JP2012064863A - 磁気記録素子および不揮発性記憶装置 - Google Patents

磁気記録素子および不揮発性記憶装置 Download PDF

Info

Publication number
JP2012064863A
JP2012064863A JP2010209390A JP2010209390A JP2012064863A JP 2012064863 A JP2012064863 A JP 2012064863A JP 2010209390 A JP2010209390 A JP 2010209390A JP 2010209390 A JP2010209390 A JP 2010209390A JP 2012064863 A JP2012064863 A JP 2012064863A
Authority
JP
Japan
Prior art keywords
ferromagnetic layer
layer
magnetization
magnetic recording
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010209390A
Other languages
English (en)
Other versions
JP5085703B2 (ja
Inventor
Daisuke Saida
大輔 才田
Minoru Amano
実 天野
Junichi Ito
順一 伊藤
Yuichi Osawa
裕一 大沢
Saori Kashiwada
沙織 柏田
Shingi Kamata
親義 鎌田
Shigeki Takahashi
茂樹 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010209390A priority Critical patent/JP5085703B2/ja
Priority to US13/037,592 priority patent/US8488375B2/en
Publication of JP2012064863A publication Critical patent/JP2012064863A/ja
Application granted granted Critical
Publication of JP5085703B2 publication Critical patent/JP5085703B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1659Cell access
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

【課題】書き込みに必要な電流を低減させることができる磁気記録素子および不揮発性記憶装置を提供する。
【解決手段】実施態様によれば、第1積層部と第2積層部とを備えた磁気記録素子が提供される。第1積層部は、膜面に対して垂直な成分を有する第1の方向に磁化が実質的に固着された第1の強磁性層と、磁化の方向が膜面に対して垂直な方向に可変である第2の強磁性層と、第1、第2の強磁性層の間に設けられた第1の非磁性層と、を含む。第2積層部は、磁化の方向が膜面に対して平行な方向に可変である第3の強磁性層と、膜面に対して垂直な成分を有する第2の方向に磁化が実質的に固着された第4の強磁性層と、第3、第4の強磁性層の間に設けられた第2の非磁性層と、を含む。第1の方向は、第2の方向と逆である。
【選択図】図1

Description

本発明の実施形態は、磁気記録素子および不揮発性記憶装置に関する。
トンネル磁気抵抗(TMR:Tunneling Magneto Resistive)効果を示す強磁性トンネル接合(MTJ:Magnetic Tunnel Junction)素子がデータ記憶部に用いられた磁気ランダムアクセスメモリ(MRAM:Magnetic Random Access Memory)は、高速・大容量の不揮発メモリとして注目を集めている。MTJ素子の記録層への書き込みは、例えば、MTJ素子に直接通電させ、MTJ素子の基準層から注入されるスピントルクで記録層の磁化を反転させるスピントルク書き込み方式により行われる。ここで、メモリの大容量化を実現するためには、MTJ素子を微細化し高密度にデータ記憶部を配置するとともに、書き込みに必要な電流を低減させることが必要である。
特開2009−21352号公報
本発明の実施形態は、書き込みに必要な電流を低減させることができる磁気記録素子および不揮発性記憶装置を提供する。
本発明の実施態様によれば、第1積層部と第2積層部とを備えた磁気記録素子が提供される。前記第1積層部は、膜面に対して垂直な成分を有する第1の方向に磁化が実質的に固着された第1の強磁性層と、磁化の方向が膜面に対して垂直な方向に可変である第2の強磁性層と、前記第1の強磁性層と前記第2の強磁性層との間に設けられた第1の非磁性層と、を含む。第2積層部は、磁化の方向が膜面に対して平行な方向に可変である第3の強磁性層と、膜面に対して垂直な成分を有する第2の方向に磁化が実質的に固着された第4の強磁性層と、前記第3の強磁性層と前記第4の強磁性層との間に設けられた第2の非磁性層と、を含む。前記第1の方向は、前記第2の方向と逆である。前記積層体の各層の膜面に対して略垂直な方向に電流を流すことによりスピン偏極した電子を前記第2の強磁性層に作用させ、且つ前記第3の強磁性層の磁化を歳差運動させることにより発生する磁場を前記第2の強磁性層に作用させることにより、前記第2の強磁性層の磁化の方向を前記電流の向きに応じた方向に決定可能である。
図1(a)および図1(b)は、第1の実施形態にかかる磁気記録素子を表す断面模式図である。 図2(a)および図2(b)は、磁化方向を説明する概念模式図ある。 図3(a)および図3(b)は、第1の実施形態にかかる他の磁気記録素子を表す断面模式図である。 図4(a)〜図4(d)は、磁気記録素子における「書き込み」動作を示す断面模式図である。 図5(a)および図5(b)は、磁気記録素子における「読み出し」動作を示す断面模式図である。 図6(a)および図6(b)は、第2の実施形態にかかる磁気記録素子を表す断面模式図である。 図7(a)および図7(b)は、第3の実施形態にかかる磁気記録素子を表す断面模式図である。 図8(a)および図8(b)は、第4の実施形態にかかる磁気記録素子を表す断面模式図である。 第1〜第4の実施形態における電流の関係を例示する概念模式図である。 第1〜第4の実施形態における電流と周波数の関係を例示する概念模式図である。 第1〜第4の実施形態における電流と周波数の他の関係を例示する概念模式図である。 第1〜第4の実施形態における第3の強磁性層の大きさと電子電流が流れているときの磁化状態を例示するグラフ図である。 第5の実施形態にかかる磁気記録素子を表す断面模式図である。 第1の具体例における磁化反転の時間を例示するグラフ図である。 第1の具体例におけるアシスト磁界の強度および周波数に対する磁化反転の時間を例示するグラフ図である。 第1の具体例における電流に対して外部へ発生する磁界の周波数応答を例示するグラフ図である。 第1の具体例における第3の非磁性層の層厚と磁界強度との関係を例示するグラフ図である。 図18(a)および図18(b)は、第2の具体例における磁気記録素子を表す断面模式図である。 第2の具体例における電流に対して外部へ発生する磁界の周波数応答を例示するグラフ図である。 第2の具体例における第3の非磁性層の層厚と磁界強度との関係を例示するグラフ図である。 本具体例の他の条件における第3の非磁性層の層厚と磁界強度との関係を例示するグラフ図である。 図22(a)および図22(b)は、第3の具体例における磁気記録素子を表す断面模式図である。 第3の具体例における第3の非磁性層の層厚と磁界強度との関係を例示するグラフ図である。 第3の具体例の他の条件における第3の非磁性層の層厚と磁界強度との関係を例示するグラフ図である。 第1〜第5の実施形態の他の具体例における不揮発性記憶装置を表す平面模式図である。
以下に、本発明の各実施の形態について図面を参照しつつ説明する。
なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。
なお、本願明細書と各図において、既出の図に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
図1(a)および図1(b)は、第1の実施形態にかかる磁気記録素子を表す断面模式図である。
また、図2(a)および図2(b)は、磁化方向を説明する概念模式図ある。
また、図3(a)および図3(b)は、第1の実施形態にかかる他の磁気記録素子を表す断面模式図である。
本実施形態にかかる磁気記録素子は、磁気記録部3(第1積層部)と磁界発生源5(第2積層部)とを備える。
磁気記録部3と磁界発生源5とは、第3の非磁性層40を介して設けられている。
磁気記録部3は、磁化12aが膜面に対して略垂直方向に固着された第1の強磁性層(第1の磁化固着層)10aと、磁化容易軸34が膜面に対して略垂直方向である第2の強磁性層(磁気記録層)30と、第1の強磁性層10aと第2の強磁性層30との間に設けられた第1の非磁性層(第1のスペーサ層)20aと、を含む。ここで、第1の強磁性層10a、第1の非磁性層20a及び第2の強磁性層30が積層される方向を積層方向SD1とする。積層方向SD1は、例えば、第1の強磁性層10aの膜面に対して垂直な方向である。
第1の強磁性層10aと、第1の非磁性層20aと、第2の強磁性層30と、を含む積層構造は、MTJ(Magnetic Tunnel Junction)などと呼ばれている。
なお、本願明細書において、「積層」とは、複数の層が互いに接して重ねられる場合の他に、間に別の層が挿入されて複数の層が重ねられる場合も含む。
磁界発生源5は、磁気記録部3と積層される。すなわち、磁界発生源5は、磁気記録部3と積層方向SD1に沿って積層される。
磁界発生源5は、磁化容易軸54が膜面に対して略平行方向である第3の強磁性層(磁化回転層)50と、磁化12bが膜面に対して略垂直方向に固着された第4の強磁性層(第2の磁化固着層)10bと、第3の強磁性層50と第4の強磁性層10bとの間に設けられた第2の非磁性層(第2のスペーサ層)20bと、を有する。第3の強磁性層50、第2の非磁性層20b及び第4の強磁性層10bは、積層方向SD1に沿って積層される。
第1の強磁性層10a、第2の強磁性層30、および第4の強磁性層10bには、例えば垂直磁化膜が用いられる。
図2(a)に表したように、垂直磁化膜は、磁化72の、膜面に対して垂直な方向(積層方向SD1)の磁化斜影成分72aが、磁化72の、膜面に対して平行な方向(膜面方向SD2)の磁化斜影成分72bよりも大きい磁化状態を有する。垂直磁化膜において磁化72の方向が膜面に対して略垂直であることが動作特性上望ましい。
一方、第3の強磁性層50には、例えば面内磁化膜が用いられる。
図2(b)に表したように、面内磁化膜は、磁化72の、膜面に対して平行な方向(膜面方向SD2)の磁化斜影成分72bが、磁化72の、膜面に対して垂直な方向(積層方向SD1)の磁化斜影成分72aよりも大きい磁化状態を有する。面内磁化膜において、磁化72の方向が膜面に対して略平行であることが動作特性上望ましい。
ここで、説明の便宜上、磁気記録部3から磁界発生源5に向かう方向を「上」または「上向き」と言い、磁界発生源5から磁気記録部3に向かう方向を「下」または「下向き」と言うことにする。
第1の強磁性層10aの磁化12aは、第1の方向に実質的に固着されている。第1の方向は、図1(a)に表した磁気記録素子では上向きであり、図1(b)に表した磁気記録素子では下向きである。一方、第4の強磁性層10bの磁化12bは、第2の方向に実質的に固着されている。第2の方向は、図1(a)に表した磁気記録素子では下向きであり、図1(b)に表した磁気記録素子では上向きである。
本実施形態にかかる磁気記録素子は、第2の強磁性層30と、第1の非磁性層20aと、第1の強磁性層10aと、第3の非磁性層40と、第4の強磁性層10bと、第2の非磁性層20bと、第3の強磁性層50と、がこの順に積層された構造を有する。本実施形態にかかる磁気記録素子には、第2および第3の強磁性層30、50にそれぞれ接続された図示していない電極によって、電子電流60を流すことができる。電子電流は電子の流れを表し、上向きに電流が流れるときに電子電流は下向きに流れる。第2の強磁性層30は、データを記録する役割をもつ。第2の強磁性層30の磁化32(図4および図5参照)は、比較的容易に反転可能である。第3の強磁性層50は、書き込み時に高周波磁場を発生させる役割をもつ。
膜面に対して垂直な方向に電子電流60を流すと、磁界発生源5の第3の強磁性層50における磁化が歳差運動することにより回転磁界(高周波磁界)が発生する。高周波磁界の周波数は、例えば約1〜60GHz程度である。高周波磁界は、第2の強磁性層30の磁化32に対して垂直方向、すなわち第2の強磁性層30の磁化困難軸の方向の成分を有する。したがって、第3の強磁性層50から発生した高周波磁界の少なくとも一部は、第2の強磁性層30の磁化困難軸の方向に印加される。第3の強磁性層50から発生した高周波磁界が、第2の強磁性層30の磁化困難軸の方向に印加されると、第2の強磁性層30の磁化32は非常に反転し易くなる。
ここで、本実施形態にかかる磁気記録素子では、図1(a)および図1(b)に表したように、第1の方向に固着された磁化12aの垂直斜影成分の向きと、第2の方向に固着された磁化12bの垂直斜影成分の向きと、は互いに逆向きである。
さらに図3(a)および図3(b)に表したように、第1の強磁性層10aの磁化12aおよび第4の強磁性層10bの磁化12bの向きが膜面に対して斜めであっても、第1の方向に固着された磁化12aの垂直斜影成分の向きと、第2の方向に固着された磁化12bの垂直斜影成分の向きと、が互いに逆向きであればよい。これは、図6〜図8に関して後述する例においても同様である。
そのため、第2の強磁性層30の位置において膜面に対して垂直な方向にかかる漏洩磁界を低減させる又は打ち消すことができる。一方、第3の強磁性層50の位置において膜面に対して垂直な方向にかかる漏洩磁界を残留させ作用させることができる。
これにより、第3の強磁性層50において発生する回転磁界の向きと、第2の強磁性層30の磁化が歳差運動する向きと、は、一致する。そのため、磁界発生源5の第3の強磁性層50において発生した回転磁界は、磁気記録部3の第2の強磁性層30の磁化反転を効率的にアシストすることができる。その結果、第2の強磁性層30への情報の記録(書き込み)に必要な電流を低減させることができる。
本実施形態では、第1の強磁性層10aと第4の強磁性層10bとは、第3の非磁性層40を介して反強磁性結合していてもよい。このように、非磁性層を介して互いの磁化の方向が反強磁性結合し反平行となる構造すなわち「第1の磁性層(本実施形態では第1の強磁性層10a)/非磁性層(本実施形態では第3の非磁性層40)/第2の磁性層(本実施形態では第4の強磁性層10b)」の積層構造は、シンセティックアンチフェロ(SAF:Synthetic Anti-Ferromagnet)構造と呼ばれている。
SAF構造を用いることにより互いの磁化固着力が増強され、外部磁界に対する耐性および熱的な安定性を向上させることができる。また、この構造では、磁気記録層(本実施形態では第2の強磁性層30)の位置において膜面に対して垂直な方向にかかる漏洩磁界をほぼゼロにすることができる。
SAF構造における非磁性層(中間層)には、ルテニウム(Ru)、イリジウム(Ir)やオスミウム(Os)などの金属材料が用いられる。非磁性層の層厚は、3nm(ナノメートル)以下に設定される。これは、非磁性層を介して十分強い反強磁性結合を得るためである。
本実施形態における磁気記録素子は、電子電流60を上下の第1および第4の強磁性層10a、10b間に流すことによって、第2の強磁性層30の磁化の方向を制御することができる。具体的には、電子電流60の流れる向き(極性)を変えることで第2の強磁性層30の磁化の向きを反転させることができる。情報を記録させる場合には、第2の強磁性層30の磁化の方向に応じて、「0」と「1」とをそれぞれ割り当てればよい。
ここで、磁気記録素子における「書き込み」動作について説明する。
図4(a)〜図4(d)は、磁気記録素子における「書き込み」動作を例示する断面模式図である。
なお、図4(a)は、第1の強磁性層10aから第2の強磁性層30に向かって電子電流60を流し始めた状態を表す断面模式図である。図4(b)は、第1の強磁性層10aから第2の強磁性層30に向かって電子電流60を流し終えた状態(磁化32が反転した状態)を表す断面模式図である。図4(c)は、第2の強磁性層30から第1の強磁性層10aに向かって電子電流60を流し始めた状態を表す断面模式図である。図4(d)は、第2の強磁性層30から第1の強磁性層10aに向かって電子電流60を流し終えた状態(磁化32が反転した状態)を表す断面模式図である。説明の便宜上、図1に表した磁気記録素子における磁界発生源5と、第3の非磁性層40と、は省略している。
第1の強磁性層10aおよび第2の強磁性層30の膜面を横切るように電子電流60を流して、第2の強磁性層30に対する書き込み動作においては、以下が行われる。ここでは、第1の非磁性層20aを介した磁気抵抗効果が、ノーマルタイプである場合について説明する。ここで、「ノーマルタイプ」の磁気抵抗効果とは、非磁性層の両側の磁性層の磁化が平行時よりも反平行時に電気抵抗が高くなる場合をいう。つまり、ノーマルタイプの場合、第1の非磁性層20aを介した第1の強磁性層10aと第2の強磁性層30との間の電気抵抗は、第1の強磁性層10aと第2の強磁性層30の磁化が平行な時には反平行時よりも低くなる。
まず、図4(a)において、膜面に対して略垂直方向の磁化12aを有する第1の強磁性層10aを通過した電子は、磁化12aと同じ方向のスピンをもつようになり、これが第2の強磁性層30へ流れると、このスピンのもつ角運動量が第2の強磁性層30へ伝達され、磁化32に作用する。いわゆるスピントランスファトルクが、働くことになる。これにより、図4(b)に表したように、第2の強磁性層30は磁化12aと同じ向き(同図において上向きであり、例えば積層方向SD1に対して平行な1つの方向)の磁化32をもつことになる。この向き(同図おいて上向き)の磁化32を有する第2の強磁性層30に、例えば「0」を割り当てる。
また、図4(c)は、電子電流60の向きを反転させた場合を表す。第1の非磁性層20aを通過した電子において、磁化12aと同じ向き(同図において上向き)のスピンをもった電子は第1の強磁性層10aを通過するが、磁化12aと逆向き(同図において下向き)のスピンをもった電子は第1の強磁性層10aと第1の非磁性層20aとの界面において反射される。この反射された電子のスピンの角運動量が第2の強磁性層30へ伝達され、磁化32に作用する。これにより、図4(d)に表したように、第2の強磁性層30は磁化12aと逆向き(同図において下向き)の磁化32をもつことになる。いわゆるスピントランスファトルクが、働くことになる。この向き(同図おいて下向き)の磁化32を有する第2の強磁性層30に、例えば「1」を割り当てる。
前述のような作用によって第2の強磁性層30に「0」と「1」とが適宜割り当てられて、磁気記録素子における「書き込み」が完了する。以上、第1の非磁性層20aを介した第1の強磁性層10aと第2の強磁性層30との間の磁気抵抗効果が「ノーマルタイプ」の場合について説明した。
磁気抵抗効果が「リバースタイプ」の場合は、非磁性層の両側の磁性層の磁化が反平行時よりも平行時に電気抵抗が高くなる場合をいう。つまり、リバースタイプの場合、第1の非磁性層20aを介した第1の強磁性層10aと第2の強磁性層30との間の電気抵抗は、第1の強磁性層10aと第2の強磁性層30の磁化が平行な時には反平行時よりも高くなる。リバースタイプにおける「書き込み」動作は、磁気抵抗効果が「ノーマルタイプ」の場合と同様であるため、詳細な説明は省略する。
次に、磁気記録素子における「読み出し」動作について説明する。
本発明の磁気記録素子において、第2の強磁性層30の磁化32の方向の検出は、各層の磁化の相対的な向きにより電気抵抗が変わる「磁気抵抗効果」を利用して行うことができる。すなわち、磁気抵抗効果を利用する場合、第1の強磁性層10aと第2の強磁性層30との間でセンス電流61を流し、磁気抵抗を測定すればよい。センス電流61の電流値は、記録時に流す電子電流60の電流値よりも小さい。
図5(a)および図5(b)は、磁気記録素子における「読み出し」動作を例示する断面模式図である。
なお、図5(a)は、第1の強磁性層10aの磁化12aと第2の強磁性層30の磁化32とが同一の方向の場合を表す断面模式図であり、図5(b)は、第1の強磁性層10aの磁化12aと第2の強磁性層30の磁化32とが反平行の場合を表す模式断面図である。説明の便宜上、図1に表した磁気記録素子における磁界発生源5と、第3の非磁性層40と、は省略している。
図5(a)に表した磁気記録素子においては、センス電流61を流して検出される抵抗は、ノーマルタイプの磁気抵抗効果において相対的に小さな値となり、リバースタイプの磁気抵抗効果においては相対的に大きな値となる。
図5(b)に表した磁気記録素子においては、センス電流61を流して検出される抵抗は、ノーマルタイプの磁気抵抗効果において相対的に大きな値となり、リバースタイプの磁気抵抗効果においては相対的に小さな値となる。
これら抵抗が互いに異なる状態に、それぞれ「0」と「1」を対応づけることにより、2値データの記録読み出しが可能となる。なお、センス電流61の向きは、図5に表した矢印方向と逆向き(同図において下から上への向き)にしてもよい。
次に、図1に戻り、本実施形態の磁気記録素子が有する各要素について詳述する。
磁気記録部3の第1および第2の強磁性層10a、30には、例えば、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、マンガン(Mn)及びクロム(Cr)よりなる群から選択された少なくともいずれかの元素を含む金属材料を用いることが好ましい。さらに、これらと、白金(Pt)、パラジウム(Pd)、イリジウム(Ir)、ルテニウム(Ru)及びロジウム(Rh)よりなる群から選択された少なくともいずれかの元素と、の組み合わせによる合金を用いることができる。第1および第2の強磁性層10a、30については、含まれる磁性材料の組成や熱処理により特性を調整することができる。また、磁気記録部3の第1および第2の強磁性層10a、30には、TbFeCo、GdFeCoなどの希土類−遷移金属のアモルファス合金を用いることができる。また、磁気記録部3の第1および第2の強磁性層10a、30には、Co/Pt、Co/Pd、Co/Niの積層構造などを用いることができる。下地層との組み合わせで垂直磁化となるCo/Ru、Fe/Au、Ni/Cu等については、膜の結晶配向方向を制御することで用いることができる。
磁気記録部3の第1の非磁性層20aとしては、非磁性トンネルバリア層としての絶縁材料を用いることができる。具体的には、例えば、アルミニウム(Al)、チタン(Ti)、亜鉛(Zn)、ジルコニウム(Zr)、タンタル(Ta)、コバルト(Co)、ニッケル(Ni)、シリコン(Si)、マグネシウム(Mg)、鉄(Fe)よりなる群から選択された少なくともいずれかの元素を含む酸化物、窒化物又は弗化物を用いることができる。また、例えば、Al、SiO、MgO、AlN、Ta−O、Al−Zr−O、Bi、MgF、CaF、SrTiO、AlLaO、Al−N−O、Si−N−O等の他、非磁性半導体(ZnO、InMn、GaN、GaAs、TiO、Zn、Te、またはそれらに遷移金属がドープされたもの)などを用いることができる。第1の非磁性層20aの厚さについては、絶縁膜の均一性を確保しつつ抵抗が高くなることを避けるため、その厚さを約0.2nm〜2.0nm程度の範囲の値とすることが望ましい。
磁界発生源5の第3の強磁性層50には、例えば、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、マンガン(Mn)、クロム(Cr)よりなる群から選択された少なくともいずれかの元素を含む磁性金属を用いることができる。また、第3の強磁性層50が面内磁化膜である場合には、下地層を反強磁性層とすることによって磁化の向きが面内方向へ安定する。反強磁性層の材料としては、Fe−Mn、Pt−Mn、Pt−Cr−Mn、Ni−Mn、Pd−Mn、Pd−Pt−Mn、Ir−Mn、Pt−Ir−Mn、NiO、Fe、磁性半導体などを用いることができる。
磁界発生源5の第2の非磁性層20bは、非磁性トンネルバリア層及び非磁性金属層のうちのいずれであってもよい。
非磁性トンネルバリア層には、絶縁材料を用いることができる。具体的には、例えば、アルミニウム(Al)、チタン(Ti)、亜鉛(Zn)、ジルコニウム(Zr)、タンタル(Ta)、コバルト(Co)、ニッケル(Ni)、シリコン(Si)、マグネシウム(Mg)、鉄(Fe)よりなる群から選択された少なくともいずれかの元素を含む酸化物、窒化物又は弗化物を非磁性バリア層に用いることができる。また、非磁性バリア層としては、例えば、Al、SiO、MgO、AlN、Ta−O、Al−Zr−O、Bi、MgF、CaF、SrTiO、AlLaO、Al−N−O、Si−N−O、非磁性半導体(ZnO、InMn、GaN、GaAs、TiO、Zn、Te、またはそれらに遷移金属がドープされたもの)などを用いることができる。トンネルバリアがスペーサ層として用いられた場合、その厚さを約0.2nm〜2.0nm程度の範囲の値とすることが望ましい。
非磁性金属層には、銅(Cu)、銀(Ag)、金(Au)、クロム(Cr)、亜鉛(Zn)、ガリウム(Ga)、ニオブ(Nb)、モリブデン(Mo)、ルテニウム(Ru)、パラジウム(Pd)、ハフニウム(Hf)、タンタル(Ta)、タングステン(W)、白金(Pt)、ビスマス(Bi)などよりなる群から選択されたいずれかの非磁性金属元素、または上記の群から選択された少なくともいずれか2つ以上の元素を含む合金を用いることができる。第2の非磁性層20bの厚さを1.5nm以上、20nm以下とすると、磁性層間で層間結合せず、かつ、伝導電子のスピン偏極状態は非磁性金属層を通過する際に失われないで済む。
磁界発生源5の第4の強磁性層10bには、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、マンガン(Mn)及びクロム(Cr)よりなる群から選択された少なくともいずれかの元素を含む金属材料を用いることが好ましい。さらに、これらと、白金(Pt)、パラジウム(Pd)、イリジウム(Ir)、ルテニウム(Ru)及びロジウム(Rh)よりなる群から選択された少なくともいずれかの元素と、の組み合わせによる合金を用いることができる。第4の強磁性層10bについては、含まれる磁性材料の組成や熱処理により特性を調整することができる。また、第4の強磁性層10bには、TbFeCo、GdFeCoなどの希土類−遷移金属のアモルファス合金を用いることができる。また、第4の強磁性層10bには、Co/Pt、Co/Pd、Co/Niの積層構造などを用いることができる。下地層との組み合わせで垂直磁化となるCo/Ru、Fe/Au、Ni/Cu等については、膜の結晶配向方向を制御することで用いることができる。
磁気記録部3と磁界発生源5との間に設けられた第3の非磁性層40には、非磁性金属層が用いられる。
非磁性金属層には、銅(Cu)、銀(Ag)、金(Au)、クロム(Cr)、亜鉛(Zn)、ガリウム(Ga)、ニオブ(Nb)、モリブデン(Mo)、ルテニウム(Ru)、パラジウム(Pd)、ハフニウム(Hf)、タンタル(Ta)、タングステン(W)、白金(Pt)、ビスマス(Bi)、イリジウム(Ir)、オスミウム(Os)などよりなる群から選択されたいずれかの非磁性金属元素、あるいは少なくともいずれかの元素を含む合金を用いることができる。
このように、第3の非磁性層40としては、銅(Cu)などのスピン拡散長が長い材料、あるいはルテニウム(Ru)などのスピン拡散長が短い材料を用いることができる。互いにスピン偏極した電子が挿入される効果を消去したい場合には、ルテニウム(Ru)などのスピン拡散長が短い材料を用いるとよい。
磁気記録素子へ通電するために設けられる電極には、導電性の磁性材料もしくは非磁性材料を用いる。導電性磁性材料の具体的例としては、磁界発生源5の第3および第4の強磁性層50、10bと同様の材料を挙げることができる。また、非磁性材料の具体例としては、金(Au)、銅(Cu)、クロム(Cr)、亜鉛(Zn)、ガリウム(Ga)、ニオブ(Nb)、モリブデン(Mo)、ルテニウム(Ru)、パラジウム(Pd)、銀(Ag)、ハフニウム(Hf)、タンタル(Ta)、タングステン(W)、白金(Pt)、ビスマス(Bi)、アルミニウム(Al)よりなる群から選択されたいずれかの元素、あるいは少なくともいずれかを含む合金を用いることができる。さらに、導電性非磁性材料としては、カーボンナノチューブやカーボンナノワイヤ、グラフェン等の材料を用いることができる。また、導電性保護膜としては、タンタル(Ta)、ルテニウム(Ru)、銅(Cu)、金(Au)、銀(Ag)、アルミニウム(Al)、銅(Cu)、金(Au)、銀(Ag)、アルミニウム(Al)よりなる群から選択された少なくともいずれかの元素を含む合金、あるいはグラフェンなどの材料を用いることができる。エレクトロマグレーション耐性や低抵抗であることを考慮すると、銅(Cu)やアルミニウム(Al)よりなる群から選択されたいずれかの元素、あるいは少なくともいずれかを含む合金を用いることが望ましい。
本実施形態にかかる磁気記録素子の形状は、縦断面(膜面に対して垂直な面で切断した断面図)においてテーパー形状や逆テーパー形状であってもよい。あるいは、本実施形態にかかる磁気記録素子の形状は、横断面(膜面に対して平行な面で切断した断面図)において円形、楕円形、四角形、六角形、複数の角を有する多角形であってもよい。
図6(a)および図6(b)は、第2の実施形態にかかる磁気記録素子を表す断面模式図である。
本実施形態の磁気記録素子は、第1の強磁性層10aと、第1の非磁性層20aと、第2の強磁性層30と、第3の非磁性層40と、第3の強磁性層50と、第2の非磁性層20bと、第4の強磁性層10bと、がこの順に積層された構造を有する。その他の構造および各要素の材料などは、図1に関して前述した磁気記録素子の構造および各要素の材料と同様である。
本実施形態にかかる磁気記録素子では、図6(a)および図6(b)に表したように、第1の方向に固着された磁化12aの垂直斜影成分の向きと、第2の方向に固着された磁化12bの垂直斜影成分の向きと、は、互いに逆向きである。また、第3の強磁性層50において発生する回転磁界の向きと、第2の強磁性層30の磁化が歳差運動する向きと、は、一致する。さらに、磁気記録部3の第2の強磁性層30と、磁界発生源5の第3の強磁性層50と、の間の距離は、図1に関して前述した磁気記録素子よりも短い。そのため、磁界発生源5の第3の強磁性層50において発生した回転磁界は、磁気記録部3の第2の強磁性層30により大きく作用し、第2の強磁性層30の磁化反転をより効率的にアシストすることができる。これにより、第2の強磁性層30への書き込みに必要な電流をより低減させることができる。
また、本実施形態にかかる磁気記録素子では、第3の非磁性層40においてスピン情報が保たれると、第2の強磁性層30からのスピントランスファトルクの影響を第3の強磁性層50が受ける。そうすると、第3の強磁性層50の磁化回転の制御性が低下する。これを防ぐために、例えばルテニウム(Ru)などのようなスピン拡散長の短い膜(スピン消失の機能を持つ材料)あるいは構造を有する層により第3の非磁性層40を形成する。
これによれば、磁界発生源5において第3の強磁性層50の磁化52(図18および図22参照)が歳差運動をするためのスピントランスファトルクの大きさは、磁界発生源5の第4の強磁性層10bでのスピン偏極で決まる。そのため、他の電子のスピンの影響(スピントランスファトルク)を受けることなく、第3の強磁性層50の磁化52を独立に制御することが可能となる。
このようなスピン消失効果が得られる第3の非磁性層40の材料としては、ルテニウム(Ru)、タンタル(Ta)、タングステン(W)、白金(Pt)、パラジウム(Pd)、モリブデン(Mo)、ニオブ(Nb)、ジルコニウム(Zr)、チタン(Ti)、バナジウム(V)よりなる群から選択された金属、もしくは少なくともいずれかの元素を含む合金を挙げることができる。第3の非磁性層40の層厚としては、第2の強磁性層30と第3の強磁性層50とが層間磁気結合しないような1.4nm以上の層厚とすることが望ましい。第3の非磁性層40の層厚が1.4nm以上であると、第2の強磁性層30と第3の強磁性層50とが層間結合せず、かつ、第3の非磁性層40は、伝導電子が第3の非磁性層40の内部および界面を通過する際にスピン偏極度を消失させることができる。さらに、第3の非磁性層40は、第2の強磁性層30の磁化32の向きにより第3の強磁性層50の歳差運動が変化することを防ぐことができる。一方、第3の非磁性層40の層厚が20nm以上であると、多層膜のピラー形成が困難となるだけではなく、第3の強磁性層50から発生する回転磁界の強度が第2の強磁性層30の位置で減衰する。そのため、第3の非磁性層40の層厚が20nm以上であることは、望ましくない。
第3の非磁性層40としては、前述した単層膜の他に、ルテニウム(Ru)、タンタル(Ta)、タングステン(W)、白金(Pt)、パラジウム(Pd)、モリブデン(Mo)、ニオブ(Nb)、ジルコニウム(Zr)、チタン(Ti)、バナジウム(V)よりなる群から選択された金属、もしくは少なくともいずれかの元素を含む合金を含む層の片側もしくは両側に銅(Cu)層を積層してなる積層膜を用いることができる。
さらに、第3の非磁性層40としては、前述した単層膜の他に、ルテニウム(Ru)、タンタル(Ta)、タングステン(W)、白金(Pt)、パラジウム(Pd)、モリブデン(Mo)、ニオブ(Nb)、ジルコニウム(Zr)、チタン(Ti)、バナジウム(V)よりなる群から選択された金属、もしくは少なくともいずれかの元素を含む合金を含む層の片側もしくは両側にアルミニウム(Al)、マグネシウム(Mg)、チタン(Ti)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、バナジウム(V)、クロム(Cr)、タンタル(Ta)、タングステン(W)、ルテニウム(Ru)よりなる群から選択された少なくともいずれかの元素を含む酸化物を積層してなる積層膜を用いることができる。
図7(a)および図7(b)は、第3の実施形態にかかる磁気記録素子を表す断面模式図である。
本実施形態にかかる磁気記録素子は、第2の強磁性層30と、第1の非磁性層20aと、第1の強磁性層10aと、第3の非磁性層40と、第3の強磁性層50と、第2の非磁性層20bと、第4の強磁性層10bと、がこの順に積層された構造を有する。その他の構造および各要素の材料などは、図1に関して前述した磁気記録素子の構造および各要素の材料と同様である。
本実施形態にかかる磁気記録素子では、図7(a)および図7(b)に表したように、第1の方向に固着された磁化12aの垂直斜影成分の向きと、第2の方向に固着された磁化12bの垂直斜影成分の向きと、は、互いに逆向きである。また、磁界発生源5の第4の強磁性層10bの磁化12bの向きとは逆向きの磁界を印加することにより、第3の強磁性層50において発生する回転磁界の向きと、第2の強磁性層30の磁化が歳差運動する向きと、を一致させることができる。さらに、磁気記録部3の第2の強磁性層30と、磁界発生源5の第3の強磁性層50と、の間の距離は、図1に関して前述した磁気記録素子よりも短い。そのため、図6に関して前述した効果と同様の効果が得られる。これにより、第2の強磁性層30への書き込みに必要な電流をより低減させることができる。
本実施形態では、磁界発生源5の第3の強磁性層50へ入射される電子のスピン偏極の向きが、磁界発生源5の第4の強磁性層10bでスピン偏極した電子および磁気記録部3の第1の強磁性層10aでスピン偏極した電子と同じである。そのため、第3の強磁性層50において発生する回転磁界の発生効率が向上する。第3の非磁性層40および磁界発生源5の第2の非磁性層20bとしては、金属導体、絶縁体、あるいは半導体のいずれを用いてもよい。あるいは、第3の非磁性層40と磁界発生源5の第2の非磁性層20bとにおいて、異なる材料に基づく層を利用してもよい。ただし、第3の非磁性層40として絶縁体及び半導体を用いた場合には抵抗値が上昇するので、磁界発生源5の第2の非磁性層20bとして金属導体を用いることが好ましい。金属導体としては、銅(Cu)、アルミニウム(Al)、銀(Ag)、金(Au)などが好ましい。
図8(a)および図8(b)は、第4の実施形態にかかる磁気記録素子を表す断面模式図である。
本実施形態にかかる磁気記録素子は、第1の強磁性層10aと、第1の非磁性層20aと、第2の強磁性層30と、第3の非磁性層40と、第4の強磁性層10bと、第2の非磁性層20bと、第3の強磁性層50と、がこの順に積層された構造を有する。その他の構造および各要素の材料などは、図1に関して前述した磁気記録素子の構造および各要素の材料と同様である。
本実施形態にかかる磁気記録素子では、図8(a)および図8(b)に表したように、第1の方向に固着された磁化12aの垂直斜影成分の向きと、第2の方向に固着された磁化12bの垂直斜影成分の向きと、は、互いに逆向きである。また、磁界発生源5の第4の強磁性層10bの磁化12bの向きとは逆向きの磁界を印加することにより、第3の強磁性層50において発生する回転磁界の向きと、第2の強磁性層30の磁化が歳差運動する向きと、を一致させることができる。さらに、磁気記録部3の第2の強磁性層30と、磁界発生源5の第3の強磁性層50と、の間の距離は、図1に関して前述した磁気記録素子よりも短い。そのため、図6に関して前述した効果と同様の効果が得られる。これにより、第2の強磁性層30への書き込みに必要な電流をより低減させることができる。
本実施形態では、磁界発生源5の第3の強磁性層50へ入射される電子のスピン偏極の向きが、磁界発生源5の第4の強磁性層10bでスピン偏極した電子および磁気記録部3の第1の強磁性層10aでスピン偏極した電子と同じである。そのため、図7に関して前述した効果と同様の効果が得られる。第3の非磁性層40および磁界発生源5の第2の非磁性層20bとしては、図7に関して前述した材料と同様の材料を用いることができる。
図9は、第1〜第4の実施形態における電流の関係を例示する概念模式図である。
図9に表した概念模式図の横軸は、電流の大きさを表している。図9に表した概念模式図の縦軸は、累積相対度数Nの正規確率プロットを表している。
磁気記録部3の記録状態(「0」あるいは「1」)の切り替えは、磁気記録部3に接続された図示しないトランジスタから供給される書き込み電流(電子電流60)を利用して行われる。磁気記録部3の記録状態の切り替えにおいては、第2の強磁性層30の磁化32の向きを第1の強磁性層10aの磁化12aの向きと平行である状態から反平行である状態へ切り替えるときに、その逆の切り替えである場合と比較して大きい電流が必要である。トランジスタにおいて大きい電流を流せる方向が存在するときには、大きい電流を流せる方向と、磁気記録部3の第2の強磁性層30を平行から反平行状態へ切り替える向きと、を一致させることが望ましい。
磁気記録部3の記録状態の読み出しは、トランジスタから供給される読み出し電流(センス電流61)を利用して行われる。このとき、読み出し電流の電流値は、書き込み電流の電流値よりも小さく、且つ、第2の強磁性層30の記録状態を変えないような読み出し電流を用いる。また、読み出し電流や書き込み電流の電流値は、トランジスタの固体差によってばらつく場合がある。大容量メモリを実現するためには、素子毎の固体差を考慮した設計をする。
図9は、前述したトランジスタの個体差を考慮した磁気記録部3の読み出し電流I1、磁気記録部3の書き込み電流I2、および磁界発生源5の第3の強磁性層50が歳差運動を持続する電流I3の範囲の関係を表した概念模式図である。図9は、トランジスタの固体差によって、読み出し電流I1と書き込み電流I2とが互いにある範囲を有する様子を表している。
読み出し電流の最大値I1maxは、書き込み電流の最小値I2minよりも小さく設定される。また、磁界発生源5の第3の強磁性層50が歳差運動を開始する電流値は、読み出し電流の最大値I1maxよりも大きいことが望ましい。本実施形態では、磁界発生源5において発生した回転磁界は、磁気記録部3の第2の強磁性層30の磁化32の反転をアシストする。そのため、磁界発生源5が歳差運動を持続する電流I3の範囲の中に磁気記録部3の書き込み電流I2の範囲が入っていることが望ましい。つまり、図9に表したように、磁界発生源5の第3の強磁性層50が歳差運動を開始する電流値は、書き込み電流の最小値I2minからみたマージンImを有することが望ましい。
図10は、第1〜第4の実施形態における電流と周波数の関係を例示する概念模式図である。
図10に表した概念模式図における左図の横軸は、共鳴によるアシスト効果が得られる大きさAEを表している。
第1〜第4の実施形態では、磁気記録部3の第2の強磁性層30の共鳴周波数f3に近い回転磁界を磁界発生源5において発生させ、第2の強磁性層30の磁化32の反転をアシストさせる。第2の強磁性層30の磁化32の反転を効果的にアシストするためには、本発明者が見出した知見によれば、磁界発生源5において発生する回転磁界を磁気記録部3の第2の強磁性層30の共鳴周波数f3±1GHz(ギガヘルツ)程度の範囲にすることが望ましい。
磁界発生源5においては、第3の強磁性層50は膜面に垂直な電流を通電することによって歳差運動が開始(発振開始)される。一方、電流量が増大してスピントルクの効果が歳差運動を持続させる際にバランスするダンピングの効果を上回ると、スピントルクの向きに磁化の向きがそろう(発振停止)。電流Iの大きさ(電流量の絶対値)が増大すると、第3の強磁性層50において発生する回転磁界の周波数fは高くなる。よって、回転磁界で第2の強磁性層30の磁化32の反転をアシストするために、第2の強磁性層30の共鳴周波数f3±1GHzの範囲の回転磁界を発生するような電流I3を磁界発生源5に通電される。また、この電流I3の範囲の中に磁気記録部3の書き込み電流I2の値の範囲が含まれる。
トランジスタの固体差に由来する磁気記録部3の書き込み電流I2の範囲を考慮すると、図10において、磁界発生源5において発生する回転磁界の周波数fの電流依存性のグラフの傾きは、小さいことが望ましい。本発明者が見出した知見によれば、この傾きは、磁界発生源5の第3の強磁性層50の初期角度(電流を通電する前に、第3の強磁性層50の磁化52が第4の強磁性層10bに対して有する傾き角)で変化する。また、磁界発生源5の第3の強磁性層50の材料と初期角度とによって発振開始電流値I3sを変えることができる。
図11は、第1〜第4の実施形態における電流と周波数の他の関係を例示する概念模式図である。
図11に表した概念模式図における左図の横軸は、共鳴によるアシスト効果が得られる大きさAEを表している。
図10に関して前述したように、磁界発生源5において発生する回転磁界の周波数fの電流依存性は、第3の強磁性層50の初期角度で変えることが可能である。第3の強磁性層50の初期角度は、第3の強磁性層50に加わる有効磁界の大きさで決定される。第1〜第4の実施形態では、磁界発生源5と磁気記録部3とが積層され、第1の強磁性層10aの磁化12aの垂直斜影成分の向きと、第4の強磁性層10bの磁化12bの垂直斜影成分の向きと、は、互いに逆向きである。
これにより、第2の強磁性層30の位置での膜面直方向にかかる漏洩磁界(以下、説明の便宜上「シフト磁界」ともいう)を低減させる又は打ち消すことができる。一方で、磁界発生源5の第3の強磁性層50に対しては、磁界発生源5の第4の強磁性層10bと、磁気記録部3の第1の強磁性層10aおよび第2の強磁性層30と、からの漏洩磁界を作用させることができる。そして、回転磁界の発振開始電流値I3sと電流に対する周波数依存性とを所望の範囲に調整する。
図11は、磁気記録部3の第2の強磁性層30を平行から反平行状態、ならびに反平行から平行状態へ変化させる両磁化反転をアシストする電流と周波数の関係を例示している。第2の強磁性層30を平行から反平行状態へ変える場合の書き込み電流I4の方が、反平行から平行状態へ変える場合の書き込み電流I2よりも大きい。また、磁界発生源5において発生する回転磁界の周波数fの電流依存性のグラフの傾きは、第2の強磁性層30を反平行から平行状態へ変える場合よりも平行から反平行状態へ変える場合の方が小さい。そのため、第2の強磁性層30を平行から反平行状態へ変えるときに第3の強磁性層50が歳差運動を持続する電流I5の範囲は、反平行から平行状態へ変えるときに第3の強磁性層50が歳差運動を持続する電流I3の範囲よりも広い。ここで、磁界発生源5の第3の強磁性層50に加わる漏洩磁界の大きさを調整することで、いずれの書き込み電流においても磁化32の反転をアシストさせる回転磁界を発生することが可能となる。
図12は、第1〜第4の実施形態における第3の強磁性層の大きさと電子電流が流れているときの磁化状態の関係を例示するグラフ図である。
第1〜第4の実施形態では、磁界発生源5における第3の強磁性層50のサイズに関して、第3の強磁性層50の横断面形状の円相当直径をR(nm)、「R」の半分の値をr(=R/2)(nm)、層厚をt(nm)とするとき、r<0.419t−2.86t+19.8の関係式を満たすサイズとする。
本願明細書において、「円相当直径」とは、対象とする平面形状の面積と同じ面積を有する円を想定し、その円の直径をいうものとする。例えば、第3の強磁性層50の横断面形状が円型の場合、「R」は直径を意味する。第3の強磁性層50の横断面形状が楕円の場合、「R」は、その楕円の面積と同じ面積を有する円の直径を意味する。第3の強磁性層50の横断面形状が多角形の場合、「R」は、その多角形の面積と同じ面積を有する円の直径を意味する。なお、第3の強磁性層50の横断面形状は、Rを直径とする円型であることが好ましい。本発明者は、この関係式を満たす場合に10A/cm程度の電流を流すと、第3の強磁性層50の磁化52が面直方向の成分をもって一斉に歳差運動をして、磁気記録部3の第2の強磁性層30に対して回転磁界がかかることを見出した。
図12に表した凡例「○」は、第3の強磁性層50が還流磁区(ボルテックス)を形成する条件を表している。一方、図12に表した凡例「□」は、第3の強磁性層50が還流磁区を形成しない条件を表している。つまり、図12の点線よりも上の領域は、電流を流したときに第3の強磁性層50が還流磁区を形成しながら還流磁区のコア(還流磁区の中心で磁化が垂直成分を有する部分)が第3の強磁性層50の外周を周回する範囲を表している。第3の強磁性層50がコアを作ることは、局所的に磁界を印加する目的としては適する。一方で、磁気記録部3の第2の強磁性層30の磁化32の反転をアシストする目的としては、還流磁区を形成しない歳差運動であることが望ましい。
本発明者は、図12に表した点線をもとに2次の項を持つ関数でフィッティングした。かかるフィッティングにより、前述した関係式を満たす場合に第3の強磁性層50へ電流を流すと、第3の強磁性層50の磁化52が面直方向の成分をもって一斉に歳差運動をして、磁気記録部3の第2の強磁性層30に対して回転磁界がかかることがわかった。
電流を流す向きを変えると、第3の強磁性層50において発生する回転磁界の回転方向は逆向きとなる。電流量を増やすと、電流量の増加量に比例して回転磁界の周波数は高くなる。さらに電流量を増やすと、第3の強磁性層50の磁化52は、スピントランスファトルクの向きにそろう。なお、素子特性を損なうことなく第3の強磁性層50に歳差運動を起こす観点から、磁界発生源5の第3の強磁性層50の厚さは、1nmから15nmの範囲(積層膜の場合には非磁性層の厚さを除く)であることが望ましい。第2の強磁性層30の位置で磁化32の反転が早まる十分な磁界強度を得る観点から、第3の強磁性層50の横断面形状の円相当直径は35nm以下、層厚は2±1.5nmの範囲であることが望ましい。
本発明者は、スピントランスファトルクを考慮したときのランダウ−リフシッツ−ギルバート(Landau-Liftshitz-Gilbert)方程式を考察し、磁界発生源5の第5の強磁性層50の横断面形状の円相当直径をR(nm)、「R」の半分の値をr(=R/2)、層厚をtとするとき、r<0.419t−2.86t+19.8とした場合における第3の強磁性層50が一斉に歳差運動をするための電流値(Jc)を見出した。
Figure 2012064863
式(1)は、第1および第4の強磁性層10a、10bからの漏洩磁界によって発振しきい値電流を低減できることを表している。すなわち、第1および第4の強磁性層10a、10bの層厚によって、磁界を発生させるための電流量を調整することが可能となる。
図13は、第5の実施形態にかかる磁気記録素子を表す断面模式図である。
第5の実施形態では、図13に表したように、磁気記録部3および磁界発生源5は、側面において保護層80および磁気シールド90により覆われている。つまり、磁気記録部3および磁界発生源5は、側面において、例えばSiNやAlなどの保護層80を介してパーマロイ(Py)などの磁気シールド90により覆われている。磁気記録部3および磁界発生源5のそれぞれにおける各要素の積層順序は、図13に表した積層順序に限定されるわけではなく、図6〜図8に関して前述した例の積層順序であってもよい。
これにより、隣の磁気抵抗効果素子からの漏洩磁界が磁界発生源5および磁気記録部3の挙動に影響を与えることを防ぐことができる。そのため、回転磁界を発生させるために必要となる電流注入量を抑えることができる。また、磁界発生源5および磁気記録部3からの漏洩磁界が、隣の磁気抵抗効果素子に作用することを防ぐことができる。その結果、各磁気記録素子を近接して配置することができ、集積化を図ることができる。
保護層80としては、アルミニウム(Al)、チタン(Ti)、亜鉛(Zn)、ジルコニウム(Zr)、タンタル(Ta)、コバルト(Co)、ニッケル(Ni)、シリコン(Si)、マグネシウム(Mg)、鉄(Fe)よりなる群から選択された少なくともいずれかの元素を含む酸化物、窒化物又は弗化物を非磁性バリア層に用いることができる。
磁気シールド90としては、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、マンガン(Mn)、クロム(Cr)よりなる群から選択されたいずれかの元素、あるいはこれらの群から選択された少なくともいずれかの元素の組み合わせによる合金を用いることができる。また、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、マンガン(Mn)、クロム(Cr)よりなる群から選択された少なくともいずれかの元素と、白金(Pt)、パラジウム(Pd)、イリジウム(Ir)、ルテニウム(Ru)、ロジウム(Rh)よりなる群から選択された少なくともいずれかの元素と、の組み合わせによる合金を用いることができる。これらは、含まれる磁性材料の組成や熱処理により特性を調整することができる。また、磁気シールド90は、TbFeCo、GdFeCoなどの希土類−遷移金属のアモルファス合金や、Co/Pt、Co/Pd、Co/Niの積層構造などからなっていてもよい。
次に、第1〜第4の実施形態にかかる磁気記録素子の製作方法について説明する。 なお、以下の説明において、「材料A\材料B」は、材料Aの上に材料Bが積層されていることを意味する。
まず、ウェーハ上に下部電極(図示せず)を形成した後、そのウェーハを超高真空スパッタ装置内に配置する。次に、下部電極上に、Ta\Ru層(電極とのコンタクト層、兼ストッパー層)、FePd\CoFeB層(磁気記録部3の第2の強磁性層30)、MgO(第1の非磁性層20a)、CoFeB\FePt層(磁気記録部3の第1の強磁性層10a)、Ru(第3の非磁性層40)、FePt\CoFeB\Cu\Py層(磁界発生源5)および、その上にTa(電極とのコンタクト層)による層をこの順に積層させる。ここで、磁場中でアニールすることによって、FePd\CoFeB層とCoFeB\FePt層の膜面垂直方向の磁気異方性の強さを調節することもできる。
次に、EB(electron beam:電子線)レジストを塗布してEB露光を行い、直径50nmのレジストマスクを形成する。イオンミリングによってレジストで被覆されていない部分をストッパ層を兼ねた下部電極上のTa層が露出するまで削る。
続いて、保護層80としてSiN層を形成した後、磁気シールド90として機能するPy層を形成する。エッチバックにより、Py層が磁気記録素子の側壁に残るようにする。
次に、磁気記録素子を絶縁埋め込みすべくSiO膜を成膜した後、CMP(Chemical Mechanical Polishing)等で平坦化した後、RIE(Reactive Ion Etching)等で全面をエッチングすることで電極とのコンタクト層を露出させる。
さらに全面にレジストを塗布し、このレジストを上部電極の位置にレジストが被覆されない部分ができるように、ステッパ露光装置を用いてパターニングする。上部電極に対応した開口をCuで埋め込み成膜し、レジストを除去する。上部電極には、図示しない配線を設けて電気的入出力ができるようにする。
以上説明したように、第1〜第5の実施形態によれば、第1の方向に固着された第1の強磁性層10aの磁化12aの垂直斜影成分の向きと、第2の方向に固着された第4の強磁性層10bの磁化12bの垂直斜影成分の向きと、は、互いに逆向きである。そのため、第2の強磁性層30の位置において膜面に対して垂直な方向にかかる漏洩磁界を低減させる又は打ち消すことができる。また、第3の強磁性層50において発生する回転磁界の向きと、第2の強磁性層30の磁化が歳差運動する向きと、は、一致する。そのため、磁界発生源5の第3の強磁性層50において発生した回転磁界は、磁気記録部3の第2の強磁性層30の磁化反転を効率的にアシストすることができる。その結果、第2の強磁性層30への情報の書き込みに必要な電流を低減させることができる。これにより、大容量メモリの実現に対して、MTJ素子を微細化しチップ内セル占有度を上昇させるとともに、書き込みに必要な電流を減少させることに大きく寄与することができる。
次に、本実施形態の具体例について図面を参照しつつ説明する。
図14は、第1の具体例における磁化反転の時間を例示するグラフ図である。
図14は、図1(a)および図1(b)に表した磁気記録素子の系において、マイクロマグネティクスを用いたシミュレーションを行った結果の一例を表している。図14に表したグラフ図の縦軸の「−1」は、第2の強磁性層30の磁化32が第1の強磁性層10aの磁化12aに対して反平行状態であることを表している。一方、図14に表したグラフ図の縦軸の「1」は、第2の強磁性層30の磁化32が第1の強磁性層10aの磁化12aに対して平行状態であることを表している。つまり、図14は、第2の強磁性層30の磁化32が第1の強磁性層10aの磁化12aに対して反平行状態から平行状態に至るまでの時間Tを表している。図14に表したグラフ図の横軸は、時間T(ナノ秒)を表している。
第1の具体例における磁気記録素子は、磁気記録部3の上に第3の非磁性層40を介して磁界発生源5が積層された構造を有する。そして、磁界発生源5の第3の強磁性層50が歳差運動することで発生する回転磁界は、磁気記録部3の第2の強磁性層30に作用され、磁化反転をアシストする。このときにアシスト効果を得るためには、第3の強磁性層50が第2の強磁性層30の共鳴周波数f3近傍の磁界を発生するような膜構成とされる。
磁気記録部3の第2の強磁性層30の磁化32の反転がアシストされる磁界の周波数および強度の条件の一例は、例えば以下の如くである。磁気記録部3は、直径50nmのピラー型形状である。第1の強磁性層10a(層厚5nm)は、Ms(磁化)=1000emu/cc、Ku(磁気異方性)=8Merg/cmの垂直磁化膜である。第1の非磁性層20a(層厚1nm)の材料は、MgOである。第2の強磁性層30(層厚2nm)は、Ms=800emu/cc、Ku=3.5Merg/cmの垂直磁化膜である。スピン偏極度とダンピング定数は、それぞれ0.4、0.01である。このとき、磁気記録部3の共鳴周波数は、3.5GHzである。
磁気記録部3の第2の強磁性層30の磁化32が、第1の強磁性層10aの磁化12aに対して反平行である状態において、磁気記録部3から磁界発生源5へ向かう向きに48μA(マイクロアンペア)の電流を流した。外部から周波数が異なるアシスト磁界(回転磁界)を与えたときに、第2の強磁性層30の磁化32が第1の強磁性層10aの磁化12aに対して反平行から平行に至るまでの時間Tは、図14に表した如くである。3GHzのアシスト磁界を与えたときに、磁化反転に至る時間Tがアシスト磁界なし110の場合よりも短縮されており、アシスト磁界によって磁化反転の効率が向上している。
図15は、第1の具体例におけるアシスト磁界の強度および周波数に対する磁化反転の時間を例示するグラフ図である。
図15に表したグラフ図の横軸は、アシスト磁界の周波数f(GHz)を表している。図15に表したグラフ図の縦軸は、磁化反転の時間T(ナノ秒)を表している。
アシスト磁界を印加しない場合の磁化反転の時間Tは、8.3ns(ナノ秒)である。共鳴周波数f3±1GHzの磁界を作用させることで磁化反転に至る時間Tが短縮されている。また、磁界強度が大きい方が磁化反転に至る時間Tは短い。
図16は、第1の具体例における電流に対して外部へ発生する磁界の周波数応答を例示するグラフ図である。
図16に表したグラフ図の横軸は、電流I(μA)を表している。図16に表したグラフ図の縦軸は、外部へ発生する磁界の周波数f(GHz)を表している。第1の具体例では、アシスト磁界を発生する磁界発生源5は、第3の非磁性層40を介して磁気記録部3上に積層されている。第1の強磁性層10aの磁化12aの垂直斜影成分の向きと、第4の強磁性層10bの磁化12bの垂直斜影成分の向きと、は、互いに逆向きである。
図1(a)および図1(b)に表した磁気記録素子の系において、第1の強磁性層10aおよび第4の強磁性層10bからの漏洩磁界が第2の強磁性層30の位置でほぼゼロとなるような構造とすると、第3の強磁性層50の位置で膜面に下向きの方向に漏洩磁界が残留する。この場合、磁界発生源5が発生する回転磁界の周波数fは、図16に表したように、電流Iの方向に対して非対称な応答を示す。
図16に表したグラフ図における各要素の条件は、以下の如くである。第1の強磁性層10a(層厚5nm)は、Ms=1000emu/cc、Ku=8Merg/cmの垂直磁化膜である。第1の非磁性層20a(層厚2nm)の材料は、銅(Cu)である。第3の強磁性層50(層厚3nm)は、Ms=800emu/cc、Ku=5000erg/cmの面内磁化膜である。図16に表したグラフ図では、図11に表した電流と周波数の関係のように、電流Iの方向に対して非対称性な周波数fが得られている。これにより、同一の周波数fの回転磁界を発生させる場合に必要となる電流値を、第2の強磁性層30が平行から反平行へ至る場合の方が、反平行から平行へ至る場合よりも大きくさせることが可能となる。
図17は、第1の具体例における第3の非磁性層の層厚と磁界強度との関係を例示するグラフ図である。
図17に表したグラフ図の横軸は、第3の非磁性層40の層厚t(nm)を表している。図17に表したグラフ図の縦軸は、第2の強磁性層30の位置での回転磁界の強度H(Oe)を表している。また、図17中の1100emu/ccおよび1000emu/ccは、第3の強磁性層50のMsを表している。
第2の強磁性層30の位置(膜面内における中心位置)でアシスト効果が得られるような磁界強度を得るための第3の非磁性層40の層厚は、図17に表したような関係を満たせばよい。
実際、図1(a)および図1(b)に表した磁気記録素子の系において、以下の条件の如く磁界発生源5を磁気記録部3の上に積層させた。第4の強磁性層10b(層厚5nm)は、Ms=1000emu/cc、Ku=8Merg/cmの垂直磁化膜である。第2の非磁性層20b(層厚2nm)の材料は、銅(Cu)である。第3の強磁性層50(層厚3nm)は、Ms=800emu/cc、Ku=5000erg/cmの面内磁化膜である。第3の非磁性層の層厚は、1nmである。第1の強磁性層10a(層厚5nm)は、Ms=1000emu/cc、Ku=8Merg/cmの垂直磁化膜である。第1の非磁性層(層厚1nm)の材料は、MgOである。第2の強磁性層30(層厚2nm)は、Ms=800emu/cc、Ku=3.5Merg/cmの垂直磁化膜である。磁気記録部3から磁界発生源5へ向かう向きに48μAの電流を流したところ、1.5nsの時間で磁化反転した。
次に、第1の具体例における磁気記録素子(図1(a)および図1(b)参照)の製作方法について説明する。
まず、ウェーハ上に下部電極(図示せず)を形成した後、そのウェーハを超高真空スパッタ装置内に配置する。次に、下部電極上に、Ta\Ru層(電極とのコンタクト層、兼ストッパ層)、FePd\CoFeB層(磁気記録部3の第2の強磁性層30)、MgO(第1の非磁性層20a)、CoFeB\FePt層(磁気記録部3の第1の強磁性層10a)、Cu(第3の非磁性層40)、FePd\CoFeB\Cu\Py層(磁界発生源5)および、その上にRu\Ta(電極とのコンタクト層)による層をこの順に積層させる。ここで、磁場中でアニールすることによって、FePd\CoFeB層とCoFeB\FePt層の膜面垂直方向の磁気異方性の強さを調節することもできる。
次に、EB(electron beam:電子線)レジストを塗布してEB露光を行い、直径50nmのレジストマスクを形成する。イオンミリングによってレジストで被覆されていない部分をストッパ層を兼ねた下部電極上のTa層が露出するまで削る。次に、磁気記録素子を絶縁埋め込みすべくSiO膜を成膜した後、レジストマスクをリフトオフする。
さらに全面にレジストを塗布し、このレジストを上部電極の位置にレジストが被覆されない部分ができるように、ステッパ露光装置を用いてパターニングする。上部電極に対応した開口をCuで埋め込み成膜し、レジストを除去する。上部電極には、図示しない配線を設けて電気的入出力ができるようにする。このように作製した磁気記録素子では、第2の強磁性層30の位置でのシフト磁界の影響を受けず、回転磁界の向きと、第2の強磁性層30の磁化32の歳差運動の向きと、が一致する。そのため、磁界発生源5を積層しない場合と比較して小さい電流で磁化反転した。
次に、本実施形態の他の具体例について図面を参照しつつ説明する。
図18(a)および図18(b)は、第2の具体例における磁気記録素子を表す断面模式図である。
なお、図18(a)は、電子eが下部電極100aから上部電極100bへ向かって流れる場合の磁気記録素子を表す断面模式図であり、図18(b)は、電子eが上部電極100bから下部電極100aへ向かって流れる場合の磁気記録素子を表す断面模式図である。
第2の具体例における磁気記録素子の積層構造は、図1(a)に表した磁気記録素子の積層構造と同様である。第2の強磁性層30の下には、下部電極100aが付設されている。第3の強磁性層50の上には、上部電極100bか付設されている。上部電極100bは、ビット線BL(第1の配線)に接続されている。下部電極100aは、選択トランジスタTRのドレイン端子に接続されている。選択トランジスタTRのゲート端子は、ワード線WL(第2の配線)に接続されている。選択トランジスタTRのソース端子は、ビット線/BLに接続されている。
第2の具体例における磁気記録素子は、第3の強磁性層50の横断面形状の円相当直径をR(nm)、「R」の半分の値をr(nm)、層厚をt(nm)とするとき、r<0.419t−2.86t+19.8の関係式を満たす。例えば、第3の強磁性層50を直径20nm、層厚3nmとした磁気記録素子が、本具体例の磁気記録素子に当てはまる。
図19は、第2の具体例における電流に対して外部へ発生する磁界の周波数応答を例示するグラフ図である。
図19に表したグラフ図の横軸および縦軸は、図16に表したグラフ図の横軸および縦軸とそれぞれ同様である。
第2の具体例においても、図16に関して前述したように、第1の強磁性層10aおよび第4の強磁性層10bからの漏洩磁界が第2の強磁性層30の位置でほぼゼロとなるような構造とすると、第3の強磁性層50の位置で膜面に下向きの方向に漏洩磁界が残留する。この場合、磁界発生源5が発生する回転磁界の周波数fは、図19に表したように、電流Iの方向に対して非対称な応答を示す。
第2の具体例では、以下の条件の如く磁界発生源5を磁気記録部3の上に積層させた。第1の強磁性層10a(層厚5nm)は、Ms=1000emu/cc、Ku=8Merg/cmの垂直磁化膜である。第1の非磁性層20a(層厚1nm)の材料は、MgOである。第2の強磁性層30(層厚2nm)は、Ms=800emu/cc、Ku=3.3Merg/cmの垂直磁化膜である。このとき、第2の強磁性層30の共鳴周波数は3.2GHzである。第4の強磁性層10b(層厚8nm)は、Ms=1000emu/cc、Ku=8Merg/cmの垂直磁化膜である。第2の非磁性層20b(層厚8nm)の材料は、Cuである。第3の強磁性層50(層厚3nm)は、Ku=5000erg/cmの面内磁化膜である。
図20は、第2の具体例における第3の非磁性層の層厚と磁界強度との関係を例示するグラフ図である。
図20に表したグラフ図の横軸および縦軸は、図17に表したグラフ図の横軸および縦軸とそれぞれ同様である。また、図20中の1400emu/ccおよび1000emu/ccは、第3の強磁性層50のMsを表している。
まず、第3の非磁性層40の層厚を8nmとした。磁気記録部3のみのときに、第2の強磁性層30の磁化32が反平行状態から平行状態へと磁化反転に至る時間は、7μAの通電で8.6nsであった。これに対し、第2の具体例では、5.2nsとなることを確認した。一方で、第2の強磁性層30の磁化32が歳差運動する方向と、第3の強磁性層50が発生する回転磁界の向きと、が不一致となる場合、磁化32が反平行状態から平行状態へと磁化反転に至る時間は、7μAの通電で9.6nsであった。これにより、回転磁界の向きと、第2の強磁性層30の磁化32が歳差運動する方向と、が一致する場合には、磁化反転効率が向上することを確認した。この結果、より小さな電流でデータの書き込みができる。
次に、第3の非磁性層40の層厚を2nmとした。磁気記録部3のみのときに、第2の強磁性層30の磁化32が反平行状態から平行状態へと磁化反転に至る時間は、7μAの通電で8.6nsであった。これに対し、第2の具体例では、1.6nsとなることを確認した。一方で、第2の強磁性層30の磁化32が歳差運動する方向と、第3の強磁性層50が発生する回転磁界の向きと、が不一致となる場合、磁化32が反平行状態から平行状態へと磁化反転に至る時間は、7μAの通電で7.8nsであった。磁界発生源5が磁気記録部3により近接させたことにより、磁化反転効率が向上した。これにより、回転磁界の向きと、第2の強磁性層30の磁化32が歳差運動する方向と、が一致する場合には、磁化反転効率が向上することを確認した。この結果、より小さな電流でデータの書き込みができる。
図21は、本具体例の他の条件における第3の非磁性層の層厚と磁界強度との関係を例示するグラフ図である。
図21に表したグラフ図の横軸および縦軸は、図17に表したグラフ図の横軸および縦軸とそれぞれ同様である。また、図21中の1000emu/ccおよび400emu/ccは、第3の強磁性層50のMsを表している。図21中の「t3nm」は第3の強磁性層50の層厚が3nmであり、「t0.5nm」は第3の強磁性層50の層厚が0.5nmであることを表している。
図21に表したグラフ図における各要素の条件は、以下の如くである。第3の強磁性層50の直径は、20nmである。第4の強磁性層10b(層厚5nm)は、Ms=1000emu/cc、Ku=8Merg/cmの垂直磁化膜である。第2の非磁性層20b(層厚2nm)の材料は、Cuである。第3の強磁性層50(層厚3nmと層厚0.5nm)は、Ku=5000erg/cmの面内磁化膜である。第1の強磁性層10a(層厚5nm)は、Ms=1000emu/cc、Ku=8Merg/cmの垂直磁化膜である。第1の非磁性層20a(層厚1nm)の材料は、MgOである。第2の強磁性層30(層厚2nm)は、Ms=800emu/cc、Ku=3.3Merg/cmの垂直磁化膜である。
図15に表したグラフ図に表したように、回転磁界によるアシスト効果が得られるためには数十Oe(エルステッド)の強度があればよい。図22に関して後述するような膜構成とすると、第3の強磁性層50と第2の強磁性層30とがより近接するためより大きな磁界が得られる。
r<0.419t−2.86t+19.8の関係式を満たす系の特性である図20および図21に表したグラフ図と、r<0.419t−2.86t+19.8の関係式を満たさない系の特性である図17に表したグラフ図と、を比較すると、関係式を満たす場合では膜面直方向に対してサイズを縮小することによる磁界強度Hの増加傾向が著しいことが分かる。膜面直方向の薄膜化は、素子加工の観点からも望ましい。よって、第2の強磁性層30の位置で磁化反転が早まる十分な磁界強度Hを得て、且つ、素子加工の観点からr<0.419t−2.86t+19.8の関係式を満たす範囲において、第3の強磁性層50の横断面形状の円相当直径は35nm以下、層厚は2±1.5nmの範囲であることが望ましい。
本具体例の磁気記録素子については、図14〜図17に関して前述した具体例の磁気記録素子と同様の方法により作製することができる。すなわち、ウェーハ上に外部から通電するための下部電極100aを介して、Ta\Ru層(電極とのコンタクト層、兼ストッパ層)、FePt\CoFeB層(磁気記録部3の第1の強磁性層10a)、MgO(第1の非磁性層20a)、CoFeB\FePd層(磁気記録部3の第2の強磁性層30)、Cu(第3の非磁性層40)、FePd\CoFe\Cu\Py層(磁界発生源5)および、その上にRu\Ta(電極とのコンタクト層)によるピラーを形成する。そして、上部電極100bを介して外部から電気通電できるような素子を形成する。
次に、本実施形態のさらに他の具体例について図面を参照しつつ説明する。
図22(a)および図22(b)は、第3の具体例における磁気記録素子を表す断面模式図である。
なお、図22(a)は、電子eが上部電極100bから下部電極100aへ向かって流れる場合の磁気記録素子を表す断面模式図であり、図18(b)は、電子eが下部電極100aから上部電極100bへ向かって流れる場合の磁気記録素子を表す断面模式図である。
第3の具体例における磁気記録素子の積層構造は、図6(b)に表した磁気記録素子の積層構造と同様である。図18に関して前述した具体例と同様に、第2の強磁性層30の下には、下部電極100aが付設されている。第3の強磁性層50の上には、上部電極100bか付設されている。上部電極100bは、ビット線BLに接続されている。下部電極100aは、選択トランジスタTRのドレイン端子に接続されている。選択トランジスタTRのゲート端子は、ワード線WLに接続されている。選択トランジスタTRのソース端子は、ビット線/BLに接続されている。
第3の具体例では、第3の非磁性層40としてスピン拡散長の短いルテニウム(Ru)が用いられている。これにより、第3の強磁性層50と第2の強磁性層30との間でスピントランスファトルクの情報が伝達することを抑え、第3の強磁性層50の発振効率が下がることを抑えることができる。
図23は、第3の具体例における第3の非磁性層の層厚と磁界強度との関係を例示するグラフ図である。
図23に表したグラフ図の横軸および縦軸は、図17に表したグラフ図の横軸および縦軸とそれぞれ同様である。また、図23中の1000emu/cc、800emu/cc、および600emu/ccは、第3の強磁性層50のMsを表している。
第3の具体例では、第2の強磁性層30の横断面形状は、直径50nmの円型である。また、第3の具体例では、以下の条件の如く磁気記録部3の上に第3の非磁性層40を介して磁界発生源5が積層されている。第1の強磁性層10a(層厚5nm)は、Ms=1000emu/cc、Ku=8Merg/cmの垂直磁化膜である。第1の非磁性層20a(層厚1nm)の材料は、MgOである。第2の強磁性層30(層厚2nm)は、Ms=800emu/cc、Ku=3.3Merg/cmの垂直磁化膜である。第4の強磁性層10b(層厚5nm)は、Ms=1000emu/cc、Ku=8Merg/cmの垂直磁化膜である。第2の非磁性層20b(層厚2nm)の材料は、Cuである。第3の強磁性層50(層厚3nm)は、Ku=5000erg/cmの面内磁化膜である。実際、第3の非磁性層40のルテニウム(Ru)の層厚を8nm、第3の強磁性層50のMsを800emu/ccとしたときに、反平行状態から平行状態へと磁化反転する時間が2.6nsに短縮されることが確認された。
図24は、第3の具体例の他の条件における第3の非磁性層の層厚と磁界強度との関係を例示するグラフ図である。
図24に表したグラフ図の横軸および縦軸は、図17に表したグラフ図の横軸および縦軸とそれぞれ同様である。また、図24中の800emu/cc、600emu/cc、および400emu/ccは、第3の強磁性層50のMsを表している。
ここでは、第2の強磁性層の横断面形状は、直径20nmの円型である。また、ここでは、以下の条件の如く磁気記録部3の上に第3の非磁性層40を介して磁界発生源5が積層されている。第1の強磁性層10a(層厚5nm)は、Ms=1000emu/cc、Ku=8Merg/cmの垂直磁化膜である。第1の非磁性層20a(層厚1nm)の材料は、MgOである。第2の強磁性層30(層厚2nm)は、Ms=800emu/cc、Ku=3.3Merg/cmの垂直磁化膜である。第3の非磁性層40の材料は、ルテニウム(Ru)である。磁界発生源5の直径は、20nmである。なお、第4の強磁性層10b(層厚5nm)は、Ms=1000emu/cc、Ku=8Merg/cmの垂直磁化膜である。第2の非磁性層20b(層厚2nm)の材料は、Cuである。第3の強磁性層50(層厚3nm)は、Ku=5000erg/cmの面内磁化膜である。
直径20nmの素子は、r<0.419t−2.86t+19.8の関係式を満たす。関係式を満たす系の特性である図24に表したグラフ図と、関係式を満たさない系の特性である図23に表したグラフ図と、を比較すると、関係式を満たす場合では膜面直方向に対してサイズを縮小することによる磁界強度Hの増加傾向が著しいことが分かる。膜面直方向の薄膜化は、素子加工の観点からも望ましい。よって、第2の強磁性層30の位置で磁化反転が早まる十分な磁界強度Hを得て、且つ、素子加工の観点からr<0.419t−2.86t+19.8の関係式を満たす範囲において、第3の強磁性層50の直径は35nm以下、層厚は2±1.5nmの範囲であることが望ましい。
第3の具体例における磁気記録素子については、図14〜図17に関して前述した具体例の磁気記録素子と同様の方法により作製することができる。すなわち、ウェーハ上に外部から通電するための下部電極100aを介して、Ta\Ru層(電極とのコンタクト層、兼ストッパー層)、FePt\CoFeB層(磁気記録部3の第1の強磁性層10a)、MgO(第1の非磁性層20a)、CoFeB\FePd層(磁気記録部3の第2の強磁性層30)、Ru(第3の非磁性層40)、Py\Cu\CoFeB\FePd層(磁界発生源5)および、その上にRu\Ta(電極とのコンタクト層)によるピラーを形成する。上部電極100bを介して外部から電気通電できるような素子をする。
次に、第1〜第5の実施形態のさらに他の具体例について図面を参照しつつ説明する。 図25は、第1〜第5の実施形態の他の具体例における不揮発性記憶装置を表す平面模式図である。
本具体例の不揮発性記憶装置は、マトリクス状に配列されたメモリセルMCを有するメモリセルアレイを備えている。そして、各メモリセルMCは、図1〜図13に関して前述した実施形態にかかる磁気記録素子のいずれかをMTJ素子として有する。
また、メモリセルアレイには、それぞれが列(カラム)方向に延在するように、複数のビット線対(ビット線BL及びビット線/BL)が配置されている。また、メモリセルアレイには、それぞれが行(ロウ)方向に延在するように、複数のワード線WLが配置されている。
ビット線BLとワード線WLとの交差部分には、前述したメモリセルMCが配置されている。各メモリセルMCは、MTJ素子と選択トランジスタTRとを有する。MTJ素子の一端は、ビット線BLに接続されている。MTJ素子の他端は、選択トランジスタTRのドレイン端子に接続されている。選択トランジスタTRのゲート端子は、ワード線WLに接続されている。選択トランジスタTRのソース端子は、ビット線/BLに接続されている。
ワード線WLには、ロウデコーダが接続されている。ビット線対(ビット線BL及びビット線/BL)には、書き込み回路および読み出し回路が接続されている。書き込み回路および読み出し回路には、カラムデコーダが接続されている。各メモリセルMCは、ロウデコーダおよびカラムデコーダにより選択される。
メモリセルMCへのデータ書き込みは、以下のように行われる。まず、データ書き込みを行なうメモリセルMCを選択するために、このメモリセルMCに接続されたワード線WLが活性化される。これにより、選択トランジスタTRがオンする。
ここで、MTJ素子には、双方向の書き込み電流が供給される。具体的には、MTJ素子に左から右へ書き込み電流を供給する場合、書き込み回路は、ビット線BLに正の電位を印加し、ビット線/BLに接地電位を印加する。また、MTJ素子に右から左へ書き込み電流を供給する場合、書き込み回路は、ビット線/BLに正の電位を印加し、ビット線BLに接地電位を印加する。このようにして、メモリセルMCにデータ「0」あるいはデータ「1」を書き込むことができる。
メモリセルMCからのデータ読み出しは、以下のように行われる。まず、メモリセルMCが選択される。読み出し回路は、MTJ素子に、例えば右から左へ流れる読み出し電流を供給する。そして、読み出し回路は、この読み出し電流に基づいて、MTJ素子の抵抗値を検出する。このようにして、MTJ素子に記憶された情報を読み出すことができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
3 磁気記録部(第1積層部)、 5 磁界発生源(第2積層部)、 10a 第1の強磁性層、 10b 第4の強磁性層、 12a、12b 磁化、 20a 第1の非磁性層、 20b 第2の非磁性層、 30 第2の強磁性層、 32 磁化、 34 磁化容易軸、 40 第3の非磁性層、 50 第3の強磁性層、 52 磁化、 54 磁化容易軸、 60 電子電流、 61 センス電流、 72 磁化、 72a、72b 磁化斜影成分、 80 保護層、 90 磁気シールド、 100a 下部電極、 100b 上部電極、 BL、/BL ビット線(第1の配線)、 I 電流、I1 読み出し電流、I2 書き込み電流、 I1max 最大値、 I2min 最小値、 I3 電流、 I3s 発振開始電流値、I4、I5 電流、 Im マージン、 MC メモリセル、SD1 積層方向、 SD2 膜面方向、 TR 選択トランジスタ、WL ワード線(第2の配線)

Claims (8)

  1. 膜面に対して垂直な成分を有する第1の方向に磁化が実質的に固着された第1の強磁性層と、
    磁化の方向が膜面に対して垂直な方向に可変である第2の強磁性層と、
    前記第1の強磁性層と前記第2の強磁性層との間に設けられた第1の非磁性層と、
    を含む第1積層部と、
    磁化の方向が膜面に対して平行な方向に可変である第3の強磁性層と、
    膜面に対して垂直な成分を有する第2の方向に磁化が実質的に固着された第4の強磁性層と、
    前記第3の強磁性層と前記第4の強磁性層との間に設けられた第2の非磁性層と、
    を含む第2積層部と、
    を含む積層体を備え、
    前記第1の方向は、前記第2の方向と、逆であり、
    前記積層体の各層の膜面に対して略垂直な方向に電流を流すことによりスピン偏極した電子を前記第2の強磁性層に作用させ、且つ前記第3の強磁性層の磁化を歳差運動させることにより発生する磁場を前記第2の強磁性層に作用させることにより、前記第2の強磁性層の磁化の方向を前記電流の向きに応じた方向に決定可能としたことを特徴とする磁気記録素子。
  2. 前記第3の強磁性層の横断面形状の円相当直径をR(nm)とし、前記Rの半分の値をr(nm)とし、前記第3の強磁性層の層厚をt(nm)としたときに、前記rと前記tは、

    r<0.419t−2.86t+19.8

    の関係を満たすことを特徴とする請求項1記載の磁気記録素子。
  3. 前記第2の強磁性層と前記第3の強磁性層との間に設けられた第3の非磁性層をさらに備え、
    前記第3の非磁性層は、ルテニウム(Ru)、タンタル(Ta)、タングステン(W)、白金(Pt)、パラジウム(Pd)、モリブデン(Mo)、ニオブ(Nb)、ジルコニウム(Zr)、チタン(Ti)、及び、バナジウム(V)よりなる群から選択されたいずれかの金属、または、前記群から選択された少なくとも2つ以上を含む合金を含むことを特徴とする請求項1または2に記載の磁気記録素子。
  4. 前記第2の強磁性層と前記第3の強磁性層との間に設けられた第3の非磁性層をさらに備え、
    前記第3の非磁性層は、ルテニウム(Ru)、オスミウム(Os)、及び、イリジウム(Ir)よりなる群から選択されたいずれかの金属、または、前記群から選択された少なくとも2つ以上を含む合金を含み、
    前記第3の非磁性層の層厚は、3nm以下であることを特徴とする請求項1または2に記載の磁気記録素子。
  5. 前記第3の強磁性層の横断面形状の円相当直径は、35nm以下であり、前記第3の強磁性層の層厚は、0.5nm以上3.5nm以下であることを特徴とする請求項1〜4のいずれか1つに記載の磁気記録素子。
  6. 前記積層体の側面を覆う磁気シールドをさらに備えたことを特徴とする請求項1〜5のいずれか1つに記載の磁気記録素子。
  7. 請求項1〜6のいずれか1つに記載の磁気記録素子と、
    前記磁気記録素子の一端に接続された第1の配線と、
    前記磁気記録素子の他端に接続された第2の配線と、
    を備えたことを特徴とする不揮発性記憶装置。
  8. 前記磁気記録素子と前記第1の線との間、及び、前記磁気記録素子と前記第2の配線の間の少なくともいずれかの間に設けられた選択トランジスタをさらに備えたことを特徴とする請求項7記載の不揮発性記憶装置。
JP2010209390A 2010-09-17 2010-09-17 磁気記録素子および不揮発性記憶装置 Expired - Fee Related JP5085703B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010209390A JP5085703B2 (ja) 2010-09-17 2010-09-17 磁気記録素子および不揮発性記憶装置
US13/037,592 US8488375B2 (en) 2010-09-17 2011-03-01 Magnetic recording element and nonvolatile memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010209390A JP5085703B2 (ja) 2010-09-17 2010-09-17 磁気記録素子および不揮発性記憶装置

Publications (2)

Publication Number Publication Date
JP2012064863A true JP2012064863A (ja) 2012-03-29
JP5085703B2 JP5085703B2 (ja) 2012-11-28

Family

ID=45816986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010209390A Expired - Fee Related JP5085703B2 (ja) 2010-09-17 2010-09-17 磁気記録素子および不揮発性記憶装置

Country Status (2)

Country Link
US (1) US8488375B2 (ja)
JP (1) JP5085703B2 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012104825A (ja) * 2010-11-05 2012-05-31 Grandis Inc スイッチングが改良されたハイブリッド磁気トンネル接合要素を提供するための方法およびシステム
WO2014098980A1 (en) * 2012-12-21 2014-06-26 Intel Corporation Perpendicular spin transfer torque memory (sttm) device having offset cells and method to form same
JP2014517516A (ja) * 2011-05-12 2014-07-17 コリア・ユニバーシティ・リサーチ・アンド・ビジネス・ファウンデーション 磁気共鳴歳差現象と2重スピンフィルター効果とを利用するスピン伝達トルク磁気メモリ素子
JP2014179381A (ja) * 2013-03-13 2014-09-25 Toshiba Corp 磁気記憶素子及び不揮発性記憶装置
JP2015008216A (ja) * 2013-06-25 2015-01-15 ルネサスエレクトロニクス株式会社 磁気シールド、半導体装置および半導体パッケージ
WO2015136802A1 (ja) * 2014-03-13 2015-09-17 株式会社 東芝 磁気記憶素子及び不揮発性記憶装置
JP2015185580A (ja) * 2014-03-20 2015-10-22 株式会社東芝 不揮発性記憶装置
WO2017169291A1 (ja) * 2016-03-30 2017-10-05 ソニー株式会社 磁気抵抗素子、メモリ素子及び電子機器
US10096771B2 (en) 2015-09-16 2018-10-09 Kabushiki Kaisha Toshiba Magnetic element and memory device
KR20190066390A (ko) * 2017-12-05 2019-06-13 도시바 메모리 가부시키가이샤 전자 장치

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5514059B2 (ja) * 2010-09-17 2014-06-04 株式会社東芝 磁気抵抗効果素子及び磁気ランダムアクセスメモリ
JP2012129225A (ja) * 2010-12-13 2012-07-05 Sony Corp 記憶素子、メモリ装置
KR20120124226A (ko) * 2011-05-03 2012-11-13 삼성전자주식회사 메모리 소자 및 그 제조 방법
KR20140040169A (ko) * 2011-05-27 2014-04-02 유니버시티 오브 노스 텍사스 그라핀 자기터널접합 스핀 필터 및 그 제조방법
FR2977999B1 (fr) * 2011-07-12 2013-08-23 Thales Sa Oscillateur spintronique et utilisation de celui-ci dans des dispositifs radiofrequence
JP5542761B2 (ja) * 2011-09-20 2014-07-09 株式会社東芝 磁気抵抗効果素子およびその製造方法
JP5767925B2 (ja) * 2011-09-21 2015-08-26 株式会社東芝 磁気記憶素子及び不揮発性記憶装置
JP5475819B2 (ja) 2012-03-20 2014-04-16 株式会社東芝 不揮発性記憶装置
US8687415B2 (en) * 2012-07-06 2014-04-01 International Business Machines Corporation Domain wall motion in perpendicularly magnetized wires having artificial antiferromagnetically coupled multilayers with engineered interfaces
US9231191B2 (en) * 2012-08-20 2016-01-05 Industrial Technology Research Institute Magnetic tunnel junction device and method of making same
JP5383882B1 (ja) 2012-09-26 2014-01-08 株式会社東芝 不揮発性記憶装置
US9564403B2 (en) 2013-09-27 2017-02-07 Infineon Technologies Ag Magnetic shielding of perpendicular STT-MRAM
US9792971B2 (en) 2014-07-02 2017-10-17 Samsung Electronics Co., Ltd. Method and system for providing magnetic junctions with rare earth-transition metal layers
US9647032B2 (en) * 2014-08-27 2017-05-09 Avalanche Technology, Inc. Spin-orbitronics device and applications thereof
US9305576B2 (en) 2014-09-09 2016-04-05 Kabushiki Kaisha Toshiba Magnetoresistive element
US9634237B2 (en) 2014-12-23 2017-04-25 Qualcomm Incorporated Ultrathin perpendicular pinned layer structure for magnetic tunneling junction devices
US9728712B2 (en) 2015-04-21 2017-08-08 Spin Transfer Technologies, Inc. Spin transfer torque structure for MRAM devices having a spin current injection capping layer
US10468590B2 (en) 2015-04-21 2019-11-05 Spin Memory, Inc. High annealing temperature perpendicular magnetic anisotropy structure for magnetic random access memory
US9853206B2 (en) 2015-06-16 2017-12-26 Spin Transfer Technologies, Inc. Precessional spin current structure for MRAM
US9773974B2 (en) 2015-07-30 2017-09-26 Spin Transfer Technologies, Inc. Polishing stop layer(s) for processing arrays of semiconductor elements
US9741926B1 (en) 2016-01-28 2017-08-22 Spin Transfer Technologies, Inc. Memory cell having magnetic tunnel junction and thermal stability enhancement layer
US9640203B1 (en) * 2016-02-23 2017-05-02 Seagate Technology Llc Multi-frequency microwave assisted magnetic recording apparatus and method
JP2017195269A (ja) 2016-04-20 2017-10-26 ソニー株式会社 磁気記憶素子
US10665777B2 (en) 2017-02-28 2020-05-26 Spin Memory, Inc. Precessional spin current structure with non-magnetic insertion layer for MRAM
US10672976B2 (en) 2017-02-28 2020-06-02 Spin Memory, Inc. Precessional spin current structure with high in-plane magnetization for MRAM
US10032978B1 (en) 2017-06-27 2018-07-24 Spin Transfer Technologies, Inc. MRAM with reduced stray magnetic fields
US10199083B1 (en) 2017-12-29 2019-02-05 Spin Transfer Technologies, Inc. Three-terminal MRAM with ac write-assist for low read disturb
US10270027B1 (en) 2017-12-29 2019-04-23 Spin Memory, Inc. Self-generating AC current assist in orthogonal STT-MRAM
US10236048B1 (en) 2017-12-29 2019-03-19 Spin Memory, Inc. AC current write-assist in orthogonal STT-MRAM
US10360961B1 (en) 2017-12-29 2019-07-23 Spin Memory, Inc. AC current pre-charge write-assist in orthogonal STT-MRAM
US10236047B1 (en) 2017-12-29 2019-03-19 Spin Memory, Inc. Shared oscillator (STNO) for MRAM array write-assist in orthogonal STT-MRAM
US10141499B1 (en) 2017-12-30 2018-11-27 Spin Transfer Technologies, Inc. Perpendicular magnetic tunnel junction device with offset precessional spin current layer
US10339993B1 (en) 2017-12-30 2019-07-02 Spin Memory, Inc. Perpendicular magnetic tunnel junction device with skyrmionic assist layers for free layer switching
US10229724B1 (en) 2017-12-30 2019-03-12 Spin Memory, Inc. Microwave write-assist in series-interconnected orthogonal STT-MRAM devices
US10236439B1 (en) 2017-12-30 2019-03-19 Spin Memory, Inc. Switching and stability control for perpendicular magnetic tunnel junction device
US10255962B1 (en) 2017-12-30 2019-04-09 Spin Memory, Inc. Microwave write-assist in orthogonal STT-MRAM
US10319900B1 (en) 2017-12-30 2019-06-11 Spin Memory, Inc. Perpendicular magnetic tunnel junction device with precessional spin current layer having a modulated moment density
US10468588B2 (en) 2018-01-05 2019-11-05 Spin Memory, Inc. Perpendicular magnetic tunnel junction device with skyrmionic enhancement layers for the precessional spin current magnetic layer
US11430942B2 (en) * 2018-06-28 2022-08-30 Intel Corporation Multilayer free magnetic layer structure for spin-based magnetic memory
US10580827B1 (en) 2018-11-16 2020-03-03 Spin Memory, Inc. Adjustable stabilizer/polarizer method for MRAM with enhanced stability and efficient switching

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009021352A (ja) * 2007-07-11 2009-01-29 Toshiba Corp 磁気記録素子及び磁気記録装置
JP2009231753A (ja) * 2008-03-25 2009-10-08 Toshiba Corp 磁気抵抗効果素子及び磁気ランダムアクセスメモリ
JP2011204768A (ja) * 2010-03-24 2011-10-13 Toshiba Corp 磁気メモリ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4253225B2 (ja) * 2003-07-09 2009-04-08 株式会社東芝 磁気抵抗効果素子および磁気メモリ
JP4444241B2 (ja) * 2005-10-19 2010-03-31 株式会社東芝 磁気抵抗効果素子、磁気ランダムアクセスメモリ、電子カード及び電子装置
US20070297220A1 (en) * 2006-06-22 2007-12-27 Masatoshi Yoshikawa Magnetoresistive element and magnetic memory
US7957179B2 (en) * 2007-06-27 2011-06-07 Grandis Inc. Magnetic shielding in magnetic multilayer structures
US7615996B1 (en) * 2009-01-21 2009-11-10 Tdk Corporation Examination method for CPP-type magnetoresistance effect element having two free layers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009021352A (ja) * 2007-07-11 2009-01-29 Toshiba Corp 磁気記録素子及び磁気記録装置
JP2009231753A (ja) * 2008-03-25 2009-10-08 Toshiba Corp 磁気抵抗効果素子及び磁気ランダムアクセスメモリ
JP2011204768A (ja) * 2010-03-24 2011-10-13 Toshiba Corp 磁気メモリ

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012104825A (ja) * 2010-11-05 2012-05-31 Grandis Inc スイッチングが改良されたハイブリッド磁気トンネル接合要素を提供するための方法およびシステム
US9478729B2 (en) 2011-05-12 2016-10-25 Samsung Electronics Co., Ltd. Spin transfer torque magnetic memory device using magnetic resonance precession and the spin filtering effect
JP2014517516A (ja) * 2011-05-12 2014-07-17 コリア・ユニバーシティ・リサーチ・アンド・ビジネス・ファウンデーション 磁気共鳴歳差現象と2重スピンフィルター効果とを利用するスピン伝達トルク磁気メモリ素子
WO2014098980A1 (en) * 2012-12-21 2014-06-26 Intel Corporation Perpendicular spin transfer torque memory (sttm) device having offset cells and method to form same
US8786040B2 (en) 2012-12-21 2014-07-22 Intel Corporation Perpendicular spin transfer torque memory (STTM) device having offset cells and method to form same
US9105839B2 (en) 2012-12-21 2015-08-11 Intel Corporation Perpendicular spin transfer torque memory (STTM) device having offset cells and method to form same
GB2523933A (en) * 2012-12-21 2015-09-09 Intel Corp Perpendicular spin transfer torque memory (STTM) device having offset cells and method to form same
GB2523933B (en) * 2012-12-21 2018-06-27 Intel Corp Perpendicular spin transfer torque memory (STTM) device having offset cells and method to form same
US9496486B2 (en) 2012-12-21 2016-11-15 Intel Corporation Perpendicular spin transfer torque memory (STTM) device having offset cells and method to form same
JP2014179381A (ja) * 2013-03-13 2014-09-25 Toshiba Corp 磁気記憶素子及び不揮発性記憶装置
US9025368B2 (en) 2013-03-13 2015-05-05 Kabushiki Kaisha Toshiba Magnetic memory element and nonvolatile memory device
JP2015008216A (ja) * 2013-06-25 2015-01-15 ルネサスエレクトロニクス株式会社 磁気シールド、半導体装置および半導体パッケージ
JP2015176926A (ja) * 2014-03-13 2015-10-05 株式会社東芝 磁気記憶素子及び不揮発性記憶装置
US9818464B2 (en) 2014-03-13 2017-11-14 Kabushiki Kaisha Toshiba Magnetic memory element and memory device
WO2015136802A1 (ja) * 2014-03-13 2015-09-17 株式会社 東芝 磁気記憶素子及び不揮発性記憶装置
JP2015185580A (ja) * 2014-03-20 2015-10-22 株式会社東芝 不揮発性記憶装置
US9882122B2 (en) 2014-03-20 2018-01-30 Kabushiki Kaisha Toshiba Memory device
US10096771B2 (en) 2015-09-16 2018-10-09 Kabushiki Kaisha Toshiba Magnetic element and memory device
WO2017169291A1 (ja) * 2016-03-30 2017-10-05 ソニー株式会社 磁気抵抗素子、メモリ素子及び電子機器
JPWO2017169291A1 (ja) * 2016-03-30 2019-02-07 ソニー株式会社 磁気抵抗素子、メモリ素子及び電子機器
KR20190066390A (ko) * 2017-12-05 2019-06-13 도시바 메모리 가부시키가이샤 전자 장치
KR102423433B1 (ko) * 2017-12-05 2022-07-22 키오시아 가부시키가이샤 전자 장치

Also Published As

Publication number Publication date
US20120068281A1 (en) 2012-03-22
US8488375B2 (en) 2013-07-16
JP5085703B2 (ja) 2012-11-28

Similar Documents

Publication Publication Date Title
JP5085703B2 (ja) 磁気記録素子および不揮発性記憶装置
JP5285104B2 (ja) 磁気記録素子及び不揮発性記憶装置
USRE47975E1 (en) Perpendicular magnetic tunnel junction (pMTJ) with in-plane magneto-static switching-enhancing layer
JP5734800B2 (ja) 磁気記憶素子及び不揮発性記憶装置
JP6130886B2 (ja) 磁気素子及び記憶装置
JP5767925B2 (ja) 磁気記憶素子及び不揮発性記憶装置
JP5417369B2 (ja) 磁気素子及び不揮発性記憶装置
TWI633542B (zh) Magnetic memory
US9818464B2 (en) Magnetic memory element and memory device
JP5809903B2 (ja) 不揮発性記憶装置
JP5475819B2 (ja) 不揮発性記憶装置
US7119410B2 (en) Magneto-resistive effect element and magnetic memory
US8848433B2 (en) Nonvolatile memory device
JP6194752B2 (ja) 記憶素子、記憶装置、磁気ヘッド
US9722173B2 (en) Memory device
WO2017169147A1 (ja) 不揮発性メモリ素子および不揮発性メモリ素子の製造方法
JP2010232447A (ja) 磁気抵抗効果素子および磁気メモリ
JP2017212464A (ja) 記憶素子、記憶装置、磁気ヘッド
WO2023112087A1 (ja) 磁化回転素子、磁気抵抗効果素子及び磁気メモリ

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120905

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees