形である半導体装置の製造方法。
付記6において、第1のガス供給ノズル及び前記第2のガス供給ノズルが多角形である半導体装置の製造方法。
付記6において、第1のガス供給ノズル及び前記第2のガス供給ノズルの一部に円弧を有する形状である半導体装置の製造方法。
付記1において、第1のガス供給口は第2のガス供給ノズルが設置されている方向に設けられ、第2のガス供給口は第1のガス供給ノズルが設置されている方向に設けられる半導体装置の製造方法。
付記10において、第1のガス供給口と第2のガス供給口が対向した位置にそれぞれ設けられる半導体装置の製造方法。
付記10において、第1のガス供給口の高さ位置と第2のガス供給口の高さ位置とが異ならせてそれぞれ設けられている半導体装置の製造方法。
付記10において、第1のガス供給口の高さ位置と第2のガス供給口の高さ位置とがウエハ14半径方向の位置を同じにして、ウエハ14の上下方向の位置(高さ)を異ならせて設けられている半導体装置の製造方法。
付記1おいて反応室の外側に設けられ、電磁誘導加熱する磁場発生部を有する半導体装置の製造方法。
付記1において反応室を形成する反応管と被加熱体の間に断熱材を設ける半導体装置の製造方法。
[付記16]
付記1において、前記第1のガス供給ノズルは、前記第1のガス供給口が設けられ、前記基板の表面と平行方向に延びた複数の第1分岐管を有し、前記第2のガス供給ノズルは、前記第2のガス供給口が設けられ、前記基板の表面と平行方向に延びた複数の第2分岐管を有し、前記複数の第1分岐管と前記複数の第2分岐管は、前記複数の基板の積層方向に並んで配置される半導体装置の製造方法。
12 筐体
14 ウエハ
16 ポッド
30 ボート
40 処理炉
42 アウターチューブ
44 反応室
48 サセプタ
50 磁気コイル
60 シリコン原子含有ガス供給ノズル
68 供給孔
70 第2のガス供給口
90 第1のガス排気口
150 主制御部
152 コントローラ
360 第3のガス供給口
390 第2のガス排気口
Claims (16)
- 複数の基板が所定の間隔で積層される反応室と、前記複数の基板が積層される領域に1以上の第1のガス供給口を有する第1のガス供給ノズルと、前記複数の基板が積層される領域に1以上の第2のガス供給口を有する第2のガス供給ノズルと、を備え、前記第1のガス供給口が設けられる方向と前記第2のガス供給口が設けられる方向とが、前記基板に達する前に交差するように設けられた基板処理装置における半導体装置の製造方法であって、
前記複数の基板を反応室内に搬入する工程と、
前記第1のガス供給口から、少なくともシリコン含有ガスと塩素含有ガスと、もしくは、シリコンおよび塩素含有ガスを前記反応室内へ供給し、前記第2のガス供給口から、少なくとも炭素含有ガスと還元ガスとを前記反応室内へ供給し、前記第1のガス供給口または前記第2のガス供給口から更に不純物ガスを前記反応室内へ供給し、前記基板に不純物がドーピングされた炭化珪素膜を形成する工程と、
前記複数の基板を前記反応室から搬出する工程と、を有する半導体装置の製造方法。 - 請求項1に記載の半導体装置の製造方法において、前記第1のガス供給ノズルから希ガスを供給する半導体装置の製造方法。
- 請求項2に記載の半導体装置の製造方法において、前記第1のガス供給ノズルからアルゴンガスを供給する半導体装置の製造方法。
- 請求項1に記載の半導体装置の製造方法において、前記第1のガス供給ノズル及び前記第2のガス供給ノズルの形状は被加熱体の内周に沿うように湾曲した形状である半導体装置の製造方法。
- 請求項4に記載の半導体装置の製造方法において、前記第1のガス供給ノズル及び前記第2のガス供給ノズルが円筒形である半導体装置の製造方法。
- 請求項4に記載の半導体装置の製造方法において、前記第1のガス供給ノズル及び前記第2のガス供給ノズルが多角形である半導体装置の製造方法。
- 請求項4に記載の半導体装置の製造方法において、前記第1のガス供給ノズル及び前記第2のガス供給ノズルの一部に円弧を有する形状である半導体装置の製造方法。
- 請求項1に記載の半導体装置の製造方法において、前記第1のガス供給口は、前記第2のガス供給ノズルが設置されている方向に設けられ、前記第2のガス供給口は、前記第1のガス供給ノズルが設置されている方向に設けられる半導体装置の製造方法。
- 請求項8に記載の半導体装置の製造方法において、前記第1のガス供給口と前記第2のガス供給口が対向した位置にそれぞれ設けられる半導体装置の製造方法。
- 請求項8に記載の半導体装置の製造方法において、前記第1のガス供給口の高さ位置と前記第2のガス供給口の高さ位置とが異ならせてそれぞれ設けられている半導体装置の製造方法。
- 請求項8に記載の半導体装置の製造方法において、前記第1のガス供給口の高さ位置と前記第2のガス供給口の高さ位置とが前記基板の半径方向の位置を同じにして、前記基板の上下方向の位置を異ならせて設けられている半導体装置の製造方法。
- 請求項1に記載の半導体装置の製造方法において、前記反応室の外側に設けられ、電磁誘導加熱する磁場発生部を有する半導体装置の製造方法。
- 請求項1に記載の半導体装置の製造方法において、前記反応室を形成する反応管と前記被加熱体の間に断熱材を設ける半導体装置の製造方法。
- 請求項1に記載の半導体装置の製造方法において、前記第1のガス供給ノズルは、前記第1のガス供給口が設けられ、前記基板の表面と平行方向に延びた複数の第1分岐管を有し、前記第2のガス供給ノズルは、前記第2のガス供給口が設けられ、前記基板の表面と平行方向に延びた複数の第2分岐管を有し、前記複数の第1分岐管と前記複数の第2分岐管は、前記複数の基板の積層方向に並んで配置される半導体装置の製造方法。
- 複数の基板が所定の間隔で積層される反応室と、
前記反応室内に少なくともシリコン含有ガスと塩素含有ガスと、もしくは、シリコンおよび塩素含有ガスを供給する第1のガス供給系と、
前記反応室内に少なくとも炭素含有ガスと還元ガスとを供給する第2のガス供給系と、
前記反応室内に少なくとも不純物ガスを供給する第3のガス供給系と、
前記第1のガス供給系に接続されるか、若しくは、前記第1のガス供給系及び前記第3のガス供給系に接続されるとともに、前記複数の基板が積層される領域に1以上の第1のガス供給口を有する第1のガス供給ノズルと、
前記第2のガス供給系に接続されるか、若しくは、前記第2のガス供給系及び前記第3のガス供給系に接続されるとともに、前記複数の基板が積層される領域に1以上の第2のガス供給口を有する第2のガス供給ノズルと、
前記第1のガス供給系から前記第1のガス供給口から少なくとも前記シリコン含有ガスと前記塩素含有ガスと、もしくは、シリコンおよび塩素含有ガスを前記反応室内へ供給し、前記第2のガス供給系から前記第2のガス供給口から少なくとも前記炭素含有ガスと前記還元ガスとを前記反応室内へ供給し、前記第3のガス供給系から前記第1のガス供給口または前記第2のガス供給口から、少なくとも前記不純物ガスを前記反応室内へ供給して前記基板に不純物がドーピングされた炭化珪素膜が形成されるよう制御するコントローラと、を備え、
前記第1のガス供給口が設けられる方向と前記第2のガス供給口が設けられる方向とが、前記基板に達する前に交差するよう設けられている基板処理装置。 - 複数の基板が所定の間隔で積層される反応室と、前記複数の基板が積層される領域に1以上の第1のガス供給口を有する第1のガス供給ノズルと、前記複数の基板が積層される領域に1以上の第2のガス供給口を有する第2のガス供給ノズルと、を備え、前記第1のガス供給口が設けられる方向と前記第2のガス供給口が設けられる方向とが、前記基板に達する前に交差するように設けられた基板処理装置における基板製造方法であって、
前記複数の基板を反応室内に搬入する工程と、
前記第1のガス供給口から、少なくともシリコン含有ガスと塩素含有ガスと、もしくは、シリコンおよび塩素含有ガスを前記反応室内へ供給し、前記第2のガス供給口から、少なくとも炭素含有ガスと還元ガスとを前記反応室内へ供給し、前記第1のガス供給口または前記第2のガス供給口から更に不純物ガスを前記反応室内へ供給し、前記基板に不純物がドーピングされた炭化珪素膜を形成する工程と、
前記複数の基板を前記反応室から搬出する工程と、を有する基板製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180009955.8A CN102763193B (zh) | 2010-02-26 | 2011-02-22 | 半导体器件的制造方法和衬底制造方法以及衬底处理装置 |
JP2012501787A JP5562409B2 (ja) | 2010-02-26 | 2011-02-22 | 半導体装置の製造方法及び基板製造方法及び基板処理装置 |
US13/580,933 US8889533B2 (en) | 2010-02-26 | 2011-02-22 | Method of manufacturing semiconductor device, method of manufacturing substrate and substrate processing apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-041574 | 2010-02-26 | ||
JP2010041574 | 2010-02-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011105370A1 true WO2011105370A1 (ja) | 2011-09-01 |
Family
ID=44506776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/053844 WO2011105370A1 (ja) | 2010-02-26 | 2011-02-22 | 半導体装置の製造方法及び基板製造方法及び基板処理装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8889533B2 (ja) |
JP (1) | JP5562409B2 (ja) |
CN (1) | CN102763193B (ja) |
WO (1) | WO2011105370A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014103188A (ja) * | 2012-11-19 | 2014-06-05 | Nippon Steel & Sumitomo Metal | エピタキシャル炭化珪素ウエハの製造方法 |
JP2014103363A (ja) * | 2012-11-22 | 2014-06-05 | Sumitomo Electric Ind Ltd | 炭化珪素半導体基板の製造方法 |
JP2015018869A (ja) * | 2013-07-09 | 2015-01-29 | 新日鐵住金株式会社 | 基板処理装置 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5529634B2 (ja) * | 2010-06-10 | 2014-06-25 | 株式会社日立国際電気 | 基板処理装置、半導体装置の製造方法及び基板の製造方法 |
US9512519B2 (en) | 2012-12-03 | 2016-12-06 | Taiwan Semiconductor Manufacturing Company, Ltd. | Atomic layer deposition apparatus and method |
JPWO2014125653A1 (ja) * | 2013-02-15 | 2017-02-02 | 株式会社日立国際電気 | 基板処理装置、半導体装置の製造方法及び基板処理方法 |
JP6386706B2 (ja) * | 2013-09-06 | 2018-09-05 | 住友電気工業株式会社 | 炭化珪素エピタキシャル基板、炭化珪素エピタキシャル基板の製造方法、炭化珪素半導体装置の製造方法、炭化珪素成長装置および炭化珪素成長装置用部材 |
US9904296B2 (en) * | 2014-04-01 | 2018-02-27 | Honeywell International Inc. | Controlling flow in a fluid distribution system |
CN111243994A (zh) * | 2015-07-17 | 2020-06-05 | 株式会社国际电气 | 气体供给喷嘴、衬底处理装置及半导体器件的制造方法 |
WO2017056242A1 (ja) * | 2015-09-30 | 2017-04-06 | 株式会社日立国際電気 | 半導体装置の製造方法、基板処理装置および記録媒体 |
US20170207078A1 (en) * | 2016-01-15 | 2017-07-20 | Taiwan Semiconductor Manufacturing Co., Ltd. | Atomic layer deposition apparatus and semiconductor process |
JP6568508B2 (ja) * | 2016-09-14 | 2019-08-28 | 株式会社Kokusai Electric | 半導体装置の製造方法、基板処理装置、およびプログラム |
JP6820816B2 (ja) * | 2017-09-26 | 2021-01-27 | 株式会社Kokusai Electric | 基板処理装置、反応管、半導体装置の製造方法、及びプログラム |
JP7340170B2 (ja) * | 2019-06-25 | 2023-09-07 | 東京エレクトロン株式会社 | ガス導入構造、熱処理装置及びガス供給方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6481311A (en) * | 1987-09-24 | 1989-03-27 | Nec Corp | Vapor phase growth device |
JP2006527157A (ja) * | 2003-06-13 | 2006-11-30 | エルピーイー・ソチエタ・ペル・アチオニ | 炭化珪素の結晶を成長させるシステム |
WO2007108401A1 (ja) * | 2006-03-20 | 2007-09-27 | Hitachi Kokusai Electric Inc. | 半導体装置の製造方法および基板処理装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6709721B2 (en) * | 2001-03-28 | 2004-03-23 | Applied Materials Inc. | Purge heater design and process development for the improvement of low k film properties |
US20060060145A1 (en) * | 2004-09-17 | 2006-03-23 | Van Den Berg Jannes R | Susceptor with surface roughness for high temperature substrate processing |
JP2006196807A (ja) | 2005-01-17 | 2006-07-27 | Matsushita Electric Ind Co Ltd | 真空成膜装置および薄膜形成方法 |
-
2011
- 2011-02-22 WO PCT/JP2011/053844 patent/WO2011105370A1/ja active Application Filing
- 2011-02-22 CN CN201180009955.8A patent/CN102763193B/zh active Active
- 2011-02-22 JP JP2012501787A patent/JP5562409B2/ja active Active
- 2011-02-22 US US13/580,933 patent/US8889533B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6481311A (en) * | 1987-09-24 | 1989-03-27 | Nec Corp | Vapor phase growth device |
JP2006527157A (ja) * | 2003-06-13 | 2006-11-30 | エルピーイー・ソチエタ・ペル・アチオニ | 炭化珪素の結晶を成長させるシステム |
WO2007108401A1 (ja) * | 2006-03-20 | 2007-09-27 | Hitachi Kokusai Electric Inc. | 半導体装置の製造方法および基板処理装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014103188A (ja) * | 2012-11-19 | 2014-06-05 | Nippon Steel & Sumitomo Metal | エピタキシャル炭化珪素ウエハの製造方法 |
JP2014103363A (ja) * | 2012-11-22 | 2014-06-05 | Sumitomo Electric Ind Ltd | 炭化珪素半導体基板の製造方法 |
JP2015018869A (ja) * | 2013-07-09 | 2015-01-29 | 新日鐵住金株式会社 | 基板処理装置 |
Also Published As
Publication number | Publication date |
---|---|
US8889533B2 (en) | 2014-11-18 |
JPWO2011105370A1 (ja) | 2013-06-20 |
US20120315767A1 (en) | 2012-12-13 |
CN102763193A (zh) | 2012-10-31 |
JP5562409B2 (ja) | 2014-07-30 |
CN102763193B (zh) | 2016-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5562409B2 (ja) | 半導体装置の製造方法及び基板製造方法及び基板処理装置 | |
JP5735304B2 (ja) | 基板処理装置、基板の製造方法、半導体デバイスの製造方法およびガス供給管 | |
JP5564311B2 (ja) | 半導体装置の製造方法、基板処理装置及び基板の製造方法 | |
US9074284B2 (en) | Heat treatment apparatus | |
US8409352B2 (en) | Method of manufacturing semiconductor device, method of manufacturing substrate and substrate processing apparatus | |
JP2011205059A (ja) | 半導体装置の製造方法及び基板製造方法及び基板処理装置 | |
JP2012195565A (ja) | 基板処理装置、基板処理方法及び半導体装置の製造方法 | |
JP5560093B2 (ja) | 基板処理装置及び半導体装置の製造方法及び基板製造方法 | |
US20100282166A1 (en) | Heat treatment apparatus and method of heat treatment | |
JP2012178492A (ja) | 基板処理装置およびガスノズルならびに基板若しくは半導体デバイスの製造方法 | |
JP2012080035A (ja) | 基板処理装置及び基板製造方法 | |
JP2013197474A (ja) | 基板処理方法と半導体装置の製造方法、および基板処理装置 | |
JP2013197507A (ja) | 基板処理装置および基板処理方法ならびに半導体装置の製造方法 | |
WO2012120991A1 (ja) | 基板処理装置、及び、基板の製造方法 | |
US8771416B2 (en) | Substrate processing apparatus with an insulator disposed in the reaction chamber | |
JP2012175072A (ja) | 基板処理装置 | |
JP2013207057A (ja) | 基板処理装置、基板の製造方法、及び、基板処理装置のクリーニング方法 | |
JP2012191191A (ja) | 基板処理装置 | |
JP2011216848A (ja) | 半導体装置の製造方法及び基板の製造方法及び基板処理装置 | |
JP2012175077A (ja) | 基板処理装置、基板の製造方法、及び、半導体デバイスの製造方法 | |
JP2012178443A (ja) | 基板処理装置 | |
JP2012195355A (ja) | 基板処理装置及び基板の製造方法 | |
JP2011082326A (ja) | 半導体装置の製造方法及び基板の製造方法及び基板処理装置。 | |
JP2014179550A (ja) | 基板処理装置 | |
JP2012175074A (ja) | 基板処理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180009955.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11747331 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012501787 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13580933 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11747331 Country of ref document: EP Kind code of ref document: A1 |