JP2012046026A - タイヤ - Google Patents

タイヤ Download PDF

Info

Publication number
JP2012046026A
JP2012046026A JP2010188909A JP2010188909A JP2012046026A JP 2012046026 A JP2012046026 A JP 2012046026A JP 2010188909 A JP2010188909 A JP 2010188909A JP 2010188909 A JP2010188909 A JP 2010188909A JP 2012046026 A JP2012046026 A JP 2012046026A
Authority
JP
Japan
Prior art keywords
tire
rubber
resin material
reinforcing cord
thermoplastic elastomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010188909A
Other languages
English (en)
Other versions
JP6066541B2 (ja
Inventor
Hiroyuki Fudemoto
啓之 筆本
Takashi Harada
高志 原田
Yoshihide Kono
好秀 河野
Chikashi Kon
誓志 今
Keiichi Hasegawa
圭一 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2010188909A priority Critical patent/JP6066541B2/ja
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to EP14185862.1A priority patent/EP2868490B1/en
Priority to EP11820011.2A priority patent/EP2610071B1/en
Priority to US13/818,348 priority patent/US9387725B2/en
Priority to CN201180051344.XA priority patent/CN103201121B/zh
Priority to CN201510997451.1A priority patent/CN105620204B/zh
Priority to CN201510997575.XA priority patent/CN105415981B/zh
Priority to CN201510998079.6A priority patent/CN105566862B/zh
Priority to PCT/JP2011/069224 priority patent/WO2012026548A1/ja
Priority to CN201510284825.5A priority patent/CN105034695B/zh
Publication of JP2012046026A publication Critical patent/JP2012046026A/ja
Priority to US15/175,414 priority patent/US20160280008A1/en
Application granted granted Critical
Publication of JP6066541B2 publication Critical patent/JP6066541B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】補強コード周辺部への空気の残存が抑制され、耐衝撃性に優れた熱可塑性樹脂材料を用いて形成されたタイヤを提供する。
【解決手段】少なくとも、熱可塑性樹脂材料で形成された環状のタイヤ骨格体17を有するタイヤであって、タイヤ骨格体17の外周部に周方向に巻回されて補強コード層28を形成する補強コード部材26を有し、前記熱可塑性樹脂材料が、少なくともポリエステル系熱可塑性エラストマーとゴムとを含むタイヤ10。
【選択図】図1

Description

本発明は、リムに装着されるタイヤにかかり、特に、少なくとも一部が熱可塑性材料で形成されたタイヤに関する。
従来、乗用車等の車両には、ゴム、有機繊維材料、スチール部材などから構成された空気入りタイヤが用いられている。
近年では、軽量化や、成形の容易さ、リサイクルのしやすさから、樹脂材料、特に熱可塑性樹脂や熱可塑性エラストマーなどをタイヤ材料として用いることが検討されている。
例えば、特許文献1には、熱可塑性の高分子材料を用いて成形された空気入りタイヤが開示されている。
特許文献2では、タイヤ本体(タイヤ骨格体)のトレッド底部のタイヤ半径方向外面に、補強コードをタイヤ周方向に連続して螺旋状に巻回した補強層を設け、タイヤ本体の耐カット性や耐パンク性を改善している。
特開2003−104008号公報 特開平03−143701号公報
本発明は、上記事情を踏まえ、熱可塑性樹脂材料を用いて形成され、補強コード部材周辺部への空気の残存が抑制され、耐衝撃性に優れたタイヤを提供することを目的とする。
(1)本発明のタイヤは、少なくとも、熱可塑性樹脂材料で形成された環状のタイヤ骨格体を有するタイヤであって、前記タイヤ骨格体の外周部に周方向に巻回されて補強コード層を形成する補強コード部材を有し、前記熱可塑性樹脂材料は、少なくともポリエステル系熱可塑性エラストマーとゴムとを含むタイヤである。
本発明のタイヤは、ポリエステル系熱可塑性エラストマーとゴムとを含む熱可塑性樹脂材料で形成された環状のタイヤ骨格体を有する。
ここで、「熱可塑性エラストマー」とは、弾性を有する高分子化合物であって、結晶性で融点の高いハードセグメントを構成するポリマーと、非晶性でガラス転移温度の低いソフトセグメントを構成するポリマーとを有する共重合体からなる熱可塑性樹脂材料を意味する。
また、「ポリエステル系熱可塑性エラストマー」とは、弾性を有する高分子化合物であり、結晶性で融点の高いハードセグメントを構成するポリマーと非晶性でガラス転移温度の低いソフトセグメントを構成するポリマーとを有する共重合体からなる熱可塑性樹脂材料であって、ハードセグメントを構成するポリマーとしてポリエステル樹脂を含むものを意味する。
「ゴム」とは、弾性を有する高分子化合物であるが、本明細書では、既述の熱可塑性エラストマーとは区別される。
熱可塑性エラストマーは結晶性で融点の高いハードセグメントが、擬似的な架橋点として振る舞い弾性を発現する。一方、ゴムは分子鎖中に2重結合などを有しており、硫黄等を加えて架橋(加硫)することで、3次元の網目構造を生成し、弾性を発現する。その為、熱可塑性エラストマーは加熱することで、ハードセグメントが溶融し、冷却することで再び擬似的な架橋点を再生し、再利用が可能である。一方、ゴムは架橋(加硫)すると3次元網目構造を生成し、流動性を失い、加熱しても再利用が困難である。但し、架橋していないゴムは、熱可塑性エラストマー同様の挙動を示す。
本発明における熱可塑性樹脂は、熱可塑性を有する樹脂を意味し、従来の天然ゴムや合成ゴム等の加硫ゴムは含まれない。ただし、「熱可塑性樹脂材料」は、少なくとも熱可塑性樹脂を含む材料を意味し、熱可塑性樹脂のほかにゴムを含む材料も「熱可塑性樹脂材料」に含まれる。
本発明に係る熱可塑性樹脂材料は、柔軟性を有し、耐衝撃性に優れる。また、ポリエステル系熱可塑性エラストマーを含むため、使用環境の温度変動による変形や硬さの変化が小さく、引張弾性率、及び引張強度等の引張特性にも優れる。このため、タイヤ骨格体として形成した場合にタイヤの耐久性、製造性に優れる。さらに、構造を簡素化できる為、軽量化を図ることができる利点がある。
一方、ポリエステル系熱可塑性エラストマーを単独で用いた場合には、その弾性率を調整しようとした場合に、ハードセグメントとソフトセグメントとの比率を制御する必要がある。これに対し、ポリエステル系熱可塑性エラストマーとゴムとを併用すると、両者の含有比を調整することで、ポリエステル系熱可塑性エラストマーを単独で用いた場合に比して、熱可塑性樹脂材料の弾性率を容易に調整することができる。
ところで、タイヤの転がり抵抗は、50℃付近の10Hz〜100Hz前後の振動で生じる為、タイヤについて粘弾性の測定を行うとすると、30℃〜50℃のtanδで転がり抵抗の大小を表すことができる。30℃〜50℃のtanδが小さい場合、タイヤの転がり抵抗も小さくなる傾向にある。
ここで、ポリエステル系熱可塑性エラストマー単独では、動的粘弾性測定をしたときに、ポリエステル系熱可塑性エラストマーに由来するtanδのピークが見られ、ポリエステル系熱可塑性エラストマーの弾性率が高くなるほど、高温側にピーク値がシフトする傾向がある。例えば、東レ・デュポン社製、ハイトレル 6347について動的粘弾性測定をすると、15℃付近にピークが存在する。
一方、ゴムについて動的粘弾性測定をすると、一般的に−10℃以下にピークが見られる。その為、ポリエステル系熱可塑性エラストマーとゴムを混合することで、その配合比率に応じ、ポリエステル系熱可塑性エラストマーに由来するピーク高さが減少し、ゴムに由来するピーク高さが上昇する。しかし、ゴムのピーク位置は−10℃以下の為、30℃〜50℃のtanδへの影響少なくなり、その為に総じてtanδが低くなる。
本発明のタイヤはポリエステル系熱可塑性エラストマーとゴムとを含む熱可塑性樹脂材料で形成されたタイヤ骨格体の外周部に補強コード部材が巻回されて補強コード層が形成されている。タイヤ骨格体の外周部に補強コード層が形成されていると、タイヤの耐パンク性、耐カット性、及びタイヤ(タイヤ骨格体)の周方向剛性が向上する。なお、周方向剛性が向上することで、熱可塑性材料で形成されたタイヤ骨格体のクリープ(一定の応力下でタイヤ骨格体の塑性変形が時間とともに増加する現象)が抑制される。
また、本発明に係る熱可塑性樹脂材料に含まれるポリエステル系熱可塑性エラストマーは補強コード部材に対する密着性があり、さらに溶着強度等の固定性能に優れている。このため、ポリエステル系熱可塑性エラストマーとゴムとを含む熱可塑性樹脂材料を用いると、例えば、補強コード部材の巻回工程において補強コード部材の周囲に空気が残る現象(エア入り)を抑制することができる。補強コード部材への密着性及び溶着性が高く、さらに補強コード部材周辺へのエア入りが抑制されていると、走行時の入力などによって補強コード部材が動くのを効果的に抑制することができる。これにより、例えば、タイヤ骨格体の外周部に補強コード部材全体を覆うようにタイヤ構成部材が設けられた場合であっても、補強コード部材は動きが抑制されているため、これらの部材間(タイヤ骨格体含む)の剥離などが生じるのが抑制されタイヤの耐久性が向上する。
(2)前記熱可塑性樹脂材料は、さらに、前記ゴムとの親和性がよい熱可塑性エラストマーを含んでいてもよい。熱可塑性樹脂材料が、ゴムとの親和性が良い熱可塑性エラストマーとして、例えば、酸変性体を含有した場合、熱可塑性樹脂材料中にゴムを微分散することができる。更にポリエステル系熱可塑性エラストマーと酸変性部位との相互作用により、引張強さを向上し、仮に破壊した場合でも延性破壊を生じ、脆性破壊や層状破壊が起こり難いと考えられる。
なお、「ゴムとの親和性が良い」とは、熱可塑性エラストマーをゴムと共に混ぜ合わせた時に、ゴムの分子骨格と熱可塑性エラストマーの分子骨格とが類似しており、熱可塑性エラストマーの分散粒子内にゴムを取り込んだ状態、または、ゴムの分散粒子内に熱可塑性エラストマーを取り込んだ状態を言う。
但し、熱可塑性樹脂材料中の熱可塑性エラストマーとゴムとのすべてが上記状態である必要はなく、熱可塑性樹脂材料中の熱可塑性エラストマーとゴムとが部分的に上記状態であってもよい。
(3)本発明のタイヤは、前記補強コード層が樹脂材料を含むように構成することができる。このように、補強コード層に樹脂材料が含まれていると、補強コード部材をクッションゴムで固定する場合と比してタイヤと補強コード層との硬さの差を小さくできるため、更に補強コード部材をタイヤ骨格体に密着・固定することができる。これにより、上述のエア入りを効果的に防止することができ、走行時に補強コード部材が動くのを効果的に抑制することができる。ここで、「樹脂材料」とは、少なくとも樹脂を含む材料であり、樹脂のみならず、ゴムや無機化合物を含んでいてもよい。なお、「樹脂」とは、熱可塑性樹脂(熱可塑性エラストマーを含む)及び熱硬化性樹脂を含む概念であり、加硫ゴム等のゴムや無機化合物を含まない。
前記補強コード層に樹脂材料を含めた場合、補強コードの引き抜き性(引き抜かれにくさ)を高める観点から、前記補強コードはその表面が20%以上樹脂材料に覆われていることが好ましく、50%以上覆われていることが更に好ましい。また、前記補強コード層中の樹脂材料の含有量は、補強コードを除いた補強コード層を構成する材料の総量に対して、補強コードの引き抜き性を高める観点から、20質量%以上が好ましく、50質量%以上が更に好ましい。
樹脂材料を含むように構成するには、例えば、タイヤ骨格体の軸方向に沿った断面視で、熱可塑性樹脂材料で形成されたタイヤ骨格体の外周部に補強コード部材の少なくとも一部が埋設されるように構成して形成することができる。この場合、補強コード部材が埋設しているタイヤ骨格体外周部のポリエステル系熱可塑性エラストマーとゴムとを含む熱可塑性樹脂材料が補強コード層を構成する樹脂材料に該当し、タイヤ骨格体を形成する熱可塑性樹脂材料と補強コード部材とで前記補強コード層が構成される。また、補強コード層に樹脂材料が含まれるように構成するには、前記タイヤ骨格体を形成する樹脂材料と同種又は別の樹脂材料で補強コードを被覆した被覆コード部材を、前記タイヤ骨格体の周方向に巻回してもよい。樹脂材料の同種とは、エステル系同士、スチレン系同士などの形態を指す。
(4)本発明のタイヤは、熱可塑性樹脂において、ポリエステル系熱可塑性エラストマー(x)とゴム(y)との質量比(x:y)が、95:5〜50:50であるように構成することができる。このように、前記ポリエステル系熱可塑性エラストマー(x)とゴム(y)との質量比(x:y)を95:5〜50:50とすることで、ポリエステル系熱可塑性エラストマー及びゴムの組み合わせにより発現し得る性能をより向上することができる。
ただし、熱可塑性樹脂材料がポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマーを含む場合は、ゴムとポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマーとの合計量(y’)と、ポリエステル系熱可塑性エラストマー(x)との質量比(x:y’)が、95:5〜50:50であるように構成することができる。
(5)本発明のタイヤは、熱可塑性樹脂材料において、ポリエステル系熱可塑性エラストマー(x)と、ゴム(y)及びゴムとの親和性がよい熱可塑性エラストマー(z)と、の質量比(x:y+z)が、95:5〜50:50であるように構成することができる。このように、ポリエステル系熱可塑性エラストマー(x)と、ゴム(y)及びポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマー(z)の合計量(y+z)と、の質量比(x:y+z)を95:5〜50:50とすることで、ポリエステル系熱可塑性エラストマー及びゴムの組み合わせにより発現し得る性能をより向上することができる。
(6)本発明のタイヤは、熱可塑性樹脂材料中のポリエステル系熱可塑性エラストマー及びゴムの合計含有量が、50〜100質量%であるように構成することができる。上記構成とすることで、ポリエステル系熱可塑性エラストマー及びゴムの組み合わせにより発現し得る性能をより向上することができる。
ただし、熱可塑性樹脂材料がポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマーを含む場合は、ポリエステル系熱可塑性エラストマーと、ゴムと、ポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマーとの合計量が、50質量%〜100質量%であるように構成することができる。
(7)本発明のタイヤは、前記熱可塑性樹脂材料中の前記ポリエステル系熱可塑性エラストマーと、前記ゴムと、前記ゴムとの親和性がよい熱可塑性エラストマーと、の合計含有量が、50質量%〜100質量%であるように構成することができる。上記構成とすることで、ポリエステル系熱可塑性エラストマー及びゴムの組み合わせにより発現し得る性能をより向上することができる。
上記構成とすることで、ポリエステル系熱可塑性エラストマー及びゴムの組み合わせにより発現し得る性能をより向上することができる。
以上説明したように、本発明のタイヤは、補強コード部材周辺部への空気の残存が抑制され、耐衝撃性に優れる。
(A)は本発明の一実施形態に係るタイヤの一部の断面を示す斜視図であり、(B)は、リムに装着したビード部の断面図である。 第1実施形態のタイヤのタイヤケースのクラウン部に補強コードが埋設された状態を示すタイヤ回転軸に沿った断面図である。 コード加熱装置、及びローラ類を用いてタイヤケースのクラウン部に補強コードを埋設する動作を説明するための説明図である。 (A)は本発明の一実施形態に係るタイヤのタイヤ幅方向に沿った断面図である。(B)はタイヤにリムを嵌合させた状態のビード部のタイヤ幅方向に沿った断面の拡大図である。 第2実施形態のタイヤの補強層の周囲を示すタイヤ幅方向に沿った断面図である。
まず、本発明におけるタイヤ骨格体を構成するポリエステル系熱可塑性エラストマーとゴムとを含む熱可塑性樹脂材料及び補強コード層を構成する樹脂材料について説明し、続いて本発明のタイヤの具体的な実施形態について図を用いて説明する。
[熱可塑性樹脂材料]
本発明のタイヤは、少なくともポリエステル系熱可塑性エラストマーとゴムとを含む熱可塑性樹脂材料で形成された環状のタイヤ骨格体を有する。
−ポリエステル系熱可塑性エラストマー−
ポリエステル系熱可塑性エラストマーは、弾性を有する高分子化合物であり、結晶性で融点の高いハードセグメントを構成するポリマーと、非晶性でガラス転移温度の低いソフトセグメントを構成するポリマーとを有する共重合体からなる熱可塑性樹脂材料であって、ハードセグメントを構成するポリマーとしてポリエステル樹脂を含むものである。ポリエステル系熱可塑性エラストマーとしては、例えば、JIS K6418:2007に規定されるエステル系熱可塑性エラストマー等が挙げられる。
ポリエステル系熱可塑性エラストマーとしては、特に限定されるものではないが、結晶性のポリエステルが融点の高いハードセグメントを構成し、非晶性のポリマーがガラス転移温度の低いソフトセグメントを構成している共重合体が挙げられる。
ハードセグメントを形成する結晶性のポリエステルとしては、芳香族ポリエステルを用いることができる。芳香族ポリエステルは、例えば、芳香族ジカルボン酸又はそのエステル形成性誘導体と脂肪族ジオールとから形成することができる。
ハードセグメントを形成する芳香族ポリエステルとしては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリスチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等が挙げられ、ポリブチレンテレフタレートが好ましい。
ハードセグメントを形成する好適な芳香族ポリエステルの一つとしては、テレフタル酸及び/又はジメチルテレフタレートと1,4−ブタンジオールから誘導されるポリブチレンテレフタレートが挙げられ、更に、イソフタル酸、フタル酸、ナフタレン−2,6−ジカルボン酸、ナフタレン−2,7−ジカルボン酸、ジフェニル−4,4’−ジカルボン酸、ジフェノキシエタンジカルボン酸、5−スルホイソフタル酸、あるいはこれらのエステル形成性誘導体などのジカルボン酸成分と、分子量300以下のジオール〔例えば、エチレングリコール、トリメチレングリコール、ペンタメチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、デカメチレングリコールなどの脂肪族ジオール、1,4−シクロヘキサンジメタノール、トリシクロデカンジメチロールなどの脂環式ジオール、キシリレングリコール、ビス(p−ヒドロキシ)ジフェニル、ビス(p−ヒドロキシフェニル)プロパン、2,2−ビス[4−(2−ヒドロキシエトキシ)フェニル]プロパン、ビス[4−(2−ヒドロキシ)フェニル]スルホン、1,1−ビス[4−(2−ヒドロキシエトキシ)フェニル]シクロヘキサン、4,4’−ジヒドロキシ−p−ターフェニル、4,4’−ジヒドロキシ−p−クオーターフェニルなどの芳香族ジオール〕などから誘導されるポリエステル、あるいはこれらのジカルボン酸成分およびジオール成分を2種以上併用した共重合ポリエステルであってもよい。また、3官能以上の多官能カルボン酸成分、多官能オキシ酸成分及び多官能ヒドロキシ成分などを5モル%以下の範囲で共重合することも可能である。
ソフトセグメントを形成するポリマーとしては、例えば、脂肪族ポリエステル及び脂肪族ポリエーテルから選択されたポリマーが挙げられる。
脂肪族ポリエーテルとしては、ポリ(エチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコール、ポリ(テトラメチレンオキシド)グリコール、ポリ(ヘキサメチレンオキシド)グリコール、エチレンオキシドとプロピレンオキシドの共重合体、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加重合体、エチレンオキシドとテトラヒドロフランの共重合体等が挙げられる。
脂肪族ポリエステルとしては、ポリ(ε−カプロラクトン)、ポリエナントラクトン、ポリカプリロラクトン、ポリブチレンアジペート、ポリエチレンアジペートなどが挙げられる。
これらの脂肪族ポリエーテル及び脂肪族ポリエステルの中でも、得られる共重合体の弾性特性の観点から、ポリ(テトラメチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加物、ポリ(ε−カプロラクトン)、ポリブチレンアジペート、ポリエチレンアジペートなどが好ましい。
ハードセグメントを形成するポリマー(ポリエステル)の数平均分子量としては、強靱性及び低温柔軟性の観点から、300〜6000が好ましい。また、ソフトセグメントを形成するポリマーの数平均分子量としては、強靱性及び低温柔軟性の観点から、300〜6000が好ましい。更に、ハードセグメント(He)及びソフトセグメント(Se)との質量比(He:Se)は、成形性の観点から、99:1〜20:80が好ましく、98:2〜30:70が更に好ましい。
ポリエステル系熱可塑性エラストマーは、上記ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。
ポリエステル系熱可塑性エラストマーとしては、市販品を用いることもでき、例えば、東レ・デュポン(株)製の「ハイトレル」シリーズ(例えば、3046、5557、6347、4047、4767、7247)、東洋紡(株)製の「ペルプレン」シリーズ(例えば、P30B、P40B、P40H、P55B、P70B、P150B、P250B、E450B、P150M、S1001、S2001、S5001、S6001、S9001等)等を用いることができる。
−ゴム−
「ゴム」とは、弾性を有する高分子化合物である。
既述のように、本明細書では、結晶性で融点の高いハードセグメントを構成するポリマーと、非晶性でガラス転移温度の低いソフトセグメントを構成するポリマーとを有する共重合体からなる熱可塑性樹脂材料である熱可塑性エラストマーとは区別される。
ゴムとしては、特に限定されるものではないが、例えば、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレン−ブタジエン共重合ゴム(SBR)、アクリロニトリル−ブタジエン共重合ゴム(NBR)、クロロプレンゴム(CR)、ブチルゴム(IIR)、ハロゲン化ブチルゴム(Br−IIR、Cl−IIR等)、エチレン−プロピレン−ジエンゴム(EPDM)等が挙げられる。アクリロニトリル−ブタジエン共重合ゴムの、ブタジエンの全部をイソプレンに置き換えたNIRや、ブタジエンの一部をイソプレンに置き換えたNBIRを用いてもよい。
中でも、熱可塑性樹脂材料の柔軟性を制御し易いとの観点から、BR、SBR、NBR、NIR、IR、EPDM及びNBIRが好ましく、BR、SBR、NBR、IR、及びEPDMがより好ましい。
ゴムの弾性率を大きくし、分散したゴムの粒径を固定化し、クリープをよくする観点から、ゴムは、ゴムを加硫した加硫ゴムを用いてもよい。ゴムの加硫は、公知の方法で行なえばよく、例えば、特開平11−048264号公報、特開平11−029658号公報、特開2003−238744号公報等に記載される方法で行なうことができる。ポリエステル系熱可塑性エラストマーとのブレンドに際し、微細化する為に粉砕し、投入することが好ましい。
特にポリエステル系熱可塑性エラストマーとゴムを混練しながら、ゴムの分散と架橋(加硫)を行う動的架橋を用いることが好ましい。
ゴムの加硫は、上記ゴムに、例えば、カーボンブラック等の補強材、充填剤、加硫剤、加硫促進剤、脂肪酸又はその塩、金属酸化物、プロセスオイル、老化防止剤等を適宜配合し、バンバリーミキサーを用いて混練した後、120℃〜200℃で加熱すればよい。
加硫剤としては、公知の加硫剤、例えば硫黄、有機過酸化物、樹脂加硫剤などが用いられる。
加硫促進剤としては、公知の加硫促進剤、例えばアルデヒド類、アンモニア類、アミン類、グアニジン類、チオウレア類、チアゾール類、スルフェンアミド類、チウラム類、ジチオカーバメイト類、キサンテート類などが用いられる。
脂肪酸としては、ステアリン酸、パルミチン酸、ミリスチン酸、ラウリン酸などが挙げられ、また、これらはステアリン酸亜鉛のように塩の状態で配合されてもよい。これらの中でも、ステアリン酸が好ましい。
また、金属酸化物としては、亜鉛華(ZnO)、酸化鉄、酸化マグネシウムなどが挙げられ、中でも亜鉛華が好ましい。
プロセスオイルは、アロマティック系、ナフテン系、パラフィン系のいずれを用いてもよい
老化防止剤としては、アミン−ケトン系、イミダゾール系、アミン系、フェノール系、硫黄系及び燐系などが挙げられる。
熱可塑性樹脂中における、ポリエステル系熱可塑性エラストマー(x)とゴム(y)との質量比(x:y)〔熱可塑性樹脂がポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマーを含む場合は、ポリエステル系熱可塑性エラストマー(x)とゴムとポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマーとの合計量(y’)との質量比(x:y’)〕は、95:5〜50:50であることが好ましい。これらエラストマーの質量比が、95:5〜50:50にあると、ポリエステル系熱可塑性エラストマーとゴムとが、ポリエステル系熱可塑性エラストマーの特性を維持しつつ、ゴムの特性を付与することができ、ポリエステル系熱可塑性エラストマーによる補強コード部材とタイヤ骨格体との溶着性を維持したまま、容易にタイヤの弾性率を制御することができ、タイヤの耐久性をより向上したタイヤとすることができる。前記(x:y)及び前記(x:y’)は、共に90:10〜50:50がより好ましい。
−ゴムとの親和性が良い熱可塑性エラストマー−
熱可塑性樹脂材料には、ゴムとの親和性が良い熱可塑性エラストマーを含んでいてもよい。以下、ゴムとの親和性が良い熱可塑性エラストマーを「ゴム親和熱可塑性エラストマー」とも称する。
熱可塑性樹脂材料が、ゴム親和熱可塑性エラストマーをさらに含むことで、熱可塑性樹脂材料中にゴムを微分散することができる。更に、ゴム親和熱可塑性エラストマーが後述する酸変性熱可塑性エラストマーである場合には、ポリエステル系熱可塑性エラストマーと酸変性部位との相互作用により、引張強さを向上し、仮に破壊した場合でも延性破壊を生じ、脆性破壊や層状破壊が起こり難いと考えられる。延性破壊、脆性破壊、層状破壊の別は、熱可塑性樹脂材料の破断面を目視することにより確認することができる。
ここで、「ゴムとの親和性が良い」とは、熱可塑性エラストマーをゴムと共に混ぜ合わせた時に、ゴムの分子骨格と熱可塑性エラストマーの分子骨格とが類似しており、熱可塑性エラストマーの分散粒子内にゴムを取り込んだ状態、または、ゴムの分散粒子内に熱可塑性エラストマーを取り込んだ状態を言う。
但し、熱可塑性樹脂材料中の熱可塑性エラストマーとゴムとのすべてが上記状態である必要はなく、熱可塑性樹脂材料中の熱可塑性エラストマーとゴムとが部分的に上記状態であってもよい。
例えば、熱可塑性エラストマーのハードセグメントないしソフトセグメントを構成するポリマーの主鎖を構成する骨格が、ゴムの主鎖を構成する骨格と類似する場合には、当該熱可塑性エラストマーとゴムとは親和性が良いと考えられる。具体的には、スチレン−ブタジエン共重合ゴム(SBR)については、ポリスチレン系熱可塑性エラストマーが、ゴム親和熱可塑性エラストマーとして挙げられる。また、ブタジエンゴム(BR)、エチレン−プロピレン−ジエンゴム(EPDM)は、ポリオレフィン系熱可塑性エラストマーがゴム親和熱可塑性エラストマーとして挙げられる。
また、ゴム親和熱可塑性エラストマーは、熱可塑性エラストマーの分子の一部に酸基(例えば、カルボキシ基)が導入された酸変性熱可塑性エラストマーであることが好ましい。ゴム親和熱可塑性エラストマーが酸変性されていることで、熱可塑性樹脂材料中のポリエステル系熱可塑性エラストマーと酸変性部位との相互作用により、ゴムの微分散をより向上することができる。
ゴム親和熱可塑性エラストマーは、ポリエステル熱可塑性エラストマー以外の熱可塑性エラストマーであって、ゴムとの親和性が良い熱可塑性エラストマーであれば特に制限はなく、例えば、ポリオレフィン系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー等が挙げられる。ポリオレフィン系熱可塑性エラストマー、スチレン系熱可塑性熱可塑性エラストマーが好ましい。
次に、ゴム親和熱可塑性エラストマーを構成し得るポリオレフィン系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、及びポリウレタン系熱可塑性エラストマーについて説明する。
(ポリオレフィン系熱可塑性エラストマー)
ポリオレフィン系熱可塑性エラストマーとは、弾性を有する高分子化合物であり、結晶性で融点の高いハードセグメントを構成するポリマーと、非晶性でガラス転移温度の低いソフトセグメントを構成するポリマーとを有する共重合体からなる熱可塑性樹脂材料であって、ハードセグメントを構成するポリマーが、ポリプロピレンやポリエチレンなどのポリオレフィンであるものを言う。
ポリオレフィン系熱可塑性エラストマーとしては、少なくともポリオレフィンが結晶性で融点の高いハードセグメントを構成し、前記ポリオレフィンと前記ポリオレフィン以外のオレフィンが非晶性でガラス転移点の低いソフトセグメントを構成している材料が挙げられる。
前記ハードセグメントを形成するポリオレフィンとしては、例えば、ポリプロピレン、アイソタクチックポリプロピレン、ポリエチレン、1−ブテン等が挙げられる。
ポリオレフィン系熱可塑性エラストマーとしては、例えば、エチレン−プロピレン共重合体、プロピレン−1−ヘキセン共重合体、プロピレン−4−メチル−1−ペンテン共重合体、プロピレン−1−ブテン共重合体、エチレン−1−ヘキセン共重合体、エチレン−4−メチル−ペンテン共重合体、エチレン−1−ブテン共重合体、1−ブテン−1−ヘキセン共重合体、1−ブテン−4−メチル−ペンテン、エチレン−メタクリル酸共重合体、エチレン−メタクリル酸メチル共重合体、エチレン−メタクリル酸エチル共重合体、エチレン−メタクリル酸ブチル共重合体、エチレン−メチルアクリレート共重合体、エチレン−エチルアクリレート共重合体、エチレン−ブチルアクリレート共重合体、プロピレン−メタクリル酸共重合体、プロピレン−メタクリル酸メチル共重合体、プロピレン−メタクリル酸エチル共重合体、プロピレン−メタクリル酸ブチル共重合体、プロピレン−メチルアクリレート共重合体、プロピレン−エチルアクリレート共重合体、プロピレン−ブチルアクリレート共重合体、エチレン−酢酸ビニル共重合体、プロピレン−酢酸ビニル共重合体等が挙げられる。
上述のポリオレフィン系熱可塑性エラストマーしては、エチレン−プロピレン共重合体、プロピレン−1−ヘキセン共重合体、プロピレン−4−メチル−1−ペンテン共重合体、プロピレン−1−ブテン共重合体、エチレン−1−ヘキセン共重合体、エチレン−4−メチル−ペンテン共重合体、エチレン−1−ブテン共重合体、エチレン−メタクリル酸共重合体、エチレン−メタクリル酸メチル共重合体、エチレン−メタクリル酸エチル共重合体、エチレン−メタクリル酸ブチル共重合体、エチレン−メチルアクリレート共重合体、エチレン−エチルアクリレート共重合体、エチレン−ブチルアクリレート共重合体、プロピレン−メタクリル酸共重合体、プロピレン−メタクリル酸メチル共重合体、プロピレン−メタクリル酸エチル共重合体、プロピレン−メタクリル酸ブチル共重合体、プロピレン−メチルアクリレート共重合体、プロピレン−エチルアクリレート共重合体、プロピレン−ブチルアクリレート共重合体、エチレン−酢酸ビニル共重合体、プロピレン−酢酸ビニル共重合体が好ましく、エチレン−プロピレン共重合体、プロピレン−1−ブテン共重合体、エチレン−1−ブテン共重合体、エチレン−1−ヘキセン共重合体、プロピレン−1−ヘキセン共重合体が更に好ましい。
ポリオレフィン系熱可塑性エラストマーの数平均分子量は,5,000〜10,000,000であることが好ましい。5,000未満の場合には,樹脂複合材の機械的物性が低下するおそれがある。10,000,000を超える場合には,樹脂複合材の加工性に問題が生じるおそれがある。上記と同様の理由により,ポリオレフィン系熱可塑性エラストマーの数平均分子量は,7,000〜1,000,000である。特に好ましくは,ポリオレフィン系熱可塑性エラストマーの数平均分子量は,10,000〜1,000,000である。これにより,樹脂複合材の機械的物性及び加工性を更に向上させることができる。
ポリオレフィン系熱可塑性エラストマーは、上記ハードセグメントを構成するポリマー及びソフトセグメントを構成するポリマーを公知の方法によって共重合することで合成することができる。
上記のようなポリオレフィン系熱可塑性エラストマーとしては、例えば、市販品のプライムポリマー社製のプライムTPO(登録商標)、三井化学社製のタフマー(登録商標)等を用いることができる。
(ポリスチレン系熱可塑性エラストマー)
ポリスチレン系熱可塑性エラストマーとは、弾性を有する高分子化合物であり、ハードセグメントを構成するポリマーと、非晶性でガラス転移温度の低いソフトセグメントを構成するポリマーとを有する共重合体からなる熱可塑性樹脂材料であって、ハードセグメントを構成するポリマーが、ポリスチレンを含むものを言う。
ポリスチレン系熱可塑性エラストマーとしては、特に限定されるものではないが、ポリスチレンがハードセグメントを構成し、非晶性のポリマーがガラス転移温度の低いソフトセグメント(例えば、ポリエチレン、ポリブタジエン、ポリイソプレン、水添ポリブタジエン、水添ポリイソプレン、ポリ(2,3−ジメチル−ブタジエン)等)を構成している共重合体が挙げられる。
ソフトセグメントを構成するポリマーとしては、例えば、ポリエチレン、ポリブタジエン、ポリイソプレン、水添ポリブタジエン、水添ポリイソプレン、ポリ(2,3−ジメチル−ブタジエン)等が挙げられる。
前記ハードセグメントを構成するポリマー(ポリスチレン)の数平均分子量としては5,000〜500,000が好ましく、10,000〜200,000がより好ましい。
前記ソフトセグメントを構成するポリマーの数平均分子量としては、5,000〜1,000,000が好ましく、より好ましくは10,000〜800,000、更に好ましくは30,000〜500,000である。
更に前記ハードセグメント(Hs)とソフトセグメント(Ss)との質量比(Hs:Ss)は成形性、物性の観点から、5:95〜80:20が好ましく、10:90〜70:30が更に好ましい。
ポリスチレン系熱可塑性エラストマーは、上記ハードセグメントを構成するポリマー及びソフトセグメントを構成するポリマーを公知の方法によって共重合することで合成することができる。
上記のようなポリスチレン系熱可塑性エラストマーとしては、例えば、市販品の旭化成社製のタフプレン(登録商標)及びタフテック(登録商標)、クラレ社製のセプトン(登録商標)等を用いることができる。
ポリスチレン系熱可塑性エラストマー(酸変性体を含む)は、熱可塑性樹脂材料が意図しない架橋反応を起こすことを抑制するため、水素添加されていることが好ましい。水素添加型(SEBS、SEPS)の他の熱可塑性エラストマー及び酸変性エラストマーとしては、前記旭化成社製のタフテック(登録商標)、クラレ社製のセプトン(登録商標)等が挙げられる。
(ポリアミド系熱可塑性エラストマー)
ポリアミド系熱可塑性エラストマーとは、弾性を有する高分子化合物であり、結晶性で融点の高いハードセグメントを構成するポリマーと非晶性でガラス転移温度の低いソフトセグメントを構成するポリマーとを有する共重合体からなる熱可塑性樹脂材料であって、ハードセグメントを構成するポリマーの主鎖にアミド結合(−CONH−)を有するものを意味する。ポリアミド系熱可塑性エラストマーとしては、例えば、JIS K6418:2007に規定されるアミド系熱可塑性エラストマー(TPA)等や、特開2004−346273号公報に記載のポリアミド系熱可塑性エラストマー等を挙げることができる。
ポリアミド系熱可塑性エラストマーは、少なくともポリアミドが結晶性で融点の高いハードセグメントを構成し、他のポリマー(例えば、ポリエステル又はポリエーテル等)が非晶性でガラス転移温度の低いソフトセグメントを構成している材料が挙げられる。また、ポリアミド系熱可塑性エラストマーはハードセグメント及びソフトセグメントの他に、ジカルボン酸等の鎖長延長剤を用いてもよい。前記ハードセグメントを形成するポリアミドとしては、例えば、下記一般式(1)または一般式(2)で表されるモノマーによって生成されるポリアミドを挙げることができる。
一般式(1)中、Rは、炭素数2〜20の炭化水素の分子鎖、又は、炭素数2〜20のアルキレン基を表す。
一般式(2)中、Rは、炭素数3〜20の炭化水素の分子鎖、又は、炭素数3〜20のアルキレン基を表す。
一般式(1)中、Rとしては、炭素数3〜18の炭化水素の分子鎖又は炭素数3〜18のアルキレン基が好ましく、炭素数4〜15の炭化水素の分子鎖又は炭素数4〜15のアルキレン基が更に好ましく、炭素数10〜15の炭化水素の分子鎖又は炭素数10〜15のアルキレン基が特に好ましい。また、一般式(2)中、Rとしては、炭素数3〜18の炭化水素の分子鎖又は炭素数3〜18のアルキレン基が好ましく、炭素数4〜15の炭化水素の分子鎖又は炭素数4〜15のアルキレン基が更に好ましく、炭素数10〜15の炭化水素の分子鎖又は炭素数10〜15のアルキレン基が特に好ましい。
前記一般式(1)または一般式(2)で表されるモノマーとしては、ω−アミノカルボン酸やラクタムが挙げられる。また、前記ハードセグメントを形成するポリアミドとしては、これらω−アミノカルボン酸やラクタムの重縮合体や、ジアミンとジカルボン酸との共縮重合体等が挙げられる。
ω−アミノカルボン酸としては、6−アミノカプロン酸、7−アミノヘプタン酸、8−アミノオクタン酸、10−アミノカプリン酸、11−アミノウンデカン酸、12−アミノドデカン酸などの炭素数5〜20の脂肪族ω−アミノカルボン酸等を挙げることができる。また、ラクタムとしては、ラウリルラクタム、ε−カプロラクタム、ウデカンラクタム、ω−エナントラクタム、2−ピロリドンなどの炭素数5〜20の脂肪族ラクタムなどを挙げることができる。
ジアミンとしては、例えば、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4−トリメチルヘキサメチレンジアミン、2,4,4−トリメチルヘキサメチレンジアミン、3−メチルペンタメチレンジアミン、メタキシレンジアミンなどの炭素数2〜20の脂肪族ジアミンなどのジアミン化合物を挙げることができる。また、ジカルボン酸は、HOOC−(R)m−COOH(R:炭素数3〜20の炭化水素の分子鎖、m:0又は1)で表すことができ、例えば、シュウ酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸などの炭素数2〜20 の脂肪族ジカルボン酸を挙げることができる。
前記ハードセグメントを形成するポリアミドとしては、ラウリルラクタム、ε−カプロラクタム又はウデカンラクタムを開環重縮合したポリアミドを好ましく用いることができる。
また、前記ソフトセグメントを形成するポリマーとしては、例えば、ポリエステル、ポリエーテルが挙げられ、例えば、ポリエチレングリコール、プリプロピレングリコール、ポリテトラメチレンエーテルグリコール、ABA型トリブロックポリエーテル等が挙げられ、これらを単独で又は2種以上を用いることができる。また、ポリエーテルの末端にアニモニア等を反応させることによって得られるポリエーテルジアミン等を用いることができる。
ここで、「ABA型トリブロックポリエーテル」とは、下記一般式(3)に示されるポリエーテルを意味する。
一般式(3)中、x及びzは、1〜20の整数を表す。yは、4〜50の整数を表す。
前記一般式(3)において、x及びzとしては、それぞれ、1〜18の整数が好ましく、1〜16の整数が更に好ましく、1〜14の整数が特に好ましく、1〜12の整数が最も好ましい。また、前記一般式(3)において、yとしては、それぞれ、5〜45の整数が好ましく、6〜40の整数が更に好ましく、7〜35の整数が特に好ましく、8〜30の整数が最も好ましい。
ハードセグメントとソフトセグメントとの組合せとしては、上述で挙げたハードセグメントとソフトセグメントとのそれぞれの組合せを挙げることができる。この中でも、ラウリルラクタムの開環重縮合体/ポリエチレングリコールの組合せ、ラウリルラクタムの開環重縮合体/ポリプロピレングリコールの組合せ、ラウリルラクタムの開環重縮合体/ポリテトラメチレンエーテルグリコールの組合せ、ラウリルラクタムの開環重縮合体/ABA型トリブロックポリエーテルの組合せ、が好ましく、ラウリルラクタムの開環重縮合体/ABA型トリブロックポリエーテルの組合せが特に好ましい。
ハードセグメントを構成するポリマー(ポリアミド)の数平均分子量としては、溶融成形性の観点から、300〜15000が好ましい。また、ソフトセグメントを構成するポリマーの数平均分子量としては、強靱性及び低温柔軟性の観点から、200〜6000が好ましい。更に、前記ハードセグメント(Ha)及びソフトセグメント(Ha)との質量比(Ha:Sa)は、成形性の観点から、50:50〜90:10が好ましく、50:50〜80:20が更に好ましい。
前記ポリアミド系熱可塑性エラストマーは、前記ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。
上記ポリアミド系熱可塑性エラストマーとしては、例えば、市販品の宇部興産(株)の「UBESTA、XPA」シリーズ(例えば、XPA9063X1、XPA9055X1、XPA9048X2、XPA9048X1、XPA9040X1、XPA9040X2等)、ダイセル・エポニック(株)の「ベスタミド」シリーズ(例えば、E40−S3、E47−S1、E47−S3、E55−S1、E55−S3、EX9200、E50−R2)等を用いることができる。
(ポリウレタン系熱可塑性エラストマー)
ポリウレタン系熱可塑性エラストマーは、少なくともポリウレタンが物理的な凝集によって疑似架橋を形成しているハードセグメントを構成し、他のポリマーが非晶性でガラス転移温度の低いソフトセグメントを構成している材料が挙げられ、例えば、下記式Aで表される単位構造を含むソフトセグメントと、下記式Bで表される単位構造を含むハードセグメントとを含む共重合体として表すことができる。
式A中、Pは、長鎖脂肪族ポリエーテル又は長鎖脂肪族ポリエステルを表す。式A又は式B中、Rは、脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素を表す。式B中、P’は、短鎖脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素を表す。
式A中、Pで表される長鎖脂肪族ポリエーテル又は長鎖脂肪族ポリエステルとしては、例えば、分子量500〜5000の長鎖脂肪族ポリエーテル又は長鎖脂肪族ポリエステルが挙げられる。前記Pは、前記Pで表される長鎖脂肪族ポリエーテル又は長鎖脂肪族ポリエステルを含むジオール化合物に由来する。このようなジオール化合物としては、例えば、分子量が前記範囲内にある、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール、ポリ(ブチレンアジベート)ジオール、ポリ−ε−カプロラクトンジオール、ポリ(ヘキサメチレンカーボネート)ジオール、前記ABA型トリブロックポリエーテル等が挙げられる。
これらのジオール化合物は、単独で使用されてもよく、また2種以上が併用されてもよい。
式A又は式B中、Rは、Rで表される脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素を含むジイソシアネート化合物に由来する。
Rで表される脂肪族炭化水素を含む脂肪族ジイソシアネート化合物としては、例えば、1,2−エチレンジイソシアネート、1,3−プロピレンジイソシアネート、1,4−ブタンジイソシアネート、及び1,6−ヘキサメチレンジイソシアネート等が挙げられる。
また、Rで表される脂環族炭化水素を含むジイソシアネート化合物としては、例えば、1,4−シクロヘキサンジイソシアネート及び4,4−シクロヘキサンジイソシアネート等が挙げられる。
更に、Rで表される芳香族炭化水素を含む芳香族ジイソシアネート化合物としては例えば、4,4’−ジフェニルメタンジイソシアネート、トリレンジイソシアネートが挙げられる。
これらのジイソシアネート化合物は、単独で使用されてもよく、また2種以上が併用されてもよい。
式B中、P’で表される短鎖脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素としては、例えば、分子量500未満の短鎖脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素が挙げられる。
また、P’は、P’を含むジオール化合物に由来する。
P’で表される短鎖脂肪族炭化水素を含む脂肪族ジオール化合物としては、グリコール及びポリアルキレングリコールが挙げられ、例えば、エチレングリコール、プロピレングリコール、トリメチレングリコール、1,4−ブタンジオール、1,3−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,7−ヘプタンジオール、1,8−オクタンジオール、1,9−ノナンジオール及び1,10−デカンジオールが挙げられる。
また、P’で表される脂環族炭化水素を含む脂環族ジオール化合物としては、例えば、シクロペンタン−1,2−ジオール、シクロヘキサン−1,2−ジオール、シクロヘキサン−1,3−ジオール、シクロヘキサン−1,4−ジオール、及びシクロヘキサン−1,4−ジメタノール等が挙げられる。
更に、P’で表される芳香族炭化水素を含む芳香族ジオール化合物としては、例えば、ヒドロキノン、レゾルシン、クロロヒドロキノン、ブロモヒドロキノン、メチルヒドロキノン、フェニルヒドロキノン、メトキシヒドロキノン、フェノキシヒドロキノン、4,4’−ジヒドロキシビフェニル、4,4’−ジヒドロキシジフェニルエーテル、4,4’−ジヒドロキシジフェニルサルファイド、4,4’−ジヒドロキシジフェニルスルホン、4,4’−ジヒドロキシベンゾフェノン、4,4’−ジヒドロキシジフェニルメタン、ビスフェノールA、1,1−ジ(4−ヒドロキシフェニル)シクロヘキサン、1,2−ビス(4−ヒドロキシフェノキシ)エタン、1,4−ジヒドロキシナフタリン、及び2,6−ジヒドロキシナフタリン等が挙げられる。
これらのジオール化合物は、単独で使用されてもよく、また2種以上が併用されてもよい。
前記ハードセグメントを構成するポリマー(ポリウレタン)の数平均分子量としては、溶融成形性の観点から、300〜1500が好ましい。また、前記ソフトセグメントを構成するポリマーの数平均分子量としては、ポリウレタン系熱可塑性エラストマーの柔軟性及び熱安定性の観点から、500〜20000が好ましく、500〜5000が更に好ましく、特に好ましくは800〜2500である。また、前記ハードセグメント(Hu)及びソフトセグメント(Su)との質量比(Hu:Su)は、成形性の観点から、50:50〜90:10が好ましく、50:50〜80:20が更に好ましい。
前記ポリウレタン系熱可塑性エラストマーは、前記ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。前記ポリウレタン系熱可塑性エラストマーとしては、例えば、特開平5−331256に記載の熱可塑性ポリウレタンを用いることができる。
熱可塑性樹脂材料中のゴム親和熱可塑性エラストマー(z)とゴム(y)との質量割合(z:y)は、95:5〜0:100であることが好ましく、90:10〜0:100であることがより好ましい。
また、熱可塑性樹脂材料中のポリエステル系熱可塑性エラストマー及びゴム(熱可塑性樹脂材料がゴム親和熱可塑性エラストマーを含む場合は、ポリエステル系熱可塑性エラストマー、ゴム、及びゴム親和熱可塑性エラストマー)の合計含有量は、特に限定されるものではないが、熱可塑性樹脂材料の総量に対して、50質量%〜100質量%が好ましい。前記合計含有量が、熱可塑性樹脂材料の総量に対して、50質量%以上であると熱可塑性樹脂材料の特性を十分に発揮させることができる。
熱可塑性樹脂材料には、所望に応じて、ポリエステル系熱可塑性エラストマー以外の他の熱可塑性エラストマー、熱可塑性樹脂、各種充填剤(例えば、シリカ、炭酸カルシウム、クレイ)、老化防止剤、オイル、可塑剤、着色剤、耐候剤、補強材等の各種添加剤を含有させてもよい。
熱可塑性樹脂材料を得るには、既述のポリエステル系熱可塑性エラストマー、ゴム、必要に応じてゴム親和熱可塑性エラストマー、添加剤などを、既述の量比となるように混合し、混練すればよい。
各成分の混合及び混練は、例えば、東洋精機製作所社製、LABOPLASTOMILL 50MR 2軸押出し機を用いることができる。
前記2軸押出し機には、加硫したゴムを微粉砕したものを投入してもよいし、ゴムに加硫剤等をバンバリー等で混練した後、2軸押出機中で混練しながら、加硫してもよい。2軸押出し機中で混練しながら、加硫することの方が好ましい。
−熱可塑性樹脂材料の特性−
熱可塑性樹脂材料のJIS K7113:1995に規定される引張弾性率(以下、特に特定しない限り本明細書で「弾性率」とは引張弾性率を意味する。)としては、100〜1000MPaが好ましく、100〜800MPaがさらに好ましく、100〜700MPaが特に好ましい。熱可塑性樹脂材料の引張弾性率が、100〜1000MPaであると、タイヤ骨格の形状を保持しつつリム組みを効率的におこなうことができる。
熱可塑性樹脂材料のJIS K7113:1995に規定される引張降伏強さは、5MPa以上が好ましく、5〜20MPaが好ましく、5〜17MPaがさらに好ましい。熱可塑性樹脂材料の引張降伏強さが、5MPa以上であると、走行時などにタイヤにかかる荷重に対する変形に耐えることができる。
熱可塑性樹脂材料のJIS K7113:1995に規定される引張降伏伸びは、10%以上が好ましく、10〜70%が好ましく、15〜60%がさらに好ましい。熱可塑性樹脂材料の引張降伏伸びが、10%以上であると、弾性領域が大きく、リム組み性をよくすることができる。
熱可塑性樹脂材料のJIS K7113:1995に規定される引張破壊伸びとしては、50%以上が好ましく、100%以上が好ましく、150%以上がさらに好ましく、200%以上が特に好ましい。熱可塑性樹脂材料の引張破壊伸びが、50%以上であると、リム組み性がよく、衝突に対して破壊しにくくすることができる。
熱可塑性樹脂材料のISO75−2又はASTM D648に規定される荷重たわみ温度(0.45MPa荷重時)としては、50℃以上が好ましく、50〜150℃が好ましく、50〜130℃がさらに好ましい。熱可塑性樹脂材料の荷重たわみ温度が、50℃以上であると、タイヤの製造において加硫を行う場合であってもタイヤ骨格体の変形を抑制するこができる。
[補強コード層を構成する樹脂材料]
本発明のタイヤは、タイヤ骨格体の外周部に周方向に巻回されて補強コード層を形成する補強コード部材を有していてもよい。
また、補強コード層には、樹脂材料を含めて構成することができる。このように、補強コード層に樹脂材料が含まれていると、補強コード部材をクッションゴムで固定する場合と比して、タイヤと補強コード層との硬さの差を小さくできるため、更に補強コード部材をタイヤ骨格体に密着・固定することができる。ここで、「樹脂材料」とは、少なくとも樹脂を含む材料であり、樹脂のみならず、ゴムや無機化合物を含んでいてもよい。なお、「樹脂」とは、熱可塑性樹脂(熱可塑性エラストマーを含む)及び熱硬化性樹脂を含む概念であり、加硫ゴムは含まない。
更に、補強コード部材がスチールコードの場合、タイヤ処分時に補強コード部材をクッションゴムから分離しようとすると、加硫ゴムは加熱だけでは補強コード部材と分離させるのが難しいのに対し、樹脂材料は加熱のみで補強コード部材と分離することが可能である。このため、タイヤのリサイクル性の点で有利である。また、樹脂材料は通常加硫ゴムに比して損失係数(Tanδ)が低い。このため、補強コード層が樹脂材料を多く含んでいると、タイヤの転がり性を向上させることができる。更には、加硫ゴムに比して相対的に弾性率の高い樹脂材料は、面内せん断剛性が大きく、タイヤ走行時の操安性や耐摩耗性にも優れるといった利点がある。
補強コード層に用いることのできる前記熱硬化性樹脂としては、例えば、フェノール樹脂、ユリア樹脂、メラミン樹脂、エポキシ樹脂、ポリアミド樹脂、ポリエステル樹脂等が挙げられる。
前記熱可塑性樹脂としては、例えば、ウレタン樹脂、オレフィン樹脂、塩化ビニル樹脂、ポリアミド樹脂、ポリエステル樹脂等が挙げられる。
前記熱可塑性エラストマーとしては、例えば、JIS K6418:2007に規定されるアミド系熱可塑性エラストマー(TPA)、エステル系熱可塑性エラストマー(TPC)、オレフィン系熱可塑性エラストマー(TPO)、スチレン系熱可塑性エラストマー(TPS)、ウレタン系熱可塑性エラストマー(TPU)、熱可塑性ゴム架橋体(TPV)、若しくはその他の熱可塑性エラストマー(TPZ)等が挙げられる。なお、走行時に必要とされる弾性と製造時の成形性等を考慮すると熱可塑性エラストマーを用いることが好ましい。
また、樹脂材料の同種とは、エステル系同士、スチレン系同士などの形態を指す。
補強コード層に用いられる樹脂材料の弾性率(JIS K7113:1995に規定される引張弾性率)は、タイヤ骨格体を形成する熱可塑性樹脂の弾性率の0.1倍から10倍の範囲内に設定することが好ましい。前記樹脂材料の弾性率がタイヤ骨格体を形成する熱可塑性樹脂材料の弾性率の10倍以下の場合は、クラウン部が硬くなり過ぎずリム組み性が容易になる。また、前記樹脂材料の弾性率がタイヤ骨格体を形成する熱可塑性樹脂材料の弾性率の0.1倍以上の場合には、補強コード層を構成する樹脂が柔らかすぎず、ベルト面内せん断剛性に優れコーナリング力が向上する。
また、前記補強コード層に樹脂材料を含めた場合、補強コードの引き抜き性(引き抜かれにくさ)を高める観点から、前記補強コード部材はその表面が20%以上樹脂材料に覆われていることが好ましく、50%以上覆われていることが更に好ましい。また、前記補強コード層中の樹脂材料の含有量は、補強コードを除いた補強コード層を構成する材料の総量に対して、補強コードの引き抜き性を高める観点から、20質量%以上が好ましく、50質量%以上が更に好ましい。
[第1の実施形態]
以下に、図面に従って本発明のタイヤの第1の実施形態に係るタイヤを説明する。
本実施形態のタイヤ10について説明する。図1(A)は、本発明の一実施形態に係るタイヤの一部の断面を示す斜視図である。図1(B)は、リムに装着したビード部の断面図である。図1に示すように、本実施形態のタイヤ10は、従来一般のゴム製の空気入りタイヤと略同様の断面形状を呈している。
図1(A)に示すように、タイヤ10は、図1(B)に示すリム20のビードシート21及びリムフランジ22に接触する1対のビード部12と、ビード部12からタイヤ径方向外側に延びるサイド部14と、一方のサイド部14のタイヤ径方向外側端と他方のサイド部14のタイヤ径方向外側端とを連結するクラウン部16(外周部)と、からなるタイヤケース17を備えている。
ここで、本実施形態のタイヤケース17は、ポリエステル系熱可塑性エラストマー(東レ・デュポン社製、ハイトレル6347)と、ブタジエンゴム(BR)とを、質量比70:30で含む熱可塑性樹脂材料により形成されている。本実施形態においてタイヤケース17は、本発明に係る熱可塑性樹脂材料のみで形成されているが、本発明はこの構成に限定されず、従来一般のゴム製の空気入りタイヤと同様に、タイヤケース17の各部位毎(サイド部14、クラウン部16、ビード部12など)に異なる特徴を有する他の熱可塑性樹脂材料を用いてもよい。また、タイヤケース17(例えば、ビード部12、サイド部14、クラウン部16等)に、補強材(高分子材料や金属製の繊維、コード、不織布、織布等)を埋設配置し、補強材でタイヤケース17を補強してもよい。
本実施形態のタイヤケース17は、本発明に係る熱可塑性樹脂材料で形成された一対のタイヤケース半体(タイヤ骨格片)17A同士を接合させたものである。タイヤケース半体17Aは、一つのビード部12と一つのサイド部14と半幅のクラウン部16とを一体として射出成形等で成形された同一形状の円環状のタイヤケース半体17Aを互いに向かい合わせてタイヤ赤道面部分で接合することで形成されている。本発明に係る熱可塑性樹脂材料には、ポリエステル系熱可塑性エラストマーと、ゴムとが含まれている。
なお、タイヤケース17は、2つの部材を接合して形成するものに限らず、3以上の部材を接合して形成してもよい。
熱可塑性樹脂材料で形成されるタイヤケース半体17Aは、例えば、真空成形、圧空成形、インジェクション成形、メルトキャスティング等で成形することができる。このため、従来のようにゴムでタイヤケースを成形する場合に比較して、加硫を行う必要がなく、製造工程を大幅に簡略化でき、成形時間を省略することができる。
また、本実施形態では、タイヤケース半体17Aは左右対称形状、即ち、一方のタイヤケース半体17Aと他方のタイヤケース半体17Aとが同一形状とされているので、タイヤケース半体17Aを成形する金型が1種類で済むメリットもある。
本実施形態において、図1(B)に示すようにビード部12には、従来一般の空気入りタイヤと同様の、スチールコードからなる円環状のビードコア18が埋設されている。しかし、本発明はこの構成に限定されず、ビード部12の剛性が確保され、リム20との嵌合に問題なければ、ビードコア18を省略することもできる。なお、スチールコード以外に、有機繊維コード、樹脂被覆した有機繊維コード、または硬質樹脂などで形成されていてもよい。
本実施形態では、ビード部12のリム20と接触する部分や、少なくともリム20のリムフランジ22と接触する部分に、タイヤケース17を構成する熱可塑性樹脂材料よりもシール性に優れた材料、例えば、ゴムからなる円環状のシール層24が形成されている。このシール層24はタイヤケース17(ビード部12)とビードシート21とが接触する部分にも形成されていてもよい。タイヤケース17を構成する熱可塑性樹脂材料よりもシール性に優れた材料としては、タイヤケース17を構成する熱可塑性樹脂材料に比して軟質な材料を用いることができる。シール層24に用いることのできるゴムとしては、従来一般のゴム製の空気入りタイヤのビード部外面に用いられているゴムと同種のゴムを用いることが好ましい。また、熱可塑性樹脂材料のみでリム20との間のシール性が確保できれば、ゴムのシール層24は省略してもよく、熱可塑性樹脂材料よりもシール性に優れる熱可塑性樹脂(熱可塑性エラストマー)を用いてもよい。例えば、ポリアミド樹脂、ポリウレタン系樹脂、ポリオレフィン系樹脂、ポリスチレン系樹脂、ポリエステル樹脂等の樹脂やこれら樹脂とゴム若しくはエラストマーとのブレンド物等が挙げられる。また、熱可塑性エラストマーを用いることもでき、例えば、ポリアミド系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、或いは、これらエラストマー同士の組み合わせや、ゴムとのブレンド物等が挙げられる。
図1に示すように、クラウン部16には、タイヤケース17を構成する熱可塑性樹脂材料よりも剛性が高い補強コード26がタイヤケース17の周方向に巻回されている。補強コード26は、タイヤケース17の軸方向に沿った断面視で、少なくとも一部がクラウン部16に埋設された状態で螺旋状に巻回されており、補強コード層28を形成している。補強コード層28のタイヤ径方向外周側には、タイヤケース17を構成する熱可塑性樹脂材料よりも耐摩耗性に優れた材料、例えばゴムからなるトレッド30が配置されている。
図2を用いて補強コード26によって形成される補強コード層28について説明する。図2は、第1実施形態のタイヤのタイヤケースのクラウン部に補強コード部材が埋設された状態を示すタイヤ回転軸に沿った断面図である。図2に示されるように、補強コード26は、タイヤケース17の軸方向に沿った断面視で、少なくとも一部がクラウン部16に埋設された状態で螺旋状に巻回されており、タイヤケース17の外周部の一部と共に図2において破線部で示される補強コード層28を形成している。補強コード26のクラウン部16に埋設された部分は、クラウン部16(タイヤケース17)を構成する熱可塑性樹脂材料と密着した状態となっている。補強コード26としては、金属繊維や有機繊維等のモノフィラメント(単線)、又は、スチール繊維を撚ったスチールコードなどこれら繊維を撚ったマルチフィラメント(撚り線)などを用いることができる。なお、本実施形態において補強コード26としては、スチールコードが用いられている。
また、図2において埋設量Lは、タイヤケース17(クラウン部16)に対する補強コード26のタイヤ回転軸方向への埋設量を示す。補強コード26のクラウン部16に対する埋設量Lは、補強コード26の直径Dの1/5以上であれば好ましく、1/2を超えることがさらに好ましい。そして、補強コード26全体がクラウン部16に埋設されることが最も好ましい。補強コード26の埋設量Lが、補強コード26の直径Dの1/2を超えると、補強コード26の寸法上、埋設部から飛び出し難くなる。また、補強コード26全体がクラウン部16に埋設されると、表面(外周面)がフラットになり、補強コード26が埋設されたクラウン部16上に部材が載置されても補強コード周辺部に空気が入るのを抑制することができる。なお、補強コード層28は、従来のゴム製の空気入りタイヤのカーカスの外周面に配置されるベルトに相当するものである。
上述のように補強コード層28のタイヤ径方向外周側にはトレッド30が配置されている。このトレッド30に用いるゴムは、従来のゴム製の空気入りタイヤに用いられているゴムと同種のゴムを用いることが好ましい。なお、トレッド30の代わりに、タイヤケース17を構成する熱可塑性樹脂材料よりも耐摩耗性に優れる他の種類の熱可塑性樹脂材料で形成したトレッドを用いてもよい。また、トレッド30には、従来のゴム製の空気入りタイヤと同様に、路面との接地面に複数の溝からなるトレッドパターンが形成されている。
以下、本発明のタイヤの製造方法について説明する。
(タイヤケース成形工程)
まず、薄い金属の支持リングに支持されたタイヤケース半体同士を互いに向かい合わせる。次いで、タイヤケース半体の突き当て部分の外周面と接するように図を省略する接合金型を設置する。ここで、前記接合金型はタイヤケース半体Aの接合部(突き当て部分)周辺を所定の圧力で押圧するように構成されている。次いで、タイヤケース半体の接合部周辺を、タイヤケースを構成する熱可塑性樹脂材料の融点以上で押圧する。タイヤケース半体の接合部が接合金型によって加熱・加圧されると、前記接合部が溶融しタイヤケース半体同士が融着しこれら部材が一体となってタイヤケース17が形成される。尚、本実施形態においては接合金型を用いてタイヤケース半体の接合部を加熱したが、本発明はこれに限定されず、例えば、別に設けた高周波加熱機等によって前記接合部を加熱したり、予め熱風、赤外線の照射等によって軟化又は溶融させ、接合金型によって加圧して、タイヤケース半体を接合させてもよい。
(補強コード部材巻回工程)
次に、補強コード部材巻回工程について図3を用いて説明する。図3は、コード加熱装置、及びローラ類を用いてタイヤケースのクラウン部に補強コード部材を埋設する動作を説明するための説明図である。図3において、コード供給装置56は、補強コード26を巻き付けたリール58と、リール58のコード搬送方向下流側に配置されたコード加熱装置59と、補強コード26の搬送方向下流側に配置された第1のローラ60と、第1のローラ60をタイヤ外周面に対して接離する方向に移動する第1のシリンダ装置62と、第1のローラ60の補強コード26の搬送方向下流側に配置される第2のローラ64と、及び第2のローラ64をタイヤ外周面に対して接離する方向に移動する第2のシリンダ装置66と、を備えている。第2のローラ64は、金属製の冷却用ローラとして利用することができる。また、本実施形態において、第1のローラ60または第2のローラ64の表面は、溶融又は軟化した熱可塑性樹脂材料の付着を抑制するためにフッ素樹脂(本実施形態では、テフロン(登録商標))でコーティングされている。なお、本実施形態では、コード供給装置56は、第1のローラ60または第2のローラ64の2つのローラを有する構成としているが、本発明はこの構成に限定されず、何れか一方のローラのみ(即ち、ローラ1個)を有している構成でもよい。
また、コード加熱装置59は、熱風を生じさせるヒーター70及びファン72を備えている。また、コード加熱装置59は、内部に熱風が供給される、内部空間をコード26が通過する加熱ボックス74と、加熱されたコード26を排出する排出口76とを備えている。
本工程においては、まず、コード加熱装置59のヒーター70の温度を上昇させ、ヒーター70で加熱された周囲の空気をファン72の回転によって生じる風で加熱ボックス74へ送る。次に、リール58から巻き出した補強コード26を、熱風で内部空間が加熱された加熱ボックス74内へ送り加熱(例えば、補強コード26の温度を100〜200℃程度に加熱)する。加熱された補強コード26は、排出口76を通り、図3の矢印R方向に回転するタイヤケース17のクラウン部16の外周面に一定のテンションをもって螺旋状に巻きつけられる。ここで、加熱された補強コード26がクラウン部16の外周面に接触すると、接触部分の熱可塑性樹脂材料が溶融又は軟化し、加熱された補強コード26の少なくとも一部がクラウン部16の外周面に埋設される。このとき、溶融又は軟化した熱可塑性樹脂材料に加熱された補強コード26が埋設されるため、熱可塑性樹脂材料と補強コード26とが隙間がない状態、つまり密着した状態となる。これにより、補強コード26を埋設した部分へのエア入りが抑制される。なお、補強コード26をタイヤケース17の熱可塑性樹脂材料の融点よりも高温に加熱することで、補強コード26が接触した部分の熱可塑性樹脂材料の溶融又は軟化が促進される。このようにすることで、クラウン部16の外周面に補強コード26を埋設しやすくなると共に、効果的にエア入りを抑制することができる。
また、補強コード26の埋設量Lは、補強コード26の加熱温度、補強コード26に作用させるテンション、及び第1のローラ60による押圧力等によって調整することができる。そして、本実施形態では、補強コード26の埋設量Lが、補強コード26の直径Dの1/5以上となるように設定されている。なお、補強コード26の埋設量Lとしては、直径Dの1/2を超えることがさらに好ましく、補強コード26全体が埋設されることが最も好ましい。
このようにして、加熱した補強コード26をクラウン部16の外周面に埋設しながら巻き付けることで、タイヤケース17のクラウン部16の外周側に補強コード層28が形成される。
次に、タイヤケース17の外周面に加硫済みの帯状のトレッド30を1周分巻き付けてタイヤケース17の外周面にトレッド30を、接着剤などを用いて接着する。なお、トレッド30は、例えば、従来知られている更生タイヤに用いられるプレキュアトレッドを用いることができる。本工程は、更生タイヤの台タイヤの外周面にプレキュアトレッドを接着する工程と同様の工程である。
そして、タイヤケース17のビード部12に、加硫済みのゴムからなるシール層24を、接着剤等を用いて接着すれば、タイヤ10の完成となる。
(作用)
本実施形態のタイヤ10では、タイヤケース17がポリエステル系熱可塑性エラストマー(東レ・デュポン社製、ハイトレル6347)と、ブタジエンゴム(BR)とを、質量比70:30で含む熱可塑性樹脂材料によって形成されているため、耐衝撃性、引張弾性率、及び引張強度に優れる。また、使用環境の温度変動による変形や硬さの変化が小さく、耐衝撃性に強い。このため、本実施形態のタイヤ10は、耐久性に優れる。さらにタイヤ構造を簡素化できる為に、従来のゴムに比して重量が軽い。また、tanδを小さくすることができる。従って、本実施形態のタイヤ10は、軽量化することができ、転がり抵抗も抑制されるので、かかるタイヤを用いた自動車の燃費を良くすることができる。
また、熱可塑性樹脂材料の構成成分の1つであるポリエステル系熱可塑性エラストマーは補強コード26に対する密着性があるため、補強コード部材巻回工程において補強コード26の周囲に空気が残る現象(エア入り)を抑制することができる。補強コード26への密着性があり、さらに補強コード部材周辺へのエア入りが抑制されていると、走行時の入力などによって補強コード26が動くのを効果的に抑制することができる。これにより、例えば、タイヤ骨格体の外周部に補強コード部材全体を覆うようにタイヤ構成部材が設けられた場合であっても、補強コード部材は動きが抑制されているため、これらの部材間(タイヤ骨格体含む)の剥離などが生じるのが抑制されタイヤ10の耐久性が向上する。
また、本実施形態のタイヤ10では、熱可塑性樹脂材料で形成されたタイヤケース17のクラウン部16の外周面に熱可塑性樹脂材料よりも剛性が高い補強コード26が周方向へ螺旋状に巻回されていることから耐パンク性、耐カット性、及びタイヤ10の周方向剛性が向上する。なお、タイヤ10の周方向剛性が向上することで、熱可塑性樹脂材料で形成されたタイヤケース17のクリープが防止される。
また、タイヤケース17の軸方向に沿った断面視(図1に示される断面)で、熱可塑性樹脂材料で形成されたタイヤケース17のクラウン部16の外周面に補強コード26の少なくとも一部が埋設され且つ熱可塑性樹脂材料に密着していることから、製造時のエア入りが抑制されており、走行時の入力などによって補強コード26が動くのが抑制される。これにより、補強コード26、タイヤケース17、及びトレッド30に剥離などが生じるのが抑制され、タイヤ10の耐久性が向上する。
そして、図2に示すように、補強コード26の埋設量Lが直径Dの1/5以上となっていることから、製造時のエア入りが効果的に抑制されており、走行時の入力などによって補強コード26が動くのがさらに抑制される。
このように補強コード層28が、熱可塑性樹脂材料を含んで構成されていると、補強コード26をクッションゴムで固定する場合と比してタイヤケース17と補強コード層28との硬さの差を小さくできるため、更に補強コード26をタイヤケース17に密着・固定することができる。これにより、上述のエア入りを効果的に防止することができ、走行時に補強コード部材が動くのを効果的に抑制することができる。
更に、補強コード部材がスチールコードの場合、タイヤ処分時に補強コード26を加熱によって熱可塑性樹脂材料から容易に分離・回収が可能であるため、タイヤ10のリサイクル性の点で有利である。また、樹脂材料は通常加硫ゴムに比して損失係数(Tanδ)が低い。このため、補強コード層が樹脂材料を多く含んでいると、タイヤの転がり性を向上させることができる。更には、加硫ゴムに比して相対的に弾性率の高い樹脂材料は、面内せん断剛性が大きく、タイヤ走行時の操安性や耐摩耗性にも優れるといった利点がある。
また、路面と接触するトレッド30を熱可塑性樹脂材料よりも耐摩耗性のあるゴム材で構成していることから、タイヤ10の耐摩耗性が向上する。
さらに、ビード部12には、金属材料からなる環状のビードコア18が埋設されていることから、従来のゴム製の空気入りタイヤと同様に、リム20に対してタイヤケース17、すなわちタイヤ10が強固に保持される。
またさらに、ビード部12のリム20と接触する部分に、熱可塑性樹脂材料よりもシール性のあるゴム材からなるシール層24が設けられていることから、タイヤ10とリム20との間のシール性が向上する。このため、リム20と熱可塑性樹脂材料とでシールする場合と比較して、タイヤ内の空気漏れがより一層抑制される。また、シール層24を設けることでリムフィット性も向上する。
上述の実施形態では、補強コード26を加熱し、加熱した補強コード26が接触する部分の熱可塑性樹脂材料を溶融又は軟化させる構成としたが、本発明はこの構成に限定されず、補強コード26を加熱せずに熱風生成装置を用い、補強コード26が埋設されるクラウン部16の外周面を加熱した後、補強コード26をクラウン部16に埋設するようにしてもよい。
また、第1実施形態では、コード加熱装置59の熱源をヒーター及びファンとしているが、本発明はこの構成に限定されず、補強コード26を輻射熱(例えば、赤外線など)で直接加熱する構成としてもよい。
さらに、第1実施形態では、補強コード26を埋設した熱可塑性樹脂材料が溶融又は軟化した部分を金属製の第2のローラ64で強制的に冷却する構成としたが、本発明はこの構成に限定されず、熱可塑性樹脂材料が溶融又は軟化した部分に冷風を直接吹きかけて、熱可塑性樹脂材料の溶融又は軟化した部分を強制的に冷却固化する構成としてもよい。
また、第1実施形態では、補強コード26を加熱する構成としたが、例えば、補強コード26の外周をタイヤケース17と同じ熱可塑性樹脂材料で被覆する構成としてもよく、この場合には、被覆補強コードをタイヤケース17のクラウン部16に巻き付ける際に、補強コード26と共に被覆した熱可塑性樹脂材料も加熱することで、クラウン部16への埋設時におけるエア入りを効果的に抑制することができる。
また、補強コード26は螺旋巻きするのが製造上は容易だが、幅方向で補強コード26を不連続とする方法等も考えられる。
第1実施形態のタイヤ10は、ビード部12をリム20に装着することで、タイヤ10とリム20との間で空気室を形成する、所謂チューブレスタイヤであるが、本発明はこの構成に限定されず、完全なチューブ形状であってもよい。
以上、実施形態を挙げて本発明の実施の形態を説明したが、これらの実施形態は一例であり、要旨を逸脱しない範囲内で種々変更して実施できる。また、本発明の権利範囲がこれらの実施形態に限定されないことは言うまでもない。
[第2の実施形態]
次に、図面に従って本発明のタイヤの製造方法及びタイヤの第2実施形態について説明する。本実施形態のタイヤは、上述の第1実施形態と同様に、従来一般のゴム製の空気入りタイヤと略同様の断面形状を呈している。このため、以下の図において、前記第1実施形態と同様の構成については同様の番号が付される。図4(A)は、第2実施形態のタイヤのタイヤ幅方向に沿った断面図であり、図4(B)は第2実施形態のタイヤにリムを嵌合させた状態のビード部のタイヤ幅方向に沿った断面の拡大図である。また、図5は、第2実施形態のタイヤの補強層の周囲を示すタイヤ幅方向に沿った断面図である。
第2実施形態のタイヤは、上述の第1実施形態と同様に、タイヤケース17がポリエステル系熱可塑性エラストマー(東レ・デュポン社製、ハイトレル6347)と、ブタジエンゴム(BR)とを、質量比70:30で含む熱可塑性樹脂材料で形成されている。本実施形態においてタイヤ200は、図4及び図5に示すように、クラウン部16に、被覆コード部材26Bが周方向に巻回されて構成された補強コード層28(図5では破線で示されている)が積層されている。この補強コード層28は、タイヤケース17の外周部を構成し、クラウン部16の周方向剛性を補強している。なお、補強コード層28の外周面は、タイヤケース17の外周面17Sに含まれる。
この被覆コード部材26Bは、タイヤケース17を形成する熱可塑性樹脂材料よりも剛性が高いコード部材26Aにタイヤケース17を形成する熱可塑性樹脂材料とは別体の被覆用樹脂材料27を被覆して形成されている。また、被覆コード部材26Bはクラウン部16との接触部分において、被覆コード部材26Bとクラウン部16とが接合(例えば、溶接、又は接着剤で接着)されている。
また、被覆用樹脂材料27の弾性率は、タイヤケース17を形成する樹脂材料の弾性率の0.1倍から10倍の範囲内に設定することが好ましい。被覆用樹脂材料27の弾性率がタイヤケース17を形成する熱可塑性樹脂材料の弾性率の10倍以下の場合は、クラウン部が硬くなり過ぎずリム組み性が容易になる。また、被覆用樹脂材料27の弾性率がタイヤケース17を形成する熱可塑性樹脂材料の弾性率の0.1倍以上の場合には、補強コード層28を構成する樹脂が柔らかすぎず、ベルト面内せん断剛性に優れコーナリング力が向上する。なお、本実施形態では、被覆用樹脂材料27として熱可塑性樹脂材料と同様の材料(本実施形態では、ポリエステル系熱可塑性エラストマー(東レ・デュポン社製、ハイトレル6347)と、ブタジエンゴム(BR)とを、質量比70:30で含む熱可塑性樹脂材料)が用いられている。
また、図5に示すように、被覆コード部材26Bは、断面形状が略台形状とされている。なお、以下では、被覆コード部材26Bの上面(タイヤ径方向外側の面)を符号26Uで示し、下面(タイヤ径方向内側の面)を符号26Dで示す。また、本実施形態では、被覆コード部材26Bの断面形状を略台形状とする構成としているが、本発明はこの構成に限定されず、断面形状が下面26D側(タイヤ径方向内側)から上面26U側(タイヤ径方向外側)へ向かって幅広となる形状を除いた形状であれば、いずれの形状でもよい。
図5に示すように、被覆コード部材26Bは、周方向に間隔をあけて配置されていることから、隣接する被覆コード部材26Bの間に隙間28Aが形成されている。このため、補強コード層28の外周面は、凹凸とされ、この補強コード層28が外周部を構成するタイヤケース17の外周面17Sも凹凸となっている。
タイヤケース17の外周面17S(凹凸含む)には、微細な粗化凹凸96が均一に形成され、その上に接合剤を介して、クッションゴム29が接合されている。このクッションゴム29は、径方向内側のゴム部分が粗化凹凸96に流れ込んでいる。
また、クッションゴム29の上(外周面)にはタイヤケース17を形成している樹脂材料よりも耐摩耗性に優れた材料、例えばゴムからなるトレッド30が接合されている。
なお、トレッド30に用いるゴム(トレッドゴム30A)は、従来のゴム製の空気入りタイヤに用いられているゴムと同種のゴムを用いることが好ましい。また、トレッド30の代わりに、タイヤケース17を形成する樹脂材料よりも耐摩耗性に優れる他の種類の樹脂材料で形成したトレッドを用いてもよい。また、トレッド30には、従来のゴム製の空気入りタイヤと同様に、路面との接地面に複数の溝からなるトレッドパターン(図示省略)が形成されている。
次に本実施形態のタイヤの製造方法について説明する。
(タイヤ骨格形成工程)
(1)まず、上述の第1実施形態と同様にして、タイヤケース半体17Aを形成し、これを接合金型によって加熱・押圧し、タイヤケース17を形成する。
(補強コード部材巻回工程)
(2)本実施形態におけるタイヤの製造装置は、上述の第1実施形態と同様であり、上述の第1実施形態の図3に示すコード供給装置56において、リール58にコード部材26Aを被覆用樹脂材料27(本実施形態では熱可塑性材料)で被覆した断面形状が略台形状の被覆コード部材26Bを巻き付けたものが用いられる。また、ガイドレール54には、図示を省略する、タイヤケース17の外周面17Sを粗化処理するためのブラスト装置が移動可能に搭載されている。
まず、ヒーター70の温度を上昇させ、ヒーター70で加熱された周囲の空気をファン72の回転によって生じる風で加熱ボックス74へ送る。リール58から巻き出した被覆コード部材26Bを、熱風で内部空間が加熱された加熱ボックス74内へ送り加熱(例えば、被覆コード部材26Bの外周面の温度を、被覆用樹脂材料27の融点以上)とする。ここで、被覆コード部材26Bが加熱されることにより、被覆用樹脂材料27が溶融又は軟化した状態となる。
そして被覆コード部材26Bは、排出口76を通り、紙面手前方向に回転するタイヤケース17のクラウン部16の外周面に一定のテンションをもって螺旋状に巻回される。このとき、クラウン部16の外周面に被覆コード部材26Bの下面26Dが接触する。そして、接触した部分の溶融又は軟化状態の被覆用樹脂材料27はクラウン部16の外周面上に広がり、クラウン部16の外周面に被覆コード部材26Bが溶着される。これにより、クラウン部16と被覆コード部材26Bとの接合強度が向上する。
(粗化処理工程)
(3)次に、図示を省略するブラスト装置にて、タイヤケース17の外周面17Sに向け、タイヤケース17側を回転させながら、外周面17Sへ投射材を高速度で射出する。射出された投射材は、外周面17Sに衝突し、この外周面17Sに算術平均粗さRaが0.05mm以上となる微細な粗化凹凸96を形成する。
このようにして、タイヤケース17の外周面17Sに微細な粗化凹凸96が形成されることで、外周面17Sが親水性となり、後述する接合剤の濡れ性が向上する。
(積層工程)
(4)次に、粗化処理を行なったタイヤケース17の外周面17Sに接合剤を塗布する。
なお、接合剤としては、ハロゲン化ゴム系接着剤等のゴム系接着剤(例えば、塩化ゴム系接着剤)、トリアジンチオール系接着剤、フェノール系樹脂接着剤、イソシアネート系接着剤など、特に制限はないが、クッションゴム29が加硫できる温度(90℃〜140℃)で反応することが好ましい。
(5)次に、接合剤が塗布された外周面17Sに未加硫状態のクッションゴム29を1周分巻き付け、そのクッションゴム29の上に例えば、ゴムセメント組成物などの接合剤を塗布し、その上に加硫済み又は半加硫状態のトレッドゴム30Aを1周分巻き付けて、生タイヤケース状態とする。
(加硫工程)
(6)次に生タイヤケースを加硫缶やモールドに収容して加硫する。このとき、粗化処理によってタイヤケース17の外周面17Sに形成された粗化凹凸96に未加硫のクッションゴム29が流れ込む。そして、加硫が完了すると、粗化凹凸96に流れ込んだクッションゴム29により、アンカー効果が発揮されて、タイヤケース17とクッションゴム29との接合強度が向上する。すなわち、クッションゴム29を介してタイヤケース17とトレッド30との接合強度が向上する。本発明における熱可塑性樹脂材料は、ポリエステル系熱可塑性エラストマーを含むため、使用環境の温度変動による変形や硬さの変化が小さく、衝撃に強い。従って、加硫工程において、タイヤケースが長時間加熱されても、変形しにくい。
(8)そして、タイヤケース17のビード部12に、樹脂材料よりも軟質である軟質材料からなるシール層24を、接着剤等を用いて接着すれば、タイヤ200の完成となる。
(作用)
本実施形態のタイヤ200では、タイヤケース17がポリエステル系熱可塑性エラストマーとゴムとを、質量比70:30で含む熱可塑性樹脂材料によって形成されているため、耐衝撃性、引張弾性率、及び引張強度に優れる。また、使用環境の温度変動による変形や硬さの変化が小さく、耐衝撃性に強い。このため、本実施形態のタイヤ200は、耐久性に優れる。さらにタイヤ構造を簡素化できる為に、従来のゴムに比して重量が軽い。また、tanδを小さくすることができる。従って、本実施形態のタイヤ200は、軽量化することができ、転がり抵抗も抑制されるので、かかるタイヤを用いた自動車の燃費を良くすることができる。
また、補強コード層28が、被覆コード部材26Bを含んで構成されていると、補強コード26Aを単にクッションゴム29で固定する場合と比してタイヤケース17と補強コード層28との硬さの差を小さくできるため、更に被覆コード部材26Bをタイヤケース17に密着・固定することができる。これにより、上述のエア入りを効果的に防止することができ、走行時に補強コード部材が動くのを効果的に抑制することができる。
更に、補強コード部材がスチールコードの場合、タイヤ処分時に被覆コード部材26Bからコード部材26Aを加熱によって容易に分離・回収が可能であるため、タイヤ200のリサイクル性の点で有利である。また、樹脂材料は通常加硫ゴムに比して損失係数(Tanδ)が低い。このため、補強コード層が樹脂材料を多く含んでいると、タイヤの転がり性を向上させることができる。更には、加硫ゴムに比して相対的に弾性率の高い樹脂材料は、面内せん断剛性が大きく、タイヤ走行時の操安性や耐摩耗性にも優れるといった利点がある。
本実施形態のタイヤの製造方法では、タイヤケース17とクッションゴム29及びトレッドゴム30Aとを一体化するにあたり、タイヤケース17の外周面17Sが粗化処理されていることから、アンカー効果により接合性(接着性)が向上する。また、タイヤケース17を形成する樹脂材料が投射材の衝突により掘り起こされることから、接合剤の濡れ性が向上する。これにより、タイヤケース17の外周面17Sに接合剤が均一な塗布状態で保持され、タイヤケース17とクッションゴム29との接合強度を確保することができる。
特に、タイヤケース17の外周面17Sに凹凸が構成されていても、凹部(隙間28A)に投射材を衝突させることで凹部周囲(凹壁、凹底)の粗化処理がなされ、タイヤケース17とクッションゴム29との接合強度を確保することができる。
一方、クッションゴム29がタイヤケース17の外周面17Sの粗化処理された領域内に積層されることから、タイヤケース17とクッションゴムとの接合強度を効果的に確保することができる。
加硫工程において、クッションゴム29を加硫した場合、粗化処理によってタイヤケース17の外周面17Sに形成された粗化凹凸96にクッションゴム29が流れ込む。そして、加硫が完了すると、粗化凹凸96に流れ込んだクッションゴム29により、アンカー効果が発揮されて、タイヤケース17とクッションゴム29との接合強度が向上する。特に、本発明に係る熱可塑性樹脂材料は、ポリエステル系熱可塑性エラストマーを含むため、使用環境の温度変動による変形や硬さの変化が小さいため、加硫を実施する場合には高温にて加硫することができ、タイヤ骨格体とクッションゴム等とを強固に接着させることができる。
このような、タイヤの製造方法にて製造されたタイヤ200は、タイヤケース17とクッションゴム29との接合強度が確保される、すなわち、クッションゴム29を介してタイヤケース17とトレッド30との接合強度が確保される。これにより、走行時などにおいて、タイヤ200のタイヤケース17の外周面17Sとクッションゴム29との間の剥離が抑制される。
また、タイヤケース17の外周部を補強コード層28が構成していることから、外周部を補強コード層28以外のもので構成しているものと比べて、耐パンク性及び耐カット性が向上する。
また、被覆コード部材26Bを巻回して補強コード層28が形成されていることから、タイヤ200の周方向剛性が向上する。周方向剛性が向上することで、タイヤケース17のクリープ(一定の応力下でタイヤケース17の塑性変形が時間とともに増加する現象)が抑制され、且つ、タイヤ径方向内側からの空気圧に対する耐圧性が向上する。
本実施形態では、タイヤケース17の外周面17Sに凹凸を構成したが、本発明はこれに限らず、外周面17Sを平らに形成する構成としてもよい。
また、タイヤケース17は、タイヤケースのクラウン部に巻回され且つ接合された被覆コード部材を被覆用熱可塑性材料で覆うようにして補強コード層を形成してもよい。この場合、溶融又は軟化状態の被覆用熱可塑性材料を補強コード層28の上に吐出して被覆層を形成することができる。また、押出機を用いずに、溶着シートを加熱し溶融又は軟化状態にして、補強コード層28の表面(外周面)に貼り付けて被覆層を形成してもよい。
上述の第2実施形態では、ケース分割体(タイヤケース半体17A)を接合してタイヤケース17を形成する構成としたが、本発明はこの構成に限らず、金型などを用いてタイヤケース17を一体的に形成してもよい。
第2実施形態のタイヤ200は、ビード部12をリム20に装着することで、タイヤ200とリム20との間で空気室を形成する、所謂チューブレスタイヤであるが、本発明はこの構成に限定されず、タイヤ200は、例えば、完全なチューブ形状であってもよい。
第2実施形態では、タイヤケース17とトレッド30との間にクッションゴム29を配置したが、本発明はこれに限らず、クッションゴム29を配置しない構成としてもよい。
また、第2実施形態では、被覆コード部材26Bをクラウン部16へ螺旋状に巻回する構成としたが、本発明はこれに限らず、被覆コード部材26Bが幅方向で不連続となるように巻回する構成としてもよい。
第2実施形態では、被覆コード部材26Bを形成する被覆用樹脂材料27を熱可塑性材料とし、この被覆用樹脂材料27を加熱することにより溶融又は軟化状態にしてクラウン部16の外周面に被覆コード部材26Bを溶着する構成としているが、本発明はこの構成に限定されず、被覆用樹脂材料27を加熱せずに接着剤などを用いてクラウン部16の外周面に被覆コード部材26Bを接着する構成としてもよい。
また、被覆コード部材26Bを形成する被覆用樹脂材料27を熱硬化性樹脂とし、被覆コード部材26Bを加熱せずに接着剤などを用いてクラウン部16の外周面に接着する構成としてもよい。
さらに、被覆コード部材26Bを形成する被覆用樹脂材料27を熱硬化性樹脂とし、タイヤケース17を熱可塑性樹脂材料で形成する構成としてもよい。この場合には、被覆コード部材26Bをクラウン部16の外周面に接着剤などを用いて接着してもよく、タイヤケース17の被覆コード部材26Bが配設される部位を加熱して溶融又は軟化状態にして被覆コード部材26Bをクラウン部16の外周面に溶着してもよい。
またさらに、被覆コード部材26Bを形成する被覆用樹脂材料27を熱可塑性材料とし、タイヤケース17を熱可塑性樹脂材料で形成する構成としてもよい。この場合には、被覆コード部材26Bをクラウン部16の外周面に接着剤などを用いて接着してもよく、タイヤケース17の被覆コード部材26Bが配設される部位を加熱して溶融又は軟化状態としつつ、被覆用樹脂材料27を加熱し溶融又は軟化状態にして被覆コード部材26Bをクラウン部16の外周面に溶着してもよい。なお、タイヤケース17及び被覆コード部材26Bの両者を加熱して溶融又は軟化状態にした場合、両者が良く混ざり合うため接合強度が向上する。また、タイヤケース17を形成する樹脂材料、及び被覆コード部材26Bを形成する被覆用樹脂材料27をともに熱可塑性樹脂材料とする場合には、同種の熱可塑性材料、特に同一の熱可塑性材料とすることが好ましい。
また、さらに、粗化処理を行なったタイヤケース17の外周面17Sに、コロナ処理やプラズマ処理等を用い、外周面17Sの表面を活性化し、親水性を高めた後、接着剤を塗布してもよい。
またさらに、タイヤ200を製造するための順序は、第2実施形態の順序に限らず、適宜変更してもよい。
以上、実施形態を挙げて本発明の実施の形態を説明したが、これらの実施形態は一例であり、要旨を逸脱しない範囲内で種々変更して実施できる。また、本発明の権利範囲がこれらの実施形態に限定されないことは言うまでもない。
以上、本発明の具体的な態様について第1実施形態及び第2実施形態を用いて説明したが本発明は上述の態様に限定されるものではない。
本発明のタイヤは第1実施形態に示されるように以下のように構成することができる。
(1−1)本発明のタイヤは、タイヤ骨格体の軸方向に沿った断面視で、本発明に係る熱可塑性樹脂材料で形成されたタイヤ骨格体の外周部に補強コード部材の少なくとも一部が埋設されるように構成することができる。
このように、補強コード部材の一部がタイヤ骨格体の外周部に埋設していると、補強コード部材巻回時にコード周辺に空気が残る現象(エア入り)を更に抑制することができる。補強コード部材周辺へのエア入りが抑制されると、走行時の入力などによって補強コード部材が動くのが抑制される。これにより、例えば、タイヤ骨格体の外周部に補強コード部材全体を覆うようにタイヤ構成部材が設けられた場合、補強コード部材は動きが抑制されているため、これらの部材間(タイヤ骨格体含む)に剥離などを生じるのが抑制され耐久性が向上する。
(1−2)本発明のタイヤは、前記補強コード層の径方向外側に前記熱可塑性樹脂材料よりも耐摩耗性を有する材料から形成されるトレッドを設けてもよい。
このように路面と接触するトレッドを熱可塑性樹脂材料よりも耐摩耗性のある材料で構成することでタイヤの耐摩耗性を更に向上させることができる。
(1−3)本発明のタイヤは、前記タイヤ骨格体の軸方向に沿った断面視で、前記補強コード部材の直径1/5以上を前記タイヤ骨格体の外周部に周方向に沿って埋設させることができる。
このようにタイヤ骨格体の軸方向に沿った断面視で補強コード部材の直径の1/5以上がタイヤ骨格体の外周部に埋設されていると、補強コード部材周辺へのエア入りを効果的に抑制することができ、走行時の入力などによって補強コード部材が動くのをより抑制することができる。
(1−4)本発明のタイヤは、前記タイヤ骨格体は、径方向内側にリムのビードシート及びリムフランジに接触するビード部を有し、前記ビード部に金属材料からなる環状のビードコアが埋設されるように構成することができる。
このように、タイヤ骨格体にリムとの嵌合部位であるビード部を設け、さらに、このビード部に金属材料からなる環状のビードコアを埋設することで、従来のゴム製の空気入りタイヤと同様に、リムに対して、タイヤ骨格体(すなわちタイヤ)を強固に保持させることができる。
(1−5)本発明のタイヤは、前記ビード部が前記リムと接触する部分に前記熱可塑性樹脂材料よりもシール性(リムとの密着性)の高い材料からなるシール部を設けることが出来る。
このように、タイヤ骨格体とリムとの接触部分に、熱可塑性樹脂材料よりもシール性の高い材料からなるシール部を設けることで、タイヤ(タイヤ骨格体)とリムとの間の密着性を向上させることができる。これにより、リムと熱可塑性樹脂材料とのみを用いた場合に比較して、タイヤ内の空気漏れを一層抑制することができる。また、前記シール部を設けることでタイヤのリムフィット性も向上させることができる。
(1−6)本発明のタイヤの製造方法は、少なくとも、ポリエステル系熱可塑性エラストマーと、ゴムと、を含む熱可塑性樹脂材料によって環状のタイヤ骨格体の一部を構成するタイヤ骨格片を形成するタイヤ骨格片形成工程と、前記タイヤ骨格片の接合面に熱を付与し対となる2以上の前記タイヤ骨格片を融着させて前記タイヤ骨格体を形成するタイヤ骨格片接合工程と、前記タイヤ骨格体の外周部に補強コード部材を周方向に巻回して補強コード層を形成する補強コード部材巻回工程と、によって構成することができる。
(1−7)前記タイヤの製造方法は、前記タイヤ骨格片接合工程において、前記タイヤ骨格片の接合面を、タイヤ骨格片を構成する熱可塑性樹脂材料の融点以上に加熱するように構成することができる。
このように、前記分割体の接合面を、タイヤ骨格片を構成する熱可塑性樹脂材料の融点以上に加熱すると、タイヤ骨格片同士の融着を十分に行うことができるため、タイヤの耐久性を向上させつつ、タイヤの生産性を高めることができる。
(1−8)前記タイヤの製造方法は、前記補強コード部材巻回工程において、前記タイヤ骨格片接合工程において形成された前記タイヤ骨格体の外周部を溶融又は軟化させながら補強コード部材の少なくとも一部を埋設して前記タイヤ骨格体の外周部に前記補強コード部材を巻回するように構成することができる。
このように、前記タイヤ骨格体の外周部を溶融又は軟化させながら補強コード部材の少なくとも一部を埋設して前記タイヤ骨格体の外周部に前記補強コード部材を巻回することで、埋設された補強コード部材の少なくとも一部と溶融又は軟化した熱可塑性樹脂材料とを溶着させることができる。これにより、タイヤ骨格体の軸方向に沿った断面視でタイヤ骨格体の外周部と補強コード部材との間のエア入りを更に抑制することができる。また、補強コード部材を埋設した部分が冷却固化されると、タイヤ骨格体に埋設された補強コード部材の固定具合が向上する。
(1−9)前記タイヤの製造方法は、前記補強コード部材巻回工程において、前記タイヤ骨格体の軸方向に沿った断面視で前記補強コード部材の直径の1/5以上を前記タイヤ骨格体の外周部に埋設させるように構成することができる。
このように、タイヤ骨格体の軸方向に沿った断面視で、タイヤ骨格体の外周部に補強コード部材を直径の1/5以上埋設すると、製造時の補強コード部材周辺へのエア入りを効果的に抑制することができ、更に、埋設された補強コード部材がタイヤ骨格体から抜け難くすることができる。
(1−10)前記タイヤの製造方法は、前記補強コード部材巻回工程において、加熱した前記補強コード部材を前記タイヤ骨格体に埋設するように構成することができる。
このように、補強コード部材巻回工程において、補強コード部材を加熱しながらタイヤ骨格体に埋設させると、加熱された補強コード部材がタイヤ骨格体の外周部に接触した際に接触部分が溶融又は軟化するため、補強コード部材をタイヤ骨格体の外周部に埋設し易くなる。
(1−11)前記タイヤの製造方法は、前記コード部材巻回工程において、前記タイヤ骨格体の外周部の前記補強コード部材が埋設される部分を加熱するように構成することができる。
このように、タイヤ骨格体の外周部の補強コード部材が埋設される部分を加熱することで、タイヤ骨格体の加熱された部分が溶融又は軟化するため、補強コード部材を埋設し易くなる。
(1−12)前記タイヤの製造方法は、前記コード部材巻回工程において、前記補強コード部材を前記タイヤ骨格体の外周部に押圧しながら前記タイヤ骨格体の外周部の周方向に前記補強コード部材を螺旋状に巻回するように構成することができる。
このように、補強コード部材を前記タイヤ骨格体の外周部に押圧しながら前記補強コード部材を螺旋状に巻回すると、補強コード部材のタイヤ骨格体の外周部への埋設量を調整することができる。
(1−13)前記製造方法によれば、前記コード部材巻回工程において、前記補強コード部材を前記タイヤ骨格体に巻回した後、前記タイヤ骨格体の外周部の溶融又は軟化した部分を冷却するように構成することができる。
このように、補強コード部材が埋設された後で、タイヤ骨格体の外周部の溶融又は軟化した部分を強制的に冷却することで、タイヤ骨格体の外周部の溶融又は軟化した部分を自然冷却よりも早く迅速に冷却固化することができる。タイヤ外周部を自然冷却よりも早く冷却することで、タイヤ骨格体の外周部の変形を抑制できると共に、補強コード部材が動くのを抑制することができる。
また、本発明のタイヤは第2実施形態において説明したように以下のように構成することができる。
(2−1)本発明のタイヤは、前記製造方法において、更に、タイヤ骨格体の外周面に粒子状の投射材を衝突させて、タイヤ骨格体の外周面を粗化処理する粗化処理工程と、粗化処理された前記外周面に接合剤を介してタイヤ構成ゴム部材を積層する積層工程と、を備えて構成することができる。
このように、粗化処理工程を設けると、熱可塑性樹脂材料を用いて形成された環状のタイヤ骨格体の外周面に粒子状の投射材が衝突して、当該外周面に微細な粗化凹凸が形成される。なお、タイヤ骨格体の外周面に投射材を衝突させて微細な粗化凹凸を形成する処理を粗化処理という。その後、粗化処理された外周面に接合剤を介してタイヤ構成ゴム部材が積層される。ここで、タイヤ骨格体とタイヤ構成ゴム部材とを一体化するにあたり、タイヤ骨格体の外周面が粗化処理されていることから、アンカー効果により接合性(接着性)が向上する。また、タイヤ骨格体を形成する樹脂材料が投射材の衝突により掘り起こされることから、外周面の濡れ性が向上する。これにより、タイヤ骨格体の外周面に接合剤が均一な塗布状態で保持され、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を確保することができる。
(2−2)本発明のタイヤは、前記タイヤ骨格体の外周面の少なくとも一部が凹凸部であり、前記凹凸部が前記粗化処理工程において粗化処理を施して作製することができる。
このように、タイヤ骨格体の外周面の少なくとも一部が凹凸部とされていても、凹凸部に投射材を衝突させることで凹部周囲(凹壁、凹底)の粗化処理がなされ、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を確保することができる。
(2−3)本発明のタイヤは、前記タイヤ骨格体の外周部が、外周面に前記凹凸部を構成する補強層で構成されており、前記補強層が前記タイヤ骨格体を形成する樹脂材料とは同種又は別の樹脂材料で補強コード部材を被覆して構成された被覆コード部材を前記タイヤ骨格体の周方向に巻回して構成することができる。
このように、被覆コード部材をタイヤ骨格体の周方向に巻回して構成された補強層でタイヤ骨格体の外周部を構成することで、タイヤ骨格体の周方向剛性を向上させることができる。
(2−4) 本発明のタイヤは、前記被覆コード部材を構成する樹脂材料に熱可塑性樹脂材料を用いることができる。
このように、被覆コード部材を構成する樹脂材料に熱可塑性を有する熱可塑性材料を用いることで、前記樹脂材料として熱硬化性材料を用いた場合と比べて、タイヤ製造が容易になり、リサイクルしやすくなる。
(2−5) 本発明のタイヤは、前記粗化処理工程において、前記タイヤ構成ゴム部材の積層領域よりも広い領域を粗化処理するように構成することができる。
このように、粗化処理工程において、タイヤ構成ゴム部材の積層領域よりも広い領域に粗化処理を施すと、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を確実に確保することができる。
(2−6) 本発明のタイヤは、前記粗化処理工程において、算術平均粗さRaが0.05mm以上となるように前記外周面を粗化処理するように構成することができる。
このように、粗化処理工程において算術平均粗さRaが0.05mm以上となるようにタイヤ骨格体の外周面を粗化処理すると、粗化処理された外周面に接合剤を介して、例えば、未加硫又は半加硫状態のタイヤ構成ゴム部材を積層し加硫した場合に、粗化処理により形成された粗化凹凸の底まで、タイヤ構成ゴム部材のゴムを流れ込ませることができる。粗化凹凸の底まで、タイヤ構成ゴム部材のゴムを流れ込ませると、外周面とタイヤ構成ゴム部材との間に十分なアンカー効果が発揮されて、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を向上させることができる。
(2−7) 本発明のタイヤは、前記タイヤ構成ゴム部材として、未加硫、又は半加硫状態のゴムを用いることできる。
このように、前記タイヤ構成ゴム部材として未加硫又は半加硫状態のゴムを用いると、タイヤ構成ゴム部材を加硫した際に、粗化処理によってタイヤ骨格体の外周面に形成された粗化凹凸にゴムが流れ込む。そして、加硫が完了すると、粗化凹凸に流れ込んだゴム(加硫済み)により、アンカー効果が発揮されて、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を向上させることができる。
なお、加硫済みとは、最終製品として必要とされる加硫度に至っている状態をいい、半加硫状態とは、未加硫の状態よりは加硫度が高いが、最終製品として必要とされる加硫度に至っていない状態をいう。
(2−8) 本発明のタイヤは、本発明に係る熱可塑性樹脂材料を用いて形成され、外周面に粒子状の投射材を衝突させて該外周面を粗化処理した環状のタイヤ骨格体と、粗化処理された前記外周面に接合剤を介して積層されたタイヤ構成ゴム部材と、を備えるように構成することができる。
このように、粗化処理した環状のタイヤ骨格体を用いると、タイヤ骨格体とタイヤ構成ゴム部材との接合強度をアンカー効果によって向上させることができる。また、外周面が粗化処理されていることから、接合剤の濡れ性がよい。これにより、タイヤ骨格体の外周面に接合剤が均一な塗布状態で保持され、タイヤ骨格体とタイヤ構成ゴム部材との接合強度が確保されて、タイヤ骨格体とタイヤ構成ゴム部材との剥離を抑制することができる。
以下、本発明について実施例を用いてより具体的に説明する。ただし、本発明はこれに限定されるものではない。
まず、上述の第2実施形態に従って、実施例及び比較例のタイヤを成形した。この際、タイヤケースを形成する材料については下記表1及び2に記載の材料を用いた。また、各実施例及び比較例について、材料の物性評価からタイヤ性能を考察した。
〔試料片の作製〕
1.ポリエステル系熱可塑性エラストマー
東レ・デュポン社製、ハイトレル、6347
2.ゴム
1)ブタジエンゴム(BR)
2)スチレン−ブタジエン共重合ゴム(SBR)
3)アクリロニトリル−ブタジエン共重合ゴム(NBR)
BR、SBR、及びNBRは、いずれも単軸押出し機により押出し、ペレット化して用いた。
3.ゴム親和熱可塑性エラストマー
1)酸変性α−オレフィン系熱可塑性エラストマー
三井化学社製、タフマー、MH7010
2)酸変性水素添加ポリスチレン系熱可塑性エラストマー(SEBS)
旭化成社製、タフテック、M1913
4)加硫ゴム(DV1〜DV3)
上記のBR、SBR、及びNBRの各ゴムを用いて、下記表1に示す種類及び量の成分を混合し、バンバリーミキサーにより混練し、2本ロールを用いてシート状にした後、単軸押出し機により押し出し、ペレット化して用いた。
なお、得られたゴムは、2軸押出し機中で、ポリエステル系熱可塑性エラストマーとの混練中に架橋を行った。
表1中の普通硫黄、促進剤CZ及び促進剤TSの詳細は次のとおりである。
普通硫黄・・・・・・鶴見化学工業社製、普通硫黄
加硫促進剤CZ・・・大内新興化学工業社製「ノクセラーCZ」
(N−シクロヘキシル−2−ベンゾチアジルスルフェンアミド)
促進剤TS・・・・・大内新興化学工業社製「ノクセラーTS」)
(テトラメチルチウラムモノスルフィド)
〔熱可塑性樹脂材料のペレットの作製〕
表2に示す成分を、表2に示す組成で混合(質量基準)して、東洋精機製作所社製、LABOPLASTOMILL 50MR 2軸押出し機により混練し、ペレットを得た。なお、比較例1においては、混合系とせず、ポリエステル系熱可塑性エラストマーのペレットを用意した。
1.引張強さ、破断伸び、及び、引張弾性率評価
作製したペレットを用いて、住友重工社製、SE30Dを用い、射出成形を行い、成形温度200℃〜235℃、金型温度50℃〜70℃とし、12.7mm×127mm、厚さ1.6mmの金型を用いて、試験片を得た。
各試験片を打ち抜き、JISK6251:1993に規定されるダンベル状試料片(5号形試料片)を作製した。
次いで、島津製作所社製、島津オートグラフAGS−J(5KN)を用いて、引張速度を200mm/minに設定し、前記各ダンベル状試料片の引張弾性率、引張強さ及び破断伸びを測定した。
結果を下記表2に示す。
2.tanδ測定
レオメトリックス(株)製の動的粘弾性測定試験機「ARES III」を使用して、温度30℃、測定周波数20Hz、及び動的歪1%における損失正接(tanδ)を測定した。
実施例及び比較例の試料片の、引張強さ、破断伸び、引張弾性率、及びtanδを、表2に示す。
表2に示されるように、各実施例で作製した試料片は、比較例で作製された試料片との対比において、引張弾性率が小さく、柔軟性に富んでいることがわかる。このことは、実施例に示す試料片と同じ熱可塑性樹脂材料を用いて形成されたタイヤケースを用いて製造されたタイヤは、耐衝撃性に優れ、例えば、タイヤが縁石等に接触しても破損しにくい耐久性を有することを示す。また、実施例の試料片は、比較例の試料片に比べ、いずれもtanδが小さい。従って、実施例に示す試料片と同じ熱可塑性樹脂材料を用いて作成されたタイヤの転がり抵抗は抑制され、かかるタイヤを自動車に適用した場合には、低燃費を発現し得ることが把握される。
なお、実施例及び比較例の各熱可塑性樹脂材料を用いて形成した各タイヤについて、ドラム走行試験を行ったところ、走行上の安全性はいずれのタイヤも問題なかった。
10,200 タイヤ
12 ビード部
16 クラウン部(外周部)
18 ビードコア
20 リム
21 ビードシート
22 リムフランジ
17 タイヤケース(タイヤ骨格体)
24 シール層(シール部)
26 補強コード(補強コード部材)
26A コード部材(補強コード部材)
28 補強コード層
30 トレッド
D 補強コードの直径(補強コード部材の直径)
L 補強コードの埋設量(補強コード部材の埋設量)

Claims (7)

  1. 少なくとも、熱可塑性樹脂材料で形成された環状のタイヤ骨格体を有するタイヤであって、
    前記タイヤ骨格体の外周部に周方向に巻回されて補強コード層を形成する補強コード部材を有し、
    前記熱可塑性樹脂材料が、少なくともポリエステル系熱可塑性エラストマーとゴムとを含むタイヤ。
  2. 前記熱可塑性樹脂材料が、さらに、前記ゴムとの親和性がよい熱可塑性エラストマーを含む請求項1に記載のタイヤ。
  3. 前記補強コード層が樹脂材料を含んで構成される請求項1又は2に記載のタイヤ。
  4. 前記熱可塑性樹脂において、前記ポリエステル系熱可塑性エラストマー(x)と前記ゴム(y)との質量比(x:y)が、95:5〜50:50である請求項1〜請求項3のいずれか1項に記載のタイヤ。
  5. 前記熱可塑性樹脂材料において、前記ポリエステル系熱可塑性エラストマー(x)と、前記ゴム(y)及び前記ゴムとの親和性がよい熱可塑性エラストマー(z)と、の質量比(x:y+z)が、95:5〜50:50である請求項2又は請求項3に記載のタイヤ。
  6. 前記熱可塑性樹脂材料中の前記ポリエステル系熱可塑性エラストマーと前記ゴムとの合計含有量が、50質量%〜100質量%である請求項1〜請求項4のいずれか1項に記載のタイヤ。
  7. 前記熱可塑性樹脂材料中の前記ポリエステル系熱可塑性エラストマーと、前記ゴムと、前記ゴムとの親和性がよい熱可塑性エラストマーと、の合計含有量が、50質量%〜100質量%である請求項2、請求項3または請求項5に記載のタイヤ。


JP2010188909A 2010-08-25 2010-08-25 タイヤ Expired - Fee Related JP6066541B2 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2010188909A JP6066541B2 (ja) 2010-08-25 2010-08-25 タイヤ
PCT/JP2011/069224 WO2012026548A1 (ja) 2010-08-25 2011-08-25 タイヤ及びその製造方法
US13/818,348 US9387725B2 (en) 2010-08-25 2011-08-25 Tire, and manufacturing method for same
CN201180051344.XA CN103201121B (zh) 2010-08-25 2011-08-25 轮胎及其制造方法
CN201510997451.1A CN105620204B (zh) 2010-08-25 2011-08-25 轮胎及其制造方法
CN201510997575.XA CN105415981B (zh) 2010-08-25 2011-08-25 轮胎
EP14185862.1A EP2868490B1 (en) 2010-08-25 2011-08-25 Tire, and manufacturing method for same
EP11820011.2A EP2610071B1 (en) 2010-08-25 2011-08-25 Tire, and manufacturing method for same
CN201510284825.5A CN105034695B (zh) 2010-08-25 2011-08-25 轮胎及其制造方法
CN201510998079.6A CN105566862B (zh) 2010-08-25 2011-08-25 轮胎及其制造方法
US15/175,414 US20160280008A1 (en) 2010-08-25 2016-06-07 Tire and manufacturing method for same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010188909A JP6066541B2 (ja) 2010-08-25 2010-08-25 タイヤ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015230132A Division JP6178829B2 (ja) 2015-11-25 2015-11-25 タイヤ

Publications (2)

Publication Number Publication Date
JP2012046026A true JP2012046026A (ja) 2012-03-08
JP6066541B2 JP6066541B2 (ja) 2017-01-25

Family

ID=45901423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010188909A Expired - Fee Related JP6066541B2 (ja) 2010-08-25 2010-08-25 タイヤ

Country Status (1)

Country Link
JP (1) JP6066541B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111278664A (zh) * 2017-10-25 2020-06-12 株式会社普利司通 轮胎用金属树脂复合构件及轮胎

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54162307A (en) * 1978-06-12 1979-12-22 Firestone Tire & Rubber Co Pneumatic tire
JPH01278803A (ja) * 1988-03-17 1989-11-09 Goodyear Tire & Rubber Co:The 空気タイヤおよびその製造方法
JPH02267004A (ja) * 1989-04-07 1990-10-31 Yokohama Rubber Co Ltd:The 空気入りラジアルタイヤおよびスチールコード補強ベルト
JPH03143701A (ja) * 1989-10-27 1991-06-19 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JPH03148302A (ja) * 1989-11-01 1991-06-25 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JPH05116504A (ja) * 1991-04-15 1993-05-14 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JPH0616008A (ja) * 1992-06-30 1994-01-25 Sumitomo Rubber Ind Ltd 空気入りタイヤ及び空気入りタイヤの製造方法
JPH07329065A (ja) * 1994-06-03 1995-12-19 Sumitomo Rubber Ind Ltd 空気入りタイヤ及びその製造方法
JPH11321233A (ja) * 1998-05-18 1999-11-24 Yokohama Rubber Co Ltd:The 空気入りラジアルタイヤ
JP2000119448A (ja) * 1998-10-15 2000-04-25 Yokohama Rubber Co Ltd:The 蓄光性熱可塑性エラストマー組成物
JP2000198312A (ja) * 1999-01-06 2000-07-18 Toyo Tire & Rubber Co Ltd タイヤ用補強材および空気入りタイヤ
JP2002080644A (ja) * 2000-04-11 2002-03-19 Yokohama Rubber Co Ltd:The 加工性が改良された熱可塑性エラストマー組成物およびそれを用いたタイヤ
JP2003104008A (ja) * 2001-09-28 2003-04-09 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2003104005A (ja) * 2001-09-28 2003-04-09 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2007069745A (ja) * 2005-09-07 2007-03-22 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2007070447A (ja) * 2005-09-06 2007-03-22 Yokohama Rubber Co Ltd:The 熱可塑性エラストマー組成物
JP2010053495A (ja) * 2008-08-29 2010-03-11 Yokohama Rubber Co Ltd:The タイヤ補強用スチールコード及びこれを使用した空気入りタイヤ
JP2010059248A (ja) * 2008-09-01 2010-03-18 Sumitomo Rubber Ind Ltd スタッドレスタイヤ用ゴム組成物及びスタッドレスタイヤ

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54162307A (en) * 1978-06-12 1979-12-22 Firestone Tire & Rubber Co Pneumatic tire
JPH01278803A (ja) * 1988-03-17 1989-11-09 Goodyear Tire & Rubber Co:The 空気タイヤおよびその製造方法
JPH02267004A (ja) * 1989-04-07 1990-10-31 Yokohama Rubber Co Ltd:The 空気入りラジアルタイヤおよびスチールコード補強ベルト
JPH03143701A (ja) * 1989-10-27 1991-06-19 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JPH03148302A (ja) * 1989-11-01 1991-06-25 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JPH05116504A (ja) * 1991-04-15 1993-05-14 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JPH0616008A (ja) * 1992-06-30 1994-01-25 Sumitomo Rubber Ind Ltd 空気入りタイヤ及び空気入りタイヤの製造方法
JPH07329065A (ja) * 1994-06-03 1995-12-19 Sumitomo Rubber Ind Ltd 空気入りタイヤ及びその製造方法
JPH11321233A (ja) * 1998-05-18 1999-11-24 Yokohama Rubber Co Ltd:The 空気入りラジアルタイヤ
JP2000119448A (ja) * 1998-10-15 2000-04-25 Yokohama Rubber Co Ltd:The 蓄光性熱可塑性エラストマー組成物
JP2000198312A (ja) * 1999-01-06 2000-07-18 Toyo Tire & Rubber Co Ltd タイヤ用補強材および空気入りタイヤ
JP2002080644A (ja) * 2000-04-11 2002-03-19 Yokohama Rubber Co Ltd:The 加工性が改良された熱可塑性エラストマー組成物およびそれを用いたタイヤ
JP2003104008A (ja) * 2001-09-28 2003-04-09 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2003104005A (ja) * 2001-09-28 2003-04-09 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2007070447A (ja) * 2005-09-06 2007-03-22 Yokohama Rubber Co Ltd:The 熱可塑性エラストマー組成物
JP2007069745A (ja) * 2005-09-07 2007-03-22 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2010053495A (ja) * 2008-08-29 2010-03-11 Yokohama Rubber Co Ltd:The タイヤ補強用スチールコード及びこれを使用した空気入りタイヤ
JP2010059248A (ja) * 2008-09-01 2010-03-18 Sumitomo Rubber Ind Ltd スタッドレスタイヤ用ゴム組成物及びスタッドレスタイヤ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111278664A (zh) * 2017-10-25 2020-06-12 株式会社普利司通 轮胎用金属树脂复合构件及轮胎

Also Published As

Publication number Publication date
JP6066541B2 (ja) 2017-01-25

Similar Documents

Publication Publication Date Title
JP5775320B2 (ja) タイヤ
WO2012026548A1 (ja) タイヤ及びその製造方法
JP6057981B2 (ja) タイヤ
JP5818577B2 (ja) タイヤ
JP6178829B2 (ja) タイヤ
JP5847555B2 (ja) タイヤ
JP5628003B2 (ja) タイヤ、及びタイヤの製造方法
JP5818578B2 (ja) タイヤ
JP5778402B2 (ja) タイヤ
JP6014715B2 (ja) タイヤ
JP5701542B2 (ja) タイヤ
JP5971889B2 (ja) タイヤ
JP5778403B2 (ja) タイヤ
JP6001719B2 (ja) タイヤ
JP6066541B2 (ja) タイヤ
JP5628002B2 (ja) タイヤ、及びタイヤの製造方法
JP5960875B2 (ja) タイヤ
JP6001718B2 (ja) タイヤ
JP5905289B2 (ja) タイヤ
JP6049273B2 (ja) タイヤ
JP5836575B2 (ja) タイヤ
JP5813416B2 (ja) タイヤ
JP2012106668A (ja) タイヤ
JP6014714B2 (ja) タイヤ及びその製造方法
JP6001698B2 (ja) タイヤ、及びタイヤの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151125

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20151203

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20160205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161220

R150 Certificate of patent or registration of utility model

Ref document number: 6066541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees