WO2019188248A1 - 成膜装置及び成膜方法 - Google Patents

成膜装置及び成膜方法 Download PDF

Info

Publication number
WO2019188248A1
WO2019188248A1 PCT/JP2019/009981 JP2019009981W WO2019188248A1 WO 2019188248 A1 WO2019188248 A1 WO 2019188248A1 JP 2019009981 W JP2019009981 W JP 2019009981W WO 2019188248 A1 WO2019188248 A1 WO 2019188248A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
mounting table
silicon
forming apparatus
substrate
Prior art date
Application number
PCT/JP2019/009981
Other languages
English (en)
French (fr)
Inventor
正幸 原島
志生 佐野
由宗 三澤
洋克 小林
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to US17/041,278 priority Critical patent/US20210108331A1/en
Priority to KR1020207028946A priority patent/KR102492343B1/ko
Publication of WO2019188248A1 publication Critical patent/WO2019188248A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/12Substrate holders or susceptors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • C23C16/45504Laminar flow
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • C30B25/165Controlling or regulating the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Definitions

  • the present invention relates to a film forming apparatus and a film forming method for forming a silicon carbide (SiC) film.
  • SiC has been used for electronic devices such as semiconductor power devices.
  • a SiC film is formed by epitaxial growth in which a film having the same orientation as the substrate crystal is grown on a single crystal substrate.
  • Patent Document 1 as a SiC film deposition apparatus by epitaxial growth, a mounting table on which a SiC substrate as a substrate to be processed is mounted, a rotating shaft portion that rotatably supports the mounting table, and a mounting table are accommodated. What is provided with the susceptor which has interior space is disclosed.
  • an SiC film is formed on an SiC substrate by supplying a processing gas to the SiC substrate on the mounting table in the susceptor while heating the SiC substrate by induction heating the susceptor. To do.
  • a heat insulating material is provided between the susceptor and the mounting table, and this heat insulating material is used to reduce in-plane variation in the temperature of the SiC substrate on the mounting table. Thereby, the impurity concentration of the SiC film is made uniform in the plane.
  • the in-plane uniformity of the SiC film impurity concentration is achieved by suppressing the in-plane variation in the temperature of the SiC substrate on the mounting table.
  • it is not only the temperature of the SiC substrate on the mounting table that should be taken into account when making the impurity concentration of the SiC film uniform.
  • the present invention has been made in view of the above circumstances, and a new film forming method for adjusting the film forming conditions other than the temperature of the SiC substrate on the mounting table to form a SiC film having a uniform impurity concentration in the surface. And it aims at providing the film-forming apparatus.
  • one embodiment of the present invention is a film formation apparatus that forms a silicon carbide film on a substrate to be processed, the mounting table on which the substrate to be processed is mounted, and an outer side of the mounting table
  • a gas supply mechanism configured to form a flow of a source gas along a direction orthogonal to the central axis of the mounting table, and an induction coil for heating the substrate to be processed, and the gas supply
  • the mechanism has a higher pyrolysis temperature than the first Si-containing gas, in addition to the first Si-containing gas containing silicon and not containing carbon, and the first C-containing gas containing carbon and not containing silicon.
  • the gas supply mechanism that supplies the raw material gas along the direction orthogonal to the central axis of the mounting table from the outside of the mounting table includes the first Si-containing gas and the first C
  • the second Si-containing gas having a higher pyrolysis temperature than the first Si-containing gas and the second C-containing gas having a lower pyrolysis temperature than the first C-containing gas Is supplied as a raw material gas. Therefore, in the processing space, the number of carbon atoms is uniform with respect to the number of silicon atoms as the precursor of the silicon carbide film, so that a silicon carbide film having a uniform in-plane impurity concentration can be formed.
  • Another embodiment of the present invention is a film forming method for forming a silicon carbide film on a substrate to be processed, the outer surface of the mounting table on which the substrate to be processed is mounted with respect to the central axis of the mounting table. And supplying a source gas along a direction perpendicular to the first Si-containing gas containing silicon and not containing carbon, and first C containing silicon and not containing silicon.
  • the second Si-containing gas which has a higher thermal decomposition temperature than the Si-containing gas and contains silicon and does not contain carbon, and the lower pyrolysis temperature than the C-containing gas contains carbon and contains silicon. At least one gas of the second C-containing gas that is not supplied is supplied as the source gas.
  • a new film forming method and film forming apparatus for adjusting a film forming condition other than the temperature of a SiC substrate on a mounting table to form a SiC film having a uniform impurity concentration in a plane are provided. can do.
  • FIG. 1 is a diagram schematically showing an outline of a configuration of a film forming apparatus according to the first embodiment.
  • a film forming apparatus 1 in FIG. 1 includes a processing container 11 having a substantially rectangular parallelepiped shape.
  • An exhaust line 12 is connected to the processing container 11, and the processing container 11 can be adjusted to a predetermined reduced pressure state (pressure) by the exhaust line 12.
  • the exhaust line 12 has an exhaust pipe 12 a with one end connected to the processing container 11.
  • the exhaust pipe 12a is composed of an exhaust manifold or the like, and a vacuum pump 12b composed of a mechanical booster pump or the like is connected to the side opposite to the processing container side.
  • a pressure adjusting unit 12c that adjusts the pressure in the processing vessel 11 is provided, which includes an APC (automatic pressure control) valve, a proportional control valve, and the like.
  • the processing vessel 11 is provided with a pressure gauge 13, and the pressure in the processing vessel 11 is adjusted by the pressure adjustment unit 12 c based on the measurement result of the pressure gauge 13.
  • the processing container 11 includes a hollow square columnar processing container body 11a having openings at both ends, and side wall portions 11b connected to both ends of the processing container body 11a so as to close the opening.
  • the main body 11a and the side wall 11b are made of a dielectric material such as stainless steel or quartz.
  • the induction coil 14 connected to the high frequency power supply 14a is provided outside the processing container main body 11a.
  • the induction coil 14 heats the substrate to be processed.
  • the induction coil 14 heats a susceptor 23 described later, and heats the substrate to be processed by radiant heat from the susceptor 23 that has been induction-heated.
  • a gas supply mechanism 15 is configured to supply a raw material gas or the like as a film forming raw material.
  • the gas supply mechanism 15 includes a gas supply pipe 15a connected to the processing container 11, and gas supply pipes 15b 1 to 15b 6 connected to the gas supply pipe 15a.
  • the gas supply pipes 15b 1 to 15b 6 are provided with mass flow controllers (MFC) 15c 1 to 15c 6 and valves 15d 1 to 15d 6 , respectively.
  • the gas supply pipe 15b 1 is connected to a gas supply source 15e 1, SiH 4 gas is supplied from the wherein the source 15e 1.
  • each of the gas lines 15b 2 ⁇ 15b 6 are connected a gas supply source 15e 2 ⁇ 15e 6 is, C 3 H 8 gas from the gas supply source 15e 2 ⁇ 15e 6, H 2 gas, N 2 gas, SiCl 4 gas and Ar gas are supplied.
  • a SiH 4 gas, C 3 is supplied from the gas supply pipes 15b 1 to 15b 5 as a source gas for the film formation.
  • H 8 gas, H 2 gas, N 2 gas, and SiCl 4 gas are supplied to the processing vessel 11.
  • a gas supply source for TMA (trimethylaluminum) gas, a gas supply pipe, and the like may be provided for the formation of the p-type SiC film.
  • one of H 2 gas and Ar gas from the gas supply pipes 15b 3 and 15b 6 or these gases are used. It is mixed and supplied to the processing container 11.
  • the film forming apparatus 1 includes a control unit 100.
  • the control unit 100 is, for example, a computer and has a program storage unit (not shown).
  • the program storage unit includes a program for controlling the MFCs 15c 1 to 15c 6 and the valves 15d 1 to 15d 6 , the high-frequency power source 14a, the pressure adjustment unit 12c, the rotation driving unit and the elevation driving unit, which will be described later, and the like to perform the film formation Is also stored.
  • the above program is recorded on a computer-readable storage medium such as a computer-readable hard disk (HD), flexible disk (FD), compact disk (CD), magnetic optical desk (MO), or memory card. May have been installed in the control unit 100 from the storage medium.
  • a computer-readable storage medium such as a computer-readable hard disk (HD), flexible disk (FD), compact disk (CD), magnetic optical desk (MO), or memory card. May have been installed in the control unit 100 from the storage medium.
  • FIG. 2 is a cross-sectional view schematically showing an outline of the configuration inside the processing container 11 in the film forming apparatus 1 of FIG.
  • a mounting table 20 on which a SiC substrate W (hereinafter referred to as a substrate W) as a substrate to be processed is mounted via a holder H, and the mounting table 20 are rotated.
  • a rotating shaft 21 that supports the mounting table 20 and a lifting unit 22 that lifts and lowers the holder H on which the substrate W is mounted are provided.
  • a susceptor 23 as an accommodating portion is provided inside the processing container 11, and the susceptor 23 has an internal space S that accommodates the mounting table 20, and processing gas flows from one end of the mounting table 20. 20 is supplied to the internal space S so as to pass through the center of 20 and reach the other end of the mounting table 20.
  • the mounting table 20 is formed in a disk shape having a concave portion 20 a that is recessed downward in the vertical direction on the upper surface, and is provided horizontally inside the processing container 11. Further, the holder H is fitted into the recess 20a. The holder H is also rotated by rotating the mounting table 20 around the central axis P of the mounting table 20 and the rotating shaft 21 by the rotating shaft 21.
  • the mounting table 20 is made of a conductive material that has high heat resistance and can be easily heated by induction heating.
  • the mounting table 20 is made of a graphite member whose upper surface is coated with SiC.
  • the holder H is for carrying a plurality of substrates W together in and out of the film forming apparatus 1, and holds the plurality of substrates W.
  • a plurality of placement areas Ha on which the substrates W are respectively placed are formed on the upper surface of the holder H.
  • the plurality of placement areas Ha are arranged at equal intervals in the circumferential direction with respect to the center of the holder H, that is, the central axis P.
  • the holder H is made of a conductive material that has high heat resistance and can be easily heated by induction heating.
  • the holder H is made of a graphite member whose upper surface on which the substrate W is mounted is coated with SiC. .
  • the holder H is formed in a disk shape having a smaller diameter than the mounting table 20, for example.
  • One end of the rotary shaft 21 is connected to the lower center of the mounting table 20, and the other end penetrates the bottom of the processing container 11 to reach the lower side thereof, and is connected to a rotation drive mechanism (not shown).
  • the mounting table 20 is rotated by rotating the rotating shaft 21 by the rotation driving mechanism.
  • the elevating unit 22 is for transferring the substrate W between the transfer device for the substrate W outside the film forming apparatus 1 and the mounting table 20.
  • the holder 22 holds the holder H on which the substrate W is mounted. Deliver.
  • the holder H, that is, the substrate W is raised and lowered by raising and lowering the elevating part 22 by an elevating drive mechanism (not shown).
  • the susceptor 23 is formed in a rectangular parallelepiped shape having openings provided on two surfaces facing each other, and has a structure in which the processing gas is supplied from the opening on one surface and the processing gas is discharged from the opening on the other surface. Yes. In this structure, the processing gas supplied onto the substrate W is supplied and discharged along a direction parallel to the substrate W, which is a direction orthogonal to the central axis P.
  • the susceptor 23 is made of a conductive material that has high heat resistance and can be easily heated by induction heating.
  • the susceptor 23 is made of a graphite member whose surface on the substrate W side is coated with SiC.
  • a heat insulating material 24 that insulates the susceptor 23 and the processing container 11 is provided on the outer periphery of the susceptor 23.
  • the heat insulating material 24 is formed using, for example, a fibrous carbon material having a large porosity.
  • maintaining this heat insulating material 24 in the state which spaced apart the heat insulating material 24 from the processing container 11 is provided in the outer side of the heat insulating material 24.
  • the holder H on which the substrate W is placed is carried into the processing container 11 (step S1). Specifically, the holder H is transferred from the outside of the film forming apparatus 1 to the inside of the processing container 11 via a gate valve (not shown) using a transfer means (not shown) outside the film forming apparatus 1. Carry in and place it above the mounting table 20. Next, the elevating part 22 is raised and the holder H is supported by the elevating part 22. Next, the transport unit is retracted from the processing container 11, and the elevating unit 22 is lowered to place the holder H on the mounting table 20.
  • the raw material gas and the carrier gas are supplied from the gas supply mechanism 15 in the direction orthogonal to the central axis P in the processing container 11, and high frequency power is applied to the induction coil 14 from the high frequency power source 14 a.
  • the substrate W is heated, and an n-type SiC film is formed on the substrate W by epitaxial growth (step S2).
  • the valves 15d 1 to 15d 5 are opened, the flow rates are adjusted by the MFCs 15c 1 to 15c 5 , and the SiH 4 gas, C 3 H 8 gas, H 2 gas, and SiCl 4 gas are placed in the processing vessel 11. Supply.
  • the substrate W is heated by radiation or heat conduction from the induction-heated holder H, the mounting table 20, and the susceptor 23.
  • the pressure in the processing chamber 11 is, for example, 10 Torr to 600 Torr, and the temperature of the substrate W is, for example, 1500 ° C. to 1700 ° C.
  • the holder H on which the substrate W is supported is unloaded from the processing container 11 (step S3). Specifically, after the valves 15d 1 to 15d 5 are closed and the supply of the source gas and the carrier gas is stopped, the elevating unit 22 is raised and the holder H on which the substrate W is supported is raised. Then, a transfer means outside the film forming apparatus 1 is inserted into the processing container 11 through the gate valve and is positioned below the holder H. Thereafter, the elevating unit 22 is lowered, the holder H is transferred from the elevating unit 22 to the transfer unit, and the transfer unit is retracted from the processing container 11, thereby unloading the holder H holding the substrate W from the processing vessel 11. To do.
  • the supply of high-frequency power to the induction coil 14 may be cut off, but the high-frequency power to the induction coil 14 is controlled while controlling the temperature of the mounting table 20 and the susceptor 23 to be optimal in the next process. Is preferably supplied.
  • step S1 After carrying out the holder H, the processing is returned to step S1, the holder H on which another substrate W is placed is carried into the processing container 11, and the processing of steps S1 to S3 is repeated.
  • Si source gas is, for example, monosilane (SiH 4 ) gas
  • C source gas is, for example, propane. (C 3 H 8 ) gas was used.
  • the source gas is supplied from above so as to be substantially perpendicular to the SiC substrate surface, and in the side flow method, the source gas is supplied from the side so as to be substantially parallel to the SiC substrate surface.
  • the side flow method there are cases where a holder on which a plurality of SiC substrates are placed is rotated to grow. In this case, the length of the growth space above the SiC substrate, that is, in the growth space described above. The distance from the process gas supply side to the exhaust side is long. For example, when three SiC substrates having a diameter of 6 inches are mounted, the length of the growth space is about 340 mm. This is more than twice that of a downflow type apparatus that simultaneously processes a number of 6-inch diameter SiC substrates.
  • an n-type SiC film is formed by epitaxial growth using only SiH 4 gas and C 3 H 8 gas as source gases.
  • impurity concentration in the obtained SiC film there was a difference in impurity concentration in the obtained SiC film between the center portion of the holder H and the outer peripheral portion of the holder H.
  • FIG. 3 shows the result of one of the evaluation tests conducted by the present inventors in order to eliminate this impurity concentration non-uniformity.
  • FIG. 3 shows the impurity concentration distribution of an n-type SiC film formed using only SiH 4 gas as Si source gas, using only C 3 H 8 gas as C source gas, and using N 2 gas as dopant gas. The results are shown. Note that the processing container of the film forming apparatus used for the film formation and the structure in the processing container are the same as those of the film forming apparatus in FIGS. 1 and 2, and therefore, the reference numerals in FIGS. It explains using. Further, in the film formation in which the result of FIG. 3 was obtained, the substrate W was placed on the entire surface of the holder H, and the mounting table 20 on which the holder H was placed was not rotated.
  • the impurity concentration in the n-type SiC film that is, the nitrogen (N) concentration is high on the gas supply side, and decreases around the center of the holder H, that is, just above the rotating shaft 21. Again, it increases on the gas exhaust side.
  • the non-uniformity of the impurity concentration distribution as described above is considered to occur for the following reason. That is, in the side flow method, the supplied source gas is heated gently by the radiant heat from the susceptor 23 and is rapidly heated when passing through the susceptor 23. Therefore, the gas temperature of the raw material gas is low on the supply side and increases toward the exhaust side. Therefore, the amount of C 3 H 8 decomposed from about 800 ° C. into the precursor is small on the supply side and increases toward the exhaust side. On the other hand, SiH 4 is decomposed into a precursor from a low temperature of about 400 ° C.
  • the ratio of the number of carbon (C) atoms in the precursor to the number of silicon (Si) atoms in the precursor in the atmosphere (C / Si ratio) is very low.
  • the amount of incorporation of N, which is a dopant of the n-type SiC film, into the film increases due to the competition effect.
  • the Si concentration decreases due to the consumption of Si due to the reaction with the inner wall of the susceptor 23 and the like, whereas the decomposition amount of C 3 H 8 increases as described above. / Si ratio increases. As a result, N uptake decreases.
  • the concentration of C 2 H 2 that is a precursor of C in the atmosphere is saturated, while the decomposition amount of the N 2 decomposition amount increases as the temperature rises.
  • the amount (including the amount by which NHx generated when unnecessary reaction products adhering to the inner wall of the susceptor 23 are etched is taken into the substrate W) increases again. As a result, it is surmised that the non-uniformity of the impurity concentration distribution as described above occurs.
  • the thermal decomposition temperature refers to a temperature necessary for decomposing from a Si-containing gas into a precursor state of an SiC film.
  • the thermal decomposition temperature is a temperature required to decompose to Si atoms that are precursors of the SiC film when the Si-containing gas is SiH 4 gas, and is a precursor of the SiC film when the SiCl 4 gas is used.
  • the thermal decomposition temperature depends on the energy of bonds between Si atoms contained in the molecule and atoms other than Si atoms.
  • one of the Si-containing gases is SiH 4 gas, for example, a Si-containing gas containing atoms whose bond energy with Si is larger than the bond energy of Si—H, for example, SiCl 4 gas, is supplied simultaneously.
  • the bond energy of Si—H is 318 kJ / mol
  • the bond energy of Si—Cl is 381 kJ / mol.
  • SiH 4 gas as the first Si-containing gas and tetrachlorosilane (SiCl 4 as the second Si-containing gas having a higher thermal decomposition temperature than this SiH 4 gas are used.
  • Supply gas at the same time.
  • the film forming apparatus 1 according to the present embodiment the mounting table 20 on which the substrate W is placed on the entire surface of the holder H and the holder H is placed is rotated as in the evaluation test whose result is shown in FIG. FIG. 4 shows the result when the film is formed by supplying SiH 4 gas and SiCl 4 gas simultaneously as described above.
  • the total flow rate of the Si-containing gas in the film formation using the film formation apparatus 1 is the same as the flow rate of the SiH 4 gas when the conventional SiH 4 gas flows alone.
  • the flow rate of the SiH 4 gas is reduced compared to the conventional case, and the SiCl 4 gas is not easily decomposed into the precursor on the gas supply side. Therefore, as shown in FIG. 4, on the air supply side, the amount of Si atoms in the precursor is smaller than in the conventional case, and the amount of Si atoms adsorbed is reduced.
  • the SiCl 4 gas starts to decompose at a position closer to the exhaust side due to the high decomposition temperature, and supplements Si atoms in a region where the Si atoms as a precursor are insufficient (from the center to the exhaust side). Become.
  • the C / Si ratio distribution in the growth space is made uniform. Furthermore, since the N content in the SiC film from the supply side to the vicinity of the center of the holder H is dominated by the site competition effect, the N concentration increases near the center of the holder H. The in-plane uniformity of the N concentration is also improved.
  • the site competition means that N is substituted for the C site in the incorporation of the dopant into the SiC film, and aluminum (Al) is substituted for the Si site. This will affect the uptake of. For example, in the case of a low C / Si ratio, since there is little C competing with N, a high N concentration is obtained.
  • the film forming apparatus 1 can also obtain the following effects (1) to (5).
  • step bunching in which atomic steps on the surface of the substrate W / SiC film are bundled easily occurs. Therefore, conventionally, step bunching sometimes occurs because the exhaust side is in the C-rich state. However, in the film forming apparatus 1, since the C-rich state is not established on the exhaust side, the occurrence of step bunching can be suppressed. .
  • the process window other than the Si source gas flow rate can be enlarged.
  • the process window of the processing temperature for example, the substrate temperature or gas temperature during film formation
  • the gas supply ratio C / Si ratio
  • an environment in which Si droplets are not easily generated is created in advance using a gas species, so that a process for obtaining a high-quality epitaxial film can be achieved at a temperature lower than that of the conventional method.
  • the gas supply ratio is increased, the C / Si on the exhaust side of the processing space, which has been high in the past, can be lowered in this embodiment, so that it is higher than the conventional maximum gas supply ratio in which defects occur on the exhaust side.
  • the process can be carried out with a high gas supply ratio.
  • Unnecessary reaction products generated in the structure (for example, the heat insulating material 24) on the air supply side of the film forming apparatus may come into contact with the transport apparatus that carries in and out the SiC substrate. Therefore, cleaning is performed to remove the reaction product.
  • the Si concentration on the gas supply side of the film forming apparatus 1 is lower than the conventional one, the amount of the unnecessary reaction products is small, so that the cleaning cycle can be extended and the throughput can be increased. Can be improved.
  • SiCl 4 gas is used as the second Si-containing gas.
  • trichlorosilane (SiHCl 3 ) gas, dichlorosilane (SiH 2 Cl 2 ) gas, monochlorosilane (SiH 3 Cl) gas, Tetrafluorosilane (SiF 4 ) gas, trifluorosilane (SiHF 3 ) gas, difluorosilane gas (SiH 2 F 2 ) gas, or monofluorosilane (SiH 3 F) gas may be used.
  • Si—F bond binding energy of SiF 4 gas and SiH 2 F 2 gas is 565 kcal / mol, which is higher than the Si—Cl bond binding energy, and the thermal decomposition temperature of SiF 4 gas and SiH 2 F 2 gas. Is higher than SiCl 4 gas or SiHCl 3 gas.
  • the film forming apparatus of the second embodiment simultaneously supplies gas having different pyrolysis temperatures as a C-containing gas that does not contain Si atoms but contains C atoms.
  • the film forming apparatus 1 is the same as that in the first embodiment, instead of the gas supply pipe 15 b 5 , the MFC 15 c 5 , the valve 15 d 5 , and the gas supply source 15 e 5 in the first embodiment.
  • It has a gas supply pipe 15b 7 , an MFC 15c 7 and a valve 15d 7, and a gas supply source 15e 7 for supplying acetylene (C 2 H 2 ) gas. Then, in the film forming apparatus 1 of this embodiment, and a C 3 H 8 gas is as a first C-containing gas, and an acetylene gas as the C 3 H 8 thermal decomposition temperature is lower than the gas the second C-containing gas Supply at the same time.
  • the low C / Si ratio on the supply side and the high C / Si ratio on the exhaust side from the center can be suppressed. Distribution is made uniform. Therefore, the same effect as that of the first embodiment can be obtained.
  • acetylene gas is used as the second C-containing gas, but ethylene (C 2 H 4 ) gas or ethane (C 2 H 6 ) gas may be used.
  • the present invention can also be applied to the growth of a p-type SiC film.
  • the incorporation of Al can be suppressed by Si enrichment in the vicinity of the center of the holder H, so that the impurity concentration in the SiC film is in-plane. It can be made uniform.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Fluid Mechanics (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

被処理基板上に炭化ケイ素膜を形成する成膜装置は、前記被処理基板が載置される載置台と、前記載置台の外側から当該載置台の中心軸線に対して直交する方向に沿った原料ガスの流れを形成するよう構成されたガス供給機構と、前記被処理基板を加熱する誘導コイルと、を有し、前記ガス供給機構は、ケイ素を含有し炭素を含有しない第1のSi含有ガス及び炭素を含有しケイ素を含有しない第1のC含有ガスに加えて、前記第1のSi含有ガスよりも熱分解温度が高くケイ素を含有し炭素を含有しない第2のSi含有ガスおよび前記第1のC含有ガスよりも熱分解温度が低く炭素を含有しケイ素を含有しない第2のC含有ガスの少なくとも一方のガスを、前記原料ガスとして供給する。

Description

成膜装置及び成膜方法
(関連出願の相互参照)
 本願は、2018年3月26日に日本国に出願された特願2018-58641号に基づき、優先権を主張し、その内容をここに援用する。
 本発明は、炭化ケイ素(SiC)膜の成膜処理を行う成膜装置及び成膜方法に関する。
 近年、半導体パワーデバイスといった電子デバイスに、SiCが用いられるようになっている。このような電子デバイスの製造では、単結晶の基板上に基板結晶と同じ方位関係を有する膜を成長させるエピタキシャル成長によって、SiC膜が成膜される。
 特許文献1には、エピタキシャル成長によるSiC膜の成膜装置として、被処理基板としてのSiC基板が載置される載置台と、載置台を回転可能に支持する回転軸部と、載置台を収容する内部空間を有するサセプタとを備えるものが開示されている。この特許文献1の成膜装置では、サセプタを誘導加熱することでSiC基板を加熱しながら、サセプタ内の載置台上のSiC基板に処理ガスを供給することにより、SiC基板上にSiC膜を形成する。
 また、特許文献1の成膜装置では、上記サセプタと載置台との間に断熱材を設け、この断熱材を用いて、載置台上のSiC基板の温度の面内バラつきを低減させている。これによりSiC膜の不純物濃度を面内で均一にしている。
日本国特開2016-100462号公報
 特許文献1では上述のように載置台上のSiC基板の温度の面内バラつきを抑えることで、SiC膜の不純物濃度の面内均一化を図っていた。しかし、SiC膜の不純物濃度の均一化に際し考慮すべきは、載置台上のSiC基板の温度のみではない。
 本発明は、上記事情に鑑みてなされたものであり、載置台上のSiC基板の温度以外の成膜条件を調整して不純物濃度が面内で均一なSiC膜を形成する新たな成膜方法及び成膜装置を提供することを目的とする。
 上記課題を解決するため、本発明の一態様は、被処理基板上に炭化ケイ素膜を形成する成膜装置であって、前記被処理基板が載置される載置台と、前記載置台の外側から当該載置台の中心軸線に対して直交する方向に沿った原料ガスの流れを形成するよう構成されたガス供給機構と、前記被処理基板を加熱する誘導コイルと、を有し、前記ガス供給機構は、ケイ素を含有し炭素を含有しない第1のSi含有ガス及び炭素を含有しケイ素を含有しない第1のC含有ガスに加えて、前記第1のSi含有ガスよりも熱分解温度が高くケイ素を含有し炭素を含有しない第2のSi含有ガスおよび前記第1のC含有ガスよりも熱分解温度が低く炭素を含有しケイ素を含有しない第2のC含有ガスの少なくとも一方のガスを、前記原料ガスとして供給する。
 本発明の一態様によれば、載置台の外側から当該載置台の中心軸線に対して直交する方向に沿って原料ガスを供給するガス供給機構が、第1のSi含有ガス及び第1のC含有ガスに加えて、第1のSi含有ガスよりも熱分解温度が高い第2のSi含有ガスおよび第1のC含有ガスよりも熱分解温度が低い第2のC含有ガスの少なくとも一方のガスを原料ガスとして供給する。したがって、処理空間において、炭化ケイ素膜の前駆体としてのケイ素原子の数に対する炭素原子の数が均一となるので、不純物濃度が面内で均一な炭化ケイ素膜を形成することができる。
 別な観点による本発明の一態様は、被処理基板上に炭化ケイ素膜を形成する成膜方法であって、前記被処理基板が搭載された載置台の外側から当該載置台の中心軸線に対して直交する方向に沿って原料ガスを供給する供給工程を有し、該供給工程は、ケイ素を含有し炭素を含有しない第1のSi含有ガス及び炭素を含有しケイ素を含有しない第1のC含有ガスに加えて、前記Si含有ガスよりも熱分解温度が高くケイ素を含有し炭素を含有しない第2のSi含有ガスおよび前記C含有ガスよりも熱分解温度が低く炭素を含有しケイ素を含有しない第2のC含有ガスの少なくとも一方のガスを、前記原料ガスとして供給する。
 本発明の一態様によれば、載置台上のSiC基板の温度以外の成膜条件を調整して不純物濃度が面内で均一なSiC膜を形成する新たな成膜方法及び成膜装置を提供することができる。
第1実施形態に係る成膜装置の構成の概略を模式的に示した図である。 図1の成膜装置における処理容器内の構成の概略を模式的に示した断面図である。 本発明者らが行った評価試験の結果を示す図である。 第1実施形態に係る成膜装置及び成膜方法の作用及び効果の説明図である。 第2実施形態に係る成膜装置の構成の概略を模式的に示した図である。
 以下、本実施形態について、図面を参照しながら説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。
(第1実施形態)
 図1は、第1実施形態に係る成膜装置の構成の概略を模式的に示した図である。
 図1の成膜装置1は、略直方体状の処理容器11を備える。
 処理容器11には、排気ライン12が接続されており、処理容器11は、排気ライン12により所定の減圧状態(圧力)に調整することが可能となっている。排気ライン12は、処理容器11に一端が接続される排気管12aを有する。排気管12aは、排気マニホールド等から成り、処理容器側とは反対側にメカニカルブースターポンプ等からなる真空ポンプ12bが接続されている。排気管12aにおける処理容器11と真空ポンプ12bとの間には、APC(自動圧力制御)バルブや比例制御弁等からなる、処理容器11内の圧力を調整する圧力調整部12cが設けられている。また、処理容器11には、圧力計13が設けられており、圧力調整部12cによる処理容器11内の圧力の調整は、圧力計13での計測結果に基づいて行われる。
 処理容器11は、両端に開口部を有する中空の四角柱状の処理容器本体11aと、上記開口部を塞ぐように処理容器本体11aの両端それぞれに接続される側壁部11bとを有し、処理容器本体11a及び側壁部11bは、ステンレスまたは、石英等の誘電体材料により形成されている。
 処理容器本体11aの外側には、高周波電源14aに接続された誘導コイル14が設けられている。誘導コイル14は、被処理基板を加熱するものであり、例えば、後述のサセプタ23等を誘導加熱し、誘導加熱されたサセプタ23からの輻射熱により被処理基板を加熱する。
 処理容器11内には、ガス供給機構15により成膜の原料となる原料ガス等が供給されるよう構成されている。ガス供給機構15は、処理容器11に接続されるガス供給管15aと、該ガス供給管15aに接続されるガス供給管15b~15bとを有する。
 ガス供給管15b~15bにはそれぞれ、質量流量コントローラ(MFC)15c~15cとバルブ15d~15dとが設けられている。
 ガス供給管15bには、ガス供給源15eが接続され、該供給源15eからSiHガスが供給される。同様に、ガスライン15b~15bにはそれぞれガス供給源15e~15eが接続され、各ガス供給源15e~15eからCガス、Hガス、Nガス、SiClガス、Arガスが供給される。
 被処理基板としてのSiC基板上に、エピタキシャル成長によりn型のSiC膜の成膜を行う場合には、成膜のための原料ガスとして、ガス供給管15b~15bからSiHガス、Cガス、Hガス、Nガス、SiClガスが処理容器11に供給される。なお、p型のSiC膜の成膜のために、TMA(トリメチルアルミニウム)ガス用のガス供給源とガス供給管等を設けておいてもよい。
 また、処理容器11内の構造物に付着した異物を除去する際には、例えば、ガス供給管15b、15bからHガス、Arガスのうちの1種が、または、これらのガスが混合されて、処理容器11に供給される。
 また、成膜装置1は制御部100を備えている。制御部100は、例えばコンピュータであり、プログラム格納部(図示せず)を有している。プログラム格納部には、MFC15c~15cやバルブ15d~15d、高周波電源14a、圧力調整部12c、後述の回転駆動部や昇降駆動部等を制御して成膜処理を行うためのプログラムも格納されている。
 なお、上記のプログラムは、例えばコンピュータ読み取り可能なハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルデスク(MO)、メモリーカードなどのコンピュータに読み取り可能な記憶媒体に記録されていたものであって、その記憶媒体から制御部100にインストールされたものであってもよい。
 続いて、処理容器11内の構成について説明する。図2は、図1の成膜装置1における処理容器11内の構成の概略を模式的に示した断面図である。
 処理容器11の内部には、図2に示すように、被処理基板としてのSiC基板W(以下、基板W)がホルダHを介して載置される載置台20と、載置台20を回転させると共に該載置台20を支持する回転軸21と、基板Wが載置されたホルダHを昇降させる昇降部22と、が設けられている。また、処理容器11の内部には収容部としてのサセプタ23が設けられており、サセプタ23は、載置台20を収容する内部空間Sを有すると共に、処理ガスが、載置台20の一端から載置台20の中心上を通り載置台20の他端に至るように上記内部空間Sに供給される。
 載置台20は、鉛直方向下側に凹む凹部20aを上面に有する円板状に形成されており、処理容器11の内部において水平に設けられている。また、上記凹部20aにはホルダHが嵌る。この載置台20が回転軸21により載置台20及び回転軸21の中心軸線Pを中心に回転されることにより、ホルダHも回転されるようになっている。
 載置台20は、耐熱性が高くかつ誘導加熱による加熱が容易な導電性材料で形成されており、例えば、上面がSiCによりコーティングされたグラファイト製の部材から構成される。
 ホルダHは、複数枚の基板Wをまとめて成膜装置1に搬出入するためのものであり、複数枚の基板Wを保持する。このホルダHの上面には、基板Wがそれぞれ載置される複数の載置領域Haが形成されている。複数の載置領域Haは、ホルダHの中心、すなわち、中心軸線Pに対して周方向に等間隔で配列されている。また、ホルダHは、耐熱性が高くかつ誘導加熱による加熱が容易な導電性材料で形成されており、例えば、基板Wが搭載される上面がSiCによりコーティングされたグラファイト製の部材から構成される。なお、ホルダHは例えば載置台20より小径の円板状に形成されている。
 回転軸21は、その一端が載置台20の下部中央に接続され、他端が処理容器11の底部を突き抜けてその下方に至り、回転駆動機構(図示せず)に接続されている。上記回転駆動機構により回転軸21が回転されることにより、載置台20が回転するようになっている。
 昇降部22は、成膜装置1の外部の基板Wの搬送装置と載置台20との間で基板Wを受け渡すためのものであり、本例では、基板Wが載置されたホルダHを受け渡す。この昇降部22が昇降駆動機構(図示せず)により昇降されることにより、ホルダHすなわち基板Wが昇降されるようになっている。
 サセプタ23は、互いに対向する二つの面に開口が設けられた直方体状に形成され、一方の面の開口から処理ガスが供給され、他方の面の開口から処理ガスが排出される構造となっている。この構造では、基板W上に供給される処理ガスは、中心軸線Pに対して直交する方向である基板Wに平行な方向に沿って供給され、排出される。
 サセプタ23は、耐熱性が高くかつ誘導加熱による加熱が容易な導電性材料で形成されており、例えば、基板W側の面がSiCによりコーティングされたグラファイト製の部材から構成される。
 また、サセプタ23の外周には、該サセプタ23と処理容器11とを断熱する断熱材24が設けられている。断熱材24は、例えば、空隙率が大きい繊維状のカーボン材料を用いて形成される。
 なお、図示は省略するが、断熱材24の外側には、断熱材24を処理容器11から離間させた状態で該断熱材24を保持するための保持構造体が設けられている。
 次に、成膜装置1を用いた、成膜処理を含む基板処理を説明する。
 まず、基板Wが載置されたホルダHを、処理容器11内に搬入する(ステップS1)。具体的には、上記ホルダHを、成膜装置1の外部の搬送手段(図示せず)を用いて、成膜装置1の外部からゲートバルブ(図示せず)を介して処理容器11内に搬入し、載置台20の上方に位置させる。次に、昇降部22を上昇させ、当該昇降部22によりホルダHを支持する。次いで、上記搬送手段を処理容器11内から退避させると共に、昇降部22を下降させ、ホルダHを載置台20上に載置する。
 ホルダHの搬入後、ガス供給機構15から原料ガスとキャリアガスを、処理容器11内において中心軸線Pに対して直交する方向に供給すると共に、高周波電源14aから高周波電力を、誘導コイル14に印加することで基板Wを加熱し、エピタキシャル成長により基板W上にn型のSiC膜を成膜する(ステップS2)。具体的には、バルブ15d~15dを開状態とし、MFC15c~15cで流量を調整して、処理容器11内にSiHガス、Cガス、Hガス、SiClガスを供給する。また、高周波電源14aから誘導コイル14に高周波電力を印加することで、誘導加熱されたホルダH、載置台20、サセプタ23からの輻射や熱伝導により基板Wを加熱する。なお、成膜中において、処理容器11内の圧力は例えば10Torr~600Torrであり、基板Wの温度は例えば1500℃~1700℃である。
 成膜完了後、基板Wが支持されているホルダHを処理容器11から搬出する(ステップS3)。具体的には、バルブ15d~15dを閉状態とし、原料ガスとキャリアガスの供給を停止した後、昇降部22を上昇させ、基板Wが支持されているホルダHを上昇させる。そして、成膜装置1の外部の搬送手段をゲートバルブを介して処理容器11内に挿入し、ホルダHの下方に位置させる。その後、昇降部22を下降させ、ホルダHを昇降部22から上記搬送手段に受け渡し、該搬送手段を処理容器11から退避させることにより、基板Wが保持されているホルダHを処理容器11から搬出する。なお、基板Wの搬出中、誘導コイル14への高周波電力の供給を遮断してもよいが、次工程において最適な載置台20及びサセプタ23の温度になるよう制御しながら誘導コイル14へ高周波電力を供給することが好ましい。
 ホルダHの搬出後、ステップS1に処理を戻して、別の基板Wが載置されたホルダHを処理容器11内に搬入し、ステップS1~ステップS3の処理を繰り返す。
 続いて、本実施形態の作用及び効果を説明する。
 従来のエピタキシャル成長によるSiC膜の成膜では、Si原料ガス及びC原料ガスとしてそれぞれ単一のものを用いることが多く、Si原料ガスとしては例えばモノシラン(SiH)ガス、C原料ガスとしては例えばプロパン(C)ガスが用いられていた。
 一方で、SiC膜の成膜装置における原料ガスの供給方式として、ダウンフロー方式とサイドフロー式とがある。ダウンフロー方式では、原料ガスがSiC基板表面に対して略垂直となるように上から供給され、サイドフロー方式では、原料ガスがSiC基板表面に対して略平行となるように横から供給される。
 また、サイドフロー方式を採用する成膜装置では、SiC基板を複数枚乗せたホルダを回転させて成長させる場合があり、この場合、SiC基板上方の成長空間の長さ、すなわち、上記成長空間における処理ガスの給気側から排気側までの距離が長い。例えば、直径6インチのSiC基板を3枚載せた場合には上記成長空間の長さは340mm程度となる。これは、直径6インチのSiC基板を多数枚同時に処理するダウンフロー方式の装置の2倍以上である。
 このように上記成長空間の長いサイドフロー方式を採用した成膜装置において、従来と同様に、原料ガスとしてSiHガスとCガスのみを用いてn型SiC膜をエピタキシャル成長により成膜する場合、ホルダHの中心部とホルダHの外周部とでは、得られるSiC膜において不純物濃度に差があった。
 この不純物濃度の不均一性を解消するべく本発明者らが行った評価試験のうちの1つの結果が図3に示されている。図3には、Si原料ガスとしてSiHガスのみを用いC原料ガスとしてCガスのみを用いドーパントガスとしてNガスを用いて成膜されたn型SiC膜の不純物濃度分布を測定した結果が示されている。なお、この成膜の際に用いた成膜装置の処理容器及び処理容器内の構造は図1及び図2の成膜装置と同様であるため、以下の説明では図1及び図2の符号を用いて説明する。また、図3の結果が得られた成膜では、ホルダHの全面に基板Wを載置しホルダHが載置された載置台20は回転させなかった。
 図3に示すように、上述の評価試験では、n型SiC膜における不純物濃度すなわち窒素(N)濃度は、ガス給気側で高く、ホルダHの中央あたり、すなわち回転軸21の直上あたりにかけて低下し、再びガス排気側で増加している。
 上述のような不純物濃度分布の不均一性は、以下の理由から生じるものと考えられる。すなわち、サイドフロー方式では、供給された原料ガスはサセプタ23からの輻射熱により緩やかに加熱され、サセプタ23内を通過する際に急激に加熱される。したがって、原料ガスのガス温度は、給気側が低温であり排気側に向かって温度が上昇する。したがって、800℃付近から前駆体に分解するとされるCの分解量は給気側で小さく、排気側に向かって増加していく。一方で、SiHは400℃程度の低温から前駆体に分解される。したがって、ガス供給口側では、雰囲気中の前駆体におけるケイ素(Si)原子の数に対する同前駆体における炭素(C)原子の数の比(C/Si比)が非常に低いため、後述のサイトコンペティション効果により、n型SiC膜のドーパントであるNの膜内への取り込み量が大きくなる。また、排気側に向かうと、サセプタ23の内壁との反応等によりSiが消費されることによりSi濃度は減少するのに対し、Cの分解量は前述のように増加するため、C/Si比は高くなる。その結果、Nの取り込みは減少してくる。そして、排気側の近傍になると、雰囲気中のCにかかる前駆体であるCの濃度は飽和する一方で、温度上昇に伴いN分解量の分解量は増加するため、Nの取り込み量(サセプタ23の内壁に付着した不要な反応生成物がエッチングされた際に発生するNHxが基板Wに取り込まれる分も含む)は再び増加する。その結果、上述のような不純物濃度分布の不均一性が生じていると推察される。
 この推察結果を踏まえ、本発明者は、鋭意検討した結果、C原子を含まないがSi原子を含むSi含有ガスとして熱分解温度が異なるものを同時に供給することで、SiC膜内の不純物濃度分布の均一性を向上可能であることを知見した。ここで、熱分解温度とは、Si含有ガスからSiC膜の前駆体の状態に分解するために必要な温度のことをいう。例えば、熱分解温度は、Si含有ガスがSiHガスの場合はSiC膜の前駆体であるSi原子まで分解するのに必要な温度であり、SiClガスの場合はSiC膜の前駆体であるSiClまで分解するのに必要な温度である。熱分解温度は、分子中に含まれるSi原子と、Si原子以外の原子との結合のエネルギーに依存する。Si含有ガスの1つがSiHガスの場合は、例えばSiとの結合エネルギーがSi-Hの結合エネルギーより大きい原子を含むSi含有ガス、例えばSiClガスを同時に供給する。ここで、Si-Hの結合エネルギーは318kJ/molであり、Si-Clの結合エネルギーは381kJ/molである。
 上述の知見に基づき、本実施形態では、成膜に際し、第1のSi含有ガスとしてのSiHガスと、このSiHガスより熱分解温度が高い第2のSi含有ガスとしてテトラクロロシラン(SiCl)ガスとを同時に供給する。本実施形態にかかる成膜装置1を用いて、図3で結果を示した評価試験と同様に、ホルダHの全面に基板Wを載置しホルダHが載置された載置台20は回転させずに、上述のようにSiHガスとSiClガスとを同時に供給して成膜した場合の結果を図4に示す。なお、以下の説明では、成膜装置1を用いた成膜におけるSi含有ガスの総流量と、従来のSiHガスを単体で流す場合の当該SiHガスの流量とが同じであるものとする
 成膜装置1を用いた成膜では、従来に比べ、SiHガスの流量が減少しており、また、ガス給気側においてSiClガスは前駆体に分解されにくい。そのため、図4に示すように、給気側において、従来に比べて、前駆体におけるSi原子の量が少なく、Si原子の吸着量は減少する。一方、SiClガスは、分解温度の高さから、より排気側の位置で分解が始まり、従来前駆体としてのSi原子が不足していた領域(中央から排気側)にSi原子を補うようになる。これにより、給気側での低C/Si比の抑制と、中央から排気側での高C/Si比の抑制が可能となり、成長空間のC/Si比の分布が均一化される。さらに、給気側からホルダHの中央付近にかけてのSiC膜内へのNの取り込みはサイトコンペティション効果が支配的であったことから、上記ホルダHの中央付近でN濃度が増加するため、SiC膜内のN濃度の面内均一性も向上する。
 なお、サイトコンペティションとは、SiC膜へのドーパントの取り込みにおいてNはCサイトを置換し、アルミニウム(Al)はSiサイトを置換することから、表面上でCもしくはSiとドーパントの競合が生じ、ドーパントの取り込みに影響が出ることをいう。例えば、低C/Si比の場合、Nと競合するCが少ないことから高N濃度となる。
 以上は、載置台20を回転させず停止させた状態で成膜した場合についての説明である。しかし、回転させた場合にも、ホルダHの外周付近に位置する基板領域でのN濃度増加が抑制され、ホルダH中央付近でのN濃度が増加されため、SiC膜内のN濃度の面内均一性が向上する。
 また、成膜装置1では以下の(1)~(5)の効果も得られる。
 (1)通常、過度に低C/Si比な状態(Siリッチ状態ともいう)では、Siドロップレットが発生し当該Siドロップレットに起因した欠陥が発生する。また、過度に高C/Si比な状態(Cリッチ状態ともいう)では△欠陥が発生する。従来は、前述のようにガスの給気側では低C/Si比であり、ガスの排気側では高C/Si比であった。それに対し、成膜装置1では、給気側において低C/Si比が抑制され、排気側において高C/Si比が抑制されるため、欠陥の数を減少させることができる。
 (2)Cリッチ状態では、基板W/SiC膜の表面の原子ステップが束になるステップバンチングが発生しやすい。したがって、従来は、排気側でCリッチ状態となるためステップバンチングが生じることがあったが、成膜装置1では、排気側においてCリッチ状態とならないため、ステップバンチングの発生を抑制することができる。
 (3)従来は、給気側において雰囲気中の前駆体におけるSi濃度が局所的に高くなり過ぎることでSiドロップレットが発生するため、Siの原料ガスの供給量を抑えざるを得ず、更なる高速成長化を阻害していた。それに対し、本実施形態によれば、従来のような給気側におけるSi濃度の局所的な増加が生じないため、Si原料ガスの流量を増加させた高速成長も行うことができる。
 (4)さらに、本実施形態によれば、従来のような給気側におけるSi濃度の局所的な増加が生じないため、Siの原料ガス流量以外のプロセスウィンドウも拡大させることができる。例えば、処理温度(例えば、成膜時の基板温度やガス温度)や、ガス供給比(C/Si比)のプロセスウィンドウを拡大させることができる。より具体的には、処理温度を下げる場合、低温化によりSiドロプレットは生じ易くなることから、従来の方法では所定の温度以下となると高品質なエピ膜を得るプロセスができないのに対し、本実施形態では、Siドロプレットが生じ難い環境をガス種により予め作ることで、従来の方法より低温まで、高品質なエピ膜を得るプロセスが可能となる。
同様に、ガス供給比を高める場合、従来高かった処理空間の排気側のC/Siを本実施形態では下げておくことができるため、排気側で欠陥発生が生じる従来の最大のガス供給比より高いガス供給比まで高めて、プロセスを実施できる。
 (5)成膜装置の給気側の構造物(例えば断熱材24)に生じる不要な反応生成物はSiC基板を搬入出する搬送装置と接触するおそれがある。そのため、上記反応生成物を取り除くためにクリーニングが行われている。本実施形態では、成膜装置1のガスの給気側におけるSi濃度が従来に比べて低いため、上記不要な反応生成物の量が少ないので、クリーニング周期を長期化することができ、スループットを向上させることができる。
 以上の説明では、第2のSi含有ガスとして、SiClガスを用いていたが、トリクロロシラン(SiHCl)ガスや、ジクロロシラン(SiHCl)ガス、モノクロロシラン(SiHCl)ガス、テトラフルオロシラン(SiF)ガス、トリフルオロシラン(SiHF)ガス、ジフルオロシランガス(SiH)ガス、モノフルオロシラン(SiHF)ガスを用いてもよい。なお、SiFガス、SiHガスが有するSi-F結合の結合エネルギーは565kcal/molであり、Si-Cl結合の結合エネルギーより高く、SiFガス、SiHガスの熱分解温度は、SiClガスやSiHClガスより高い。
 なお、第2のSi含有ガスとして、単一のガスを用いていたが、複数のガスを混合して用いてもよい。
(第2の実施形態)
 第1の実施形態では、C原子を含まないがSi原子を含むSi含有ガスとして熱分解温度が異なるものを同時に供給していた。これに対し、第2の実施形態の成膜装置は、Si原子を含まないがC原子を含むC含有ガスとして熱分解温度が異なるものを同時に供給する。具体的には、図5に示すように、成膜装置1は、第1実施形態におけるガス供給管15b、MFC15c、バルブ15d、ガス供給源15eに代えて、第1実施形態におけるガス供給管15b、MFC15c及びバルブ15dと、アセチレン(C)ガスを供給するガス供給源15eとを有する。そして、本実施形態の成膜装置1では、第1のC含有ガスとしてのCガスと、このCガスより熱分解温度が低い第2のC含有ガスとしてアセチレンガスとを同時に供給する。
 本実施形態の成膜装置1でも、給気側での低C/Si比の抑制と、中央から排気側での高C/Si比の抑制が可能であるため、成長空間のC/Si比の分布が均一化される。したがって、第1実施形態と同様の効果を得ることができる。
 本実施形態では、第2のC含有ガスとして、アセチレンガスを用いていたが、エチレン(C)ガスや、エタン(C)ガスを用いてもよい。
 以上の説明は、n型SiC膜の成膜に関するものであるが、p型のSiC膜の成長にも本発明は適用することができる。
 なお、p型SiC膜の場合は、n型SiC膜とは異なり、ホルダHの中央付近でのSiリッチ化によりAlの取り込みを抑制することができるため、SiC膜内の不純物濃度を面内で均一にすることができる。
 以上、本発明の実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到しうることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
1 成膜装置
11 処理容器
12 排気ライン
14 誘導コイル
15 ガス供給機構
20 載置台
21 回転軸
23 サセプタ
24 断熱材
100 制御部
 

Claims (8)

  1.  被処理基板上に炭化ケイ素膜を形成する成膜装置であって、
     前記被処理基板が載置される載置台と、
     前記載置台の外側から当該載置台の中心軸線に対して直交する方向に沿った原料ガスの流れを形成するよう構成されたガス供給機構と、
     前記被処理基板を加熱する誘導コイルと、を有し、
     前記ガス供給機構は、ケイ素を含有し炭素を含有しない第1のSi含有ガス及び炭素を含有しケイ素を含有しない第1のC含有ガスに加えて、前記第1のSi含有ガスよりも熱分解温度が高くケイ素を含有し炭素を含有しない第2のSi含有ガスおよび前記第1のC含有ガスよりも熱分解温度が低く炭素を含有しケイ素を含有しない第2のC含有ガスの少なくとも一方のガスを、前記原料ガスとして供給する。
  2.  請求項1に記載の成膜装置において、
     前記載置台をその内部空間に収容するよう構成されたサセプタをさらに有する。
  3.  請求項1に記載の成膜装置において、
     前記載置台は、回転軸を介して回転可能に当該回転軸に固定されている。
  4.  請求項3に記載の成膜装置において、
     前記載置台は、前記回転軸の中心軸線に対して周方向に配列された複数の載置領域において複数の被処理基板を保持するように構成されている。
  5.  請求項1に記載の成膜装置において、
     前記第1のSi含有ガスは、モノシランガスであり、
     前記第2のSi含有ガスは、ケイ素と水素との間の結合エネルギーよりも高いエネルギーでケイ素と結合された原子を含む。
  6.  請求項5に記載の成膜装置において、
     前記第2のSi含有ガスは、テトラクロロシランガス、トリクロロシランガス、ジクロロシランガス、モノクロロシランガス、テトラフルオロシランガス、トリフルオロシランガス、ジフルオロシランガスおよびモノフルオロシランガスの少なくともいずれか1つである。
  7.  請求項1に記載の成膜装置において、
     前記第1のC含有ガスは、プロパンガスであり、
     前記第2のC含有ガスは、アセチレンガス、エチレンガスおよびエタンガスの少なくともいずれか1つである。
  8.  被処理基板上に炭化ケイ素膜を形成する成膜方法であって、
     前記被処理基板が搭載された載置台の外側から当該載置台の中心軸線に対して直交する方向に沿って原料ガスを供給する供給工程を有し、
     該供給工程は、ケイ素を含有し炭素を含有しない第1のSi含有ガス及び炭素を含有しケイ素を含有しない第1のC含有ガスに加えて、前記Si含有ガスよりも熱分解温度が高くケイ素を含有し炭素を含有しない第2のSi含有ガスおよび前記C含有ガスよりも熱分解温度が低く炭素を含有しケイ素を含有しない第2のC含有ガスの少なくとも一方のガスを、前記原料ガスとして供給する。
PCT/JP2019/009981 2018-03-26 2019-03-12 成膜装置及び成膜方法 WO2019188248A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/041,278 US20210108331A1 (en) 2018-03-26 2019-03-12 Film forming apparatus and film forming method
KR1020207028946A KR102492343B1 (ko) 2018-03-26 2019-03-12 성막 장치 및 성막 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018058641A JP7001517B2 (ja) 2018-03-26 2018-03-26 成膜装置及び成膜方法
JP2018-058641 2018-03-26

Publications (1)

Publication Number Publication Date
WO2019188248A1 true WO2019188248A1 (ja) 2019-10-03

Family

ID=68061620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009981 WO2019188248A1 (ja) 2018-03-26 2019-03-12 成膜装置及び成膜方法

Country Status (4)

Country Link
US (1) US20210108331A1 (ja)
JP (1) JP7001517B2 (ja)
KR (1) KR102492343B1 (ja)
WO (1) WO2019188248A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015198213A (ja) * 2014-04-03 2015-11-09 新日鐵住金株式会社 エピタキシャル炭化珪素ウェハの製造方法及びそれに用いる炭化珪素単結晶基板のホルダー
WO2016051975A1 (ja) * 2014-10-01 2016-04-07 住友電気工業株式会社 炭化珪素エピタキシャル基板
WO2016129685A1 (ja) * 2015-02-12 2016-08-18 新日鐵住金株式会社 炭化珪素のエピタキシャル成長方法
JP2018046085A (ja) * 2016-09-13 2018-03-22 新日鐵住金株式会社 炭化珪素のエピタキシャル成長方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6393161B2 (ja) 2014-11-21 2018-09-19 東京エレクトロン株式会社 成膜装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015198213A (ja) * 2014-04-03 2015-11-09 新日鐵住金株式会社 エピタキシャル炭化珪素ウェハの製造方法及びそれに用いる炭化珪素単結晶基板のホルダー
WO2016051975A1 (ja) * 2014-10-01 2016-04-07 住友電気工業株式会社 炭化珪素エピタキシャル基板
WO2016129685A1 (ja) * 2015-02-12 2016-08-18 新日鐵住金株式会社 炭化珪素のエピタキシャル成長方法
JP2018046085A (ja) * 2016-09-13 2018-03-22 新日鐵住金株式会社 炭化珪素のエピタキシャル成長方法

Also Published As

Publication number Publication date
KR102492343B1 (ko) 2023-01-27
JP7001517B2 (ja) 2022-01-19
US20210108331A1 (en) 2021-04-15
JP2019169689A (ja) 2019-10-03
KR20200128566A (ko) 2020-11-13

Similar Documents

Publication Publication Date Title
US7699604B2 (en) Manufacturing apparatus for semiconductor device and manufacturing method for semiconductor device
WO2015098283A1 (ja) SiCエピタキシャルウェハの製造装置およびSiCエピタキシャルウェハの製造方法
JP5158068B2 (ja) 縦型熱処理装置及び熱処理方法
WO2012029661A1 (ja) 半導体装置の製造方法及び基板処理装置
WO2017043282A1 (ja) SiCエピタキシャルウェハの製造方法及びSiCエピタキシャルウェハの製造装置
US11482416B2 (en) Vapor phase growth method
JP5202839B2 (ja) 成膜装置および成膜方法
US20100282166A1 (en) Heat treatment apparatus and method of heat treatment
JP2018022743A (ja) 半導体装置の製造方法、基板処理装置およびプログラム
US11587788B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
JP7190894B2 (ja) SiC化学気相成長装置
WO2019188248A1 (ja) 成膜装置及び成膜方法
WO2020158657A1 (ja) 成膜装置及び成膜方法
JP2019169743A (ja) SiCエピタキシャルウェハの製造方法
JP2012171811A (ja) 炭化珪素単結晶エピタキシャルウエハの製造方法
JP5264384B2 (ja) 気相成長装置及び気相成長方法
KR102026206B1 (ko) 증착 장치
EP3919657A1 (en) Film forming method and film forming apparatus
JP5252896B2 (ja) 気相成長装置及び気相成長方法
JP2016096178A (ja) 成膜方法、半導体素子の製造方法、および自立基板の製造方法
JP2022067843A (ja) 炭化珪素単結晶基板およびその製造方法
KR20130077496A (ko) 증착 장치 및 증착 방법
KR101224567B1 (ko) 화학 기상 증착 장치용 서셉터 및 에피택셜 웨이퍼의 제조방법
JP2014123616A (ja) 基板処理装置
JP2009135157A (ja) 気相成長装置及び気相成長方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207028946

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19774606

Country of ref document: EP

Kind code of ref document: A1