JP2012045700A - 化学機械研磨パッドおよびそれを用いた化学機械研磨方法 - Google Patents

化学機械研磨パッドおよびそれを用いた化学機械研磨方法 Download PDF

Info

Publication number
JP2012045700A
JP2012045700A JP2010272451A JP2010272451A JP2012045700A JP 2012045700 A JP2012045700 A JP 2012045700A JP 2010272451 A JP2010272451 A JP 2010272451A JP 2010272451 A JP2010272451 A JP 2010272451A JP 2012045700 A JP2012045700 A JP 2012045700A
Authority
JP
Japan
Prior art keywords
polishing
chemical mechanical
polishing layer
hardness
mechanical polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010272451A
Other languages
English (en)
Other versions
JP5630609B2 (ja
Inventor
Osamu Kamo
理 加茂
Ayako Maekawa
亜耶子 前川
Hirotaka Shida
裕貴 仕田
Shinji Tonsho
真司 頓所
Keiichi Sato
慶一 佐藤
Naoki Nishiguchi
直希 西口
Hiroyuki Tano
裕之 田野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2010272451A priority Critical patent/JP5630609B2/ja
Publication of JP2012045700A publication Critical patent/JP2012045700A/ja
Application granted granted Critical
Publication of JP5630609B2 publication Critical patent/JP5630609B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

【課題】CMPにおける被研磨面の平坦性の向上と研磨欠陥(スクラッチ)の低減とを両立させることができる化学機械研磨パッド、および該化学機械研磨パッドを用いた化学機械研磨方法を提供する。
【解決手段】本発明に係る化学機械研磨パッドは、熱可塑性ポリウレタンを含有する組成物から形成された研磨層を有し、前記研磨層の比重が1.15以上1.30以下であり、且つ、前記研磨層のデュロD硬度が50D以上80D以下であることを特徴とする。
【選択図】なし

Description

本発明は、化学機械研磨パッドおよび該化学機械研磨パッドを用いた化学機械研磨方法に関する。
従来、ガラスや半導体素子を研磨するための研磨パッドとしては、不織布にポリウレタン溶液を含浸させて得られる多孔質不織布やポリウレタン成型物が使用されてきた。特に、半導体基板表面を平坦化する化学機械研磨(Chemical Mechanical Polishing、以下「CMP」ともいう)に好適な化学機械研磨パッドとしては、ポリウレタンにフィラー状の成分を分散させた研磨パッド(例えば、特許文献1参照)、発泡ポリウレタンを使用した研磨パッド(例えば、特許文献2および特許文献3参照)、ポリオールやイソシアネートの使用量を調整してウレタン樹脂の架橋度を調節することにより物性値を制御した研磨パッド(例えば、特許文献4参照)、研磨層の極表面の特性を制御した研磨パッド(例えば、特許文献5参照)等が検討されている。
特表平8−500622号公報 特開2000−17252号公報 特許第3956364号公報 特開2007−284625号公報 特開2003−332277号公報
しかしながら、これらの従来の材料を用いた化学機械研磨パッドは、CMPにおける被研磨面の平坦性を向上させることを目的としているため、特に研磨層の高弾性率化に着目することが多く、研磨層の比重と硬度との関係については十分な議論がなされてこなかった。
例えば特許文献3に記載されている研磨パッドは、研磨層を多孔質構造とすることにより高弾性率化を図っている。該研磨パッドは、研磨層を構成する材質自体の硬度が高いものの、その多孔質構造によるクッション効果のため研磨層全体としての硬度は低くなってしまう。また、研磨層が多孔質構造であるために、研磨層自体の比重も低くなってしまう。その結果、該研磨パッドでは、CMPにおける被研磨面の平坦性の向上と研磨欠陥(スクラッチ)の低減とを両立させることは困難であった。
一方、特許文献5に記載されている研磨パッドでは、研磨層の表面から深さ300nmという極表面の硬度変化について規定しているが、研磨時の圧力から概算されるパッド表面の変形量はマイクロメートルオーダーであり、研磨層の比重と硬度との関係については十分な議論がなされていない。
そこで、本発明に係る幾つかの態様は、上記課題を解決することで、CMPにおける被研磨面の平坦性の向上と研磨欠陥(スクラッチ)の低減とを両立させることができる化学機械研磨パッド、および該化学機械研磨パッドを用いた化学機械研磨方法を提供するものである。
本発明は上述の課題の少なくとも一部を解決するためになされたものであり、以下の態様または適用例として実現することができる。
[適用例1]
本発明に係る化学機械研磨パッドの一態様は、
熱可塑性ポリウレタンを含有する組成物から形成された研磨層を有し、
前記研磨層の比重が1.15以上1.30以下であり、且つ、前記研磨層のデュロD硬度が50D以上80D以下であることを特徴とする。
[適用例2]
適用例1の化学機械研磨パッドにおいて、
前記研磨層を23℃の水に4時間浸漬したときの表面硬度が2N/mm以上10N/mm以下であることができる。
[適用例3]
適用例1または適用例2の化学機械研磨パッドにおいて、
前記熱可塑性ポリウレタンは、脂環式イソシアネートおよび芳香族イソシアネートから選択される少なくとも1種に由来する繰り返し単位を含むことができる。
[適用例4]
適用例1ないし適用例3のいずれか一項に記載の化学機械研磨パッドにおいて、
前記組成物は、水溶性粒子をさらに含むことができる。
[適用例5]
本発明に係る化学機械研磨方法の一態様は、
適用例1ないし適用例4のいずれか一例に記載の化学機械研磨パッドを用いて化学機械研磨することを特徴とする。
本発明に係る化学機械研磨パッドは、熱可塑性ポリウレタンを含有する組成物から形成され、且つ、特定の範囲にある比重および硬度を有する研磨層を備えることにより、CMPにおける被研磨面の平坦性の向上と研磨欠陥(スクラッチ)の低減とを両立させることができる。
研磨層におけるデュロD硬度の概念を説明するための模式図である。 研磨層における表面硬度の概念を説明するための模式図である。
以下、本発明の好適な実施形態について詳細に説明する。本発明において、「ウエット状態」とは、研磨層を23℃の水に4時間浸漬させたときの状態をいう。また、本明細書中において、単に「硬度」というときはデュロ硬度Dのことを指し、「表面硬度」というときはユニバーサル硬さ(HU:N/mm)のことを指す。なお、研磨層のウエット状態における表面硬度は、後述の実施例にも示すように、一定圧力をかけた時のユニバーサル硬さ(HU:N/mm)で示される。
1.化学機械研磨パッド
本実施の形態に係る化学機械研磨パッドの構成としては、少なくとも一方の面に研磨層を備えていれば特に限定されない。なお、本発明において、「研磨層」とは、化学機械研磨を行う際に被研磨物と接触する面(以下、「研磨面」という)を有する単層のことをいう。すなわち、本発明では、研磨層と支持層との間に研磨面を有しない他の層を含んでいてもよいが、該他の層は研磨面を有しないので「研磨層」ではない。前記研磨層は、熱可塑性ポリウレタンを含有する組成物から後述する製造方法により形成される。また、前記研磨層の比重は1.15以上1.30以下であり、且つ、デュロD硬度は50D以上80D以下である。以下、本実施の形態に係る化学機械研磨パッドについて、詳細に説明する。
1.1.研磨層
本実施の形態に係る化学機械研磨パッドを構成する研磨層は、熱可塑性ポリウレタンを含有する組成物(以下、単に「組成物」ともいう)から後述する製造方法により形成される。
一般的に、ポリウレタンを含む研磨層は、発泡タイプと非発泡タイプに分類される。非発泡タイプの研磨層の場合、その構造から比重や硬度が発泡タイプと比較し大きくなり、これに伴って被研磨面(ウエハ等の表面)の凹凸に対する研磨層の弾性変形が小さくなる。その結果、被研磨面の平坦性が良好になる傾向がある。その反面、研磨層の硬度が発泡タイプと比較して大きいため、被研磨面と研磨層の間に入り込んだ研磨屑やパッド屑により研磨欠陥(スクラッチ等)の発生が増大する傾向がある。
一方、発泡タイプの研磨層の場合、その構造から比重や硬度が小さくなる傾向がある。これにより、被研磨面(ウエハ等の表面)と研磨層の間に入り込んだ研磨屑やパッド屑を柔軟な研磨層の表面で捕捉し、被研磨面に対して強い押し付け圧で研磨屑やパッド屑が接触することを回避させることができるので、研磨欠陥の発生を低減させることができる。その反面、被研磨面の凹凸に追随して研磨層の弾性変形が大きくなるため、被研磨面の平坦性が悪化する傾向がある。以上のことから、被研磨面(ウエハ等の表面)の平坦性の向上と研磨欠陥(スクラッチ等)の低減とは、相反する特性であると考えられてきた。
しかしながら、本発明者らは、熱可塑性ポリウレタンを含有する組成物を用いて研磨層を作製し、該研磨層の比重および硬度をコントロールすることにより、従来の技術では困難とされてきた被研磨面(ウエハ等の表面)の平坦性の向上と研磨欠陥(スクラッチ等)の低減とを両立できることを見出したのである。
1.1.1.組成物
熱可塑性ポリウレタンを含有する組成物によれば、柔軟性に優れた研磨層を作製することができる。柔軟な研磨層の表面で被研磨面と研磨面との間に入り込んだ研磨屑やパッド屑を捕捉することにより、それらが強い押し付け圧で被研磨面に接触することを回避させることができるので、研磨欠陥の発生を抑制できると考えられる。これに対して、熱架橋性ポリウレタン(熱硬化性ポリウレタン)を用いて架橋されたポリウレタンを含有する研磨層を作製した場合、研磨層に充分な柔軟性を付与することは困難であり、研磨欠陥の発生を抑制することは困難である。
なお、熱架橋性ポリウレタンが架橋されて分子鎖が強固に結合したポリウレタンを含有する研磨層は、熱可塑性ポリウレタンを用いて作製された研磨層と比較して、水と接触しても膨潤しにくい性質があり、ウエット状態における表面硬度を低下させることができない。このため、研磨層が架橋されたポリウレタンを含有する場合には、被研磨面と研磨面との間に入り込んだ研磨屑やパッド屑を表面硬度の高い研磨層の表面で捕捉することになり、それらが強い押し付け圧で被研磨面と接触することになるため、研磨欠陥の発生を抑制することができない。
前記組成物に含まれる熱可塑性ポリウレタンは、脂環式イソシアネートおよび芳香族イソシアネートから選択される少なくとも1種に由来する繰り返し単位を含むことが好ましい。かかる化学構造を有する熱可塑性ポリウレタンを含有する組成物から作製された研磨層は、結晶性のコントロールが容易となるため、研磨層の比重や硬度等を制御することが容易となる。
前記脂環式イソシアネートとしては、例えば、イソホロンジイソシアネート(IPDI)、ノルボルネンジイソシアネート、水添4,4’−ジフェニルメタンジイソシアネート(水添MDI)等が挙げられる。これらの脂環式イソシアネートは1種単独で用いてもよいし、2種以上を併用してもよい。
前記芳香族イソシアネートとしては、例えば、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、2,2’−ジフェニルメタンジイソシアネート、2,4’−ジフェニルメタンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、ナフタレンジイソシアネート、1,5−ナフタレンジイソシアネート、p−フェニレンジイソシアネート、m−フェニレンジイソシアネート、p−キシレンジイソシアネート等の芳香族ジイソシアネート類が挙げられる。これらの中でも、水酸基との反応制御が容易な点から、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネートが好ましい。これらの芳香族イソシアネートは1種単独で用いてもよいし、2種以上を併用してもよい。
前記組成物に含まれる熱可塑性ポリウレタンは、脂環式イソシアネートおよび芳香族イソシアネートを併用してもよいし、これら以外の他のイソシアネートを併用してもよい。他のイソシアネートとしては、例えば、エチレンジイソシアネート、2,2,4−トリメチルヘキサメチレンジイソシアネート、1,6−ヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート類が挙げられる。
なお、前記組成物に含まれる熱可塑性ポリウレタンは、脂環式イソシアネートに由来する繰り返し単位を含むことがより好ましい。脂環式イソシアネートに由来する繰り返し単位を含むことにより、前記熱可塑性ポリウレタンが適切な硬度を発現すると共に、ウエット状態における表面硬度をより適切にコントロールすることができ、且つ、柔軟性がより大きくなるため、本発明の実施に好適となる。
また、前記組成物に含まれる熱可塑性ポリウレタンは、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオールおよびポリオレフィンポリオールから選択される少なくとも1種に由来する繰り返し単位をさらに含むことが好ましい。前記例示したポリオール類に由来する繰り返し単位を含むことで、熱可塑性ポリウレタンの耐水性がさらに向上する傾向がある。
また、前記組成物に含まれる熱可塑性ポリウレタンは、鎖延長剤に由来する繰り返し単位を含んでもよい。前記鎖延長剤としては、例えば、エチレングリコール、プロピレングリコール、1,3−プロパンジオール、1,3−ブチレングリコール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、ネオペンチルグリコール、1,4−シクロヘキサンジメタノール、3−メチル−1,5−ペンタンジオール、ジエチレングリコール、トリエチレングリコール、1,4−ビス(2−ヒドロキシエトキシ)ベンゼン等の低分子量二価アルコールが挙げられる。これらの中でも、イソシアネート基との反応制御が容易な点から、エチレングリコール、プロピレングリコール、1,3−プロパンジオール、1,3−ブチレングリコール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオールが好ましく、1,4−ブタンジオールがより好ましい。
前記組成物に含まれる熱可塑性ポリウレタンは、熱可塑性ポリウレタン100質量部に対して、脂環式イソシアネートおよび芳香族イソシアネートから選択される少なくとも1種に由来する繰り返し単位を2〜60質量部含有することが好ましく、3〜55質量部含有することがより好ましい。脂環式イソシアネートおよび芳香族イソシアネートから選択される少なくとも1種に由来する繰り返し単位を前記範囲で含むことにより、熱可塑性ポリウレタンが適切な硬度を発現すると共に、ウエット状態における表面硬度を適切にコントロールすることができ、かつ柔軟性が大きくなるため、本発明の実施に好適となる。
前記組成物に含まれる熱可塑性ポリウレタンの製造方法は、特に限定されず、一般的なポリウレタンの製造方法(例えば、従来公知の一括法またはプレポリマー法等)に準じて製造することができる。
前記組成物は、水溶性粒子をさらに含んでもよい。かかる水溶性粒子は、組成物中に均一に分散された状態で存在していることが好ましい。このような組成物を用いることで、水溶性粒子が均一に分散された状態の研磨層が得られる。
前記水溶性粒子は、砥粒および薬液からなるスラリーと接触することにより、研磨層表面から水溶性粒子が遊離して、該スラリーを保持することのできる空孔(ポア)を形成する目的で用いられる。このため、気泡構造を有するポリウレタン発泡体を用いることなく、水溶性粒子を用いることで研磨層の表面に空孔が形成され、スラリーの保持がより良好となる。また、研磨層の表面に空孔が形成されることから、ウエット状態における表面硬度をコントロールすることができる。さらに、比重の大きい粒子を使用することで研磨層の比重を大きくすることが可能である。
熱可塑性ポリウレタンを含有する組成物が水溶性粒子を含有する場合、(1)水溶性粒子がフィラーのような補強剤として作用することにより、前記研磨層の弾性変形を小さくできることから被研磨面の平坦性を向上させることができ、(2)非発泡タイプの研磨層であることから機械的強度に優れ、さらに(3)発泡セル構造を均一に制御するという精緻な技術を用いる必要がないことから生産性に優れる点でより好ましい。
前記水溶性粒子としては、特に限定されないが、有機水溶性粒子および無機水溶性粒子が挙げられる。具体的には、水溶性高分子のように水に溶解する物質の他、吸水性樹脂のように水との接触により膨潤またはゲル化して研磨層表面から遊離することができる物質が挙げられる。
前記有機水溶性粒子を構成する材料としては、例えば、糖類(澱粉、デキストリンおよびシクロデキストリン等の多糖類、乳糖、マンニット等)、セルロース類(ヒドロキシプロピルセルロース、メチルセルロース等)、蛋白質、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリル酸、ポリエチレンオキサイド、スルホン化ポリイソプレン、スルホン化イソプレン共重合体等が挙げられる。
前記無機水溶性粒子を構成する材料としては、例えば、酢酸カリウム、硝酸カリウム、炭酸カリウム、炭酸水素カリウム、臭化カリウム、リン酸カリウム、硫酸カリウム、硫酸マグネシウム、硝酸カルシウム等が挙げられる。
前記水溶性粒子を構成する材料は、有機水溶性粒子または無機水溶性粒子を構成する材料を1種単独で用いてもよく、2種以上を併用してもよい。なお、研磨層の硬度その他の機械的強度を適正な値とすることができるという観点から、水溶性粒子は中実体であることが好ましい。
前記組成物における水溶性粒子の含有量は、熱可塑性ポリウレタン100質量部に対して、3〜150質量部であることが好ましい。水溶性粒子の含有量が前記範囲にあると、化学機械研磨において高い研磨速度を示し、且つ、適正な硬度その他の機械的強度を有する研磨層を製造することができる。
前記水溶性粒子の平均粒径は、好ましくは0.5〜200μmである。水溶性粒子が化学機械研磨パッドの研磨層表面から遊離することにより形成される空孔の大きさは、好ましくは0.1〜500μm、より好ましくは0.5〜200μmである。水溶性粒子の平均粒径が前記範囲にあると、高い研磨速度を示し、且つ、機械的強度に優れた研磨層を有する化学機械研磨パッドを製造することができる。
1.1.2.比重
本実施の形態に係る化学機械研磨パッドが備える研磨層の比重は、1.15以上1.30以下であり、1.18以上1.27以下であることが好ましい。研磨層の比重が前記範囲にあると、研磨層の硬度が適度となるため被研磨面の平坦性が良好になると共に、被研磨面の凹凸に対する研磨層の弾性変形(追随性)が適度となるため研磨欠陥(スクラッチ)を低減させることができる。研磨層の比重が前記範囲未満である場合、研磨層の硬度が低くなりすぎて、被研磨面の平坦性が悪化するため好ましくない。また、研磨層の比重が前記範囲を超える場合、研磨層の硬度が高くなりすぎて、研磨欠陥(スクラッチ)が増大するため好ましくない。
なお、現在知られているポリウレタンの比重と、研磨層の適切な硬度のバランスを考慮すると、研磨層の比重の上限は1.30以下となる。比重が1.30を超える研磨層を作製するためには、ウレタンの他に比重の大きな材料を研磨層に含有させる必要がある。たとえば、シリカやアルミナのような比重の大きな材料をフィラーとしてウレタンに混合することにより、比重が1.30を超える研磨層を作製することはできる。しかしながら、かかる場合には、混合したフィラーによって研磨層の硬度が大きくなり、被研磨面のスクラッチが大幅に悪化するために本願発明の研磨層のような作用効果を奏することはできない。
本発明において、研磨層の比重は、「JIS Z8807」に準拠した方法で測定することができる。具体的には、水を入れたルシャテリエ比重びんに質量既知の試料を入れ、試料による液面の上昇から試料の体積を知り、試料の質量と体積とから比重を求める。
なお、本実施の形態に係る化学機械研磨パッドが備える研磨層は、前記範囲の比重とする観点から、非発泡タイプであることが好ましい。なお、本発明において、非発泡タイプとは、実質的に気泡を含んでいない研磨層であることをいう。参考までに、現在市販されている発泡タイプの研磨層を備えるウレタンパッド、例えばROHM&HAAS社製の「IC1000」等の一般的な市販研磨パッドの比重は、0.40〜0.90程度である。
1.1.3.デュロD硬度
本実施の形態に係る化学機械研磨パッドが備える研磨層のデュロD硬度は、50D以上80D以下であり、55D以上80D以下であることが好ましく、55D以上75D以下であることがより好ましく、60D以上70D以下であることが特に好ましい。
図1は、研磨層におけるデュロD硬度の概念を説明するための模式図である。図1(A)に示すように研磨工程を模して研磨層10に対して上方から加重をかけると、図1(B)に示すように研磨層10が撓むことになる。デュロD硬度とは、このように研磨工程において加重をかけた場合の研磨層10のマクロな撓みの程度を示す指標となる。このことは、後述する測定方法からも理解することができる。したがって、研磨層のデュロD硬度が前記範囲にあると、研磨層のデュロD硬度が適度であるため被研磨面の平坦性が良好になると共に、被研磨面の凹凸に対する研磨層の弾性変形(追随性)が適度となるため研磨欠陥(スクラッチ)を低減させることができる。研磨層のデュロD硬度が前記範囲未満であると、被研磨面の平坦性が悪化するため好ましくない。また、研磨層のデュロD硬度が前記範囲を超えると、研磨欠陥(スクラッチ)が増大するため好ましくない。
本発明において、研磨層のデュロD硬度は、「JIS K6253」に準拠した方法で測定することができる。具体的には、平坦で堅固な面に試験片を置き、タイプDデュロメータの加圧板が試験片の表面に平行に維持され、且つ、押針が試験片の表面に対して直角となるようにタイプDデュロメータを保持し、衝撃を与えないように加圧板を試験片に接触させる。押針先端は、試験片の端から12mm以上離れた位置で測定する。加圧板を試験片に接触させた後、15秒後に読取りを行う。測定点数は6mm以上離れた位置で5回測定し、その中央値をデュロD硬度とする。
1.1.4.ウエット状態における表面硬度
本実施の形態に係る化学機械研磨パッドが備える研磨層のウエット状態における表面硬度は、2N/mm以上10N/mm以下であることが好ましく、3N/mm以上9N/mm以下であることがより好ましく、4N/mm以上8N/mm以下であることが特に好ましい。研磨層のウエット状態における表面硬度は、CMP実使用時における研磨層の表面硬度を表す指標となる。図2は、研磨層における表面硬度の概念を説明するための模式図である。図2(A)に示すように、微小なサイズの探針40を研磨層10の表面へ押し込む。そうすると、図2(B)に示すように、探針40直下の研磨層10は、探針40の周囲へ押し出されるように変形する。このように、表面硬度とは、研磨層の極表面の変形や撓みの程度を表す指標となる。すなわち、図1に示すようなミリメートル単位の硬度測定法である前記デュロD硬度測定では研磨層全体のマクロな硬度を表すデータが得られるのに対し、図2に示すような研磨層のウエット状態における表面硬度測定では研磨層の極表面のミクロな硬度を表すデータが得られる。CMP実使用時における研磨層の押し込み深さは、5マイクロメートルから50マイクロメートルである。したがって、このような研磨層の極表面の柔軟性を判断するためには、研磨層のウエット状態における表面硬度により判断することが好ましい。研磨層のウエット状態における表面硬度が前記範囲にあると、研磨層の極表面の柔軟性が適度となるため研磨欠陥(スクラッチ)を低減させることができる。研磨層のウエット状態における表面硬度が前記範囲未満であると、被研磨面の平坦性が悪化することがあるため好ましくない。また、研磨層のウエット状態における表面硬度が前記範囲を超えると、研磨欠陥(スクラッチ)が増大することがあるため好ましくない。なお、本発明において、研磨層のウエット状態における表面硬度は、23℃の水に4時間浸漬させた研磨層において、FISCHER社製のナノインデンター(製品名:HM2000)を使用し、300mN押し込み時のユニバーサル硬さ(HU)で示される。
1.1.5.研磨層の形状および凹部
研磨層の平面形状は、特に限定されないが、例えば円形状であることができる。研磨層の平面形状が円形状である場合、その大きさは、好ましくは直径150mm〜1200mm、より好ましくは直径500mm〜1000mmである。研磨層の厚さは、好ましくは0.5mm〜5.0mm、より好ましくは1.0mm〜3.0mm、特に好ましくは1.5mm〜3.5mmである。
研磨面には、複数の凹部を形成してもよい。前記凹部は、CMPの際に供給されるスラリーを保持し、これを研磨面に均一に分配すると共に、研磨屑、パッド屑および使用済みのスラリー等の廃棄物を一時的に滞留させ、外部へ排出するための経路となる機能を有する。
凹部の深さは、好ましくは0.1mm以上、より好ましくは0.1mm〜2.5mm、特に好ましくは0.2mm〜2.0mmとすることができる。凹部の幅は、好ましくは0.1mm以上、より好ましくは0.1mm〜5.0mm、特に好ましくは0.2mm〜3.0mmとすることができる。研磨面において、隣接する凹部の間隔は、好ましくは0.05mm以上、より好ましくは0.05mm〜100mm、特に好ましくは0.1mm〜10mmとすることができる。また、凹部の幅と隣り合う凹部の間の距離との和であるピッチは、好ましくは0.15mm以上、より好ましくは0.15mm〜105mm、特に好ましくは0.6mm〜13mmとすることができる。凹部は、前記範囲内の一定の間隔を設けて形成されたものであることができる。前記範囲の形状を有する凹部を形成することで、被研磨面のスクラッチ低減効果に優れ、寿命の長い化学機械研磨パッドを容易に製造することができる。
前記各好ましい範囲は、各々の組合せとすることができる。すなわち、例えば、深さが0.1mm以上、幅が0.1mm以上、間隔が0.05mm以上であることが好ましく、深さが0.1mm〜2.5mm、幅が0.1mm〜5.0mm、間隔が0.05mm〜100mmであることがより好ましく、深さが0.2mm〜2.0mm、幅が0.2mm〜3.0mm、間隔が0.1mm〜10mmであることが特に好ましい。
前記凹部を加工するための工具は、特開2006−167811号公報、特開2001−18164号公報、特開2008−183657号公報等に記載されている形状の多刃工具を用いることができる。使用する工具の切削刃は、ダイヤモンドあるいは、Ti、Cr、Zr、V等の周期表第4、5、6族金属から選択される少なくとも1種の金属元素と、窒素、炭素および酸素から選択される少なくとも1種の非金属元素と、で構成されるコーティング層を有してもよい。さらにコーティング層は1層設ける場合に限らず、材料を違えて複数層設けてもよい。このようなコーティング層の膜厚は、0.1〜5μmが好ましく、1.5〜4μmがより好ましい。コーティング層の成膜には、アークイオンプレーティング装置等の公知の技術を工具材質、コーティング材質等に応じて適時選択して使用することができる。
1.1.6.製造方法
本実施の形態で用いられる研磨層は、前述した熱可塑性ポリウレタンを含有する組成物を成型することにより得られる。組成物の混練は、公知の混練機等により行うことができる。混練機としては、例えば、ロール、ニーダー、バンバリーミキサー、押出機(単軸、多軸)等が挙げられる。組成物から研磨層を成型する方法としては、120℃〜230℃で可塑化した前記組成物をプレス成形、押出成形または射出成形し、可塑化・シート化する方法により成型すればよい。かかる成型条件を適宜調整することで比重や硬度をコントロールすることもできる。
このようにして成型した後、切削加工により研磨面に凹部を形成してもよい。また、凹部となるパターンが形成された金型を用いて上述した組成物を金型成型することにより、研磨層の概形と共に凹部を同時に形成することもできる。
1.2.支持層
本実施の形態に係る化学機械研磨パッドは、前述した研磨層のみで構成される場合もあるが、前記研磨層の研磨面とは反対側の面に支持層を設けてもよい。
支持層は、化学機械研磨パッドにおいて、研磨装置用定盤に研磨層を支持するために用いられる。支持層は、接着層であってもよいし、接着層を両面に有するクッション層であってもよい。
接着層は、例えば粘着シートからなることができる。粘着シートの厚さは、50μm〜250μmであることが好ましい。50μm以上の厚さを有することで、研磨層の研磨面側からの圧力を十分に緩和することができ、250μm以下の厚さを有することで、凹凸の影響を研磨性能に与えない程度に均一な厚みを有する化学機械研磨パッドが得られる。
粘着シートの材質としては、研磨層を研磨装置用定盤に固定することができれば特に限定されないが、研磨層より弾性率の低いアクリル系またはゴム系の材質であることが好ましい。
粘着シートの接着強度は、化学機械研磨パッドを研磨装置用定盤に固定することができれば特に限定されないが、「JIS Z0237」の規格で粘着シートの接着強度を測定した場合、その接着強度が好ましくは3N/25mm以上、より好ましくは4N/25mm以上、特に好ましくは10N/25mm以上である。
クッション層は、研磨層よりも硬度が低い材質からなれば、その材質は特に限定されず、多孔質体(発泡体)または非多孔質体であってもよい。クッション層としては、例えば、発泡ポリウレタン等を成形した層が挙げられる。クッション層の厚さは、好ましくは0.1mm〜5.0mm、より好ましくは0.5mm〜2.0mmである。
2.化学機械研磨方法
本実施の形態に係る化学機械研磨方法は、前述の化学機械研磨パッドを用いて化学機械研磨することを特徴とする。前述の化学機械研磨パッドは、熱可塑性ポリウレタンを含有する組成物から形成され、特定の範囲の比重および硬度を兼ね備えた研磨層を有している。そのため、本実施の形態に係る化学機械研磨方法によれば、特にCMP工程における被研磨面の平坦性の向上と研磨欠陥(スクラッチ)の低減とを両立させることができる。
本実施の形態に係る化学機械研磨方法においては、市販の化学機械研磨装置を用いることができる。市販の化学機械研磨装置としては、例えば、型式「EPO−112」、型式「EPO−222」(以上、株式会社荏原製作所製);型式「LGP−510」、型式「LGP−552」(以上、ラップマスターSFT社製);型式「Mirra」、型式「Reflexion LK」(アプライドマテリアル社製)等が挙げられる。
また、スラリーとしては、研磨対象(銅膜、絶縁膜、低誘電率絶縁膜等)に応じて適宜最適なものを選択することができる。
3.実施例
以下、本発明を実施例により詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。
3.1.化学機械研磨パッドの製造
3.1.1.実施例1
非脂環式熱可塑性ポリウレタン(BASF社製、商品名「エラストラン1174D」、硬度70D)を50質量部、脂環式熱可塑性ポリウレタン(BASF社製、商品名「エラストランNY1197A」、硬度61D)を50質量部、水溶性粒子としてβ−サイクロデキストリン(塩水港精糖株式会社製、商品名「デキシパールβ−100」、平均粒径20μm)29質量部を、200℃に調温されたルーダーにより混練して熱可塑性ポリウレタン組成物を作製した。作製した熱可塑性ポリウレタン組成物を、プレス金型内で180℃で圧縮成型し、直径845mm、厚さ3.2mmの円柱状の成型体を作製した。次に、作製した成型体の表面をサンドペーパーで研磨し、厚みを調整し、さらに切削加工機(加藤機械株式会社製)により幅0.5mm、深さ1.0mm、ピッチ1.5mmの同心円状の凹部を形成し外周部を切り離すことで、直径600mm、厚さ2.5mmの研磨層を得た。このようにして作製した研磨層のうち凹部を形成していない面へ両面テープ#422JA(3M社製)をラミネートし、化学機械研磨パッドを作製した。
3.1.2.実施例2〜6、比較例1〜3
組成物の各成分の種類および含有量を表1〜表2に記載のものに変更したこと以外は、実施例1と同様にして実施例2〜6、比較例1〜3の化学機械研磨パッドを作製した。
3.1.3.実施例7、8
空気雰囲気下で、撹拌機を備えた2Lの4つ口セパラブルフラスコに、ポリオキシエチレンビスフェノールAエーテル(日油株式会社製、商品名「ユニオールDA400」)を38質量部およびポリテトラメチレングリコール(保土谷化学工業株式会社製、商品名「PTG−1000SN」、Mn=1012)を31質量部投入し、40℃に調温して撹拌した。次いで、前記フラスコに、80℃の油浴で溶解させた4,4’−ジフェニルメタンジイソシアネート(日本ポリウレタン工業株式会社製、商品名「MILLIONATE MT」)を31質量部加え、15分撹拌・混合した。次いで、得られた混合物を表面加工されたSUS製のバットに拡げ、110℃で1時間静置して反応させ、さらに80℃で16時間アニールし、熱可塑性のポリウレタンAを得た。熱可塑性ポリウレタンとしてポリウレタンAを用い、組成物の他の成分および含有量を表1に記載したものに変更したこと以外は、実施例1と同様にして化学機械研磨パッドを作製した。
3.1.4.比較例4
市販の化学機械研磨パッド(ROHM&HAAS社製、商品名「IC1000」、熱架橋ポリウレタン樹脂により研磨層が作製されている)を使用した。後述する方法により研磨層の物性を評価したところ、比重は0.81であり、デュロ硬度は63D、表面硬度は14.5N/mmであった。
3.1.5.比較例5
1,2−ポリブタジエン(JSR株式会社製、商品名「RB830」、硬度47D)100質量部に、水溶性粒子としてβ−サイクロデキストリン(塩水港精糖株式会社製、商品名「デキシパールβ−100」、平均粒径20μm)38質量部を混合した組成物を得た。得られた組成物100質量部に対して、さらに有機過酸化物(日油株式会社製、商品名「パークミルD−40」)を1質量部加え混練した組成物を得た後、実施例1と同様にして、水溶性粒子含有熱架橋ポリブタジエン樹脂からなる化学機械研磨パッドを作製した。
なお、表1〜表2における各成分の略称は、以下の通りである。
・「PU1−1」:非脂環式熱可塑性ポリウレタン(BASF社製、商品名「エラストラン1174D」、硬度70D)
・「PU1−2」:非脂環式熱可塑性ポリウレタン(BASF社製、商品名「エラストラン1164D」、硬度64D)
・「PU1−3」:非脂環式熱可塑性ポリウレタン(BASF社製、商品名「エラストラン1180A」、硬度41D)
・「PU2−1」:脂環式熱可塑性ポリウレタン(BASF社製、商品名「エラストランNY1197A」、硬度61D)
・「PU2−2」:脂環式熱可塑性ポリウレタン(BASF社製、商品名「エラストランNY1164D」、硬度64D)
・「β−CD」:β−サイクロデキストリン(平均粒径20μm、塩水港精糖株式会社製、商品名「デキシパールβ−100」)
3.2.研磨層の物性測定
3.2.1.デュロD硬度
前記「3.1.化学機械研磨パッドの製造」で作製した研磨層およびIC1000の研磨層について、デュロD硬度を測定した。研磨層のデュロD硬度は、「JIS K6253」に準拠して測定した。その結果を表1〜表2に併せて示す。
3.2.2.比重
前記「3.1.化学機械研磨パッドの製造」で作製した研磨層およびIC1000の研磨層について、比重を測定した。研磨層の比重は、「JIS Z8807」に準拠して測定した。その結果を表1〜表2に併せて示す。
3.2.3.ウエット状態における表面硬度
前記「3.1.化学機械研磨パッドの製造」で作製した研磨層およびIC1000の研磨層について、研磨層のウエット状態の表面硬度を測定した。研磨層のウエット状態における表面硬度は、23℃の水に4時間浸漬させた研磨層について、ナノインデンター(FISCHER社製、型式「HM2000」)を使用し、300mN押し込み時のユニバーサル硬さ(HU)を表面硬度として測定した。その結果を表1〜表2に併せて示す。
3.3.化学機械研磨の評価
前記「3.1.化学機械研磨用パッドの製造」で製造した化学機械研磨パッドを化学機械研磨装置(荏原製作所社製、形式「EPO−112」)に装着し、ドレッサー(アライド社製、商品名「#325−63R」)を用いてテーブル回転数20rpm、ドレッシング回転数19rpm、ドレッシング荷重5.1kgfの条件でドレッシングを30分行った。その後、ドレッシングした化学機械研磨パッドを用いて以下の条件にて化学機械研磨を行い、研磨特性を評価した。その結果を表1〜表2に併せて示す。
・ヘッド回転数:61rpm
・ヘッド荷重:3psi(20.6kPa)
・テーブル回転数:60rpm
・スラリー供給速度:300cm/分
・スラリー:CMS8401/CMS8452(JSR株式会社製)
3.3.1.平坦性の評価
被研磨物として、シリコン基板上にPETEOS膜を5,000オングストローム順次積層させた後、「SEMATECH 854」マスクパターン加工し、その上に250オングストロームのタンタルナイトライド膜、1,000オングストロームの銅シード膜および10,000オングストロームの銅膜を順次積層させたテスト用の基板を用いた。
前記「3.3.化学機械研磨の評価」に記載の条件で、前記被研磨物を1分間化学機械研磨処理し、処理前後の膜厚を電気伝導式膜厚測定器(ケーエルエー・テンコール社製、形式「オムニマップRS75」)を用いて測定し、処理前後の膜厚および研磨処理時間から研磨速度を算出した。その上でCuクリアになる終点時間を、研磨開始からテーブルトルク電流の変化によって検出した終点に至るまでの時間で算出し、前記パターン付きウエハに対して終点検出時間の1.2倍の時間を研磨した後に、幅100μmの銅配線部と幅100μmの絶縁部とが交互に連続したパターンが長さ方向に対して垂直方向に3.0mm連続した部分について、精密段差計(ケーエルエー・テンコール社製、形式「HRP−240」)を使用して、配線幅100μm部分の銅配線の窪み量(以下、「ディッシング量」ともいう)を測定することによりディッシングを評価し、平坦性の指標とした。その結果を表1〜表2に示す。なお、ディッシング量は、好ましくは300Å未満、より好ましくは250Å未満、特に好ましくは200Å未満である。
3.3.2.スクラッチの評価
研磨処理後の前記パターン付きウエハの被研磨面において、ウエハ欠陥検査装置(ケーエルエー・テンコール社製、型式「KLA2351」)を使用して、ウエハ全面におけるスクラッチの個数を測定した。なお、スクラッチは、好ましくは30個未満、より好ましくは20個未満、特に好ましくは15個未満である。
Figure 2012045700
Figure 2012045700
3.4.化学機械研磨パッドの評価結果
表1によれば、実施例1〜8の化学機械研磨パッドは、平坦性、スクラッチの2項目の研磨特性においていずれも好ましい結果が得られた。また、実施例1〜8の化学機械研磨パッドのうち、硬度が55D〜80Dであり、かつ、研磨層のウエット状態における表面硬度が2〜10N/mmの範囲にある実施例1、実施例4、実施例5、実施例7、実施例8の化学機械研磨パッドでは、平坦性が250Å未満、スクラッチが20個未満であり、上記2項目の研磨特性のバランスがより優れている結果が得られた。
これに対して表2によれば、比較例1〜5の化学機械研磨パッドは、上述した2項目の各研磨特性のうち、1項目以上が不良となる結果が得られた。比較例1では、脂環式熱可塑性ポリウレタンを含有するが、比重が要件を満たさないことにより平坦性が不良となった。また、比較例2では、非脂環式熱可塑性ポリウレタンのみで構成されており、硬度および研磨層のウエット状態における表面硬度が要件を満たさないことによりスクラッチ性能が不良であった。また、比較例3では、比重および硬度が要件を満たさないことにより平坦性が著しく劣る結果となった。比較例5のように水溶性粒子含有のポリブタジエンで構成される場合も、比重の要件を満たさず、平坦性およびスクラッチの2項目の研磨特性においていずれも劣る結果となった。
また、比較例4のように発泡構造を有する熱架橋ポリウレタンで構成される場合、研磨層のウエット状態における表面硬度および比重が要件を満たさないことで、平坦性およびスクラッチの2項目の研磨特性においていずれも劣る結果となった。
以上の実施例および比較例の結果から明らかであるように、本発明にかかる化学機械研磨パッドは、熱可塑性ポリウレタンを含有する研磨層の比重と硬度のバランスを規定することで、平坦性およびスクラッチ性能に優れた化学機械研磨パッドを製造することができた。
本発明は、上述した実施形態に限定されるものではなく、種々の変形が可能である。例えば、本発明は、実施形態で説明した構成と実質的に同一の構成(例えば、機能、方法および結果が同一の構成、あるいは目的および効果が同一の構成)を含む。また、本発明は、実施形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施形態で説明した構成と同一の作用効果を奏する構成または同一の目的を達成することができる構成を含む。また、本発明は、実施形態で説明した構成に公知技術を付加した構成を含む。
10…研磨層、40…探針

Claims (5)

  1. 熱可塑性ポリウレタンを含有する組成物から形成された研磨層を有し、
    前記研磨層の比重が1.15以上1.30以下であり、且つ、
    前記研磨層のデュロD硬度が50D以上80D以下であることを特徴とする、化学機械研磨パッド。
  2. 前記研磨層を23℃の水に4時間浸漬したときの表面硬度が2N/mm以上10N/mm以下である、請求項1に記載の化学機械研磨パッド。
  3. 前記熱可塑性ポリウレタンは、脂環式イソシアネートおよび芳香族イソシアネートから選択される少なくとも1種に由来する繰り返し単位を含む、請求項1または請求項2に記載の化学機械研磨パッド。
  4. 前記組成物は、水溶性粒子をさらに含む、請求項1ないし請求項3のいずれか一項に記載の化学機械研磨パッド。
  5. 請求項1ないし請求項4のいずれか一項に記載の化学機械研磨パッドを用いて化学機械研磨する、化学機械研磨方法。
JP2010272451A 2009-12-22 2010-12-07 化学機械研磨パッドおよびそれを用いた化学機械研磨方法 Expired - Fee Related JP5630609B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010272451A JP5630609B2 (ja) 2009-12-22 2010-12-07 化学機械研磨パッドおよびそれを用いた化学機械研磨方法

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2009290213 2009-12-22
JP2009290213 2009-12-22
JP2010169318 2010-07-28
JP2010169318 2010-07-28
JP2010272451A JP5630609B2 (ja) 2009-12-22 2010-12-07 化学機械研磨パッドおよびそれを用いた化学機械研磨方法

Publications (2)

Publication Number Publication Date
JP2012045700A true JP2012045700A (ja) 2012-03-08
JP5630609B2 JP5630609B2 (ja) 2014-11-26

Family

ID=45901180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010272451A Expired - Fee Related JP5630609B2 (ja) 2009-12-22 2010-12-07 化学機械研磨パッドおよびそれを用いた化学機械研磨方法

Country Status (1)

Country Link
JP (1) JP5630609B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000263423A (ja) * 1999-03-16 2000-09-26 Toray Ind Inc 研磨パッドおよび研磨装置
JP2005340795A (ja) * 2004-04-28 2005-12-08 Jsr Corp 化学機械研磨パッド、その製造方法及び半導体ウエハの化学機械研磨方法
JP2008144287A (ja) * 2006-12-07 2008-06-26 Toray Ind Inc 研磨布及びその製造方法
JP2009078332A (ja) * 2007-09-27 2009-04-16 Kuraray Co Ltd 繊維複合研磨パッド

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000263423A (ja) * 1999-03-16 2000-09-26 Toray Ind Inc 研磨パッドおよび研磨装置
JP2005340795A (ja) * 2004-04-28 2005-12-08 Jsr Corp 化学機械研磨パッド、その製造方法及び半導体ウエハの化学機械研磨方法
JP2008144287A (ja) * 2006-12-07 2008-06-26 Toray Ind Inc 研磨布及びその製造方法
JP2009078332A (ja) * 2007-09-27 2009-04-16 Kuraray Co Ltd 繊維複合研磨パッド

Also Published As

Publication number Publication date
JP5630609B2 (ja) 2014-11-26

Similar Documents

Publication Publication Date Title
WO2011077999A1 (ja) 化学機械研磨パッドおよびそれを用いた化学機械研磨方法
JP5347524B2 (ja) 化学機械研磨パッドの研磨層形成用組成物、化学機械研磨パッドおよび化学機械研磨方法
JPWO2012077592A1 (ja) 化学機械研磨パッドおよびそれを用いた化学機械研磨方法
JP5708913B2 (ja) 化学機械研磨パッドおよびそれを用いた化学機械研磨方法
TWI554363B (zh) 硏磨層用成形體及硏磨墊
JP2007521980A (ja) 研磨パッドのベースパッド及びそれを含む多層パッド
JP2008168416A (ja) 研磨パッド
JP4964420B2 (ja) 研磨パッド
JP2011212808A (ja) 研磨パッドおよび研磨パッドの製造方法
JP4744087B2 (ja) 研磨パッド及び半導体デバイスの製造方法
JP4237800B2 (ja) 研磨パッド
WO2022210037A1 (ja) 研磨パッド及び研磨パッドの製造方法
JP5630609B2 (ja) 化学機械研磨パッドおよびそれを用いた化学機械研磨方法
JP2005251851A (ja) 研磨パッドおよび研磨方法
JP5630610B2 (ja) 化学機械研磨パッドおよびそれを用いた化学機械研磨方法
JP4621014B2 (ja) 研磨パッドおよび半導体デバイスの製造方法
JP5549111B2 (ja) 化学機械研磨パッドの研磨層形成用組成物、化学機械研磨パッドおよび化学機械研磨方法
JP4757562B2 (ja) Cu膜研磨用研磨パッド
JP2012056021A (ja) 化学機械研磨パッドおよびそれを用いた化学機械研磨方法
JP2006186239A (ja) 研磨パッドおよび半導体デバイスの製造方法
JP2012182314A (ja) 組成物および化学機械研磨パッド、ならびに化学機械研磨方法
JP5147094B2 (ja) 研磨シート用高分子材料、研磨シート及び研磨パッド
WO2022210676A1 (ja) 研磨パッド及び研磨パッドの製造方法
JP3497156B1 (ja) 研磨シート用発泡体、その製造方法、研磨シート、及び研磨パッド
JP2007059745A (ja) 研磨パッド

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140923

R150 Certificate of patent or registration of utility model

Ref document number: 5630609

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees