JP2012007215A - チタン銅、伸銅品、電子部品、コネクタ及びそのチタン銅の製造方法 - Google Patents
チタン銅、伸銅品、電子部品、コネクタ及びそのチタン銅の製造方法 Download PDFInfo
- Publication number
- JP2012007215A JP2012007215A JP2010144971A JP2010144971A JP2012007215A JP 2012007215 A JP2012007215 A JP 2012007215A JP 2010144971 A JP2010144971 A JP 2010144971A JP 2010144971 A JP2010144971 A JP 2010144971A JP 2012007215 A JP2012007215 A JP 2012007215A
- Authority
- JP
- Japan
- Prior art keywords
- copper
- titanium copper
- titanium
- alloy material
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- IUYOGGFTLHZHEG-UHFFFAOYSA-N copper titanium Chemical compound [Ti].[Cu] IUYOGGFTLHZHEG-UHFFFAOYSA-N 0.000 title claims abstract description 71
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 32
- 239000010949 copper Substances 0.000 title claims abstract description 14
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 10
- 238000000034 method Methods 0.000 title abstract description 23
- 239000013078 crystal Substances 0.000 claims abstract description 74
- 238000005452 bending Methods 0.000 claims abstract description 54
- 239000010936 titanium Substances 0.000 claims abstract description 49
- 239000012535 impurity Substances 0.000 claims abstract description 9
- 238000011282 treatment Methods 0.000 claims description 84
- 239000002245 particle Substances 0.000 claims description 71
- 239000000243 solution Substances 0.000 claims description 55
- 230000032683 aging Effects 0.000 claims description 40
- 238000005096 rolling process Methods 0.000 claims description 40
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 39
- 239000000956 alloy Substances 0.000 claims description 30
- 238000005097 cold rolling Methods 0.000 claims description 25
- 238000001816 cooling Methods 0.000 claims description 22
- 239000006104 solid solution Substances 0.000 claims description 15
- 229910052742 iron Inorganic materials 0.000 claims description 11
- 229910001122 Mischmetal Inorganic materials 0.000 claims description 10
- 229910052804 chromium Inorganic materials 0.000 claims description 10
- 229910052759 nickel Inorganic materials 0.000 claims description 10
- 229910052710 silicon Inorganic materials 0.000 claims description 10
- 229910052720 vanadium Inorganic materials 0.000 claims description 10
- 229910052790 beryllium Inorganic materials 0.000 claims description 9
- 229910052796 boron Inorganic materials 0.000 claims description 9
- 229910052749 magnesium Inorganic materials 0.000 claims description 9
- 229910052748 manganese Inorganic materials 0.000 claims description 9
- 229910052750 molybdenum Inorganic materials 0.000 claims description 9
- 229910052709 silver Inorganic materials 0.000 claims description 9
- 239000007787 solid Substances 0.000 claims description 9
- 229910052726 zirconium Inorganic materials 0.000 claims description 9
- 229910052758 niobium Inorganic materials 0.000 claims description 8
- 239000010731 rolling oil Substances 0.000 claims description 7
- 238000005498 polishing Methods 0.000 claims description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 abstract description 6
- 238000000227 grinding Methods 0.000 abstract description 2
- 230000000052 comparative effect Effects 0.000 description 29
- 239000000463 material Substances 0.000 description 26
- 238000010438 heat treatment Methods 0.000 description 22
- 239000002244 precipitate Substances 0.000 description 16
- 238000012360 testing method Methods 0.000 description 16
- 238000000137 annealing Methods 0.000 description 10
- 238000012545 processing Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 230000008569 process Effects 0.000 description 7
- 230000035882 stress Effects 0.000 description 7
- 238000007792 addition Methods 0.000 description 6
- 229910010165 TiCu Inorganic materials 0.000 description 5
- 230000001276 controlling effect Effects 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000000265 homogenisation Methods 0.000 description 4
- 238000005098 hot rolling Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229910004353 Ti-Cu Inorganic materials 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 238000003483 aging Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- AQXQGFFJZVRMRY-UHFFFAOYSA-N [Cu].[Ti].[Cu].[Ti] Chemical compound [Cu].[Ti].[Cu].[Ti] AQXQGFFJZVRMRY-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006757 chemical reactions by type Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000001330 spinodal decomposition reaction Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Landscapes
- Conductive Materials (AREA)
Abstract
【解決手段】Tiを1.0〜5.0質量%含有し、残部銅及び不可避的不純物からなるチタン銅であって、電子顕微鏡による圧延面の電解研磨後の表面の組織観察において、平均結晶粒径が20μm以下、結晶粒内に存在する粒径1μmより大きい第二相粒子の平均個数密度(X)が15×103個/mm2以下、結晶粒内に存在する粒径100nm〜1μmの第二相粒子の平均個数密度(Y)が35×103個/mm2以下であり、せん断帯が5本以上存在する結晶粒の割合が15〜90%であるチタン銅である。
【選択図】図1
Description
そこで、本発明はこれまでとは別異の観点からチタン銅の特性改善を試み、優れた強度及び曲げ加工性を有するチタン銅及びその製造方法を提供することを課題とする。
<Ti含有量>
Tiが1.0質量%未満ではチタン銅本来の変調構造の形成による強化機構を充分に得ることができないことから十分な強度が得られず、逆に5.0質量%を超えると粗大なTiCu3が析出し易くなり、強度及び曲げ加工性が劣化する傾向にある。従って、本発明の実施の形態に係る銅合金中のTiの含有量は、1.0〜5.0質量%であり、好ましくは1.5〜4.5質量%、更に好ましくは2.0〜4.0質量%である。このようにTiの含有量を適正化することで、電子部品用に適した強度及び曲げ加工性を共に実現することができる。
第3元素をチタン銅に添加すると、Tiが十分に固溶する高い温度で溶体化処理をしても結晶粒が容易に微細化し、強度を向上させる効果がある。また、所定の第3元素は変調構造の形成を促進する。更に、TiCu3等の析出を抑制する効果もあるため、チタン銅本来の時効硬化能が得られるようになる。
<結晶粒径>
本発明の実施の形態に係るチタン銅の一例を図1に示す。チタン銅の強度を向上させるためには結晶粒が小さいほど好ましい。そこで、好ましい平均結晶粒径は20μm以下、より好ましくは15μm以下であり、例えば5〜15μmである。下限について特に制限はないが、未再結晶領域が無く均一に再結晶させるためには、1μm以上が好ましい。本実施形態において「平均結晶粒径」は、光学顕微鏡又は電子顕微鏡による観察で圧延面の電解研磨後の表面の組織観察に対してJIS G0551の直線交差線分法により測定した。
<第二相粒子>
本発明において「第二相粒子」とは母相の成分組成とは異なる組成の粒子を指す(例えば図1の粒子11参照)。第二相粒子は種々の熱処理途中に析出するCuとTiを主成分とした粒子であり、具体的にはTiCu3粒子又は第3元素群の構成要素X(具体的にはMn、Fe、Mg、Co、Ni、Cr、V、Nb、Mo、Zr、Si、B、Ag、Be、ミッシュメタル及びPの何れか)を含むCu−Ti−X系粒子として現れる。またCu−X系粒子、Ti−X系粒子もこの「第二相粒子」に含む。
本実施形態に係るチタン銅は、結晶粒内に、筋状の凹凸を持ったせん断帯が形成されている。本実施形態において「せん断帯」とは、金属材料を圧延加工した場合、結晶表面を電解研磨したときに生じる筋状又は線状の深さ0.01〜1μmの段差を意味する(図1のせん断帯12参照)。なお、この段差は電解研磨をした際に観察される。このせん断帯は結晶粒界を跨ぐことはなく、結晶粒の内部に存在している。せん断帯の本数は結晶粒に加わったひずみの量により決まる。ひずみの量が多くなるほどせん断帯の本数は増え、せん断帯が存在する結晶粒の割合も増える。そのためせん断帯が多いと結晶粒に多くのひずみがたまっているため、曲げ性が低下する。逆に、せん断帯が少なすぎると、加工硬化の度合いが小さく、強度が不足する場合がある。
なお、従来の手順(溶体化処理→圧延→時効処理)によりチタン銅を製造する場合は、時効の熱処理により結晶粒内のひずみが解放され、せん断帯が消滅するため、電解研磨を実施しても結晶粒内にはせん断帯が表れない。
本実施形態に係る銅合金は一実施形態において以下の特性を兼備することができる。
(A)圧延平行方向の0.2%耐力が850MPa以上
(B)BadwayのW曲げ試験を行う際の曲げ表面の平均粗さRaが2.0μm以下、好ましくは1.0μm以下
(C)圧延平行方向の伸びが3%以上
(D)導電率が10%IACS以上16%IACS以下
(A)圧延平行方向の0.2%耐力が940MPa以上1000MPa以下
(B)BadwayのW曲げ試験を行う際の曲げ表面の表面粗さRaが0.5μm以上0.7μm以下
(C)圧延平行方向の伸びが6%以上12%以下
(D)導電率が10%IACS以上16%IACS以下
(A)圧延平行方向の0.2%耐力が1000MPa以上1100MPa以下
(B)BadwayのW曲げ試験を行う際の曲げ表面の平均粗さRaが0.5μm以上0.9μm以下
(C)圧延平行方向の伸びが6%以上10.0%以下
(D)導電率が10%IACS以上16%IACS以下
本実施形態に係るチタン銅は種々の伸銅品、例えば板、条、箔、管、棒及び線として提供されることができる。本発明に係るチタン銅は、限定的ではないが、スイッチ、コネクタ、ジャック、端子、リレー、電池等の電子部品の材料として好適に使用することができる。
本実施形態に係るチタン銅は、特に最終の溶体化処理及びそれ以降の工程で適切な熱処理及び冷間圧延を実施することにより製造可能である。以下に、好適な製造例を工程毎に順次説明する。
溶解及び鋳造によるインゴットの製造は、基本的に真空中又は不活性ガス雰囲気中で行う。溶解において添加元素の溶け残りがあると、強度の向上に対して有効に作用しない場合がある。よって、溶け残りをなくすため、FeやCr等の高融点の第3元素は、添加してから十分に攪拌したうえで、一定時間保持する必要がある。一方、TiはCu中に比較的溶け易いので第3元素の溶解後に添加すればよい。従って、Cuに、Mn、Fe、Mg、Co、Ni、Cr、V、N、Ag、Be、ミッシュメタル、Mo、Zr、Si、B及びPよりなる群から選択される1種又は2種以上を合計で0〜1.0質量%含有するように添加し、次いでTiを1.0〜5.0質量%含有するように添加してインゴットを製造することが望ましい。
インゴット製造時に生じた凝固偏析や晶出物は粗大なので均質化焼鈍でできるだけ母相に固溶させて小さくし、可能な限り無くすことが望ましい。これは曲げ割れの防止に効果があるからである。具体的には、インゴット製造工程後には、900〜970℃に加熱して3〜24時間均質化焼鈍を行った後に、熱間圧延を実施するのが好ましい。液体金属脆性を防止するために、熱延前及び熱延中は960℃以下とするのが好ましい。
その後、冷延と焼鈍を適宜繰り返してから溶体化処理を行うのが好ましい。ここで予め溶体化を行っておく理由は、最終の溶体化処理での負担を軽減させるためである。すなわち、最終の溶体化処理では、第二相粒子を固溶させるための熱処理ではなく、既に溶体化されてあるのだから、その状態を維持しつつ再結晶のみ起こさせればよいので、軽めの熱処理で済む。具体的には、第一溶体化処理は加熱温度を850〜900℃とし、2〜10分間行えばよい。そのときの昇温速度及び冷却速度においても極力速くし、ここでは第二相粒子が析出しないようにするのが好ましい。なお、第一溶体化処理は行わなくても良い。
最終の溶体化処理前の中間圧延における加工度を高くするほど、最終の溶体化処理における再結晶粒が均一かつ微細に生成するので、中間圧延の加工度は高めに設定する。好ましくは70〜99%である。加工度は{((圧延前の厚み−圧延後の厚み)/圧延前の厚み)×100%}で定義される。また、中間圧延の途中で、溶体化処理を数回行うことも可能である。溶体化条件は850℃〜900℃程度で2〜10分程度行えばよい。
最終溶体化処理前の銅合金素材中には鋳造又中間圧延過程で生成された析出物が存在する。この析出物は、曲げ性及び時効後の機械的特性増加を妨げる場合があるため、最終の溶体化処理では、銅合金素材中の析出物を完全に固溶させる温度に銅合金素材を加熱することが望ましい。しかしながら、析出物を完全に無くすまで高温に加熱すると、析出物による粒界のピン止め効果が無くなり、結晶粒が急激に粗大化する。結晶粒が急激に粗大化すると強度が低下する傾向にある。
最終溶体化処理に引き続いて、時効処理を行う。従来は最終溶体化処理の後は冷間圧延を行うことが通例であったが、本実施形態に係るチタン銅を得る上では最終溶体化処理の後、冷間圧延を行わずに直ちに時効処理を行うことが好ましい。従来の工程では、曲げ性と強度を両立することができなかった。高加工度では高強度だが曲げ性が悪く、低加工度では曲げ性には優れるが強度は不足した。時効処理はTi-Cu系の微細な析出物が適切な大きさと間隔で均質に分布するように、ピーク強度が得られる時効処理条件で実施する。ここで、ピーク強度とは例えば時効処理時間を一定として(例えば10時間)、時効処理温度を変化させた場合(例えば350、375、400、425、450、475、500℃の各時効処理温度で時効処理をした場合)に、最も強度(引張強さ)が高くなる条件で時効処理した場合の強度をいう。このときの時効条件は従来の工程の時効条件よりもやや高温で行うとよい。具体的には、材料温度350〜500℃で0.1〜20時間加熱することが好ましく、材料温度380〜480℃で1〜16時間加熱することがより好ましく、材料温度380〜480℃で4〜16時間加熱することがより好ましい。
上記時効処理後、最終冷間圧延を行うことにより、チタン銅の強度を高めることができる。高い強度を得ることを目的とする場合は加工度を5%以上、好ましくは10%以上、より好ましくは15%以上とする。但し、加工度が高すぎるとせん断帯の存在する結晶粒の割合が多くなり曲げ性が悪化することから加工度を35%以下、好ましくは30%以下、より好ましくは25%以下とする。なお、時効後の圧延方法を歪みが入りやすい条件にすると、せん断帯の本数が急激に増加するため、本実施形態では、同一加工度でも材料表面に歪みの入りにくい条件で圧延することが好ましい。
最終の冷間圧延の後、電子部品に適用するのに必要な応力緩和特性を得るため、歪取焼鈍を行う。歪取焼鈍の条件は慣用の条件でよいが、具体的には、材料温度200℃以上550℃未満で0.001〜20時間加熱の条件で行うのが好ましく、低温であれば長時間(例えば材料温度200〜300℃で12〜20時間加熱)、高温であれば短時間(例えば材料温度300〜400℃で0.001〜12時間加熱)の条件で行うのがより好ましい。また要求特性によっては本工程を省略することも可能である。
<結晶粒径>
結晶粒径(平均結晶粒径)の測定は、圧延面表面をリン酸67%+硫酸10%+水の溶液に15V60秒の条件で電解研磨により組織を現出させ、水洗乾燥させ観察に供した。これをFE−SEM(電解放射型走査電子顕微鏡)を用いて組織を観察し、JIS G0551の交差線分法により平均結晶粒径を求めた。
<第二相粒子の個数密度>
結晶粒径の測定と同様の条件で組織を現出させ、FE−SEMを用い、粒径と析出物の個数を計測した。また、計測対象の析出物の成分としてCu、Tiのどちらかまたは両方が含まれることは、FE−SEMのEDS(エネルギー分散型X線分析)を用いて全ての析出物に対して成分分析することにより確認した。粒径100nm以上1.0μm以下の第二相粒子と、粒径1.0μmを超える第二相粒子に分けて数え、それぞれの個数密度(Y)及び(X)を測定した。本実施例では、粒界反応型の粒子として結晶粒界に沿って析出するTi−Cu系の析出物(粒界反応相)(図1の粒界反応相13参照)については計算しないこととした。
<せん断帯>
チタン銅の圧延面表面に対して結晶粒径測定と同一条件の電解研磨により組織を現出させた。そして、電解研磨により現出させた圧延面表面の組織の凹凸を、走査型電子顕微鏡(SEM)を用いて測定した(倍率5000倍)。そして、結晶粒の表面から深さが0.01μm以上のものをせん断帯としてカウントした。具体的には、SEM写真の任意の領域に対して100μm×100μmの枠を作製し、この中に存在する結晶粒と、結晶粒内にせん断帯が5本以上存在する結晶粒の数をカウントした。枠を横切っている結晶粒については、すべて1/2個としてカウントした。
せん断帯の測定については、筋状又は線状の模様が存在する範囲の組織の凹凸を測定し、ある谷(凹部)から隣の山(凸部)までの高さが0.01μm以上である谷(凹部)を「せん断帯」としてカウントした。ここで「筋状又は線状の模様が存在する範囲」は、SEM写真(倍率5000倍)を目視することにより特定した(図1の範囲14参照)。なお、結晶粒界はせん断帯としてカウントしなかった。
そして、せん断帯が5本以上存在する結晶粒の割合を以下の様に算出した。
(せん断帯が5本以上存在する結晶粒の割合(%))=(100μm×100μmの枠内に存在するせん断帯が5本以上存在する結晶粒の個数(個/10000μm2))/(100μm×100μmの枠内に存在する全ての結晶粒の個数(個/10000μm2))×100(%)
<引張強さ>
引張方向が圧延方向と平行になるように、プレス機を用いてJIS13B号試験片を作製した。JIS−Z2241に従ってこの試験片の引張試験を行ない、圧延平行方向の破断強度(引張強さ)を測定した。
<導電率>
JIS H 0505に準拠し、4端子法で導電率(EC:%IACS)を測定した。
<伸び>
引張試験を実施したサンプルに対して、JIS−Z2241に従って、破断伸びを測定した。
<曲げ表面>
JIS Z 2248に従いW曲げ試験をBadway(曲げ軸が圧延方向と同一方向)、R/t=0で実施し、この試験片の曲げ表面を観察した。観察方法はレーザーテック社製コンフォーカル顕微鏡HD100を用いて曲げ表面を撮影し、付属のソフトウェアを用いて平均粗さRaを測定し、比較した。なお、曲げ加工前の試料表面はコンフォーカル顕微鏡を用いて観察したところ凹凸は確認できなかった。曲げ加工後の表面平均粗さRaが1.0μmを超える場合を曲げ加工後の外観に劣ると評価した。
実施例1〜5は、Ti濃度とそのTi濃度に好適な材料最高温度で最終の溶体化処理を実施した場合の例を示す。いずれの実施例も引張強さ及び伸びともに良好であった。
実施例6〜8は、仕上げ圧延の加工度を変化させた場合の例を示す。加工度を小さくすることにより、伸びが向上し、加工度を大きくすることによりせん断帯が5本以上存在する結晶粒の割合が増加した。そのために強度が増加した。
実施例9は第3元素としてFe、実施例10はCo、実施例11はCr、実施例12はNi、実施例13はZr、実施例14はMn、実施例15はFe、実施例21はV、実施例22はNb、実施例23はMo、実施例24はSi、実施例25はB、実施例26はP、実施例27はBe、実施例28はAgを単一の元素で添加した例である。また実施例16〜20、実施例29は複数の第3元素を添加したものである。いずれの実施例10〜29も第二相粒子の個数密度(X)、(Y)が小さく、引張強さ及び伸びともに良好であった。
一方、比較例1は、Tiの固溶限温度まで十分に材料最高温度を上げなかった場合の例である。比較例1では溶体化温度が固溶限温度より低いため、Tiが十分に固溶せず、最終溶体化処理前に存在した析出物が粗大化したため個数密度(X)の値が大きくなり、強度及び伸びが低下し、曲げ表面が粗くなった。
比較例2は、材料最高温度をTiの固溶限温度よりも200℃以上高い温度とした場合の例である。比較例2では最終溶体化処理時に析出物が十分に固溶しすぎたために、Tiを添加することによるピン止め効果が抑制され、母材の結晶粒径が大きくなり、強度が低下し、曲げ表面が粗くなった。
比較例3〜5は、試験片の温度が材料最高温度に達した時から水冷を開始するまでの時間である保持時間を長くした例である(比較例3は10秒、比較例4は40秒、比較例5は70秒)。保持時間を実施例に比べて長くすることにより、結晶粒径が大きくなり、曲げ表面が粗くなった。
比較例6〜9は、材料最高温度をTiの固溶限温度よりも約70〜100℃高い温度とし、試験片の温度が材料最高温度に達した時から水冷を開始するまでの時間である保持時間を長くした例である(比較例6は15秒、比較例7、9は20秒、比較例8は25秒)。材料最高温度を実施例に比べて高くし、保持時間を実施例に比べて長くすることにより結晶粒径が大きくなり、曲げ表面が粗くなった。
比較例10及び11は最終溶体化処理の昇温速度又は冷却速度を実施例よりも遅くした例である。比較例10に示すように、昇温速度を30℃/sと遅くすることにより、結晶粒径が大きくなったため、強度が低下し、曲げ表面が粗くなった。また、冷却速度を70℃/sと遅くした比較例11では、第二相粒子の個数密度(Y)の割合が増加したため強度が低下し、曲げ表面が粗くなった。
比較例12は仕上げ圧延時の加工度が0.5%と低すぎるために、せん断帯の発生する本数が少なく、せん断帯が5本以上存在する結晶粒の割合が小さくなり、強度が低下した。
比較例13では加工度を40%と高くしすぎることにより、せん断帯が多く発生し、せん断帯が5本以上存在する結晶粒の割合が大きくなったため、伸びが悪くなり、曲げ表面が粗くなった。
比較例14、16、18、20は、仕上げ圧延時の圧延荷重を140〜155kg/mmと大きくした例であり、せん断帯が多く発生し、せん断帯が5本以上存在する結晶粒の割合が大きくなったため、曲げ表面も粗くなった。
比較例15、17、19、21は、圧延油の粘度を15〜18cSTと高くした例であり、実施例に比べてせん断帯が多く発生し、せん断帯が5本以上存在する結晶粒の割合が大きくなったため、曲げ表面が粗くなった。
比較例22は、Tiの量が少なすぎるために、析出物の量が少なくなり、引張強さが低く、比較例23はTi量が多すぎるために,第二相粒子の個数密度(Y)の割合が増加し、強度が低く、曲げ表面が粗くなった。
比較例24〜27は、製造工程を従来の工程、即ち、最終溶体化処理→圧延→時効の順で行った例である。比較例24〜27ではせん断帯が存在せず、せん断帯が5本以上存在する結晶粒の割合が0%となった。比較例24は、実施例1の工程順を変えただけであるが、伸びは良好であったが強度が弱くなった。比較例25では加工度を45%まで高くした結果、強度は実施例1と同等になったが、伸びが悪くなり、曲げ表面に亀裂が発生した。比較例26では、最終溶体化処理の加熱から冷却までの保持時間を実施例より40sに長くするとともに加工度を45%と高くした例であり、結晶粒径が大きくなるとともに、伸びが悪くなり、曲げ表面に亀裂が発生した。比較例27では、保持時間を70sと長くした場合であるが、伸びは良好であったが、強度が弱くなり、曲げ表面に亀裂が発生した。
12 せん断帯
13 粒界反応相
14 筋状又は線状の模様が存在する範囲
Claims (14)
- Tiを1.0〜5.0質量%含有し、残部銅及び不可避的不純物からなるチタン銅であって、電子顕微鏡による圧延面の電解研磨後の表面の組織観察において、平均結晶粒径が20μm以下、結晶粒内に存在する粒径1μmより大きい第二相粒子の平均個数密度(X)が15×103個/mm2以下、前記結晶粒内に存在する粒径100nm〜1.0μmの第二相粒子の平均個数密度(Y)が35×103個/mm2以下であり、せん断帯が5本以上存在する結晶粒の割合が15〜90%であるチタン銅。
- 伸びが3.0%以上、引張強さが850MPa以上である請求項1に記載のチタン銅。
- 曲げ表面の平均粗さRaが2.0μm以下である請求項1又は2に記載のチタン銅。
- 第3元素群としてMn、Fe、Mg、Co、Ni、Cr、V、Nb、Mo、Zr、Si、B、Ag、Be、ミッシュメタル及びPよりなる群から選択される1種又は2種以上を、合計で0〜1.0質量%含有する請求項1〜3のいずれか1項に記載のチタン銅。
- 請求項1〜4いずれか1項記載のチタン銅からなる伸銅品。
- 請求項1〜4いずれか1項記載のチタン銅からなる電子部品。
- 請求項1〜4いずれか1項記載のチタン銅を備えたコネクタ。
- Tiを1.0〜5.0質量%含有し、第3元素群としてMn、Fe、Mg、Co、Ni、Cr、V、N、Ag、Be、ミッシュメタル、Mo、Zr、Si、B及びPよりなる群から選択される1種又は2種以上を合計で0〜1.0質量%含有し、残部銅及び不可避的不純物からなる銅合金素材に対して、
前記銅合金素材を、550〜1000℃においてTiの固溶限が添加量と同じになる固溶限温度になるまで加熱し、前記銅合金素材が前記固溶限温度に達した直後に、急冷する溶体化処理を行い、
溶体化処理に続いて時効処理を行い、
時効処理に続いて最終冷間圧延を行うことを含む、
チタン銅の製造方法。 - 前記溶体化処理が、
前記銅合金素材が前記固溶限温度に達してから5秒以内に前記銅合金素材を冷却することを含む請求項8に記載のチタン銅の製造方法。 - 前記溶体化処理が、前記銅合金素材を40℃/s以上で昇温することを含む請求項8又は9に記載のチタン銅の製造方法。
- 前記溶体化処理が、前記銅合金素材を90℃/s以上で冷却することを含む請求項8〜10のいずれか1項に記載のチタン銅の製造方法。
- 前記最終冷間圧延が、加工度5〜30%で行うことを含む請求項8〜11のいずれか1項に記載のチタン銅の製造方法。
- 前記最終冷間圧延が、幅方向の単位長さ当たりの圧延荷重50〜115kg/mmで行うことを含む請求項8〜12のいずれか1項に記載のチタン銅の製造方法。
- 前記最終冷間圧延が、圧延油の粘度を5〜13cSTで行うことを含む請求項8〜13のいずれか1項に記載のチタン銅の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010144971A JP4663030B1 (ja) | 2010-06-25 | 2010-06-25 | チタン銅、伸銅品、電子部品、コネクタ及びそのチタン銅の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010144971A JP4663030B1 (ja) | 2010-06-25 | 2010-06-25 | チタン銅、伸銅品、電子部品、コネクタ及びそのチタン銅の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP4663030B1 JP4663030B1 (ja) | 2011-03-30 |
JP2012007215A true JP2012007215A (ja) | 2012-01-12 |
Family
ID=43952830
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010144971A Active JP4663030B1 (ja) | 2010-06-25 | 2010-06-25 | チタン銅、伸銅品、電子部品、コネクタ及びそのチタン銅の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4663030B1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012097308A (ja) * | 2010-10-29 | 2012-05-24 | Jx Nippon Mining & Metals Corp | 銅合金、伸銅品、電子部品及びコネクタ |
EP2784167A1 (en) * | 2013-03-25 | 2014-10-01 | Dowa Metaltech Co., Ltd. | Cu-Ti based copper alloy sheet material and method for producing the same, and electric current carrying component |
JP2015175053A (ja) * | 2014-03-17 | 2015-10-05 | Dowaメタルテック株式会社 | Cu−Ti系銅合金板材およびその製造方法並びに通電部品 |
JP2015190044A (ja) * | 2014-03-28 | 2015-11-02 | Dowaメタルテック株式会社 | Cu−Ti系銅合金板材およびその製造方法並びに通電部品 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005097638A (ja) * | 2003-09-22 | 2005-04-14 | Nikko Metal Manufacturing Co Ltd | 曲げ加工性に優れた高強度銅合金 |
JP2006283142A (ja) * | 2005-03-31 | 2006-10-19 | Nikko Kinzoku Kk | 曲げ加工性に優れた高強度銅合金 |
JP2010126777A (ja) * | 2008-11-28 | 2010-06-10 | Dowa Metaltech Kk | 銅合金板材およびその製造方法 |
-
2010
- 2010-06-25 JP JP2010144971A patent/JP4663030B1/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005097638A (ja) * | 2003-09-22 | 2005-04-14 | Nikko Metal Manufacturing Co Ltd | 曲げ加工性に優れた高強度銅合金 |
JP2006283142A (ja) * | 2005-03-31 | 2006-10-19 | Nikko Kinzoku Kk | 曲げ加工性に優れた高強度銅合金 |
JP2010126777A (ja) * | 2008-11-28 | 2010-06-10 | Dowa Metaltech Kk | 銅合金板材およびその製造方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012097308A (ja) * | 2010-10-29 | 2012-05-24 | Jx Nippon Mining & Metals Corp | 銅合金、伸銅品、電子部品及びコネクタ |
EP2784167A1 (en) * | 2013-03-25 | 2014-10-01 | Dowa Metaltech Co., Ltd. | Cu-Ti based copper alloy sheet material and method for producing the same, and electric current carrying component |
JP2015175053A (ja) * | 2014-03-17 | 2015-10-05 | Dowaメタルテック株式会社 | Cu−Ti系銅合金板材およびその製造方法並びに通電部品 |
JP2015190044A (ja) * | 2014-03-28 | 2015-11-02 | Dowaメタルテック株式会社 | Cu−Ti系銅合金板材およびその製造方法並びに通電部品 |
Also Published As
Publication number | Publication date |
---|---|
JP4663030B1 (ja) | 2011-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI460294B (zh) | Titanium and copper for electronic parts | |
JP4191159B2 (ja) | プレス加工性に優れたチタン銅 | |
JP5226057B2 (ja) | 銅合金、伸銅品、電子部品及びコネクタ | |
JP5226056B2 (ja) | 銅合金、伸銅品、電子部品及びコネクタ | |
JP5490439B2 (ja) | 電子部品用チタン銅の製造方法 | |
JP5319590B2 (ja) | 銅合金、銅合金の製造方法及び電子部品の製造方法 | |
TWI413698B (zh) | Titanium and copper for electronic parts | |
JP5611773B2 (ja) | 銅合金及びこれを用いた伸銅品、電子部品及びコネクタ及び銅合金の製造方法 | |
JP6080823B2 (ja) | 電子部品用チタン銅 | |
JP4663031B1 (ja) | チタン銅、伸銅品、電子部品及びコネクタ | |
JP5544316B2 (ja) | Cu−Co−Si系合金、伸銅品、電子部品、及びコネクタ | |
JP4663030B1 (ja) | チタン銅、伸銅品、電子部品、コネクタ及びそのチタン銅の製造方法 | |
JP4961049B2 (ja) | 電子部品用チタン銅 | |
JP5393629B2 (ja) | チタン銅及びこれを用いた伸銅品、電子部品及びコネクタ | |
JP6080822B2 (ja) | 電子部品用チタン銅及びその製造方法 | |
JP5378286B2 (ja) | チタン銅及びその製造方法 | |
JP5319578B2 (ja) | 電子部品用チタン銅の製造方法 | |
JP6629400B1 (ja) | 時効処理前のチタン銅板、プレス加工品およびプレス加工品の製造方法 | |
JP2016211077A (ja) | チタン銅 | |
JP5514762B2 (ja) | 曲げ加工性に優れたCu−Co−Si系合金 | |
JP6310131B1 (ja) | 電子部品用チタン銅 | |
JP2021066899A (ja) | チタン銅板、プレス加工品およびプレス加工品の製造方法 | |
JP2013204138A (ja) | チタン銅及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101102 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4663030 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140114 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |