JP2012025220A - ハイブリッド車両の制御装置およびそれを備えるハイブリッド車両 - Google Patents

ハイブリッド車両の制御装置およびそれを備えるハイブリッド車両 Download PDF

Info

Publication number
JP2012025220A
JP2012025220A JP2010163795A JP2010163795A JP2012025220A JP 2012025220 A JP2012025220 A JP 2012025220A JP 2010163795 A JP2010163795 A JP 2010163795A JP 2010163795 A JP2010163795 A JP 2010163795A JP 2012025220 A JP2012025220 A JP 2012025220A
Authority
JP
Japan
Prior art keywords
mode
generation amount
storage device
power storage
hybrid vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010163795A
Other languages
English (en)
Other versions
JP4962604B2 (ja
Inventor
Wanleng Ang
遠齢 洪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010163795A priority Critical patent/JP4962604B2/ja
Priority to PCT/IB2011/001672 priority patent/WO2012010950A2/en
Priority to DE112011102395.2T priority patent/DE112011102395B4/de
Priority to US13/810,952 priority patent/US8897942B2/en
Priority to CN201180035408.7A priority patent/CN103153686B/zh
Publication of JP2012025220A publication Critical patent/JP2012025220A/ja
Application granted granted Critical
Publication of JP4962604B2 publication Critical patent/JP4962604B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/12Controlling the power contribution of each of the prime movers to meet required power demand using control strategies taking into account route information
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/20Control strategies involving selection of hybrid configuration, e.g. selection between series or parallel configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/20Road profile, i.e. the change in elevation or curvature of a plurality of continuous road segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/24Energy storage means
    • B60W2710/242Energy storage means for electrical energy
    • B60W2710/244Charge state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/84Data processing systems or methods, management, administration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

【課題】昇圧装置における損失を考慮してCO2発生量や燃料消費量の低減を実現するハイブリッド車両の制御装置およびそれを備えるハイブリッド車両を提供する。
【解決手段】ハイブリッド車両100は、昇圧装置17を備える。昇圧装置17は、駆動装置18,20と蓄電装置16との間に設けられ、駆動装置18,20の入力電圧を蓄電装置16の電圧以上に昇圧する。HV−ECU36は、蓄電装置16の電圧を高めることによって所定の走行区間におけるCO2発生量を低減可能か否かを判定する。そして、CO2発生量を低減可能であると判定されると、HV−ECU36は、蓄電装置16のSOCを走行区間の開始時に高めるようにSOCを制御する。
【選択図】図1

Description

この発明は、内燃機関および走行用電動機を含むハイブリッド車両の制御装置およびそれを備えるハイブリッド車両に関し、特に、走行用電動機を駆動する駆動装置の入力電圧を蓄電装置の電圧以上に昇圧する昇圧装置をさらに含むハイブリッド車両の制御装置およびそれを備えるハイブリッド車両に関する。
特開2005−180255号公報(特許文献1)は、エンジンの駆動力をアシストする走行モータとしての機能とエンジンにより駆動される発電機としての機能とが選択的に行なわれるモータジェネレータを備えるハイブリッド車両の制御装置を開示する。この制御装置においては、走行道路が自動車専用道路または高速道路であることが検出された場合に、自動車専用道路または高速道路が検出されない場合に比べて、モータジェネレータに対する電力供給源となる蓄電装置の目標蓄電量が大きい値に補正される。これにより、自動車専用道路や高速道路の走行時に蓄電装置からの供給電力不足が防止される(特許文献1参照)。
特開2005−180255号公報 特開2008−87719号公報
ハイブリッド車両において、走行用電動機を駆動する駆動装置の入力電圧を蓄電装置の電圧以上に昇圧する昇圧装置が設けられる場合、昇圧装置における損失も考慮して二酸化炭素(以下「CO2」と称する。)発生量や燃料消費量の低減を検討する必要がある。上記公報では、この点についての検討はなされていない。
この発明は、かかる課題を解決するためになされたものであり、その目的は、昇圧装置における損失を考慮してCO2発生量や燃料消費量の低減を実現するハイブリッド車両の制御装置およびそれを備えるハイブリッド車両を提供することである。
この発明によれば、ハイブリッド車両の制御装置は、判定部と、充電状態制御部とを備える。ハイブリッド車両は、内燃機関および走行用電動機と、走行用電動機を駆動する駆動装置と、再充電可能な蓄電装置と、昇圧装置とを含む。昇圧装置は、駆動装置と蓄電装置との間に設けられ、駆動装置の入力電圧を蓄電装置の電圧以上に昇圧する。そして、判定部は、蓄電装置の電圧を高めることによって所定の走行区間におけるCO2発生量を低減可能か否かを判定する。充電状態制御部は、判定部の判定結果に基づいて蓄電装置の充電状態(以下「SOC(State Of Charge)」と称する。)を制御する。
好ましくは、充電状態制御部は、CO2発生量を低減可能であると判定部により判定されたとき、SOCを走行区間の開始時に高めるようにSOCを制御する。
さらに好ましくは、判定部は、第1および第2の演算部と、判断部とを含む。第1の演算部は、SOCを高めることなく走行区間を走行した場合のCO2発生量を示す第1の発生量を推定する。第2の演算部は、走行区間の開始時にSOCを高めて走行区間を走行した場合のCO2発生量を示す第2の発生量を推定する。判断部は、第2の発生量が第1の発生量よりも少ないとき、CO2発生量を低減可能であると判断する。
好ましくは、判定部は、車両速度、蓄電装置の電圧および走行距離に基づいてCO2発生量を算出する。
好ましくは、判定部は、CO2発生量に代えて内燃機関による燃料消費量を低減可能か否かを判定する。
さらに好ましくは、充電状態制御部は、燃料消費量を低減可能であると判定部により判定されたとき、SOCを走行区間の開始時に高めるように充電状態を制御する。
また、この発明によれば、ハイブリッド車両の制御装置は、走行モード制御部と、判定部とを備える。ハイブリッド車両は、内燃機関および走行用電動機と、走行用電動機を駆動する駆動装置と、再充電可能な蓄電装置と、昇圧装置とを含む。昇圧装置は、駆動装置と蓄電装置との間に設けられ、駆動装置の入力電圧を蓄電装置の電圧以上に昇圧する。走行モード制御部は、内燃機関を停止して走行用電動機のみを用いての走行を優先させる第1のモード(CDモード)と、内燃機関を動作させて蓄電装置のSOCを所定の目標に維持する第2のモード(CSモード)とを含む走行モードの切替を制御する。判定部は、所定の走行区間を第1および第2のモードで走行する場合に、蓄電装置の電圧を相対的に高い状態に維持するために第2のモードを第1のモードよりも先行させることによって、走行区間におけるCO2発生量を低減可能か否かを判定する。そして、走行モード制御部は、判定部の判定結果に基づいて走行モードの切替を制御する。
好ましくは、走行モード制御部は、CO2発生量を低減可能であると判定部により判定されたとき、第1のモードでの走行可能距離を走行区間の残存距離が下回るまで走行モードを第2のモードとする。
好ましくは、判定部は、第1および第2の演算部と、判断部とを含む。第1の演算部は、走行区間において第2のモードでの走行後に第1のモードで走行する場合のCO2発生量を示す第1の発生量を推定する。第2の演算部は、走行区間において第1のモードでの走行後に第2のモードで走行する場合のCO2発生量を示す第2の発生量を推定する。判断部は、第1の発生量が第2の発生量よりも少ないとき、CO2発生量を低減可能であると判断する。
好ましくは、判定部は、車両速度、蓄電装置の電圧および走行距離に基づいて二酸化炭素発生量を算出する。
好ましくは、判定部は、CO2発生量に代えて内燃機関による燃料消費量を低減可能か否かを判定する。
さらに好ましくは、走行モード制御部は、燃料消費量を低減可能であると判定部により判定されたとき、第1のモードでの走行可能距離を走行区間の残存距離が下回るまで走行モードを第2のモードとする。
好ましくは、ハイブリッド車両は、充電装置をさらに含む。充電装置は、車両外部の電源から電力の供給を受けて蓄電装置を充電するように構成される。そして、走行モード制御部は、充電装置による蓄電装置の充電後、走行モードを第1のモードに設定する。
また、この発明によれば、ハイブリッド車両は、上述したいずれかの制御装置を備える。
この発明においては、蓄電装置と駆動装置との間に昇圧装置が設けられるところ、蓄電装置の電圧が高いほど、昇圧装置における損失を小さくできるので、その結果、燃費が向上し得る。そこで、この発明においては、蓄電装置の電圧を高めることによって所定の走行区間におけるCO2発生量や燃料消費量を低減可能か否かが判定され、その判定結果に基づいて蓄電装置のSOCが制御される。または、所定の走行区間を第1のモード(CDモード)および第2のモード(CSモード)で走行する場合に、蓄電装置の電圧を相対的に高い状態に維持するために第2のモードを第1のモードよりも先行させることによって、走行区間におけるCO2発生量や燃料消費量を低減可能か否かが判定され、その判定結果に基づいて走行モードの切替が制御される。
したがって、この発明によれば、昇圧装置における損失を考慮してCO2発生量や燃料消費量の低減を実現することが可能となる。
この発明の実施の形態1による制御装置を備える車両の一例として示されるハイブリッド車両の全体ブロック図である。 実施の形態1によるCO2発生量低減の考え方を説明するための図である。 蓄電装置のSOCとOCVとの関係を示した図である。 図1に示すHV−ECUの機能ブロック図である。 燃費マップの一例を示した図である。 HV−ECUにより実行される処理の手順を説明するためのフローチャートである。 実施の形態2による制御装置を備える車両の一例として示されるハイブリッド車両の全体ブロック図である。 実施の形態2によるCO2発生量低減の考え方を説明するための図である。 走行区間におけるSOCの変化を示した図である。 図7に示すHV−ECUの機能ブロック図である。 実施の形態2におけるHV−ECUにより実行される処理の手順を説明するためのフローチャートである。 実施の形態3におけるHV−ECUにより実行される処理の手順を説明するためのフローチャートである。 実施の形態4におけるHV−ECUにより実行される処理の手順を説明するためのフローチャートである。 この発明による制御装置を適用可能なハイブリッド車両の他の構成を示す全体ブロック図である。
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
[実施の形態1]
図1は、この発明の実施の形態1による制御装置を備える車両の一例として示されるハイブリッド車両の全体ブロック図である。図1を参照して、ハイブリッド車両100は、エンジン2と、動力分割装置4と、モータジェネレータ6,10と、減速機8と、駆動軸12と、車輪14とを備える。また、ハイブリッド車両100は、蓄電装置16と、昇圧装置17と、駆動装置18,20と、エンジンECU(Electronic Control Unit)32と、MG−ECU34と、HV−ECU36と、カーナビゲーション装置38とをさらに備える。
エンジン2は、ガソリンや軽油等の燃料の燃焼による熱エネルギーをピストンやロータなどの運動子の運動エネルギーに変換し、その変換された運動エネルギーを動力分割装置4へ出力する。動力分割装置4は、エンジン2、モータジェネレータ6および減速機8に結合されてこれらの間で動力を分配する。たとえば、サンギヤ、プラネタリキャリヤおよびリングギヤの3つの回転軸を有する遊星歯車を動力分割装置4として用いることができ、この3つの回転軸がエンジン2およびモータジェネレータ6の回転軸ならびに減速機8の入力軸にそれぞれ接続される。モータジェネレータ10の回転軸は、減速機8の入力軸に連結される。
エンジン2が発生する運動エネルギーは、動力分割装置4によってモータジェネレータ6と減速機8とに分配される。すなわち、エンジン2は、駆動軸12を駆動するとともにモータジェネレータ6を駆動する動力源としてハイブリッド車両100に組込まれる。モータジェネレータ6は、エンジン2によって駆動される発電機として動作する。また、モータジェネレータ6は、エンジン2の始動を行なう電動機としても動作する。モータジェネレータ10は、駆動軸12を駆動する動力源としてハイブリッド車両100に組込まれる。
蓄電装置16は、車両走行用の電力を蓄える再充電可能な直流電源であり、たとえば、ニッケル水素やリチウムイオン等の二次電池から成る。蓄電装置16は、昇圧装置17へ電力を供給する。また、蓄電装置16は、モータジェネレータ6および/または10の発電時、昇圧装置17から電力を受けて充電される。なお、蓄電装置16として、大容量のキャパシタも採用可能であり、モータジェネレータ6,10による発電電力を一時的に蓄え、その蓄えた電力をモータジェネレータ6,10へ供給可能な電力バッファであれば如何なるものでもよい。
昇圧装置17は、蓄電装置16と駆動装置18,20との間に設けられる。そして、昇圧装置17は、MG−ECU34からの制御信号に基づいて、駆動装置18,20の入力電圧を蓄電装置16の電圧以上に昇圧する。この昇圧装置17は、たとえば、電流可逆型の昇圧チョッパ回路によって構成される。
駆動装置18は、モータジェネレータ6により発電された電力を直流電力に変換して昇圧装置17へ出力する。駆動装置20は、昇圧装置17から受ける直流電力を交流電力に変換してモータジェネレータ10へ出力する。なお、駆動装置18は、エンジン2の始動時、昇圧装置17から受ける直流電力を交流電力に変換してモータジェネレータ6へ出力する。また、駆動装置20は、車両の制動時や下り斜面での加速度低減時、モータジェネレータ10により発電された電力を直流電力に変換して昇圧装置17へ出力する。なお、各駆動装置18,20は、たとえば、三相分のスイッチング素子を含む三相PWM(Pulse Width Modulation)インバータから成る。
モータジェネレータ6,10は、交流電動機であり、たとえばロータに永久磁石が埋設された三相交流同期電動機から成る。モータジェネレータ6は、エンジン2により生成された運動エネルギーを電気エネルギーに変換して駆動装置18へ出力する。また、モータジェネレータ6は、駆動装置18から受ける三相交流電力によって駆動力を発生し、エンジン2の始動を行なう。モータジェネレータ10は、駆動装置20から受ける三相交流電力によって車両の駆動トルクを発生する。また、モータジェネレータ10は、車両の制動時や下り斜面での加速度低減時、運動エネルギーや位置エネルギーとして車両に蓄えられた力学的エネルギーを電気エネルギーに変換して駆動装置20へ出力する。
エンジンECU32は、HV−ECU36からの動作指令に基づいて、エンジン2を駆動するための駆動信号を生成し、その生成した駆動信号をエンジン2へ出力する。MG−ECU34は、HV−ECU36からの動作指令に基づいて、モータジェネレータ6,10を駆動するための駆動信号を生成し、その生成した駆動信号を駆動装置18,20へ出力する。
HV−ECU36は、車両の運転状態に基づいてエンジン2およびモータジェネレータ6,10の動作指令を生成し、その生成した動作指令をエンジンECU32およびMG−ECU34へ出力する。また、HV−ECU36は、蓄電装置16のSOCが目標値に一致または目標範囲に入るようにエンジン2およびモータジェネレータ6の動作指令を生成し、その生成した動作指令をエンジンECU32およびMG−ECU34へ出力する。
さらに、HV−ECU36は、カーナビゲーション装置38において目的地が設定されると、蓄電装置16の電圧を高めることによって目的地までの走行区間におけるCO2発生量を低減可能か否かを判定する。この点につき説明すると、このハイブリッド車両100は、昇圧装置17を備えているところ、蓄電装置16の電圧が高いほど、昇圧装置17の負荷は軽減され、昇圧装置17における損失は小さくなる。これにより、燃費が向上し、その結果、CO2発生量を低減し得る。
そこで、この実施の形態1においては、HV−ECU36は、予め準備された燃費マップ(後述)を用いて、蓄電装置16の電圧を高めることによって目的地までの走行区間におけるCO2発生量を低減可能か否かを判定する。そして、HV−ECU36は、その判定結果に基づいて蓄電装置16のSOCを制御する。すなわち、CO2発生量を低減可能であると判定されると、HV−ECU36は、蓄電装置16の電圧を高めるために、蓄電装置16のSOCを高めるようにSOCを制御する。なお、走行区間におけるCO2発生量を低減可能か否かの判定処理およびその判定結果に基づくSOC制御は、好ましくは走行区間の開始時に実行される。なお、HV−ECU36の構成については、後ほど詳しく説明する。
カーナビゲーション装置38は、利用者により目的地が設定されると、その目的地までの走行距離をHV−ECU36へ出力する。また、カーナビゲーション装置38は、その目的地までの走行区間における予想車速(たとえば、走行区間の制限速度)をHV−ECU36へ出力する。これらの情報は、HV−ECU36において、走行区間におけるCO2発生量を算出するのに用いられる(後述)。
図2は、この実施の形態1によるCO2発生量低減の考え方を説明するための図である。図2を参照して、横軸は、所定の走行区間における走行距離を示す。なお、特に図示しないが、走行距離に代えて走行時間であってもよい。縦軸は、その走行区間を走行する際に発生するCO2の累積量を示す。なお、所定の走行区間としては、たとえば、走行開始点(走行距離0)を自宅として走行距離LTだけ離れた目的地までとしてもよいし、高速道路を利用する場合に高速道路走行区間としてもよい。以下では、自宅などの走行開始点からカーナビゲーション装置38(図1)によって設定された目的地までを走行区間とする場合について代表的に説明する。
図2において、点線k1は、従来制御による累積CO2発生量を示す。すなわち、点線k1は、蓄電装置16の電圧を高めることなく、予め設定された目標にSOCを制御しながら所定区間を走行した場合の累積CO2発生量を示す。
一方、実線k2は、この実施の形態1による累積CO2発生量を示す。すなわち、実線k2は、蓄電装置16の電圧を高めるために蓄電装置16のSOCを走行開始時に高めてから、所定区間を走行した場合の累積CO2発生量を示す。この実線k2では、走行距離L1までは、蓄電装置16のSOCを高めるためにエンジン2を動作させるので、CO2発生量は、点線k1で示される従来制御によるCO2発生量を上回る。
しかしながら、走行距離L1の経過後は、蓄電装置16の電圧が高められたことにより昇圧装置17における損失が低減され、その結果、従来制御(点線k1)に比べてエンジン2の動作頻度が減ることによりCO2発生量は抑制される。そして、走行開始時にSOCを高めるためにエンジン2を動作させたことによるCO2発生量の増加を見込んでも、トータルでみると、走行区間における累積CO2発生量を従来制御に比べて低減することができる。
そこで、この実施の形態1においては、走行開始時に蓄電装置16の電圧を高めることによって走行区間におけるCO2発生量を低減可能か否かを判定し、低減可能と判定された場合には、走行区間の開始時に蓄電装置16のSOCを高めるようにSOCを制御することとしたものである。
なお、図3に示すように、蓄電装置16のSOCと開放端電圧(OCV(Open Circuit Voltage))との関係は、SOCが増加するとOCVも増加する関係にあり、SOCを高めることによって蓄電装置16の電圧を高めることができる。
図4は、図1に示したHV−ECU36の機能ブロック図である。なお、図4では、HV−ECU36が有する各機能のうち、この発明の特徴部分の機能のみが示されている。図4を参照して、HV−ECU36は、判定部52と、SOC制御部54とを含む。
判定部52は、図示されない電圧センサによって検出される蓄電装置16の電圧Vbの検出値を受ける。また、判定部52は、カーナビゲーション装置38において利用者により設定された目的地までの走行距離Dおよびその目的地までの走行区間における予想車速Sa(たとえば、目的地までの走行区間の制限速度)をカーナビゲーション装置38から受ける。
そして、判定部52は、その受けた各値に基づいて、蓄電装置16の電圧Vbを高めることによって走行区間におけるCO2発生量を低減可能か否かを判定する。より詳しくは、判定部52は、まず、判断基準となるCO2発生量、すなわち、蓄電装置16の電圧Vbを高めることなく(すなわちSOCを高めることなく)走行区間を走行した場合のCO2発生量CA1を算出する。CO2発生量CA1の具体的な算出方法については、たとえば、判定部52は、予め準備された燃費マップを用いて、蓄電装置16の電圧Vbおよび予想車速Saに基づいて瞬間燃費を算出する。
図5は、燃費マップの一例を示した図である。図5を参照して、横軸は車両速度を示し、縦軸は瞬間燃費を示す。縦軸の値が大きいほど燃費が良いことを示す。上述のように、蓄電装置16の電圧が高いほど、昇圧装置17における損失が小さくなるので、瞬間燃費は良い。また、車両速度が高いほど、瞬間燃費は良くなる。
再び図4を参照して、判定部52は、燃費マップから求めた瞬間燃費に走行距離Dを乗算することによって、走行区間における燃料消費量を算出する。そして、判定部52は、予め定められた換算係数を用いる等して、算出された燃料消費量からCO2発生量を算出する。これらの一連の演算処理をSum1とすると、CO2発生量CA1は次式で表される。
CO2発生量CA1=Sum1(Sa,D,Vb) …(1)
次に、判定部52は、蓄電装置16の電圧Vbを高めることによって(すなわちSOCを高めることによって)走行区間を走行した場合のCO2発生量CB1を算出する。CO2発生量CB1の具体的な算出方法については、たとえば、判定部52は、蓄電装置16の電圧をVtar=Vb+αまで高めるのに発生するCO2量を予め準備された関数f1によって算出する。関数f1は、たとえば、SOCの増加量にエンジン2から蓄電装置16までの効率係数kを乗算することによって、電圧VbをVtarまで高めるのに必要なエネルギー量を推定し、予め定められた換算係数を用いる等して、推定されたエネルギー量からCO2量を算出するものである。そして、判定部52は、その算出されたCO2量を、蓄電装置16の電圧をVtar=Vb+αに高めた場合の走行時のCO2発生量に加算することによって、CO2発生量CB1を算出する。すなわち、CO2発生量CB1は、次式によって算出することができる。
CO2発生量CB1=Sum1(Sa,D,Vtar)+f1((SOC(Vtar)−SOC(Vb))×k) …(2)
なお、蓄電装置16の電圧上昇量を示す上記αは、たとえば蓄電装置16のSOC上限値などによって決定される。
そして、判定部52は、CO2発生量CB1をCO2発生量CA1と比較し、CO2発生量CB1がCO2発生量CA1よりも少ないとき、電圧Vbを高めることによってCO2発生量を低減可能であると判断する。
SOC制御部54は、蓄電装置16の電圧Vbおよび電流Ibの検出値に基づいて、蓄電装置16のSOCを算出する。そして、SOC制御部54は、蓄電装置16のSOCを所定の目標に制御するように、エンジン2およびモータジェネレータ6の動作指令を生成し、その生成した動作指令をエンジンECU32およびMG−ECU34へ出力する。
ここで、SOC制御部54は、電圧Vbを高めることによってCO2発生量を低減可能である旨の通知を判定部52から受けると、蓄電装置16のSOCの目標を予め定められた量だけ高める。なお、この嵩上げ量は、たとえば、蓄電装置16に入力可能な最大電力を示す入力許容電力WinやSOC上限値等に基づいて予め決定される。
図6は、HV−ECU36により実行される処理の手順を説明するためのフローチャートである。なお、このフローチャートに示される処理は、一定時間毎または所定の条件が成立するごとにメインルーチンから呼び出されて実行される。
図6を参照して、HV−ECU36は、カーナビゲーション装置38において利用者により目的地が設定されたか否かを判定する(ステップS10)。目的地が設定されていないと判定されたときは(ステップS10においてNO)、HV−ECU36は、以降の一連の処理を実行することなくステップS140へ処理を移行する。
ステップS10において目的地が設定されたと判定されると(ステップS10においてYES)、HV−ECU36は、以降の処理の実行可否を判断するための最適化完了フラグがオフされているか否かを判定する(ステップS20)。そして、最適化完了フラグがオンであると判定されたときは(ステップS20においてNO)、HV−ECU36は、以降の処理を実行することなくステップS140へ処理を移行する。
ステップS20において最適化完了フラグがオフであると判定されると(ステップS20においてYES)、HV−ECU36は、カーナビゲーション装置38において利用者により設定された目的地までの走行区間における予想車速Saをカーナビゲーション装置38から取得する(ステップS30)。また、HV−ECU36は、カーナビゲーション装置38において利用者により設定された目的地までの走行距離Dをカーナビゲーション装置38から取得する(ステップS40)。さらに、HV−ECU36は、蓄電装置16の電圧Vbの検出値を取得する(ステップS50)。
そして、HV−ECU36は、ステップS30,40で取得した予想車速Saおよび走行距離DならびにステップS50において取得した蓄電装置16の電圧Vbを用いて、蓄電装置16の電圧Vbを高めることなく(すなわちSOCを高めることなく)目的地まで走行した場合のCO2発生量CA1を上述した式(1)により算出する(ステップS60)。
次いで、HV−ECU36は、蓄電装置16の電圧を高める場合の目標電圧VtarをVb+α(αは正値)に設定する(ステップS70)。なお、嵩上げ量αは、たとえば、蓄電装置16のSOC上限値などによって決定される。そして、HV−ECU36は、予想車速Sa、走行距離Dおよび電圧VbならびにステップS70において設定された目標電圧Vtarを用いて、蓄電装置16の電圧Vbを目標電圧Vtarに高めて(すなわちSOCを高めて)目的地まで走行した場合のCO2発生量CB1を上述した式(2)により算出する(ステップS80)。
続いて、HV−ECU36は、ステップS50において取得される電圧Vbが目標電圧Vtarよりも低いか否かを判定する(ステップS90)。電圧Vbが目標電圧Vtarよりも低いと判定されると(ステップS90においてYES)、HV−ECU36は、ステップS80において算出されたCO2発生量CB1が、ステップS60において算出されたCO2発生量CA1よりも少ないか否かを判定する(ステップS100)。そして、CO2発生量CB1がCO2発生量CA1よりも少ないと判定されると(ステップS100においてYES)、HV−ECU36は、蓄電装置16のSOCを高めるようにSOCを制御する(ステップS110)。
一方、ステップS90において電圧Vbが目標電圧Vtar以上であると判定された場合(ステップS90においてNO)、または、ステップS100においてCO2発生量CB1がCO2発生量CA1以上であると判定された場合(ステップS100においてNO)、HV−ECU36は、SOCが高められている場合には、その嵩上げ量をクリアする(ステップS120)。そして、HV−ECU36は、最適化完了フラグをオンにする(ステップS130)。
以上のように、この実施の形態1においては、蓄電装置16と駆動装置18,20との間に昇圧装置17が設けられるところ、蓄電装置16の電圧が高いほど、昇圧装置17における損失を小さくできるので、その結果、燃費が向上し得る。そこで、この実施の形態1においては、蓄電装置16の電圧を高めることによって所定の走行区間におけるCO2発生量を低減可能か否かが判定され、その判定結果に基づいて蓄電装置のSOCが制御される。したがって、この実施の形態1によれば、昇圧装置17における損失を考慮してCO2発生量の低減を実現することが可能となる。
[実施の形態2]
図7は、実施の形態2による制御装置を備える車両の一例として示されるハイブリッド車両の全体ブロック図である。図7を参照して、ハイブリッド車両100Aは、図1に示した実施の形態1におけるハイブリッド車両100の構成において、充電器40およびインレット42をさらに備え、HV−ECU36に代えてHV−ECU36Aを備える。
充電器40は、図示されない車両外部の電源から供給される電力をインレット42から受け、その受けた電力を蓄電装置16の電圧レベルに変換して蓄電装置16へ出力する。インレット42は、車両外部の電源による蓄電装置16の充電時にその電源から供給される電力を受ける受電口である。
HV−ECU36Aは、走行モードの切替を制御する。具体的には、HV−ECU36Aは、エンジン2を停止してモータジェネレータ10のみを用いての走行を優先させるCD(Charge Depleting)モードとするか、それともエンジン2を動作させて蓄電装置16のSOCを所定の目標に維持するCS(Charge Sustaining)モードとするかの切替を制御する。
なお、CDモードでも、運転者によりアクセルペダルが大きく踏込まれたり、エンジン駆動タイプのエアコン動作時やエンジン暖機時などは、エンジン2の動作が許容される。このCDモードは、蓄電装置16のSOCを維持することなく、基本的に蓄電装置16に蓄えられた電力をエネルギー源として車両を走行させる走行モードである。このCDモードの間は、結果的に充電よりも放電の割合の方が相対的に大きくなることが多い。一方、CSモードは、蓄電装置16のSOCを所定の目標に維持するために、必要に応じてエンジン2を動作させてモータジェネレータ6により発電を行なう走行モードであり、エンジン2を常時動作させての走行に限定されるものではない。すなわち、走行モードがCDモードであっても、アクセルペダルが大きく踏込まれて大きな車両パワーが要求されればエンジン2は動作する。また、走行モードがCSモードであっても、SOCが目標値を上回っていればエンジン2は停止する。
HV−ECU36Aは、充電器40による蓄電装置16の充電後、走行モードをCDモードに設定する。また、HV−ECU36Aは、カーナビゲーション装置38において目的地が設定されると、蓄電装置16の電圧を相対的に高い状態に維持するためにCSモードをCDモードよりも先行させることによって、目的地までの走行区間におけるCO2発生量を低減可能か否かを判定する。この点につき説明すると、上述のように、蓄電装置16の電圧が高いほど、昇圧装置17の負荷は軽減され、昇圧装置17における損失は小さくなる。これにより、燃費が向上し、その結果、CO2発生量を低減し得る。
そこで、この実施の形態2においては、HV−ECU36Aは、目的地までの走行区間をCDモードおよびCSモードで走行する場合に、予め準備された燃費マップ(図5)を用いて、CSモードをCDモードよりも先行させることによって目的地までの走行区間におけるCO2発生量を低減可能か否かを判定する。そして、HV−ECU36Aは、その判定結果に基づいて走行モードの切替を制御する。すなわち、CO2発生量を低減可能であると判定されると、HV−ECU36Aは、蓄電装置16の電圧をできる限り高い状態に維持するために、CDモードでの走行可能距離を目的地までの走行残存距離が下回るまで走行モードをCSモードとする。そして、CDモードでの走行可能距離を目的地までの走行残存距離が下回ると、CSモードからCDモードに切替わる。
なお、HV−ECU36Aのその他の構成については、図1に示した実施の形態1におけるHV−ECU36と同じである。
図8は、この実施の形態2によるCO2発生量低減の考え方を説明するための図である。図8を参照して、縦軸および横軸は、図2のそれらと同じである。なお、この図8では、走行区間の走行開始前に充電器40により蓄電装置16が充電されている。すなわち、走行区間の走行開始時における蓄電装置16のSOCが相対的に十分に高いものとする。
点線k3は、走行開始後からCDモードで走行し、SOCが所定の下限値まで低下した走行距離L2の地点からCSモードで走行した場合の累積CO2発生量を示す。なお、この点線k3は、従来の走行モードの切替を示したものである。
一方、実線k4は、この実施の形態2による累積CO2発生量を示す。すなわち、実線k4は、蓄電装置16の電圧を相対的に高い状態に維持するために、走行開始後からCSモードで走行し、CDモードでの走行可能距離を残存走行距離が下回る走行距離L3の地点からCDモードで走行した場合の累積CO2発生量を示す。
CSモードでの走行時における蓄電装置16のSOCについて、実線k4の走行パターンにおけるSOCの方が点線k3の走行パターンにおけるSOCよりも高いので、蓄電装置16の電圧についても、実線k4の走行パターンにおける電圧の方が点線k3の走行パターンにおける電圧よりも高い。したがって、実線k4の走行パターンの方が、点線k3の走行パターンよりも、昇圧装置17の損失が小さく、その結果、エンジン2の動作頻度が減ることによりCO2発生量が抑制される(実線k4の方が点線k3よりも傾きが小さい。)。
そこで、この実施の形態2においては、蓄電装置16の電圧を相対的に高い状態に維持するためにCSモードをCDモードよりも先行させることによってCO2発生量を低減可能か否かを判定する。そして、低減可能と判定された場合には、CSモードをCDモードよりも先行させ、CDモードによる走行可能距離を残存走行距離が下回るとCDモードに切替えることとしたものである。
図9は、走行区間におけるSOCの変化を示した図である。図9を参照して、点線k5は、走行開始後からCDモードで走行し、SOCが所定の下限値に達する走行距離L2の地点からCSモードで走行する場合のSOC変化を示す。なお、この点線k5は、図8に示した点線k3に対応するものである。
一方、実線k6は、蓄電装置16の電圧を高い状態に維持するために、走行開始後からCSモードで走行し、CDモードでの走行可能距離を残存走行距離が下回る走行距離L3の地点からCDモードで走行する場合のSOC変化を示す。なお、この実線k6は、図8に示した実線k4に対応するものである。
このように、CSモードをCDモードよりも先行させることによって、CSモードでの走行中における蓄電装置16のSOCおよび電圧を高い状態に維持することができ、その結果、CO2発生量を低減することができる。なお、走行区間全域をCDモードのみで走行可能な場合には、走行区間全域をCDモードで走行するのが当然好ましい。
図10は、図7に示したHV−ECU36Aの機能ブロック図である。なお、この図10でも、HV−ECU36Aが有する各機能のうち、この発明の特徴部分の機能のみが示されている。図10を参照して、HV−ECU36Aは、判定部52Aと、SOC算出部56と、走行モード制御部58とを含む。
判定部52Aは、蓄電装置16の電圧Vbの検出値を受け、目的地までの走行距離Dおよびその目的地までの予想車速Saをカーナビゲーション装置38から受ける。また、判定部52Aは、蓄電装置16のSOCをSOC算出部56から受け、その受けたSOCに基づいてCDモードでの走行可能距離D_CDを算出する。一例として、判定部52Aは、SOCに基づき算出される蓄電容量を電費(Wh/km)で除算することにより走行可能距離D_CDを算出する。
そして、判定部52Aは、それらの各値に基づいて、CSモードをCDモードよりも先行させることによって走行区間におけるCO2発生量を低減可能か否かを判定する。具体的には、判定部52Aは、CSモードをCDモードよりも先行させて走行する場合(図8の実線k4および図9の実線k6)のCO2発生量CA2を次式により算出する。
CO2発生量CA2=Sum1(Sa,(D−D_CD),Vb) …(3)
次に、判定部52Aは、CDモードをCSモードよりも先行させて走行する場合(図8の点線k3および図9の点線k5)のCO2発生量CB2を次式により算出する。
CO2発生量CB2=Sum1(Sa,(D−D_CD),Vb_low) …(4)
ここで、Vb_lowは、CDモードでの走行後の蓄電装置16の電圧であり、すなわち、SOCが所定の下限値のときの蓄電装置16の電圧である。そして、判定部52Aは、CO2発生量CA2をCO2発生量CB2と比較し、CO2発生量CA2がCO2発生量CB2よりも少ないとき、CSモードをCDモードよりも先行させることによってCO2発生量を低減可能であると判断する。
SOC算出部56は、蓄電装置16の電圧Vbおよび電流Ibの検出値に基づいて蓄電装置16のSOCを算出し、その算出結果を判定部52Aおよび走行モード制御部58へ出力する。
走行モード制御部58は、充電器40による蓄電装置16の充電終了後、走行モードをCDモードにデフォルト設定する。また、走行モード制御部58は、SOCの算出結果をSOC算出部56から受け、CDモードでの走行可能距離D_CDを判定部52Aから受ける。さらに、走行モード制御部58は、目的地までの残存走行距離D_leftをカーナビゲーション装置38から受ける(図示せず)。
そして、走行モード制御部58は、CSモードをCDモードよりも先行させることによってCO2発生量を低減可能である旨の通知を判定部52Aから受けると、残存走行距離D_leftがCDモードでの走行可能距離D_CDを下回るまで走行モードをCSモードとする。そして、残存走行距離D_leftが走行可能距離D_CDを下回ると、走行モード制御部58は、走行モードをCDモードに切替える。
なお、走行モード制御部58は、CO2発生量を低減可能である旨の通知を判定部52Aから受けていないときは、走行区間をCDモードで走行開始し、所定の下限値までSOCが低下すると、走行モードをCSモードに切替える。
そして、走行モード制御部58は、走行モードがCSモードのときは、エンジン2およびモータジェネレータ6の動作指令を生成し、その生成した動作指令をエンジンECU32およびMG−ECU34へ出力する。また、走行モードがCDモードのときは、走行モード制御部58は、原則としてモータジェネレータ6の動作指令のみを生成し、その生成した動作指令をMG−ECU34へ出力する。なお、走行モードがCDモードであっても、アクセルペダルが踏込まれる等して大きな車両駆動力が要求された場合には、走行モード制御部58は、エンジン2の動作指令も生成してエンジンECU32へ出力する。
図11は、実施の形態2におけるHV−ECU36Aにより実行される処理の手順を説明するためのフローチャートである。なお、このフローチャートに示される処理も、一定時間毎または所定の条件が成立するごとにメインルーチンから呼び出されて実行される。
図11を参照して、ステップS210からステップS240の処理は、図6に示したステップS10からステップS40の処理とそれぞれ同じであるので説明を繰返さない。ステップ240において目的地までの走行距離Dがカーナビゲーション装置38から取得されると、HV−ECU36Aは、CDモードでの走行可能距離D_CDを算出する(ステップS250)。たとえば、HV−ECU36Aは、SOCに基づき算出される蓄電容量を電費(Wh/km)で除算することにより走行可能距離D_CDを算出することができる。
次いで、HV−ECU36Aは、予想車速Sa、走行距離D、走行可能距離D_CDおよび蓄電装置16の電圧Vbを用いて、CSモードをCDモードよりも先行させて走行する場合のCO2発生量CA2を上述した式(3)により算出する(ステップS260)。さらに、HV−ECU36Aは、CDモード後にCSモードで走行する場合のCO2発生量CB2を上述した式(4)により算出する(ステップS270)。
そして、HV−ECU36Aは、CO2発生量CA2がCO2発生量CB2よりも少ないか否かを判定する(ステップS280)。CO2発生量CA2がCO2発生量CB2よりも少ないと判定されると(ステップS280においてYES)、HV−ECU36Aは、走行モードをCSモードに設定する(ステップS290)。そして、HV−ECU36Aは、CSモード優先フラグをオンにし(ステップS300)、さらに、最適化完了フラグもオンにする(ステップS310)。
一方、ステップS280においてCO2発生量CA2がCO2発生量CB2以上であると判定されると(ステップS280においてNO)、HV−ECU36Aは、CSモード優先フラグをオフにし(ステップS320)、さらに、最適化完了フラグをオンにする(ステップS330)。なお、この場合は、充電器40による蓄電装置16の充電終了後にデフォルト設定されるCDモードで走行開始することとなる。
次いで、HV−ECU36Aは、CSモード優先フラグがオンされているか否かを判定する(ステップS340)。CSモード優先フラグがオンであると判定されると(ステップS340においてYES)、HV−ECU36Aは、目的地までの残存走行距離D_leftをカーナビゲーション装置38から取得する(ステップS350)。そして、HV−ECU36Aは、残存走行距離D_leftがCDモードでの走行可能距離D_CD以下となったか否かを判定する(ステップS360)。
残存走行距離D_leftが走行可能距離D_CD以下であると判定されると(ステップS360においてYES)、HV−ECU36Aは、走行モードをCDモードとし(ステップS370)、さらにCSモード優先フラグをオフにする(ステップS380)。なお、ステップS340においてCSモード優先フラグがオフであると判定されたとき、または、ステップS360において残存走行距離D_leftが走行可能距離D_CDよりも大きいと判定されたときは(ステップS360においてNO)、HV−ECU36Aは、ステップS390へ処理を移行する。
以上のように、この実施の形態2においては、所定の走行区間をCDモードおよびCSモードで走行する場合に、蓄電装置16の電圧を相対的に高い状態に維持するために、CSモードをCDモードよりも先行させることによって走行区間におけるCO2発生量を低減可能か否かが判定され、その判定結果に基づいて走行モードの切替が制御される。したがって、この実施の形態2によれば、昇圧装置17における損失を考慮してCO2発生量の低減を実現することが可能となる。
[実施の形態3]
実施の形態1では、蓄電装置16の電圧を高めることによってCO2発生量を低減可能か否かを判定するものとしたが、この実施の形態3では、CO2発生量に代えて燃料消費量を低減可能か否かが判定され、燃料消費量を低減可能であると判定されると蓄電装置16のSOCが高められる。
この実施の形態3におけるハイブリッド車両の全体構成は、図1に示した実施の形態1におけるハイブリッド車両100と同じである。
図12は、実施の形態3におけるHV−ECU36により実行される処理の手順を説明するためのフローチャートである。図12を参照して、このフローチャートは、図6に示したフローチャートにおいて、ステップS60,S80,S100に代えてそれぞれステップS65,S85,S105を含む。
すなわち、ステップS50において蓄電装置16の電圧Vbが取得されると、HV−ECU36は、蓄電装置16の電圧Vbを高めることなく(すなわちSOCを高めることなく)走行区間を走行した場合の燃料消費量FA1を算出する(ステップS65)。燃料消費量FA1の具体的な算出方法については、たとえば、HV−ECU36は、予め準備された燃費マップ(図5)を用いて、蓄電装置16の電圧Vbおよび予想車速Saに基づいて瞬間燃費を算出し、その算出された瞬間燃費に走行距離Dを乗算することによって、走行区間における燃料消費量を算出する。これらの一連の演算処理をSum2とすると、燃料消費量FA1は次式で表される。
燃料消費量FA1=Sum2(Sa,D,Vb) …(5)
また、ステップS70において目標電圧Vtarが設定されると、HV−ECU36は、蓄電装置16の電圧Vbを高めることによって(すなわちSOCを高めることによって)走行区間を走行した場合の燃料消費量FB1を算出する(ステップS85)。燃料消費量FB1の具体的な算出方法については、たとえば、HV−ECU36は、蓄電装置16の電圧を目標電圧Vtarまで高めるのに必要な燃料消費量を予め準備された関数f2によって算出する。関数f2は、たとえば、SOCの増加量にエンジン2から蓄電装置16までの効率係数kを乗算することによって、電圧Vbを目標電圧Vtarまで高めるのに必要なエネルギー量を推定し、その推定されたエネルギー量から燃料消費量を算出するものである。そして、HV−ECU36は、その算出された燃料消費量を、蓄電装置16の電圧を目標電圧Vtarに高めた場合の走行時の燃料消費量に加算することによって、燃料消費量FB1を算出する。すなわち、燃料消費量FB1は、次式によって算出することができる。
燃料消費量FB1=Sum2(Sa,D,Vtar)+f2((SOC(Vtar)−SOC(Vb))×k) …(6)
また、ステップS90において電圧Vbが目標電圧Vtarよりも低いと判定されると、HV−ECU36は、ステップS85において算出された燃料消費量FB1が、ステップS65において算出された燃料消費量FA1よりも少ないか否かを判定する(ステップS105)。そして、燃料消費量FB1が燃料消費量FA1よりも少ないと判定されると(ステップS105においてYES)、ステップS110へ処理が移行され、蓄電装置16のSOCを高めるようにSOCが制御される。
なお、フローチャートに示されるその他の処理は、図6で既に説明したので説明を繰返さない。
以上のように、この実施の形態3においては、蓄電装置16の電圧を高めることによって所定の走行区間における燃料消費量を低減可能か否かが判定され、その判定結果に基づいて蓄電装置のSOCが制御される。したがって、この実施の形態3によれば、昇圧装置17における損失を考慮して燃料消費量の低減を実現することが可能となる。
[実施の形態4]
実施の形態2では、CSモードをCDモードよりも先行させることによってCO2発生量を低減可能か否かを判定するものとしたが、この実施の形態4では、CO2発生量に代えて燃料消費量を低減可能か否かが判定され、燃料消費量を低減可能であると判定されるとCSモードをCDモードよりも先行させる。
この実施の形態4におけるハイブリッド車両の全体構成は、図7に示した実施の形態2におけるハイブリッド車両100Aと同じである。
図13は、実施の形態4におけるHV−ECU36Aにより実行される処理の手順を説明するためのフローチャートである。図13を参照して、このフローチャートは、図11に示したフローチャートにおいて、ステップS260,S270,S280に代えてそれぞれステップS265,S275,S285を含む。
すなわち、ステップS250においてCDモードでの走行可能距離D_CDが算出されると、HV−ECU36Aは、CSモードをCDモードよりも先行させて走行する場合の燃料消費量FA2を次式により算出する(ステップS265)。
燃料消費量FA2=Sum2(Sa,(D−D_CD),Vb) …(7)
次いで、HV−ECU36Aは、CDモード後にCSモードで走行する場合の燃料消費量FB2を次式により算出する。
燃料消費量FB2=Sum2(Sa,(D−D_CD),Vb_low) …(8)
なお、上述のように、Vb_lowは、CDモードでの走行後の蓄電装置16の電圧であり、すなわち、SOCが所定の下限値のときの蓄電装置16の電圧である。そして、HV−ECU36Aは、燃料消費量FA2が燃料消費量FB2よりも少ないか否かを判定する(ステップS285)。燃料消費量FA2が燃料消費量FB2よりも少ないと判定されると(ステップS285においてYES)、ステップS290へ処理が移行され、走行モードはCSモードとなる。一方、燃料消費量FA2が燃料消費量FB2以上であると判定されると(ステップS285においてNO)、ステップS320へ処理が移行され、CSモード優先フラグがオフされる。
なお、フローチャートに示されるその他の処理は、図11で既に説明したので説明を繰返さない。
以上のように、この実施の形態4においては、所定の走行区間をCDモードおよびCSモードで走行する場合に、蓄電装置16の電圧を相対的に高い状態に維持するために、CSモードをCDモードよりも先行させることによって走行区間における燃料消費量を低減可能か否かが判定され、その判定結果に基づいて走行モードの切替が制御される。したがって、この実施の形態4によれば、昇圧装置17における損失を考慮して燃料消費量の低減を実現することが可能となる。
なお、上記の各実施の形態においては、動力分割装置4によりエンジン2の動力を駆動軸12とモータジェネレータ6とに分割して伝達可能なシリーズ/パラレル型のハイブリッド車両について説明したが、この発明は、その他の形式のハイブリッド車両にも適用可能である。
図14は、この発明による制御装置を適用可能なハイブリッド車両の他の構成を示す全体ブロック図である。図14を参照して、ハイブリッド車両200は、エンジン202と、モータジェネレータ204と、無段変速機(CVT)206と、車輪208と、駆動装置210と、昇圧装置211と、蓄電装置212とを備える。
エンジン202の出力は、CVT206を介して車輪208へ伝達される。モータジェネレータ204は、必要に応じてトルクを発生し、走行トルクをアシストする。また、モータジェネレータ204は、必要に応じてエンジン202の出力の一部を用いて発電し、蓄電装置212の充電電力を生成する。
そして、このハイブリッド車両200においても、蓄電装置212の電圧を高めることによって所定の走行区間におけるCO2発生量や燃料消費量を低減可能か否かを判定し、その判定結果に基づいて蓄電装置のSOCを制御することによって、CO2発生量や燃料消費量を低減することができる。また、所定の走行区間をCDモードおよびCSモードで走行する場合に、蓄電装置212の電圧を相対的に高い状態に維持するためにCSモードをCDモードよりも先行させることによって、CO2発生量や燃料消費量を低減することができる。
なお、上記の実施の形態2,4においては、ハイブリッド車両100Aは、充電器40により車両外部の電源から蓄電装置16を充電可能な、いわゆるプラグインハイブリッド車としたが、これらの実施の形態に具現化される発明は、プラグインハイブリッド車に限定されるものではなく、充電器40を搭載しないハイブリッド車両にも適用可能である。
また、上記の実施の形態1,3においては、ハイブリッド車両100は、充電器40を搭載しないものとしたが、これらの実施の形態に具現化される発明は、プラグインハイブリッド車にも適用可能である。
また、上記の各実施の形態においては、所定の走行区間は、自宅などの走行開始点からカーナビゲーション装置38によって設定された目的地までとしたが、高速道路を利用する場合に高速道路走行区間を所定の走行区間としてもよい。
また、上記においては、予想車速Saは、一例として、カーナビゲーション装置38から得られる走行区間の制限速度としたが、走行開始後の安定高速走行時における実際の車両速度を予想車速Saとしてもよい。
また、この発明は、蓄電装置16が複数の並列接続された蓄電部から成る場合にも適用可能であるが、上記の実施の形態1,3に適用される場合には、いくつかの蓄電部を積極的に切離してもよい。これにより、蓄電装置16の電圧を高めるための充電量を減らすことができ、その結果、CO2発生量や燃料消費量をさらに低減できる。
なお、走行区間における車両速度が低い場合には、駆動装置18,20の損失を考慮すると、蓄電装置16の電圧を低めることによって燃費が向上し、CO2発生量や燃料消費量を低減できることもある。そこで、予想車速Saが低い場合には、蓄電装置16のSOCを積極的に低めたり、CDモードをCSモードよりも先行させてもよい。
なお、上記において、エンジン2,202は、この発明における「内燃機関」の一実施例に対応し、モータジェネレータ10,204は、この発明における「走行用電動機」の一実施例に対応する。また、充電器40およびインレット42は、この発明における「充電装置」の一実施例を形成する。
今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
2,202 エンジン、4 動力分割装置、6,10,204 モータジェネレータ、8 減速機、12 駆動軸、14,208 車輪、16,212 蓄電装置、17,211 昇圧装置、18,20,210 駆動装置、32 エンジンECU、34 MG−ECU、36,36A HV−ECU、38 カーナビゲーション装置、40 充電器、42 インレット、52,52A 判定部、54 SOC制御部、56 SOC算出部、58 走行モード制御部、100,200 ハイブリッド車両、206 無段変速機。

Claims (14)

  1. ハイブリッド車両の制御装置であって、
    前記ハイブリッド車両は、
    内燃機関および走行用電動機と、
    前記走行用電動機を駆動する駆動装置と、
    再充電可能な蓄電装置と、
    前記駆動装置と前記蓄電装置との間に設けられ、前記駆動装置の入力電圧を前記蓄電装置の電圧以上に昇圧する昇圧装置とを含み、
    前記制御装置は、
    前記蓄電装置の電圧を高めることによって所定の走行区間における二酸化炭素発生量を低減可能か否かを判定する判定部と、
    前記判定部の判定結果に基づいて前記蓄電装置の充電状態を制御する充電状態制御部とを備える、ハイブリッド車両の制御装置。
  2. 前記充電状態制御部は、前記二酸化炭素発生量を低減可能であると前記判定部により判定されたとき、前記充電状態を示す状態量を前記走行区間の開始時に高めるように前記充電状態を制御する、請求項1に記載のハイブリッド車両の制御装置。
  3. 前記判定部は、
    前記状態量を高めることなく前記走行区間を走行した場合の前記二酸化炭素発生量を示す第1の発生量を推定する第1の演算部と、
    前記走行区間の開始時に前記状態量を高めて前記走行区間を走行した場合の前記二酸化炭素発生量を示す第2の発生量を推定する第2の演算部と、
    前記第2の発生量が前記第1の発生量よりも少ないとき、前記二酸化炭素発生量を低減可能であると判断する判断部とを含む、請求項2に記載のハイブリッド車両の制御装置。
  4. 前記判定部は、車両速度、前記蓄電装置の電圧および走行距離に基づいて前記二酸化炭素発生量を算出する、請求項1から請求項3のいずれかに記載のハイブリッド車両の制御装置。
  5. 前記判定部は、前記二酸化炭素発生量に代えて前記内燃機関による燃料消費量を低減可能か否かを判定する、請求項1に記載のハイブリッド車両の制御装置。
  6. 前記充電状態制御部は、前記燃料消費量を低減可能であると前記判定部により判定されたとき、前記充電状態を示す状態量を前記走行区間の開始時に高めるように前記充電状態を制御する、請求項5に記載のハイブリッド車両の制御装置。
  7. ハイブリッド車両の制御装置であって、
    前記ハイブリッド車両は、
    内燃機関および走行用電動機と、
    前記走行用電動機を駆動する駆動装置と、
    再充電可能な蓄電装置と、
    前記駆動装置と前記蓄電装置との間に設けられ、前記駆動装置の入力電圧を前記蓄電装置の電圧以上に昇圧する昇圧装置とを含み、
    前記制御装置は、
    前記内燃機関を停止して前記走行用電動機のみを用いての走行を優先させる第1のモードと、前記内燃機関を動作させて前記蓄電装置の充電状態を所定の目標に維持する第2のモードとを含む走行モードの切替を制御する走行モード制御部と、
    所定の走行区間を前記第1および第2のモードで走行する場合に、前記蓄電装置の電圧を相対的に高い状態に維持するために前記第2のモードを前記第1のモードよりも先行させることによって、前記走行区間における二酸化炭素発生量を低減可能か否かを判定する判定部とを備え、
    前記走行モード制御部は、前記判定部の判定結果に基づいて前記走行モードの切替を制御する、ハイブリッド車両の制御装置。
  8. 前記走行モード制御部は、前記二酸化炭素発生量を低減可能であると前記判定部により判定されたとき、前記第1のモードでの走行可能距離を前記走行区間の残存距離が下回るまで前記走行モードを前記第2のモードとする、請求項7に記載のハイブリッド車両の制御装置。
  9. 前記判定部は、
    前記走行区間において前記第2のモードでの走行後に前記第1のモードで走行する場合の前記二酸化炭素発生量を示す第1の発生量を推定する第1の演算部と、
    前記走行区間において前記第1のモードでの走行後に前記第2のモードで走行する場合の前記二酸化炭素発生量を示す第2の発生量を推定する第2の演算部と、
    前記第1の発生量が前記第2の発生量よりも少ないとき、前記二酸化炭素発生量を低減可能であると判断する判断部とを含む、請求項7または請求項8に記載のハイブリッド車両の制御装置。
  10. 前記判定部は、車両速度、前記蓄電装置の電圧および走行距離に基づいて前記二酸化炭素発生量を算出する、請求項7から請求項9のいずれかに記載のハイブリッド車両の制御装置。
  11. 前記判定部は、前記二酸化炭素発生量に代えて前記内燃機関による燃料消費量を低減可能か否かを判定する、請求項7に記載のハイブリッド車両の制御装置。
  12. 前記走行モード制御部は、前記燃料消費量を低減可能であると前記判定部により判定されたとき、前記第1のモードでの走行可能距離を前記走行区間の残存距離が下回るまで前記走行モードを前記第2のモードとする、請求項11に記載のハイブリッド車両の制御装置。
  13. 前記ハイブリッド車両は、車両外部の電源から電力の供給を受けて前記蓄電装置を充電するように構成された充電装置をさらに含み、
    前記走行モード制御部は、前記充電装置による前記蓄電装置の充電後、前記走行モードを前記第1のモードに設定する、請求項7から請求項12のいずれかに記載のハイブリッド車両の制御装置。
  14. 請求項1から請求項13のいずれかに記載の制御装置を備えるハイブリッド車両。
JP2010163795A 2010-07-21 2010-07-21 ハイブリッド車両の制御装置およびそれを備えるハイブリッド車両 Active JP4962604B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010163795A JP4962604B2 (ja) 2010-07-21 2010-07-21 ハイブリッド車両の制御装置およびそれを備えるハイブリッド車両
PCT/IB2011/001672 WO2012010950A2 (en) 2010-07-21 2011-07-19 Control device for hybrid vehicle, and hybrid vehicle equipped with control device
DE112011102395.2T DE112011102395B4 (de) 2010-07-21 2011-07-19 Steuerungsvorrichtung für Hybridfahrzeuge
US13/810,952 US8897942B2 (en) 2010-07-21 2011-07-19 Control device for hybrid vehicle, and hybrid vehicle equipped with control device
CN201180035408.7A CN103153686B (zh) 2010-07-21 2011-07-19 用于混合动力车辆的控制装置和装备有控制装置的混合动力车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010163795A JP4962604B2 (ja) 2010-07-21 2010-07-21 ハイブリッド車両の制御装置およびそれを備えるハイブリッド車両

Publications (2)

Publication Number Publication Date
JP2012025220A true JP2012025220A (ja) 2012-02-09
JP4962604B2 JP4962604B2 (ja) 2012-06-27

Family

ID=44674825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010163795A Active JP4962604B2 (ja) 2010-07-21 2010-07-21 ハイブリッド車両の制御装置およびそれを備えるハイブリッド車両

Country Status (5)

Country Link
US (1) US8897942B2 (ja)
JP (1) JP4962604B2 (ja)
CN (1) CN103153686B (ja)
DE (1) DE112011102395B4 (ja)
WO (1) WO2012010950A2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015108552A (ja) * 2013-12-04 2015-06-11 株式会社ナビタイムジャパン 情報処理システム、情報処理方法、およびプログラム
JP2015140052A (ja) * 2014-01-27 2015-08-03 トヨタ自動車株式会社 ハイブリッド車両
KR20190049999A (ko) * 2017-11-02 2019-05-10 현대자동차주식회사 차량 및 그 제어 방법
CN112424042A (zh) * 2018-07-16 2021-02-26 雷诺股份公司 机动车辆的混合动力系统的控制方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6136784B2 (ja) * 2013-09-04 2017-05-31 トヨタ自動車株式会社 車両
JP5929866B2 (ja) * 2013-10-03 2016-06-08 トヨタ自動車株式会社 移動支援装置、移動支援方法、及び運転支援システム
US9719477B2 (en) 2013-12-09 2017-08-01 Textron Inc. Using a DC or AC generator as a starter with fault detection
US9272628B2 (en) * 2013-12-09 2016-03-01 Textron Inc. Using AC induction motor as a generator in a utility vehicle
DE102013225558A1 (de) * 2013-12-11 2015-06-11 Volkswagen Aktiengesellschaft Verfahren zum Ermitteln eines Fahrzustandes eines Hybridfahrzeuges für Streckensegmente einer vorausliegenden Fahrstrecke und Hybridfahrzeug
US9862397B2 (en) * 2015-03-04 2018-01-09 General Electric Company System and method for controlling a vehicle system to achieve different objectives during a trip
EP3173304A1 (de) 2015-11-25 2017-05-31 Magna Steyr Fahrzeugtechnik AG & Co KG Verfahren zur ermittlung einer fahrtroute
GB201602112D0 (en) 2016-02-09 2016-03-23 Tevva Motors Ltd Range extender control
JP6772950B2 (ja) * 2017-05-09 2020-10-21 株式会社デンソー 走行制御装置
US20190232950A1 (en) * 2018-01-30 2019-08-01 GM Global Technology Operations LLC Hybrid powertrain system
DE102018202623A1 (de) * 2018-02-21 2019-09-12 Bayerische Motoren Werke Aktiengesellschaft System und Verfahren zum automatischen Einstellung von Fahrzeugfunktionen
JP7191919B2 (ja) * 2020-11-06 2022-12-19 本田技研工業株式会社 制御装置、制御方法、及び電動車両
WO2022175702A1 (ja) * 2021-02-18 2022-08-25 日産自動車株式会社 ハイブリッド車両制御方法及びハイブリッド車両制御装置
JP2023028544A (ja) * 2021-08-19 2023-03-03 トヨタ自動車株式会社 インセンティブ付与システム及びインセンティブ付与方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005180255A (ja) * 2003-12-17 2005-07-07 Mazda Motor Corp 電動過給機を備えたパワートレインの制御装置
JP2008087719A (ja) * 2006-10-04 2008-04-17 Nissan Motor Co Ltd ハイブリッド車両とその制御方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19525697A1 (de) * 1995-07-14 1997-01-16 Bayerische Motoren Werke Ag Verfahren zur Spannungsversorgung eines Kraftfahrzeugs
JP3654048B2 (ja) * 1999-05-20 2005-06-02 日産自動車株式会社 ハイブリッド車両の駆動制御装置
JP4331905B2 (ja) 2001-09-28 2009-09-16 パイオニア株式会社 ハイブリッドカー、及びハイブリッドカーの制御方法
US6940242B1 (en) * 2003-01-29 2005-09-06 Wavecrest Laboratories, Llc Motor control system for dynamically changing motor energization current waveform profiles
US20050052080A1 (en) * 2002-07-31 2005-03-10 Maslov Boris A. Adaptive electric car
JP4449940B2 (ja) * 2006-05-16 2010-04-14 トヨタ自動車株式会社 車両用二電源システム
JP4236676B2 (ja) * 2006-09-07 2009-03-11 株式会社日立製作所 車両駆動システム
JP4211860B2 (ja) 2007-04-25 2009-01-21 トヨタ自動車株式会社 電動車両の充電制御装置、電動車両、電動車両の充電制御方法およびその充電制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
US7954579B2 (en) * 2008-02-04 2011-06-07 Illinois Institute Of Technology Adaptive control strategy and method for optimizing hybrid electric vehicles
DE102009000970A1 (de) 2009-02-18 2010-08-19 Zf Friedrichshafen Ag Verfahren zum Betreiben eines Antriebsstrangs
CN101577444B (zh) * 2009-04-14 2011-07-13 奇瑞汽车股份有限公司 一种串联可插电式混合动力车的高压电池电量控制方法
US8374740B2 (en) 2010-04-23 2013-02-12 GM Global Technology Operations LLC Self-learning satellite navigation assisted hybrid vehicle controls system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005180255A (ja) * 2003-12-17 2005-07-07 Mazda Motor Corp 電動過給機を備えたパワートレインの制御装置
JP2008087719A (ja) * 2006-10-04 2008-04-17 Nissan Motor Co Ltd ハイブリッド車両とその制御方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015108552A (ja) * 2013-12-04 2015-06-11 株式会社ナビタイムジャパン 情報処理システム、情報処理方法、およびプログラム
JP2015140052A (ja) * 2014-01-27 2015-08-03 トヨタ自動車株式会社 ハイブリッド車両
KR20190049999A (ko) * 2017-11-02 2019-05-10 현대자동차주식회사 차량 및 그 제어 방법
KR102461846B1 (ko) * 2017-11-02 2022-11-01 현대자동차주식회사 차량 및 그 제어 방법
CN112424042A (zh) * 2018-07-16 2021-02-26 雷诺股份公司 机动车辆的混合动力系统的控制方法

Also Published As

Publication number Publication date
DE112011102395B4 (de) 2019-06-27
CN103153686B (zh) 2015-11-25
DE112011102395T5 (de) 2013-05-02
WO2012010950A2 (en) 2012-01-26
JP4962604B2 (ja) 2012-06-27
US20130124028A1 (en) 2013-05-16
WO2012010950A3 (en) 2013-03-07
US8897942B2 (en) 2014-11-25
CN103153686A (zh) 2013-06-12

Similar Documents

Publication Publication Date Title
JP4962604B2 (ja) ハイブリッド車両の制御装置およびそれを備えるハイブリッド車両
JP4341704B2 (ja) ハイブリッド車両およびハイブリッド車両の制御方法
JP6363493B2 (ja) ハイブリッド車両
JP4434302B2 (ja) ハイブリッド車両の制御装置およびハイブリッド車両
US8892286B2 (en) Hybrid vehicle
EP2774802B1 (en) Vehicle and vehicle control method
JP5316703B2 (ja) ハイブリッド車両の制御装置およびそれを備えるハイブリッド車両
JP5804074B2 (ja) 車両および車両の制御方法
US20090277701A1 (en) Hybrid vehicle and travel control method of hybrid vehicle
JP2009143563A (ja) ハイブリッド車両
JP5696790B2 (ja) 車両および車両の制御方法
JP6319077B2 (ja) ハイブリッド車両
JP5598556B2 (ja) ハイブリッド車両およびその制御方法
JP5811181B2 (ja) 車両および車両の制御方法
JP4877047B2 (ja) ハイブリッド車両
US9878701B2 (en) Hybrid vehicle
EP2762375A1 (en) Vehicle and control method for vehicle
JP2012056559A (ja) ハイブリッド車両の制御装置
US9663100B2 (en) Hybrid vehicle
JP2006136131A (ja) 車両の制御装置
JP2013099227A (ja) 車両および車両の制御方法
JP2016155486A (ja) ハイブリッド車両
JP2012086643A (ja) ハイブリッド車両の制御装置及び制御方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120312

R151 Written notification of patent or utility model registration

Ref document number: 4962604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3