JP2012033678A - 光電変換装置 - Google Patents
光電変換装置 Download PDFInfo
- Publication number
- JP2012033678A JP2012033678A JP2010171492A JP2010171492A JP2012033678A JP 2012033678 A JP2012033678 A JP 2012033678A JP 2010171492 A JP2010171492 A JP 2010171492A JP 2010171492 A JP2010171492 A JP 2010171492A JP 2012033678 A JP2012033678 A JP 2012033678A
- Authority
- JP
- Japan
- Prior art keywords
- photoelectric conversion
- electrode layer
- lower electrode
- layer
- separation groove
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/541—CuInSe2 material PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Abstract
【課題】従来と同様の層構成を有しつつ光電変換効率が高められた光電変換装置を提供する。
【解決手段】光電変換装置は、第1下部電極層および第2下部電極層が一方向に離隔されて平面配置されている複数の下部電極層と、第1下部電極層上から第2下部電極層上にかけて設けられた、第1導電型の第1半導体層と第2導電型の第2半導体層とが順に積層されている第1積層部と、第2下部電極層上に設けられた、第1導電型の第3半導体層と第2導電型の第4半導体層とが順に積層されている第2積層部と、第2半導体層と第2下部電極層とを電気的に接続している接続導体とを備えている。そして、第1積層部の一方向に突出している凸部の一部が、第2積層部の一方向に窪んでいる凹部に入り込んでおり、接続導体が、凸部が位置する第1領域、および凸部の近傍に位置する第2領域の少なくとも一方の領域において、第1積層部を貫通している。
【選択図】図1
【解決手段】光電変換装置は、第1下部電極層および第2下部電極層が一方向に離隔されて平面配置されている複数の下部電極層と、第1下部電極層上から第2下部電極層上にかけて設けられた、第1導電型の第1半導体層と第2導電型の第2半導体層とが順に積層されている第1積層部と、第2下部電極層上に設けられた、第1導電型の第3半導体層と第2導電型の第4半導体層とが順に積層されている第2積層部と、第2半導体層と第2下部電極層とを電気的に接続している接続導体とを備えている。そして、第1積層部の一方向に突出している凸部の一部が、第2積層部の一方向に窪んでいる凹部に入り込んでおり、接続導体が、凸部が位置する第1領域、および凸部の近傍に位置する第2領域の少なくとも一方の領域において、第1積層部を貫通している。
【選択図】図1
Description
本発明は、複数の光電変換セルが接続された光電変換装置に関する。
太陽光発電等に使用される光電変換装置として、光吸収係数が高いCIGS等といったカルコパイライト系のI-III−VI族化合物半導体にて光吸収層が形成されたものがある(例えば、特許文献1,2参照)。CIGSは、光吸収係数が高く、光電変換装置の薄膜化と大面積化と低コスト化とに適しており、CIGSが適用された次世代太陽電池の研究開発が進められている。
このようなカルコパイライト系の光電変換装置は、ガラス等の基板の上に、金属電極等の下部電極と、光吸収層およびバッファ層等を含む半導体層である光電変換層と、透明電極および金属電極等の上部電極とが、この順に積層された光電変換セルが、平面的に複数並設された構成を有する。複数の光電変換セルは、隣り合う一方の光電変換セルの上部電極と他方の光電変換セルの下部電極とが接続導体で接続されることで、電気的に直列に接続されている。また、Si系等他の材料が光吸収層(光電変換層)に用いられた光電変換装置にも、同様の構成を有するものがある。
光電変換装置の光電変換効率は、各光電変換セルにおいて実際に光電変換に寄与する領域(発電寄与領域とも言う)の受光面積に左右される。全受光面積に対する発電寄与領域の受光面積の比率が大きい光電変換装置ほど、光電変換効率は高くなる。
上記構成を有する光電変換装置では、接続導体の形成箇所、および個々の光電変換セルの下部電極同士を分離、絶縁するための分離溝の形成箇所等が、光電変換には寄与しない領域(非発電寄与領域とも言う)となる。このため、各光電変換セルにおける非発電寄与領域の比率ができるだけ削減されれば、光電変換効率が向上する。
本発明は、上記課題に鑑みてなされたものであり、従来と同様の層構成を有しつつ光電変換効率が高められた光電変換装置を提供することを目的とする。
上記課題を解決するために、第1の態様に係る光電変換装置は、第1下部電極層と第2下部電極層とが一方向に離隔されて平面配置されている複数の下部電極層と、前記第1下部電極層上から前記第2下部電極層上にかけて設けられた、第1導電型の第1半導体層と第2導電型の第2半導体層とが順に積層されている第1積層部と、を備えている。また、該光電変換装置は、前記第2下部電極層上に設けられた、前記第1導電型の第3半導体層と前記第2導電型の第4半導体層とが順に積層されている第2積層部と、前記第2半導体層と前記第2下部電極層とを電気的に接続している接続導体とを備えている。そして、該光電変換装置では、前記第1積層部は、前記一方向に突出している凸部を有し、前記第2積層部は、前記一方向に窪んでいて前記凸部の一部が入り込んでいる凹部を有しており、前記接続導体は、前記凸部が位置する第1領域および前記凸部の近傍に位置する第2領域の少なくとも一方の領域において、前記第1積層部を貫通して前記第2半導体層と前記第2下部電極層とを電気的に接続している。
本発明によれば、光電変換装置において光電変換に寄与する領域の面積比率が高められる。その結果、光電変換装置の発電効率がより向上する。
以下、本発明の一実施形態を図面に基づいて説明する。図面においては同様な構成および機能を有する部分については同じ符号が付されており、下記説明では重複説明が省略される。また、図面は模式的に示されたものであり、各図における各種構造のサイズおよび位置関係等は正確に図示されたものではない。
<(1)光電変換装置の構成>
図1は、光電変換装置100の構成を示す上面図である。図2は、図1の切断面線II−IIにおける光電変換装置100の断面図、つまり図1で一点鎖線にて示された位置における光電変換装置100のXZ断面図である。図3は、図1の切断面線III−IIIにおける光電変換装置100の断面図、つまり図1で二点鎖線にて示された位置における光電変換装置100のXZ断面図である。なお、図1から図15には、光電変換セル10の配列方向(図1の図面視左右方向)をX軸方向とする右手系のXYZ座標系が付されている。
図1は、光電変換装置100の構成を示す上面図である。図2は、図1の切断面線II−IIにおける光電変換装置100の断面図、つまり図1で一点鎖線にて示された位置における光電変換装置100のXZ断面図である。図3は、図1の切断面線III−IIIにおける光電変換装置100の断面図、つまり図1で二点鎖線にて示された位置における光電変換装置100のXZ断面図である。なお、図1から図15には、光電変換セル10の配列方向(図1の図面視左右方向)をX軸方向とする右手系のXYZ座標系が付されている。
光電変換装置100は、基板1の上に複数の光電変換セル10が並設された構成を有している。図1では、図示の都合上、3つの光電変換セル10の一部のみが示されているが、光電変換装置100には、図面の左右方向に、多数(例えば、8個)の光電変換セル10が平面的に(二次元的に)配列されている。また、各光電変換セル10は、上面が概ね長方形の板状のものであり、光電変換装置100は、上面が概ね正方形の板状のものである。そして、光電変換装置100のX軸方向の両端部には、発電による電圧および電流を得るための電極が設けられている。
なお、光電変換装置100には、図面の左右方向だけでなく、更にこれに垂直な図面の上下方向も含めて、多数の光電変換セル10が平面的に(二次元的に)配列されることで、例えば、多数の光電変換セル10がマトリックス状に配置されていても良い。また、各光電変換セル10の上面は概ね長方形である必要はなく、その他の形状を有していても良い。更に、光電変換装置100の上面は概ね正方形である必要はなく、その他の形状を有していても良い。但し、光電変換装置100は、多数の光電変換セル10が高密度に平面配置されてなることが好ましい。
各光電変換セル10は、下部電極層2、光電変換層3、上部電極層4、およびグリッド電極5を主に備えている。光電変換装置100では、上部電極層4およびグリッド電極5が設けられた側の主面が受光面となっている。また、光電変換装置100には、分離溝部P1と、接続孔部P2と、分離溝部P3とが設けられている。ここでは、接続孔部P2が離散的に設けられ、接続孔部P2が設けられていない部分では、分離溝部P3の配設経路が−X方向に膨らむように曲がっている。これにより、光電変換セル10において光電変換に寄与しない領域(非発電寄与領域とも言う)が削減され、光電変換に寄与する領域(発電寄与領域とも言う)が拡大されている。
基板1は、複数の光電変換セル10を支持するものであり、例えば、ガラス、セラミックス、樹脂、または金属等の材料で構成されている。ここでは、基板1が、1〜3mm程度の厚さを有する青板ガラス(ソーダライムガラス)で構成されているものとする。
下部電極層2は、基板1の+Z側の主面(一主面とも言う)の上に設けられた導電層であり、例えば、モリブデン(Mo)、アルミニウム(Al)、チタン(Ti)、タンタル(Ta)、または金(Au)等の金属、あるいはこれらの金属の積層構造体からなる。また、下部電極層2は、0.2〜1μm程度の厚さを有し、例えば、スパッタリング法または蒸着法等の公知の薄膜形成方法によって形成される。
光電変換層3は、光吸収層31とバッファ層32とが積層された構成を有している。
光吸収層31は、下部電極層2の+Z側の主面(一主面とも言う)の上に設けられた、第1の導電型(ここではp型の導電型)を有する半導体層であり、1〜3μm程度の厚さを有している。光吸収層31は、薄層化によって少ない材料で安価に変換効率が高められる観点から、カルコパイライト系(CIS系とも言う)の化合物半導体であるI-III-VI族化合物からなる半導体(I-III-VI族化合物半導体とも言う)によって主として構成されていることが好ましい。なお、ここでは、光吸収層31が、p型の導電型を有するCIS系のI-III-VI族化合物半導体によって主として構成されているものとする。
ここで、I-III-VI族化合物は、I-B族元素(11族元素とも言う)とIII-B族元素(13族元素とも言う)とVI-B族元素(16族元素とも言う)との化合物である。そして、I-III-VI族化合物としては、例えば、CuInSe2(二セレン化銅インジウム、CISとも言う)、Cu(In,Ga)Se2(二セレン化銅インジウム・ガリウム、CIGSとも言う)、Cu(In,Ga)(Se,S)2(二セレン・イオウ化銅インジウム・ガリウム、CIGSSとも言う)等が挙げられる。なお、光吸収層31は、薄膜の二セレン・イオウ化銅インジウム・ガリウム層を表面層として有する二セレン化銅インジウム・ガリウム等の多元化合物半導体の薄膜によって構成されていても良い。なお、ここでは、光吸収層31が、CIGSによって構成されているものとする。
また、光吸収層31は、II-VI族化合物からなる半導体によって構成されていても良い。II-VI族化合物とは、II-B族(12族元素ともいう)とVI-B族元素との化合物である。但し、光電変換効率が高められる観点から、光吸収層31は、カルコパイライト系化合物半導体であるI-III-VI化合物半導体によって構成されていることが好ましい。
光吸収層31は、スパッタリング法、蒸着法等のいわゆる真空プロセスによって形成され得る。また、光吸収層31は、光吸収層31の構成元素の錯体溶液が下部電極層2の上に塗布され、その後、乾燥および熱処理が行われる、いわゆる塗布法あるいは印刷法と称されるプロセスによっても形成され得る。光電変換装置100の製造コストが抑制される観点から、塗布法あるいは印刷法と称されるプロセスが用いられることが好ましい。
バッファ層32は、光吸収層31の+Z側の主面(一主面とも言う)の上に設けられた半導体層である。この半導体層は、光吸収層31の第1の導電型とは異なる第2の導電型(ここではn型の導電型)を有している。また、バッファ層32は、I-III-VI族化合物半導体によって主に構成されている光吸収層31とヘテロ接合する態様で設けられている。光電変換セル10では、ヘテロ接合を構成する光吸収層31とバッファ層32とにおいて光電変換が生じるため、光吸収層31とバッファ層32とが積層されて光電変換層3として機能している。
なお、導電型が異なる半導体とは、伝導担体(キャリア)が異なる半導体のことである。また、光吸収層31の導電型がn型であり、バッファ層32の導電型がp型である態様も有り得る。
バッファ層32は、例えば、硫化カドミウム(CdS)、硫化インジウム(In2S3)、硫化亜鉛(ZnS)、酸化亜鉛(ZnO)、セレン化インジウム(In2Se3)、In(OH,S)、(Zn,In)(Se,OH)、および(Zn,Mg)O等の化合物半導体によって構成されている。そして、リーク電流が低減される観点から、バッファ層32は、1Ω・cm以上の抵抗率を有することが好ましい。なお、バッファ層32は、例えばケミカルバスデポジション(CBD)法等で形成され得る。
また、バッファ層32は、光吸収層31の一主面の法線方向に厚さを有する。この厚さは、10〜200nmに設定され、バッファ層32上に上部電極層4がスパッタリング等で製膜される際のダメージが抑制される観点から言えば、100〜200nmであることが好ましい。
上部電極層4は、バッファ層32の+Z側の主面(一主面とも言う)の上に設けられた、n型の導電型を有する透明の導電膜(透明導電膜とも言う)であり、光電変換層3において生じた電荷を取り出す電極(取出電極とも言う)である。上部電極層4は、バッファ層32よりも低い抵抗率を有する物質によって構成されている。上部電極層4には、いわゆる窓層と呼ばれるものも含まれ、この窓層に加えて更に透明導電膜が設けられる場合には、これらが一体の上部電極層4とみなされても良い。
上部電極層4は、禁制帯幅が広く且つ透明で低抵抗の物質、例えば、酸化亜鉛(ZnO)、酸化亜鉛の化合物(アルミニウム(Al)、ボロン(B)、ガリウム(Ga)、インジウム(In)、およびフッ素(F)のうちの何れか一つの元素等が含まれたもの)、錫(Sn)が含まれた酸化インジウム(ITO)、および酸化錫(SnO2)のうちの少なくとも一つからなる金属酸化物半導体等によって構成されている。
上部電極層4は、スパッタリング法、蒸着法、または化学的気相成長(CVD)法等によって、0.05〜3.0μmの厚さを有するように形成される。ここで、光電変換層3から電荷が良好に取り出される観点から、上部電極層4は、1Ω・cm未満の抵抗率と、50Ω/□以下のシート抵抗とを有することが好ましい。
バッファ層32および上部電極層4は、光吸収層31が吸収する光の波長領域に対して光を透過させ易い性質(光透過性とも言う)を有する材料によって構成されていることが好ましい。これにより、バッファ層32と上部電極層4とが設けられることで生じる、光吸収層31における光の吸収効率の低下が抑制される。
また、光透過性が高められると同時に、光電変換によって生じた電流が良好に伝送される観点から、上部電極層4は、0.05〜0.5μmの厚さを有することが好ましい。更に、上部電極層4とバッファ層32との界面で光反射のロスが低減される観点から、上部電極層4とバッファ層32との間で絶対屈折率が略同一であることが好ましい。
接続導体としてのグリッド電極5は、上部電極層4の+Z側の主面(一主面とも言う)の上に設けられてX軸方向に延在するように配設されている集電部5aと、集電部5aから接続孔部P2内に垂下して隣の光電変換セル10の下部電極層2まで至るように設けられている接続部5bとを備えている、導電性の電極である。グリッド電極5は、例えば、Ag等の金属からなる。なお、グリッド電極5の製造が容易になる観点から、X軸方向に順に平面的に配置されている複数の光電変換セル10の間で、複数のグリッド電極5が略一直線上に設けられていることが好ましい。
集電部5aは、光電変換層3で発生し上部電極層4によって取り出された電荷を集める役割を担う。集電部5aが設けられることで、上部電極層4の薄層化が可能となる。ここでは、上部電極層4は、光吸収層31よりも受光面側に設けられるので、出来るだけ薄く形成されて光透過性が高められることが望ましいが、薄くなれば薄くなるほど電気抵抗が高くなるため、電荷の取り出し効率が低下する。そこで、集電部5aが設けられることで、電荷の取り出し効率の確保と、上部電極層4の光透過性の向上とが両立し得る。
上部電極層4によって集められた電荷は、集電部5aによって更に集められ、接続孔部P2に設けられた接続部5bを通じて隣の光電変換セル10に伝達される。これにより、光電変換装置100においては、隣り合う光電変換セル10の一方の上部電極層4と、他方の下部電極層2とが、グリッド電極5によって電気的に直列に接続されている。
良好な導電性が確保されつつ光吸収層31への光の入射量の低下が最小限に留められる観点から、集電部5aは、50〜400μmの幅を有することが好ましい。また、複数のグリッド電極5が設けられる位置のY軸方向における間隔は、例えば、2.5mm程度であることが好ましい。
なお、集電部5aの表面は、光吸収層31が吸収する波長領域の光を反射する材質で形成されることが好ましい。このような表面は、例えば、透光性の樹脂に光反射率の高い銀等の金属粒子が添加されたものが乾燥および固化されて集電部5aが形成されること、または、アルミニウム等の光反射率の高い金属が集電部5aの表面に蒸着されること等によって形成される。このような表面によれば、光電変換装置100がモジュール化された際、集電部5aにて反射した光が、モジュール内で再び反射して光吸収層31に再度入射し得るため、光電変換装置100における光電変換効率が向上する。
<(2)分離溝部および接続孔部の配置と発電寄与領域の拡大>
図4は、光電変換装置100の上面のうち、1つの接続孔部P2の周辺に着目した図である。図4では、分離溝部P1の形成位置が破線にて投影されて示されている。
図4は、光電変換装置100の上面のうち、1つの接続孔部P2の周辺に着目した図である。図4では、分離溝部P1の形成位置が破線にて投影されて示されている。
分離溝部P1は、下部電極層2に設けられており、Y軸方向に直線状に延在している。この分離溝部P1により、隣り合う一方の光電変換セル10と他方の光電変換セル10との間で、下部電極層2がX軸方向に分離されている。このように、分離溝部P1が1以上設けられることで、下部電極層2が一方向としての+X方向に分離されて複数の下部電極層とされる。これにより、第1下部電極層としての下部電極層2と、第2下部電極層としての下部電極層2とが一方向としての+X方向に分離されて平面的に配置された状態となっている。
また、分離溝部P1には、直上に設けられた光吸収層31の延在部分が埋入している。これにより、隣り合う一方の光電変換セル10の下部電極層2と、他方の光電変換セル10の下部電極層2との間が、電気的に分離されている。分離溝部P1の幅は、例えば、グリッド電極5と同程度の50〜400μm程度であれば良い。
分離溝部P3は、光電変換セル10の上面部分から下部電極層2の上面に至るまで設けられており、光電変換セル10の両端部間に延在されている。このため、分離溝部P3は、隣り合う一方の光電変換セル10と他方の光電変換セル10との間で、光電変換層3および上部電極層4をX軸方向に分離している。なお、光電変換装置100がモジュール化された際、分離溝部P3には樹脂等の絶縁材料が充填されているため、分離溝部P3は、電気的な接続を絶縁する領域(絶縁領域とも言う)となる。
詳細には、隣り合う一方の光電変換セル10と他方の光電変換セル10とにおいて、一方の光電変換セル10を構成している第1半導体層としての光吸収層31と第2半導体層としてのバッファ層32と上部電極層4とがこの順に積層されて成る第1積層部としての積層部43が形成されている。また、他方の光電変換セル10を構成している第3半導体層としての光吸収層31と第4半導体層としてのバッファ層32と上部電極層4とがこの順に積層されて成る第2積層部としての積層部43が形成されている。そして、一方の光電変換セル10の積層部43と他方の光電変換セル10の積層部43とが、絶縁領域としての分離溝部P3を挟むように平面的に配置されている。
また、分離溝部P3は、隣り合う一方の光電変換セル10と他方の光電変換セル10との間で、集電部5aをX軸方向に分離している。
また、図1および図4で示されるように、分離溝部P3は、途中でX軸方向に屈曲する部分を有しているが、概ねY軸方向に延在する態様にて設けられている。これにより、隣り合う光電変換セル10がX軸方向に分離されている。分離溝部P3の幅は、例えば、40〜1000μm程度である。
分離溝部P3は、図1および図4で示されるように、Y軸方向に対して平行に延在する2つの部分(平行部とも言う)P3a,P3cと、Y軸方向にある程度の角度を成して延在する2つの部分(斜行部)P3b,P3dとを有する。そして、分離溝部P3は、平行部P3a、斜行部P3b、平行部P3c、および斜行部P3dがこの順番に繰り返して連結してなる。
具体的には、図1および図4で示されるように、平行部P3cが、Y軸方向に平行な略一直線上に設けられている。また、複数の平行部P3aが、複数の平行部P3cを仮想的に結ぶ直線(仮想直線とも言う)よりも、−X方向に略所定距離(例えば、0.2mm)シフトされた略一直線上の位置に設けられている。そして、斜行部P3bが延びる方向は、Xの値が負、Yの値が正となるベクトルで表され、斜行部P3dが延びる方向は、Xの値が負、Yの値が負となるベクトルで表される。すなわち、分離溝部P3では、複数の平行部P3cが配設される位置に相当する仮想直線が基準とされて、斜行部P3b,P3dおよび平行部P3aによって、−X方向に出っ張るように曲がった部分(屈曲部とも言う)が形成されている。
図1から図4で示されるように、平行部P3cは、分離溝部P1から+X方向に距離L1離隔した位置に延在しており、平行部P3aは、分離溝部P1から+X方向に距離L1よりも短い距離L2離隔した位置に延在している。このように、屈曲部の存在により、分離溝部P1と分離溝部P3とのX軸方向における離隔距離は、最長で距離(最長距離とも言う)L1となり、最短で距離(最短距離とも言う)L2となっている。
また、分離溝部P3は、分離溝部P1よりも+X方向にずれた位置に延在している。このため、隣り合う一方および他方の光電変換セル10において、一方の光電変換セル10の積層部43が、一方の光電変換セル10の下部電極層2上から他方の光電変換セル10の下部電極層2上にかけて設けられている。
そして、分離溝部P3が屈曲部を有することで、一方の光電変換セル10の積層部43において平行部P3cの−X側の外縁よりも−X方向に窪んでいる部分(凹部とも言う)が形成されている。また、他方の光電変換セル10の積層部43において平行部P3cの+X側の外縁よりも+X方向に突出している部分(凸部とも言う)が形成されている。そして、一方の光電変換セル10の凹部と、他方の光電変換セル10の凸部とが、X軸方向(例えば、+X方向)に対向しつつ平面的に並ぶように配置されており、凸部の一部が凹部に入り込んでいる。
逆の観点から言えば、一方の光電変換セル10の積層部43において平行部P3aの−X側の外縁よりも+X方向に突出している部分(凸部とも言う)43pが形成されている。また、他方の光電変換セル10の積層部43において平行部P3aの+X側の外縁よりも+X方向に窪んでいる部分(凹部とも言う)43dが形成されている。そして、一方の光電変換セル10の凸部43pと、他方の光電変換セル10の凹部43dとが、X軸方向(例えば、+X方向)に対向しつつ、平面的に並ぶように配置されており、凸部43pの一部が凹部43dに入り込んでいる。
ここで、凸部43pおよび凹部43dにおいて、光吸収層31、バッファ層32、および上部電極層4の剥がれが抑制される観点から、分離溝部P3の屈曲部が、曲線状に滑らかに曲がる態様を有していることが好ましい。すなわち、分離溝部P3の外周が曲線状の絶縁領域を形成していることが好ましい。
接続孔部P2は、凸部43pが位置する領域(第1領域とも言う)において積層部43をZ軸方向に貫通している貫通孔である。接続孔部P2には、導電材料が充填されて接続部5bが形成されている。そして、集電部5aと接続部5bとからなるグリッド電極5が、隣り合う一方および他方の光電変換セル10の間で、一方の光電変換セル10の凸部43pを貫通している。これにより、一方の光電変換セル10のバッファ層32と、他方の光電変換セル10の下部電極層2とが電気的に接続されている。また、集電部5aが、上部電極層4上においてX軸方向に延在して、接続孔部P2の開口まで至り、接続部5bに連結している。
接続孔部P2の開口部におけるY軸方向の長さは、集電部5aのY軸方向の幅よりも長いことが好ましい。これにより、集電部5aが形成される際の位置ズレがある程度許容される。但し、接続孔部P2の開口部の大型化は非発電寄与領域10NEの拡大を招くため、接続孔部P2の開口部におけるY軸方向の長さが長く成り過ぎないことが好ましい。
そこで、図4で示されるように、接続孔部P2は、XY断面がX軸方向の長さよりもY軸方向の長さの方が長い形状を有しており、その開口部も同様に、X軸方向の長さ(例えば、0.15mm程度)よりもY軸方向の長さ(例えば、0.5mm程度)の方が長い形状を有している。このような接続孔部P2の開口およびXY断面の形状としては、例えば、楕円形状、角が丸められた正方形状等といったものが挙げられる。なお、接続孔部P2の内部領域および接続部5bは、XY断面のサイズが略一定の柱状の形状を有している。
また、凸部43pにおける光吸収層31、バッファ層32、および上部電極層4の剥がれが抑制される観点から、接続孔部P2は、分離溝部P3からある程度の距離(例えば、0.15mm程度)離隔されることが望ましい。更に、接続孔部P2は、分離溝部P1からある程度の距離(例えば、0.15mm程度)離隔されることが望ましい。これにより、隣り合う一方および他方の光電変換セル10において、他方の光電変換セル10に接続されるべき接続部5bが、製造時における位置ズレによって分離溝部P1上等に形成される不具合が抑制され得る。そして、電気的な接続の不良および短絡等といった不具合の発生も抑制され得る。
分離溝部P1、接続孔部P2、および分離溝部P3が以上のような形状および配置とされたのは、光電変換装置100が受光面側から平面視された場合に、実際に光電変換に寄与する発電寄与領域10EGの面積がより広く確保されるためである。逆に言えば、光電変換装置100が受光面側から平面視された場合に、実際に光電変換に寄与しない非発電寄与領域10NEの面積がより縮小されるためである。
図2および図3には、X軸方向について、発電寄与領域10EGに相当する区間と、非発電寄与領域10NEに相当する区間とが示されている。また、図4では、発電寄与領域10EGに多数の細かいドットからなるハッチングが付されている。特に図2および図3で示されるように、X軸方向について、発電寄与領域10EGに相当する区間は、積層部43が設けられている区間であって、分離溝部P3から分離溝部P1に至るまでの区間である。また、X軸方向について、非発電寄与領域10NEに相当する区間は、分離溝部P1が設けられている区間と、接続部5bを包含する分離溝部P1から分離溝部P3に至るまでの区間と、分離溝部P3が設けられている区間とからなる。そして、複数の発電寄与領域10EGが、X方向に配列され、その各合間に非発電寄与領域10NEが配置されている。換言すれば、発電寄与領域10EGと非発電寄与領域10NEとがX方向に交互に配列されている。
別の観点から言えば、光電変換装置100が受光面側(+Z側)から平面透視された場合、積層部43が設けられている領域には、接続部5bを包含して分離溝部P1と分離溝部P3とに挟まれた領域(接続用領域とも言う)と、分離溝部P1が設けられている領域と、残余の領域とがある。そして、この残余の領域が、発電寄与領域10EGに相当する。一方で、接続用領域と、分離溝部P1および分離溝部P3が設けられている領域とからなる領域が、非発電寄与領域10NEに相当する。
図5は、対比のために示される光電変換装置の上面図であり、図6は、図5の切断面線IV−IVにおける光電変換装置の断面図、つまり図5で一点鎖線にて示された位置における光電変換装置のXZ断面図である。
図5および図6で示されている光電変換装置は、上述した光電変換装置100と比較して、分離溝部P3が分離溝部P13に置換され、接続孔部P2が分離溝部P12に置換され、グリッド電極5がグリッド電極15に置換されることで、複数の光電変換セル10が複数の光電変換セル110に置換されたものである。具体的には、分離溝部P3が屈曲部を有していない分離溝部P13に置換されることで、分離溝部P1と分離溝部P3とのX軸方向における離隔距離が距離L1で略一定とされている。また、接続孔部P2が分離溝部P1と分離溝部P3との間においてY軸方向に延在している分離溝部P12に置換されている。更に、集電部5aおよび接続部5bからなるグリッド電極5が、集電部15aおよび接続部15bからなるグリッド電極15に置換されている。
なお、対比のために示されている光電変換装置の各部については、接続孔部P2、分離溝部P3、およびグリッド電極5が、分離溝部P12、分離溝部P13、およびグリッド電極15にそれぞれ置換されている部分を除いて、光電変換装置100と全く同じであるものとする。また、図5においても、発電寄与領域110EGに多数の細かいドットからなるハッチングが付されている。
図4と図5が対比されると、分離溝部P3が、−X方向に凹んだ部分だけ、対比のために示される光電変換装置の発光寄与領域110EGの面積よりも光電変換装置100の発電寄与領域10EGの面積の方が明らかに大きくなっている。図4では、太い破線で囲まれた領域が、発電寄与領域10EGと、図5で対比のために示された発光寄与領域110EGとの差分(すなわち増大した領域)として示されている。ここでは、分離溝部P3が屈曲することで、分離溝部P1と分離溝部P3との間の領域が狭くなり、非発電寄与領域10NEが削減され、光電変換装置100における発電寄与領域10EGの面積比率が高まっている。これにより、光電変換装置100の発電効率がより向上する。
光電変換装置100の非発電寄与領域10NEは、接続孔部P2が小さくなり、分離溝部P3の平行部P3aが長くなれば長くなるほど削減される。但し、例えば、1つの光電変換セル10のX軸方向およびY軸方向のサイズがそれぞれL1、L2とされるとき、L1、L2が大きくなるにつれて集められる電荷量が増大し、接続孔部P2に設けられた接続部5bを流れる電流が大きくなる。このため、接続部5bを流れる電流の電流密度が過大にならない程度のサイズに接続孔部P2が形成されることが望ましい。
以上のように、本実施形態に係る光電変換装置100では、隣り合う光電変換セル10を電気的に接続する部分(ここでは、接続部5b)が避けられつつ、分離溝部P3の屈曲によって分離溝部P3が分離溝部P1に近づけられている。これにより、光電変換装置100において発電寄与領域10EGの面積比率が高められる。その結果、光電変換装置100の発電効率がより向上する。
<(3)光電変換装置の具体例と比較例>
図5および図6において対比のために示された光電変換装置の構成において、分離溝部P1,P3の幅がともに約0.06mmとされ、分離溝部P1と分離溝部P13とのX軸方向における離隔距離が約0.44mmで一定とされたものが比較例とされた。この比較例では、各集電部15aの幅が0.09mmとされ、複数の集電部15aが設けられる位置のY軸方向における間隔が約2.5mmで一定とされた。そして、この比較例では、分離溝部P13が7本設けられ、8つの光電変換セル110によって一辺が約100mmの略正方形の上面を有する光電変換装置が形成された。
図5および図6において対比のために示された光電変換装置の構成において、分離溝部P1,P3の幅がともに約0.06mmとされ、分離溝部P1と分離溝部P13とのX軸方向における離隔距離が約0.44mmで一定とされたものが比較例とされた。この比較例では、各集電部15aの幅が0.09mmとされ、複数の集電部15aが設けられる位置のY軸方向における間隔が約2.5mmで一定とされた。そして、この比較例では、分離溝部P13が7本設けられ、8つの光電変換セル110によって一辺が約100mmの略正方形の上面を有する光電変換装置が形成された。
一方、図1から図4で示される光電変換装置100の構成において、分離溝部P1,P3の幅がともに約0.06mmとされ、分離溝部P1と分離溝部P3とのX軸方向における最長距離L1が0.44mmとされ、分離溝部P1と分離溝部P3とのX軸方向における最短距離L2が0.24mmとされたものが本実施形態に係る具体例とされた。この具体例では、平行部P3cが約1.0mmとされ、斜行部P3b,P3dが、平行部P3cに対して概ね45°を成しており、非発電寄与領域10NEの面積が、比較例における非発電寄与領域110NEの面積よりも約53%削減された。
なお、この具体例では、各集電部5aの幅が0.09mmとされ、複数の集電部5aが設けられる位置のY軸方向における間隔が約2.5mmで一定とされた。更に、この具体例では、接続孔部P2の開口部が、短径が約0.15mmであり且つ長径が約0.6mmである楕円形状のものとされ、接続孔部P2と分離溝部P3との離隔距離が0.195mmとされた。そして、この具体例では、分離溝部P3が7本設けられ、8つの光電変換セル10によって一辺が約100mmの略正方形の上面を有する光電変換装置100が形成された。
このような具体例では、上記比較例と比べて、発電寄与領域の面積が約1.65%増加し、その結果として、発電によって得られる電流(いわゆる短絡電流)が1%程度上昇した。
<(4)光電変換装置の製造プロセス>
次に、上記構成を有する光電変換装置100の製造プロセスの一例について説明する。以下では、I-III-VI族化合物半導体からなる光吸収層31が塗布法あるいは印刷法が用いられて形成され、更にバッファ層32が形成される場合を例として説明する。図7から図11は、光電変換装置100の製造途中の様子を模式的に示す斜視図であり、図12は、光電変換装置100の構成を模式的に示す斜視図である。なお、図7から図12の何れにおいても、光電変換装置100の一部に相当する部分が模式的に示されている。
次に、上記構成を有する光電変換装置100の製造プロセスの一例について説明する。以下では、I-III-VI族化合物半導体からなる光吸収層31が塗布法あるいは印刷法が用いられて形成され、更にバッファ層32が形成される場合を例として説明する。図7から図11は、光電変換装置100の製造途中の様子を模式的に示す斜視図であり、図12は、光電変換装置100の構成を模式的に示す斜視図である。なお、図7から図12の何れにおいても、光電変換装置100の一部に相当する部分が模式的に示されている。
まず、図7で示されるように、洗浄された基板1の略全面に、スパッタリング法等が用いられて、Mo等からなる下部電極層2が成膜される。そして、下部電極層2の上面のうち、図7において破線で示される形成対象位置P1αからその直下の基板1の上面にかけて、直線状の分離溝部P1が形成される。分離溝部P1は、YAGレーザーまたはその他のレーザー光が走査されつつ形成対象位置P1αに照射されることで溝加工が行われる、スクライブ加工によって、形成されることが好適である。
図8は、分離溝部P1が形成された後の状態を示す図である。分離溝部P1が形成された後、下部電極層2の上に、光吸収層31とバッファ層32と上部電極層4とが順次に形成される。
光吸収層31は、カルコゲン元素含有有機化合物と塩基性有機溶剤とを含む溶媒(混合溶媒とも言う)に、I-B族金属とIII-B族金属とが直接溶解させられて作製された溶液が、下部電極層2の表面に塗布された後、乾燥および熱処理が順に施されて形成される。ここで作製された溶液では、例えば、I-B族金属とIII-B族金属との合計濃度が10wt%以上となる。そして、溶液の塗布には、スピンコータ、スクリーン印刷、ディッピング、スプレー、ダイコータ等の種々の手法が適用可能である。
カルコゲン元素含有有機化合物とは、カルコゲン元素を含む有機化合物である。カルコゲン元素とは、VI-B族元素のうちのS、Se、Teをいう。カルコゲン元素含有有機化合物としては、例えば、チオール、スルフィド、ジスルフィド、セレノール、セレニド、ジセレニド等が挙げられる。
例えば、光吸収層31の好適な形成方法としては、主に下記工程(i)〜(iii)が順に行われるものが挙げられる。(i)ベンゼンセレノールが、ピリジンに対し100mol%となるように溶解させられて混合溶媒が作製される。(ii)この混合溶媒に、地金の銅、地金のインジウム、地金のガリウム、および地金のセレンが直接溶解させられて溶液が作製される。(iii)この溶液が、下部電極層2の表面にブレード法にて塗布され、乾燥されて皮膜が形成された後、この皮膜に対して水素ガスの雰囲気下で熱処理が施される。
なお、金属が混合溶媒に直接溶解させられるというのは、単体金属または合金の地金が、直接、混合溶媒に混入され、溶解させられることをいう。乾燥は、還元雰囲気下で行われることが望ましい。乾燥温度は、例えば、50〜300℃である。熱処理は、酸化が防止されて良好なI-III-VI化合物半導体が得られるように、還元雰囲気で行われることが好ましい。還元雰囲気は、窒素雰囲気、フォーミングガス雰囲気、および水素雰囲気のうち何れかであることが望ましい。熱処理温度は、例えば、400〜600℃であれば良い。
バッファ層32は、溶液成長法(CBD法)によって形成される。例えば、酢酸カドミウムとチオ尿素とがアンモニアに溶解させられ、これに光吸収層31の形成までが行われた基板1が浸漬され、光吸収層にCdSからなるバッファ層32が形成されるのが好適な一例である。
上部電極層4は、スパッタリング法、蒸着法、または化学的気相成長(CVD)法等で形成される。例えば、バッファ層32の上に、Alドープ酸化亜鉛膜からなる透明の上部電極層4が形成される。
図9は、光吸収層31とバッファ層32と上部電極層4とが形成された後の状態を示す図である。光吸収層31とバッファ層32と上部電極層4とが形成された後、上部電極層4の上面のうち、図9において破線で示される形成対象位置P2αから下部電極層2の上面に至る領域に、接続孔部P2が形成される。接続孔部P2は、スクライブ針が用いられたメカニカルスクライビングによって形成されるのが好適である。なお、接続孔部P2は、分離溝部P1と同様に、レーザー光によっても形成可能である。
図10は、接続孔部P2が形成された後の状態を示す図である。接続孔部P2が形成された後、形成対象位置5αにグリッド電極5が形成される。グリッド電極5は、例えば、Ag等の金属粉が樹脂バインダー等に分散させられた金属ペーストがパターン状に印刷され、これが乾燥によって固化されることで形成され得る。このとき、集電部5aが形成されるとともに、接続孔部P2に金属ペーストが充填されて乾燥によって固化されることで接続部5bが形成される。なお、ここで言う固化には、導電ペーストに用いられるバインダーが熱可塑性樹脂である場合における熔融後の固化と、バインダーが熱硬化性樹脂や光硬化性樹脂等の硬化性樹脂である場合における硬化による固化とが含まれる。
図11は、グリッド電極5が形成された後の状態を示す図である。グリッド電極5が形成された後、上部電極層4およびグリッド電極5の上面のうち、図11において破線で示される形成対象位置P3αから下部電極層2の上面に至る領域に、分離溝部P3が形成される。分離溝部P3の幅は、例えば、40〜1000μm程度であることが好適である。また、分離溝部P3は、接続孔部P2と同様に、スクライブ針が用いられたメカニカルスクライビングによって好適に形成される。
分離溝部P3の形成によって、図12で示された光電変換装置100が得られる。
<(5)変形例>
なお、本発明は上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更、改良等が可能である。
なお、本発明は上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更、改良等が可能である。
◎例えば、上記一実施形態では、図1から図4で示されたように、接続孔部P2の全てが凸部43p内を貫通していたが、これに限られない。例えば、接続孔部P2の形成位置が、上方から平面透視された場合における分離溝部P1と分離溝部P3との間の領域において、接続孔部P2の一部が凸部43pから外れた領域を貫通していても良いし、接続孔部P2の全部が凸部43pから外れた領域を貫通していても良い。このような構成は、例えば、接続孔部P2の形成位置が−X方向にずらされること、および分離溝部P1と分離溝部P3との最短距離L2が微妙に拡げられることの何れか一方、または双方が採用されることで、実現され得る。
図13は、上記一実施形態に係る光電変換装置100がベースとされて、接続孔部P2および接続部5bの全てが凸部43pから外れた領域を貫通するように変形された一例(第1変形例とも言う)に係る光電変換装置を示す図である。図13では、図4で示される部分に対応する部分が示されている。
図13で示されるように、第1変形例に係る光電変換装置は、上記一実施形態に係る光電変換装置100と比較して、分離溝部P3が、蛇行の度合いが微妙に縮小された分離溝部P3Aに置換され、接続孔部P2および接続部5bが、−X方向にずらされた接続孔部P2Aおよび接続部5bAに置換されることで、複数の光電変換セル10が、複数の光電変換セル10Aに置換された構成を有している。
詳細には、分離溝部P3Aは、分離溝部P3と比較して、蛇行の度合いが微妙に縮小されたため、分離溝部P1と分離溝部P3Aとの最短距離L2Aが、上記実施形態に係る分離溝部P1と分離溝部P3との最短距離L2よりも微妙に拡がっている。これにより、上記一実施形態に係る積層部43は、凸部43pおよび凹部43dが、凹凸の度合いが微妙に縮小された凸部43pAおよび凹部43dAを有する積層部43Aに置換されたものとなっている。但し、第1変形例に係る発電寄与領域10EGAは、上記一実施形態に係る発電寄与領域10EGよりも微妙に狭くなっているものの、図5で示された発電寄与領域110EGよりも広くなっている。なお、グリッド電極5は、接続部5bが接続部5bAに置換されたことで、グリッド電極5Aに置換されたものとなっている。また、非発電寄与領域10NEが、非発電寄与領域10NEAに置換されている。
上記構成により、隣接する一方および他方の光電変換セル10Aにおいて、接続導体であるグリッド電極5Aが、一方の光電変換セル10Aの積層部43Aのうち、凸部43pAの近傍に位置する領域(第2領域とも言う)43SAを貫通して、一方の光電変換セル10Aのバッファ層32と他方の光電変換セル10Aの下部電極層2とを電気的に接続している。図13では、第2領域43SAが、太い破線で囲まれた領域として示されている。図13で示されるように、第2領域43SAは、凸部43pAの−X側に位置する領域であり、その凸部43pAが設けられている分離溝部P1と分離溝部P3Aとの間の領域に位置している。このような構成であっても、上記一実施形態と同様な効果が得られる。
図14は、上記一実施形態に係る光電変換装置100がベースとされて、接続孔部P2および接続部5bの一部が凸部43pから外れた領域を貫通するように変形された一例(第2変形例とも言う)に係る光電変換装置を示す図である。図14では、図4で示される部分に対応する部分が示されている。
図14で示されるように、第2変形例に係る光電変換装置は、上記一実施形態に係る光電変換装置100と比較して、接続孔部P2および接続部5bが、−X方向にずらされた接続孔部P2Bおよび接続部5bBに置換されることで、グリッド電極5がグリッド電極5Bに置換されるとともに、複数の光電変換セル10が、複数の光電変換セル10Bに置換された構成を有している。
上記構成により、隣接する一方および他方の光電変換セル10Bにおいて、接続導体であるグリッド電極5Bが、一方の光電変換セル10Bの積層部43のうち、凸部43pが位置する第1領域および凸部43pの近傍に位置する第2領域43Sの双方を貫通して、一方の光電変換セル10Bのバッファ層32と他方の光電変換セル10Bの下部電極層2とを電気的に接続している。図14では、第2領域43Sが、太い破線で囲まれた領域として示されている。図14で示されるように、第2領域43Sは、凸部43pの−X側に位置する領域であり、その凸部43pが設けられている分離溝部P1と分離溝部P3との間の領域に位置している。このような構成であっても、上記一実施形態と同様な効果が得られる。
したがって、隣り合う一方および他方の光電変換セル10,10A,10Bの間で、接続導体としてのグリッド電極5,5A,5Bが、一方の光電変換セル10,10A,10Bの第1領域および第2領域43S,43SAのうちの少なくとも一方の領域を貫通して、一方の光電変換セル10,10A,10Bのバッファ層32と、他方の光電変換セル10の下部電極層2とを電気的に接続していれば良い。
但し、分離溝部P3,P3Aがより分離溝部P1に近づけられて非発電寄与領域の削減が図られ得る観点から言えば、接続導体によって、一方の光電変換セル10の第1領域が貫通されて、一方の光電変換セル10のバッファ層32と、他方の光電変換セル10の下部電極層2とが接続されている方が好ましい。
◎また、上記一実施形態では、各分離溝部P3が、3箇所以上において屈曲されることで、分離溝部P1に近づけられたが、これに限られない。例えば、少なくとも一本の分離溝部P3が、1箇所以上において屈曲されることで、分離溝部P1に近づけられても、非発電寄与領域の削減と発電寄与領域の増大とが図られ得る。
例えば、図15で示されるように、各分離溝部P3Cの両端近傍において、その分離溝部P3Cが分離溝部P1に近づくようにY軸方向に対して傾きを有して斜行する部分を有していても良い。このような構成では、複数の光電変換セル10Cが平面配列された光電変換装置100Cとなる。この光電変換装置100Cでは、上記一実施形態に係る光電変換装置100と比較して、凸部43pおよび凹部43dが、形態の異なる凸部43pCおよび凹部43dCに置換されて、上記一実施形態に係る積層部43が、積層部43Cに置換されたものとなっている。そして、各分離溝部P3Cの両端近傍が斜行することで生じた領域10PLの分だけ発電寄与領域の面積が増加する。図15では、領域10PLに多数のドットからなるハッチングが付されている。
◎また、上記一実施形態では、分離溝部P3が屈曲されることで、分離溝部P3と分離溝部P1とが近づけられたが、これに限られず、分離溝部P1および分離溝部P3のうちの少なくとも一方が屈曲されることで、分離溝部P1と分離溝部P3とが近づけられれば良い。換言すれば、光電変換装置が受光面側から平面透視された場合に、分離溝部P1および分離溝部P3のうちの少なくとも一方が屈曲されることで、分離溝部P1と分離溝部P3とが近づけられれば良い。そして、光電変換装置が受光面側から平面透視された場合に、分離溝部P1と分離溝部P3との間の領域であって、分離溝部P1と分離溝部P3とのX軸方向における離隔距離が相対的に短くなっている領域において、接続部が設けられれば良い。
このような構成であっても、上記一実施形態と同様に、光電変換装置において発電寄与領域の面積比率が高められ、光電変換装置の発電効率がより向上する。
◎また、上記一実施形態では、上部電極層4が形成された後に接続孔部P2が形成されたため、接続孔部P2内のほぼ全域にわたって、グリッド電極5の一部である接続部5bが形成されたが、これに限られない。例えば、上部電極層4が形成される前に接続孔部P2が形成され、その後、上部電極層4およびグリッド電極5が順次に形成されることで、接続孔部P2内に、上部電極層4の一部とグリッド電極5の一部とが積層されてなる接続部が形成されても良い。
但し、上部電極層4の材料よりもグリッド電極5の材料の方が抵抗率が低い場合、接続孔部P2内には、上部電極層4の一部としての薄膜は形成されず、グリッド電極5の一部である接続部5bが形成される方が好ましい。これにより、接続孔部P2の径が縮小され得る。そして、その結果、非発電寄与領域が縮小され得る。
また、上部電極層4が形成された後に接続孔部P2が形成されれば、メカニカルスクライビングによって接続孔部P2が形成される際に発生する削りカス等で、バッファ層32の表面が汚染されない。このため、バッファ層32の表面の劣化が抑制され、光電変換装置100における光電変換効率がより高められる。
◎また、上記一実施形態では、積層部43は、光吸収層31、バッファ層32、および上部電極層4が積層されることで形成されたが、これに限られない。例えば、上部電極層4が除かれて、光吸収層31とバッファ層32とが積層されることで積層部43が形成される態様も考えられる。但し、集電効率の観点から言えば、上部電極層4が設けられる方が好ましい。
◎また、上記一実施形態では、接続導体としてのグリッド電極5が集電部5aと接続部5bとによって構成されていたが、これに限られない。例えば、上部電極層4における導電性が向上される前提で、集電部5aが省略されても良い。
◎また、上記一実施形態では、主として、光電変換を担う層が、カルコパイライト系のI-III-VI族化合物にて構成された場合について説明しているが、非晶質のシリコン等が用いられて構成されても良い。
◎なお、上記一実施形態および各種変形例をそれぞれ構成する全部または一部を、適宜、矛盾しない範囲で組み合わせ可能であることは、言うまでもない。
1 基板
2 下部電極層
3 光電変換層
4 上部電極層
5,5A,5B,15 グリッド電極
5a,15a 集電部
5b,5bA,5bB,15b 接続部
10,10A,10B,10C,110 光電変換セル
10EG,10EGA,110EG 発電寄与領域
10NE,10NEA,110NE 非発電寄与領域
31 光吸収層
32 バッファ層
43,43A,43C 積層部
43d,43dA,43dC 凹部
43p,43pA,43pC 凸部
100,100C 光電変換装置
2 下部電極層
3 光電変換層
4 上部電極層
5,5A,5B,15 グリッド電極
5a,15a 集電部
5b,5bA,5bB,15b 接続部
10,10A,10B,10C,110 光電変換セル
10EG,10EGA,110EG 発電寄与領域
10NE,10NEA,110NE 非発電寄与領域
31 光吸収層
32 バッファ層
43,43A,43C 積層部
43d,43dA,43dC 凹部
43p,43pA,43pC 凸部
100,100C 光電変換装置
Claims (5)
- 第1下部電極層と第2下部電極層とが一方向に離隔されて平面配置されている複数の下部電極層と、
前記第1下部電極層上から前記第2下部電極層上にかけて設けられた、第1導電型の第1半導体層と第2導電型の第2半導体層とが順に積層されている第1積層部と、
前記第2下部電極層上に設けられた、前記第1導電型の第3半導体層と前記第2導電型の第4半導体層とが順に積層されている第2積層部と、
前記第2半導体層と前記第2下部電極層とを電気的に接続している接続導体とを備え、
前記第1積層部は、前記一方向に突出している凸部を有し、
前記第2積層部は、前記一方向に窪んでいて前記凸部の一部が入り込んでいる凹部を有しており、
前記接続導体は、前記凸部が位置する第1領域および前記凸部の近傍に位置する第2領域の少なくとも一方の領域において、前記第1積層部を貫通して前記第2半導体層と前記第2下部電極層とを電気的に接続している光電変換装置。 - 前記接続導体は、前記第1領域において、前記第1積層部を貫通して前記第2半導体層と前記第2下部電極層とを電気的に接続している請求項1に記載の光電変換装置。
- 前記第1積層部は、前記第2半導体層上に設けられている第1上部電極層を有し、
前記接続導体は、前記第1上部電極層上に設けられている集電部と、該集電部から前記第2下部電極層に至るように設けられている接続部とを有しており、
前記集電部と前記接続部とが、前記第1上部電極層よりも抵抗率が低い材料で構成されている請求項1または請求項2に記載の光電変換装置。 - 前記第1積層部は、前記第2半導体層上に設けられている第1上部電極層を有し、
前記接続導体は、前記第1上部電極層上において前記一方向に延在するように設けられている集電部と、前記第1積層部を貫通する貫通孔を介して前記集電部から前記第2下部電極に至るように設けられて、前記第2半導体層と前記第2下部電極とを電気的に接続している接続部とを有しており、
前記貫通孔は、前記一方向の長さよりも前記一方向と直交する他方向の長さの方が長い開口部を有している請求項1に記載の光電変換装置。 - 前記第1積層部と前記第2積層部とが曲線状の絶縁領域を挟んで前記一方向に対向するように平面配置されている請求項1から請求項4の何れか1つの請求項に記載の光電変換装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010171492A JP2012033678A (ja) | 2010-07-30 | 2010-07-30 | 光電変換装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010171492A JP2012033678A (ja) | 2010-07-30 | 2010-07-30 | 光電変換装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012033678A true JP2012033678A (ja) | 2012-02-16 |
Family
ID=45846752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010171492A Withdrawn JP2012033678A (ja) | 2010-07-30 | 2010-07-30 | 光電変換装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012033678A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022085070A (ja) * | 2020-11-27 | 2022-06-08 | 株式会社リコー | 光電変換モジュール、電子機器、及び電源モジュール |
-
2010
- 2010-07-30 JP JP2010171492A patent/JP2012033678A/ja not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022085070A (ja) * | 2020-11-27 | 2022-06-08 | 株式会社リコー | 光電変換モジュール、電子機器、及び電源モジュール |
US11832461B2 (en) | 2020-11-27 | 2023-11-28 | Ricoh Company, Ltd. | Photoelectric conversion module, electronic device, and power supply module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2590224B1 (en) | Photoelectric conversion device | |
JP2013510426A (ja) | 太陽電池及びその製造方法 | |
EP2426731A2 (en) | Solar power generation apparatus and manufacturing method thereof | |
KR101081143B1 (ko) | 태양전지 및 이의 제조방법 | |
JP5624153B2 (ja) | 太陽電池及びその製造方法 | |
KR101592582B1 (ko) | 태양전지 및 이의 제조방법 | |
KR101550927B1 (ko) | 태양전지 및 이의 제조방법 | |
JP5623311B2 (ja) | 光電変換装置 | |
JP5837196B2 (ja) | 光電変換装置の製造方法 | |
JP2012033678A (ja) | 光電変換装置 | |
KR101063721B1 (ko) | 태양전지 및 이의 제조방법 | |
KR101231284B1 (ko) | 태양전지 및 이의 제조방법 | |
WO2013099947A1 (ja) | 光電変換装置 | |
JP5220206B2 (ja) | 光電変換装置 | |
JP2013098190A (ja) | 光電変換装置 | |
KR101081175B1 (ko) | 태양전지 및 이의 제조방법 | |
JP2012169569A (ja) | 光電変換装置の製造方法 | |
KR101020941B1 (ko) | 태양전지 및 이의 제조방법 | |
JP2013077692A (ja) | 光電変換装置 | |
JP5988373B2 (ja) | 光電変換装置および光電変換装置の製造方法 | |
JP2013051257A (ja) | 光電変換装置 | |
JP2012114180A (ja) | 光電変換装置 | |
KR101072067B1 (ko) | 팁, 태양전지 및 이를 이용한 태양전지 제조방법 | |
JP2014127508A (ja) | 光電変換装置および光電変換装置の製造方法 | |
JP2012079769A (ja) | 光電変換装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130716 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20131024 |