JP2011513921A - 複数の放出層を有するマイクロチャネルプレートデバイス - Google Patents

複数の放出層を有するマイクロチャネルプレートデバイス Download PDF

Info

Publication number
JP2011513921A
JP2011513921A JP2010548825A JP2010548825A JP2011513921A JP 2011513921 A JP2011513921 A JP 2011513921A JP 2010548825 A JP2010548825 A JP 2010548825A JP 2010548825 A JP2010548825 A JP 2010548825A JP 2011513921 A JP2011513921 A JP 2011513921A
Authority
JP
Japan
Prior art keywords
microchannel plate
layer
substrate
emissive layer
emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010548825A
Other languages
English (en)
Inventor
ニール ティー. サリバン,
デイビッド ビューリュー,
アントン トレムシン,
ルーフィグナック, フィリップ デ
マイケル ディー. ポッター,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arradiance Inc
Original Assignee
Arradiance Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40997610&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2011513921(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Arradiance Inc filed Critical Arradiance Inc
Publication of JP2011513921A publication Critical patent/JP2011513921A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/06Electrode arrangements
    • H01J43/18Electrode arrangements using essentially more than one dynode
    • H01J43/24Dynodes having potential gradient along their surfaces
    • H01J43/246Microchannel plates [MCP]

Landscapes

  • Electron Tubes For Measurement (AREA)

Abstract

マイクロチャネルプレートは、基板を含み、この基板は、基板の上部表面から基板の下部表面に延びる複数の孔を規定する。複数の孔は第1の放出層を形成する外側表面に抵抗材料を有する。第2の放出層は、第1の放出層の上に形成される。第2の放出層は、時間の関数として二次電子放出効率の増加および利得劣化の減少のうちの少なくとも1つを達成するために選ばれる。上部電極は基板の上部表面に形成され、下部電極は基板の下部表面に形成される。

Description

本明細書において用いられるセクションの表題は、編成の目的のみのためであり、本出願において説明される主題を限定するものとして解釈されるべきではない。
(連邦政府の研究についての声明)
本発明は、国防高等研究計画局(DARPA)によって授与された助成金番号HR0011−05−9−0001の下で政府支援によってなされた。政府は、本発明に一定の権利を有する。
(発明の背景)
マイクロチャネルプレート(MCP)は、イオンおよび電子によって生成される非常に弱い信号を検出するために用いられる。例えば、マイクロチャネルプレートは、光増幅デバイスにおける電子増倍管として一般的に用いられる。マイクロチャネルプレートは、高抵抗材料のスラブであり、スラブを通って延びる複数の小さな管またはスロット(マイクロチャネルとして公知である)を有する。マイクロチャネルは、互いに平行であり、表面に対して少し角度をつけて位置を決められ得る。マイクロチャネルは通常、密に分布させられる。高二次電子放出効率を有する高抵抗層が、複数のチャネルの各々の内側表面上に形成され、その結果、その高抵抗層はダイノードとして機能を果たす。伝導性コーティングがマイクロチャネルプレートを備えているスラブの上部表面および下部表面に形成される。
動作時、加速電圧がマイクロチャネルプレートの上部表面および下部表面上の伝導性コーティング全体に印加される。加速電圧は、複数のチャネルの各々の向かい合う端部の間に電位の傾きを作る。複数のチャネル内を進行するイオンおよび電子が加速される。これらのイオンおよび電子は、高二次電子放出効率を有する高抵抗層に衝突し、それによって、二次電子を生成する。二次電子は、加速され、抵抗層との多数の衝突を受ける。その結果、電子は、複数のチャネルの各々の内部で増幅される。電子は、ついには複数のチャネルの各々のアノード端部を通過する。電子は、蛍光面などの電子感応画面上に画像を形成するために、検出され得るかまたは用いられ得る。
(図面の簡単な説明)
好ましい例示的な実施形態に従う、本発明は、そのさらなる利点と共に、添付の図面に関連して解される以下の詳細な説明においてより具体的に説明される。図面は必ずしも縮尺どおりではなく、その代わり概して、本発明の例示の原理が強調される。
(詳細な説明)
本明細書において「一実施形態」または「実施形態」と言及することは、実施形態に関連して説明される特定の特徴、構造、または特性が本発明の少なくとも一つの実施形態に含まれることを意味する。本明細書における様々な箇所における句「一実施形態において」が出現することがすべて同じ実施形態を言及するとは限らない。
本発明が動作可能な状態である限り、本発明の方法の個々のステップが任意の順序で、そして/または同時に実行され得ることは理解されるべきである。さらに、本発明が動作可能な状態である限り、本発明の装置および方法が任意の数またはすべての説明される実施形態を含み得ることは理解されるべきである。
本教示は、添付の図面に示されるような本教示の例示的実施形態を参照して、ここでより詳細に説明される。本教示は様々な実施形態および実施例に関連して説明されるが、本教示がそのような実施形態に限定されることは意図されない。それどころか、本教示は、当業者によって理解されるように、様々な代案、改変および均等物を包含する。本明細書の教示にアクセスする当業者は、本明細書に説明されるように本開示の範囲内であるさらなる実装、改変、実施形態、ならびに他の使用分野を認識する。
本発明は、強化された二次電子放出を示す連続ダイノードを有するマイクロチャネルプレートデバイスに関する。本発明の様々な実施形態において、少なくとも第1および第2の放出層は、マイクロチャネルプレートの複数のチャネルの各々において形成される。公知のマイクロチャネルプレートのほとんどは、ガラスから製作される。例えば、1つの一般的なタイプのマイクロチャネルプレートは、ガラスプレートに複数の小さい孔を形成することによって製作される。しかしながら最近、マイクロチャネルプレートは半導体材料から構成される。当業者は、本発明の方法が従来のガラスマイクロチャネルプレートと、半導体マイクロチャネルプレートと、セラミックマイクロチャネルプレートとを含む任意のタイプのマイクロチャネルプレートと共に用いられ得ることを理解する。
図1Aは、本発明に従う複数の放出層を有するマイクロチャネルプレートの断面の斜視図を例示する。 図1Bは、本発明に従う複数の放出層を有する単一チャネル電子増倍管の斜視図を例示する。 図1Cは、本発明に従うマイクロチャネルプレートの単一孔または単一チャネル電子増倍管の断面を例示する。 図2Aは、従来のマイクロチャネルプレートに対する出力電流の関数としての利得と本発明に従って第1および第2の放出層を有するマイクロチャネルプレートに対する出力電流の関数としての利得とを比較する実験結果を例示する。 図2Bは、単一の放出層を有する従来のマイクロチャネルプレートに対する抽出電荷および本発明に従って第2の放出層を有するマイクロチャネルプレートに対する抽出電荷から結果として生ずる利得劣化データを例示する。 図2Cは、本発明に従って第2の放出層を有するマイクロチャネルプレートに対する利得回復データの図を例示する。
図1Aは、本発明に従う複数の放出層を有するマイクロチャネルプレート100の断面の斜視図を例示する。マイクロチャネルプレート100は基板102を含み、基板102は基板102の上部表面106から基板102の下部表面108に延びる複数のマイクロチャネルまたは孔104を規定する。
多数のタイプの基板材料がマイクロチャネルプレート100に用いられ得る。例えば、基板材料は、長年にわたり従来のガラスマイクロチャネルプレートに用いられてきたガラスファイバのプレートと同じプレートであり得る。例えば、Microchannel Plate Detectors、Joseph Wiza、Nuclear Instruments and Methods、Vol.162、1979、587〜601ページを参照されたい。
シリコンは、最近、マイクロチャネルプレートのための基板として用いられてきた。例えば、本譲受人に譲渡されている、Lockwoodへの米国特許第6,522,061 B1号を参照されたい。シリコンマイクロチャネルプレートは、ガラスマイクロチャネルプレートと比較していくつかの利点を有する。シリコンマイクロチャネルプレートは、より正確に製作され得る。なぜなら、孔は、ガラスマイクロチャネルプレートのような手動の積み重ねとは異なり、リソグラフィにより規定され得るからである。非常に高度に開発されているシリコン処理技術は、そのようなマイクロチャネルプレートを製作することに適用され得る。また、シリコン基板は、他の材料との処理適合性がはるかに高く、高温処理に耐え得る。対照的に、ガラスマイクロチャネルプレートは、シリコンマイクロチャネルプレートよりはるかに低い温度で溶融する。さらにシリコンマイクロチャネルプレートは、他のデバイスと容易に一体化され得る。例えば、シリコンマイクロチャネルプレートは、様々なタイプの他の電子デバイスおよび光学デバイス(例えば、光検出器)、MEMS、および様々なタイプの電気および光学の集積回路などと容易に一体化され得る。当業者は、基板材料が多数の他の種類の絶縁基板材料のうちの任意1つであり得ることを理解する。
マイクロチャネルプレート100における複数の孔104の各々は、少なくとも2つの放出層を含む。本発明に従うマイクロチャネルプレートは、孔に形成される任意の数の放出層を含み得る。様々な実施形態において、他の抵抗層は、複数の孔104の外側表面、放出層間、および/または外側の放出層の外側表面に形成され得る。また、様々な実施形態において、薄い伝導性層は、複数の孔104の外側表面、放出層間、および/または外側の放出層の外側表面に形成され得る。様々な可能な抵抗層および伝導性層は、図1Cに関連してより詳細に説明される。
伝導性電極110、112は、マイクロチャネルプレート100の上部表面106および下部表面108に堆積される。伝導性電極110、112は、マイクロチャネルプレート100において複数の孔104に電気的接触を提供する。電源114は、複数のマイクロチャネルプレートにバイアス電圧を提供するように、マイクロチャネルプレート100の上部方面106および下部表面108に電気的に接続される。電源114はマイクロチャネルプレート110にバイアスをかけ、その結果、複数の孔104の各々は連続ダイノードとしての機能を果たす。
図1Bは、本発明に従う複数の放出層を有する単一チャネル電子増倍管150の斜視図を例示する。単一チャネル電子増倍管150は、図1Aに関連して説明されたマイクロチャネルプレート100に構造および動作上、類似している。しかしながら、単一チャネル電子増倍管150は、1つの電子増倍チャネル152のみを含む。単一の放出層を有する類似した単一チャネル電子増倍管デバイスが市販されている。
単一チャネル電子増倍管150は電源154を含み、電源154は電子増倍管150の上部表面156および下部表面158に電気的に接続される出力を有する。単一チャネル電子増倍管150の破断部分は、複数の放射層160を示す。破断部分はまた、電子増倍164を生成するイオン162、および結果として生ずる出力電子166を示す。
図1Cは、本発明に従うマイクロチャネルプレートまたは単一チャネル電子増倍管の単一孔180の断面を例示する。第1の放出層182は、孔180の外側表面に形成される。第1の放出層182は、比較的高い二次電子放出効率を有する抵抗材料である。いくつかの実施形態において、第1の放出層182は、従来のマイクロチャネルプレートに一般的に用いられる鉛低減ガラス層などの鉛低減ガラス層である。様々な他の実施形態において、第1の放出層182は、Al、SiO、MgO、SnO、BaO、CaO、SrO、Sc、Y、La、ZrO、HfO、CsO、Si、Si、C(ダイヤモンド)、BN、およびAlNのうちの少なくとも1つである。
いくつかの実施形態において、薄い障壁層184は、第1の放出層182が形成される前に、孔180の外側表面に形成される。薄い障壁層184は、二次電子放出を改善するかまたは最適化するために用いられ得る。さらに、薄い障壁層184は、孔180の外側表面を不動態化し、イオンが孔180の表面から移動するのを防ぐために用いられ得る。マイクロチャネルプレート内に維持され、孔180を通して電子を動かす静電界はまた、孔180を通して、光電陰極またはマイクロチャネルプレートと共に使用する他の下流のデバイスもしくは器具の方に移動する任意の陽イオンを動かす。これらの陽イオンは、水素、酸素、および窒素などのかなりの大きさの気体原子の原子核を含み得る。これらの気体原子は、電子よりはるかに質量がある。そのような気体の陽イオンは光電陰極に衝突し得、光電陰極に物理的および化学的損傷を引き起こし得る。孔180内に存在するかまたは光電陰極に隣接した他の気体原子は、光電陰極に化学的に結合し、光電陰極を害することに効果があり得る。
一実施形態において、障壁層186は、第1の放出層182の上部に形成される。障壁層186は、第1の放出層182とそれに続く放出層との間に障壁を形成する。障壁層186の抵抗は、特定の性能、寿命、および/または収量目標(マイクロチャネルプレートの所定の電流出力を達成することなど)を達成するように調整され得る。これらの実施形態のいくつかにおいて、障壁層186は、第1の放出層182の上に堆積されるかまたは成長させられる半導体材料の層である。一特定の実施形態において、障壁層186は、当該分野において公知の多くの堆積技術のうちの1つによって堆積される金属酸化物層である。
一実施形態において、障壁層186は、第1の放出層182と第2の放出層との間の材料界面に複数の電荷トラップを形成するために選ばれる。電荷トラップが伝導性層から満たされるとき、電荷トラップは、放出された二次電子を取り替えるための電子の強化された供給源と、電子放出の可能性を実質的に増加させる電界強化との両方を提供し、それによって二次電子産出を増加させる。例えば、鉛ガラスマイクロチャネルプレートを用いる実施形態において、二次電子放出表面は、SiOの薄膜層を含み得る。
SiOゲート誘電体にAlなどの第2の誘電体を追加することが結果としてSiO/Al材料界面に位置を定められる界面状態の数の増加をもたらすことは、MOSトランジスタに関する研究から当該分野において公知である。MOSトランジスタにおけるこれらの界面状態が電子電荷トラップとして働くことは公知である。マイクロチャネルプレートにおいてこれらの電荷トラップが孔構造内の電界を変化させ、孔構造は、増倍処理の結果、孔の中に放出する電子電荷を補充するデバイスの能力を高めるように働くことが発見された。また、占有された電荷トラップは、高められた電界を提供し、高められた電界は、生成された電子が放出する確率を実質的に増加させ、従って、二次電子産出を増加させる。この電荷トラップ機構は、タイムリーな電子補充を可能にすることによって、高められた二次電子放出を支持し、デバイスのタイミング性能をも改善する。
さらに孔180は、第1の放出層182または障壁層186の上に形成される第2の放出層188を含む。様々な実施形態において、第2の放出層188はまた、Al、SiO、MgO、SnO、BaO、CaO、SrO、Sc、Y、La、ZrO、HfO、CsO、Si、Si、C(ダイヤモンド)、BN、およびAlNのうちの少なくとも1つであり得る。いくつかの実施形態において、第2の放出層188の厚さおよび材料特性は、概して、単一の放出層によって作製される従来のマイクロチャネルプレートと比較してマイクロチャネルプレートの二次電子放出効率を増加させるために選ばれる。いくつかの実施形態において、第2の放出層188の厚さおよび材料特性は、概してイオン移動に対する障壁を提供するために選ばれる。イオン移動に対するこのような障壁は、電荷トラップ特性を制御するために使用され得る。
図1Cは、第1の放出層182および第2の放出層188を有するマイクロチャネルプレートを例示する。しかしながら、当業者は、マイクロチャネルプレートが本発明に従って任意の数の放出層によって製作され得ることを理解する。3つ以上の放出層を含む実施形態において、異なる放出層の組成および厚さの多くの可能な組合せがある。さらに、複数の放出層が伝導性もしくは抵抗の障壁層を有するかまたは無しで積み重ねられ得る。
第2の放出層(およびそれに続く放出層)の厚さおよび材料特性はまた、特定の性能、寿命、および/または歩留まりの目標を達成するように選ばれ得る。いくつかの実施形態において、第2の放出層の厚さおよび組成のうちの少なくとも1つは、マイクロチャネルプレートの二次電子放出効率および信号対雑音比などのデバイス性能を最大にするために選ばれる。また、いくつかの実施形態において、第2の放出層188の厚さおよび組成のうちの少なくとも1つは、マイクロチャネルプレートの電界の均一性を最適化し、マイクロプレート全体の画像歪みを最小にするために選ばれる。
また、一実施形態において、第2の放出層の厚さおよび組成のうちの少なくとも1つは、マイクロチャネルプレートにおける電界にわたる利得均一性を最大にするために選ばれ、画像歪みを減少させる。隣接した孔間において抵抗および電子放出における重大な孔対孔の相違があり得る。これらの相違は、ガラスマイクロチャネルプレートにおいて特に重大である。なぜなら、孔を規定するために用いられるファイバは異なる時間に製造され、このことは、結果として、個々の孔性能(例えば、利得)に影響を与える、組成の相違をもたらすからである。第2の放出膜を適用することは、マイクロチャネルプレートデバイス内のすべての孔に同じ処理ステップを受けさせ、このことは、より均一な孔対孔デバイス性能をもたらす。第2の放出膜はまた、場の均一性の強化および画像歪みの減少により全デバイス性能の改善という結果をもたらす。
本発明の一局面は、第2の放出層188が第1の放出層182の上に直接形成され得ることである。本発明のこの実施形態において、任意のタイプの製造されるマイクロチャネルプレートの性能は、本発明の方法を用いることによって高められ得る。すなわち、第2の放出層または複数の放出層は、先に製造されたマクロチャネルプレートの孔に形成され得、マイクロチャネルプレートの性能を高め得る。
実験は、原子層堆積(ALD)によって、先に製造されたマイクロチャネルプレートにAlを堆積することがマイクロチャネルプレートの性能を実質的に高めることを示した。原子層堆積は、数オングストロームもの薄い厚さを有する非常に均一な、ピンホールのない膜を生成することにおいて有効であることが示された。ALDによって堆積される膜は、物理蒸着法(PVD)、熱蒸発、および化学蒸着法(CVD)などの他の堆積方法と比較して、比較的高い品質と、高い膜完全性とを有する。
原子層堆積(ALD)は、極度に薄いコーティングを作るために用いられる気相化学処理である。原子層堆積は、自己制限反応(self−limiting reaction)を用いるCVDの変種である。用語「自己制限反応」は、本明細書において、なんらかの方法で自身を制限する反応を意味することであると定義される。例えば、自己制限反応は、反応物が反応によって完全に消費された後に、または堆積表面の反応領域が一旦占有されると、終了することによって自身を制限し得る。
原子層堆積反応は、典型的には2つの薬品を用い、その2つの薬品は時々前駆物質薬品と呼ばれる。これらの前駆物質薬品は、連続して1回に1度、表面に反応する。薄膜は、前駆物質を成長表面に繰り返し露出することによって堆積される。ALDの一方法は、一種類の前駆物質気体のパルスを反応チャンバに連続して注入する。所定の時間後、異なる種類の前駆物質気体の別のパルスが反応チャンバの中に注入され、所望の材料の単一層を形成する。この方法は、所望の厚さを有する膜が成長表面に堆積されるまで繰り返される。
本発明のマイクロチャネルプレートの別の局面は、第2の放出層188および第1の放出層182に形成される任意の他の抵抗層および伝導性層が第1の放出層182を保護し、不動態化することである。すなわち、第2の放出層188、および第2の放出層182上に形成された任意の他の抵抗層および伝導性層は、電荷トラップ特性を制御するために使用され得るイオン移動に対する障壁を提供し得る。放出層は容易に損傷され得る。ガラスマイクロチャネルプレートにおいて、Pbガラス調合に含まれるアルカリ金属は、バルク材料において比較的安定している。しかしながら、放出層を形成するマイクロチャネルの外側表面上の鉛低減ケイ酸ガラス(RLSG)に含まれるアルカリ金属は、膜構造内において単に遊離して保持される。なぜなら、高温の水素環境へのアルカリ金属の露出が、材料構造における接合を壊す酸素を除去するからである。電子増倍中に起る電子衝撃は、これらの要素を膜から腐蝕する。この腐食は、時間の経過によりマイクロチャネルプレートの利得を劣化させる。ケイ素マイクロチャネルプレートにおいて、放出層は典型的には非常に薄いコーティングであり、これもまた通常のデバイス動作中に起る電子衝突中に腐食する。
従って、様々な実施形態において、第2の放出層の厚さおよび組成のうちの少なくとも1つは、マイクロチャネルプレートを不動態化するために選ばれ得、その結果、マイクロチャネルから放出されるイオン数は減少させられる。マイクロチャネルプレートから放出されるイオンの数を減少させることは、マイクロチャネルプレートの寿命を改善する。マイクロチャネルプレートを不動態化するために第2の放出層の厚さおよび組成を選ぶこともまた、処理歩留まりを改善する。
本発明のマイクロプレートのなおも別の局面は、第1の放出層182および第2の放出層188が互いに無関係に最適化され得ることである。第1の放出層182および第2の放出層188はまた、様々な性能、寿命、および歩留まりの目標を達成するために、他のマイクロプレートパラメータとは無関係に最適化され得る。例えば、二次電子放出層182、188は、高いもしくは最大の二次電子放出効率または長いもしくは最大の寿命を達成するために別個に最適化され得る。
様々な放出層を独立して最適化する能力は重要である。なぜなら、マイクロチャネルプレートの性能は、孔における連続ダイノードを形成する結合された放出層の特性によって決定されるからである。連続ダイノードは、少なくとも3つの異なる機能を提供する放出および伝導性の表面特性を有しなければならない。第1に、連続ダイノードは、効率的な電子増倍に望ましい放出表面特性を有しなければならない。第2に、連続ダイノードは、放出層が放出された電子を置き換えるのに適切な電流を支持することを可能にする伝導特性を有しなければならない。第3に、連続ダイノードは、放出された電子に対する加速電界を確立することを可能にする伝導特性を有しなければならない。
公知のマイクロチャネルプレートの放射層において二次電子の生成を最大にすることは、結果として、放出された電子を置き換えるに必要な電流を適切に支持するには高過ぎる抵抗を有する放出層かまたは電子を放出することが可能な加速電界を確立するのには低過ぎる抵抗を有する放出層をもたらし得る。すなわち、結合された放出層が、放出された電子を置き換えるのに適切であり、放出された電子のための加速電界を確立するのに適切である電流を支持することを可能にする伝導特性を達成するのに必要な抵抗は、典型的には二次電子放出を最大にする抵抗値ではない。
結果として、これらの3つの機能、すなわち二次電子を放出すること、放出された電子を置き換えること、および放出された電子のための加速電界を確立することの性能は、典型的には単一の放射層によって同時に最大化されることは可能ではない。従って、先行技術の単一の放出層マイクロチャネルプレートデバイスにおいて、放出層の二次放出特性は、二次電子放出を最大にするために最適化されることは可能ではなく、従って、マイクロチャネルプレートの感度性能を最大にするために最適化されることは可能ではない。実際は、ほとんどの公知のマイクロチャネルプレートは、二次電子放出を最適化するよりはむしろ放出層の抵抗を最適化するように製作される。本発明の方法は、様々な放出層が1つ以上の性能、寿命または歩留まりの目標に対して独立して最適化されることを可能にする。
図2Aは、従来のマイクロチャネルプレートに対する出力電流および本発明に従って第1の放出層と第2の放出層とを有するマイクロチャネルプレートに対する出力電流の関数として利得を比較する実験結果を例示する。単一の放出層を有する従来のマイクロチャネルプレートに関する、図2Aに示されるデータは、暗視デバイスにおいて一般的に用いられる製造されたマイクロチャネルプレートデバイスを用いてとられた。本発明に従って第1および第2の放出層を有するマイクロチャネルプレートに関するデータは、同じ製造されたマイクロチャネルプレートデバイスであって、第2の放出層を形成するために本発明の方法によってさらに処理された、マイクロチャネルプレートデバイスを用いてとられた。本発明のマイクロチャネルプレートの1つの特徴は、これらのマイクロチャネルプレートデバイスの性能を高めるために、製造された完全に既製のデバイス上に複数の放出層が形成され得ることである。
データは、3つの異なる同様に製造されたマイクロチャネルプレートデバイスに関して提示される。同様に製造されたマイクロチャネルプレートデバイスは、約4.8ミクロンに等しい孔直径と、約240ミクロンに等しいマイクロチャネルプレート厚さと、約50に等しい孔長さ対孔直径比率とを有する。同様に製造されたマイクロチャネルプレートは、動作中、880ボルトでバイアスをかけられた。利得データは、単一の放出層を有する3つの異なる同様に製造されたマイクロチャネルプレートデバイスに関してナノアンペアで出力電流の関数として提示される。平均利得は、約800であると決定された。
3つの異なる同様に製造されたマイクロチャネルプレートデバイスは次いで、本発明の方法によってさらに処理され、第2の放出層を形成した。10ナノメートルのAl放出層は、同様に製造されたマイクロチャネルプレートの最初の単一の放出層上に直接形成された。利得データは、本発明に従って形成された第2の放出層を有する3つの同様に製造されたマイクロチャネルプレートデバイスに対して、ナノアンペアで出力電流の関数として提示される。平均利得は、約7,500と決定された。従って、本発明に従う第2の放出層は、約9.4の利得乗数を提供した。
類似の実験が、市販されている第2のタイプのマイクロチャネルプレートデバイスを用いてプレフォームされた。この第2のタイプのマイクロチャネルプレートデバイスは、第1のタイプのマイクロチャネルプレートデバイスと比較して比較的大きな寸法を有する。第2のタイプのマイクロチャネルプレートデバイスは、約10ミクロンに等しいマイクロチャネルプレート孔直径と、約400ミクロンに等しいマイクロチャネルプレート厚さと、約40に等しい孔長さ対孔直径比率とを有するように製造された。第2のタイプのマイクロチャネルプレートデバイスは、約22,000の既製の利得を有するように測定された。
3つの第2のタイプのマイクロチャネルプレートデバイスは次いで、本発明の方法によってさらに処理され、第2の放出層を形成した。10ナノメートルのAl放出層は、マイクロチャネルプレートデバイスにおける最初の放出層上に直接形成された。利得データは、本発明に従って形成された第2の放出層を有する第2のタイプのマイクロチャネルプレートデバイスに対して、ナノアンペアで出力電流の関数として提示される。平均利得は、約235,000と決定された。従って、第2の放出層は、約10.7の利得乗数を提供した。
図2Bは、単一の放出層を有する従来のマイクロチャネルプレートおよび本発明に従って形成された第2の放出層を有するマイクロチャネルプレートに対する抽出された電荷に起因する利得劣化データ250を例示する。利得劣化データは、90fA/孔の入力電流および1,000Vバイアスによって動作するマイクロチャネルプレートデバイスに対して獲得された。
相対利得データは、クーロン/cm2で全抽出電荷密度の関数として描かれた。相対利得劣化データ250は、全抽出電荷の関数として本発明に従って製作された第2の放出層を有するマイクロチャネルプレートに対する利得劣化が実質的により少ないことを示す。利得劣化データは、第2の放出層がマイクロチャネルプレートの寿命を実質的に伸ばし得ることを示す。
図2Cは、本発明に従って第2の放出層を有するマイクロチャネルプレートに対する利得回復データの図表を例示する。利得データは、暗視デバイスにおいて一般的に用いられる従来の単一放出層を有する製造されたマイクロチャネルプレートに関して提示される。さらに、利得データは、デバイスが高電流に曝される初期通電テスト期間後、同じ製造されたマイクロチャネルプレートデバイスに関して提示される。最大値が結果として10μA出力電流(これはデバイスストリップ電流のおおよそ10倍)となる入力電流ステップにわたる通電テスト期間中の全抽出電荷は、約0.01クーロンであった。利得回復データの比較は、通電テスト期間中に動作に起因する利得の実質的な降下を示す。
さらに、利得回復データは、第2の放出層が本発明に従って形成された後、同じ製造されたマイクロチャネルプレートデバイスに関して提示される。第2の放出層は、おおよそ7.5nm厚であるAl層である。データは、結果として生じる利得が最初に製造されたデバイスの利得よりも実質的に高いことを示す。従って、本発明に従って第2の放出層を形成することは、結果として、劣化したマイクロチャネルプレートデバイスを修理するかまたは「治し(healing)」、初期利得の実質的な改善をもたらす。
(均等物)
本教示が様々な実施形態および実施例に関連して説明されるが、本教示がそのような実施形態に限定されることは意図されない。それどころか、本教示は様々な代案、改変および均等物を包含し、当業者によって理解されるように、それらは本発明の精神および範囲内から逸脱することなく本明細書内に含まれ得る。

Claims (25)

  1. a.基板であって、該基板は、該基板の上部表面から該基板の下部表面に延びる複数の孔を規定し、該複数の孔は第1の放出層を形成する外側表面に抵抗材料を有する、基板と、
    b.該第1の放出層の上に形成される第2の放出層であって、該第2の放出層は、時間の関数として、二次電子放出効率の増加および利得劣化の減少のうちの少なくとも1つを達成するように選ばれる、第2の放出層と、
    c.該基板の該上部表面に位置を決められる上部電極と、
    d.該基板の該下部表面に位置を決められる下部電極と
    を備えている、マイクロチャネルプレート。
  2. 前記基板は、ガラスファイバのプレートを備えている、請求項1に記載のマイクロチャネルプレート。
  3. 前記基板は、半導体基板を含む、請求項1に記載のマイクロチャネルプレート。
  4. 前記基板は、絶縁基板を含む、請求項1に記載のマイクロチャネルプレート。
  5. 前記抵抗材料は、半導体を含む、請求項1に記載のマイクロチャネルプレート。
  6. 前記抵抗材料は、金属酸化物を含む、請求項1に記載のマイクロチャネルプレート。
  7. 前記第1の放出層は、鉛低減ガラス層を含む、請求項1に記載のマイクロチャネルプレート。
  8. 前記第1の放出層は、Al、SiO、MgO、SnO、BaO、CaO、SrO、Sc、Y、La、ZrO、HfO、CsO、Si、Si、C(ダイヤモンド)、BN、およびAlNのうちの少なくとも1つを含む、請求項1に記載のマイクロチャネルプレート。
  9. 前記第2の放出層は、Al、SiO、MgO、SnO、BaO、CaO、SrO、Sc、Y、La、ZrO、HfO、CsO、Si、Si、C(ダイヤモンド)、BN、およびAlNのうちの少なくとも1つを含む、請求項1に記載のマイクロチャネルプレート。
  10. 前記抵抗材料の抵抗は、前記マイクロチャネルプレートの所定の電流出力を達成するように選ばれる、請求項1に記載のマイクロチャネルプレート
  11. 前記第2の放出層の厚さおよび組成のうちの少なくとも1つは、前記マイクロチャネルプレートの前記二次電子放出効率を最大にするように選ばれる、請求項1に記載のマイクロチャネルプレート。
  12. 前記第2の放出層の厚さおよび組成のうちの少なくとも1つは、前記複数の孔から放出されるイオン数が減少させられるように該複数の孔を不動態化するように選ばれる、請求項1に記載のマイクロチャネルプレート。
  13. 前記第1の放出層と前記第2の放出層との間に位置を決められる伝導性層をさらに備えている、請求項1に記載のマイクロチャネルプレート。
  14. 前記第2の放出層の厚さおよび組成のうちの少なくとも1つは、前記マイクロチャネルプレートの信号対雑音比を最大にするように選ばれる、請求項1に記載のマイクロチャネルプレート。
  15. 前記第2の放出層の厚さおよび組成のうちの少なくとも1つは、画像歪みを減少させるように前記マイクロチャネルプレートの電界にわたる利得均一性を最適化するために選ばれる、請求項1に記載のマイクロチャネルプレート。
  16. 前記第2の放出層の厚さおよび組成のうちの少なくとも1つは、前記第1の放出層と第2の放出層との間の材料界面に複数の電荷トラップを形成するように選ばれ、該複数の電荷トラップは前記複数の孔に表面電荷を補給するために電荷を供給する、請求項1に記載のマイクロチャネルプレート。
  17. 前記第2の放出層の厚さおよび組成のうちの少なくとも1つは、前記第1の放出層と第2の放出層との間の材料界面に複数の電荷トラップを形成するように選ばれ、該複数の電荷トラップは二次電子放出効率を増加させる電界を確立する、請求項1に記載のマイクロチャネルプレート。
  18. a.ガラスファイバのプレートであって、該ガラスファイバのプレートは、該プレートの上部表面から該プレートの下部表面に延びる複数の孔を規定し、該複数の孔は第1の放出層を形成する外側表面に鉛の半導体材料を有する、ガラスファイバのプレートと、
    b.該第1の放出層の上に堆積される第2の放出層であって、該第2の放出層は、時間の関数として、二次電子放出効率の増加および利得劣化の減少のうちの少なくとも1つを達成するように選ばれる、第2の放出層と、
    c.該プレートの該上部表面に位置を決められる上部電極と、
    d.該プレートの該下部表面に位置を決められる下部電極と
    を備えている、マイクロチャネルプレート。
  19. 前記第2の放出層は、Alを含む、請求項18に記載のマイクロチャネルプレート。
  20. 前記第2の放出層は、SiO、MgO、SnO、BaO、CaO、SrO、Sc、Y、La、ZrO、HfO、CsO、Si、Si、C(ダイヤモンド)、BN、およびAlNのうちの少なくとも1つを含む、請求項18に記載のマイクロチャネルプレート。
  21. 前記第2の放出層の厚さおよび組成は、前記マイクロチャネルプレートの二次電子放出効率を増加させるように選ばれる、請求項18に記載のマイクロチャネルプレート。
  22. 前記第2の放出層の厚さおよび組成のうちの少なくとも1つは、孔対孔の増幅均一性を最大化することによって、デバイス画像性能を改善するように選ばれる、請求項18に記載のマイクロチャネルプレート。
  23. 前記第1の放出層と前記第2の放出層との間に位置を決められる伝導性層をさらに備えている、請求項18に記載のマイクロチャネルプレート。
  24. a.基板であって、該基板の上部表面から該基板の下部表面に延びる単一チャネルを規定し、該チャネルは第1の放出層を形成する外側表面に抵抗材料を有する、基板と、
    b.該第1の放出層の上に堆積される第2の放出層であって、該第2の放出層は、該単一チャネル電子増倍管の二次電子放出効率の増加させるように選ばれる、第2の放出層と、
    c.該基板の該上部表面に位置を決められる上部電極と、
    d.該基板の該下部表面に位置を決められる下部電極と
    を備えている、単一チャネル電子増倍管。
  25. 前記第2の放出層は、Al、SiO、MgO、SnO、BaO、CaO、SrO、Sc、Y、La、ZrO、HfO、CsO、Si、Si、C(ダイヤモンド)、BN、およびAlNのうちの少なくとも1つを含む、請求項24に記載の単一チャネル電子増倍管。
JP2010548825A 2008-02-27 2009-02-24 複数の放出層を有するマイクロチャネルプレートデバイス Pending JP2011513921A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/038,254 US7855493B2 (en) 2008-02-27 2008-02-27 Microchannel plate devices with multiple emissive layers
PCT/US2009/035017 WO2009148643A2 (en) 2008-02-27 2009-02-24 Microchannel plate devices with multiple emissive layers

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013233422A Division JP6097201B2 (ja) 2008-02-27 2013-11-11 イオン移動の障壁を有するマイクロチャネルプレートの製造方法

Publications (1)

Publication Number Publication Date
JP2011513921A true JP2011513921A (ja) 2011-04-28

Family

ID=40997610

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010548825A Pending JP2011513921A (ja) 2008-02-27 2009-02-24 複数の放出層を有するマイクロチャネルプレートデバイス
JP2013233422A Active JP6097201B2 (ja) 2008-02-27 2013-11-11 イオン移動の障壁を有するマイクロチャネルプレートの製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2013233422A Active JP6097201B2 (ja) 2008-02-27 2013-11-11 イオン移動の障壁を有するマイクロチャネルプレートの製造方法

Country Status (4)

Country Link
US (1) US7855493B2 (ja)
EP (1) EP2257962B1 (ja)
JP (2) JP2011513921A (ja)
WO (1) WO2009148643A2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013172417A1 (ja) * 2012-05-18 2013-11-21 浜松ホトニクス株式会社 マイクロチャネルプレート
JPWO2013172278A1 (ja) * 2012-05-18 2016-01-12 浜松ホトニクス株式会社 マイクロチャネルプレート
JP2017050239A (ja) * 2015-09-04 2017-03-09 浜松ホトニクス株式会社 マイクロチャンネルプレート及び電子増倍体
JP2018037297A (ja) * 2016-08-31 2018-03-08 浜松ホトニクス株式会社 電子増倍体の製造方法及び電子増倍体
JP6340102B1 (ja) * 2017-03-01 2018-06-06 浜松ホトニクス株式会社 マイクロチャンネルプレート及び電子増倍体

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8227965B2 (en) 2008-06-20 2012-07-24 Arradiance, Inc. Microchannel plate devices with tunable resistive films
CA2684811C (en) * 2009-11-06 2017-05-23 Bubble Technology Industries Inc. Microstructure photomultiplier assembly
US8507872B2 (en) 2010-03-23 2013-08-13 Nova Scientific, Inc. Neutron detection
FR2964785B1 (fr) * 2010-09-13 2013-08-16 Photonis France Dispositif multiplicateur d'électrons a couche de nanodiamant.
US9105379B2 (en) 2011-01-21 2015-08-11 Uchicago Argonne, Llc Tunable resistance coatings
US8969823B2 (en) 2011-01-21 2015-03-03 Uchicago Argonne, Llc Microchannel plate detector and methods for their fabrication
US8921799B2 (en) 2011-01-21 2014-12-30 Uchicago Argonne, Llc Tunable resistance coatings
US9941438B2 (en) 2011-03-23 2018-04-10 Nova Scientific, Inc. Neutron detection
JP2012222323A (ja) * 2011-04-14 2012-11-12 Canon Inc 貫通孔基板及びその製造方法
GB201203562D0 (en) 2012-02-29 2012-04-11 Photek Ltd Microchannel plate for eletron multiplier
JP6220780B2 (ja) * 2012-05-18 2017-10-25 浜松ホトニクス株式会社 マイクロチャネルプレート、イメージインテンシファイヤ、荷電粒子検出器および検査装置
JP5981820B2 (ja) 2012-09-25 2016-08-31 浜松ホトニクス株式会社 マイクロチャンネルプレート、マイクロチャンネルプレートの製造方法、及びイメージインテンシファイア
US11326255B2 (en) * 2013-02-07 2022-05-10 Uchicago Argonne, Llc ALD reactor for coating porous substrates
US9425030B2 (en) 2013-06-06 2016-08-23 Burle Technologies, Inc. Electrostatic suppression of ion feedback in a microchannel plate photomultiplier
CN106298427A (zh) * 2016-09-28 2017-01-04 北方夜视技术股份有限公司 高收集效率微通道板、微通道板型光电倍增管及其制备方法
US11037770B2 (en) 2018-07-02 2021-06-15 Photonis Scientific, Inc. Differential coating of high aspect ratio objects through methods of reduced flow and dosing variations
US11111578B1 (en) 2020-02-13 2021-09-07 Uchicago Argonne, Llc Atomic layer deposition of fluoride thin films
CN112575311B (zh) * 2020-12-08 2022-07-08 中国科学院高能物理研究所 一种高二次电子发射系数的双层薄膜及其制备方法
US11901169B2 (en) 2022-02-14 2024-02-13 Uchicago Argonne, Llc Barrier coatings

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6241378B2 (ja) * 1979-04-02 1987-09-02 Fuiritsupusu Furuuiranpenfuaburiken Nv
JPS62254338A (ja) * 1986-01-25 1987-11-06 Toshiba Corp マイクロチヤンネルプレ−ト及びその製造方法
JP3113902B2 (ja) * 1989-08-18 2000-12-04 ガリレオ エレクトロ―オプティクス コーポレーション 電子増倍管用薄膜連続的ダイノードの製法
JP2002512737A (ja) * 1997-05-08 2002-04-23 ナノシステムズ,インコーポレイテッド マイクロチャンネルプレートを製造するためのシリコンエッチング方法
JP2003257359A (ja) * 2002-02-20 2003-09-12 Samsung Electronics Co Ltd 炭素ナノチューブを含む電子増幅器及びその製造方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3967001A (en) * 1973-11-01 1976-06-29 The United States Of America As Represented By The Secretary Of The Army Process of preparing a secondary electron emissive coating on the interior walls of a microchannel plate
US4051403A (en) * 1976-08-10 1977-09-27 The United States Of America As Represented By The Secretary Of The Army Channel plate multiplier having higher secondary emission coefficient near input
US4912314A (en) * 1985-09-30 1990-03-27 Itt Corporation Channel type electron multiplier with support rod structure
US4780395A (en) * 1986-01-25 1988-10-25 Kabushiki Kaisha Toshiba Microchannel plate and a method for manufacturing the same
US5086248A (en) * 1989-08-18 1992-02-04 Galileo Electro-Optics Corporation Microchannel electron multipliers
US5205902A (en) * 1989-08-18 1993-04-27 Galileo Electro-Optics Corporation Method of manufacturing microchannel electron multipliers
US5493169A (en) * 1994-07-28 1996-02-20 Litton Systems, Inc. Microchannel plates having both improved gain and signal-to-noise ratio and methods of their manufacture
US6522061B1 (en) * 1995-04-04 2003-02-18 Harry F. Lockwood Field emission device with microchannel gain element
US5635706A (en) * 1996-03-27 1997-06-03 Csl Opto-Electronics Corporation Direct conversion X-ray/gamma-ray photocathode
US6066020A (en) * 1997-08-08 2000-05-23 Itt Manufacturing Enterprises, Inc. Microchannel plates (MCPS) having micron and submicron apertures
US6300640B1 (en) * 1997-11-28 2001-10-09 Nanocrystal Imaging Corporation Composite nanophosphor screen for detecting radiation having optically reflective coatings
US6705152B2 (en) * 2000-10-24 2004-03-16 Nanoproducts Corporation Nanostructured ceramic platform for micromachined devices and device arrays
US6396049B1 (en) * 2000-01-31 2002-05-28 Northrop Grumman Corporation Microchannel plate having an enhanced coating
US6828729B1 (en) * 2000-03-16 2004-12-07 Burle Technologies, Inc. Bipolar time-of-flight detector, cartridge and detection method
US6943344B2 (en) * 2000-05-26 2005-09-13 The Johns Hopkins University Microchannel plate detector assembly for a time-of-flight mass spectrometer
JP3675326B2 (ja) * 2000-10-06 2005-07-27 キヤノン株式会社 マルチチャネルプレートの製造方法
KR101013231B1 (ko) * 2001-09-14 2011-02-10 에이에스엠 인터내셔널 엔.브이. 환원펄스를 이용한 원자층증착에 의한 질화금속증착
US6828714B2 (en) * 2002-05-03 2004-12-07 Nova Scientific, Inc. Electron multipliers and radiation detectors
TW543064B (en) * 2002-05-14 2003-07-21 Chunghwa Picture Tubes Ltd Upper substrate structure for plasma display panel
WO2004112072A2 (en) * 2003-05-29 2004-12-23 Nova Scientific, Inc. Electron multipliers and radiation detectors
JP4429750B2 (ja) * 2004-01-30 2010-03-10 日本電子株式会社 マイクロチャンネルプレートを用いた検出器
US7408142B2 (en) * 2005-09-16 2008-08-05 Arradiance, Inc. Microchannel amplifier with tailored pore resistance
US7801623B2 (en) * 2006-06-29 2010-09-21 Medtronic, Inc. Implantable medical device having a conformal coating
US7791038B2 (en) * 2007-07-03 2010-09-07 Nova Scientific, Inc. Neutron detection

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6241378B2 (ja) * 1979-04-02 1987-09-02 Fuiritsupusu Furuuiranpenfuaburiken Nv
JPS62254338A (ja) * 1986-01-25 1987-11-06 Toshiba Corp マイクロチヤンネルプレ−ト及びその製造方法
JP3113902B2 (ja) * 1989-08-18 2000-12-04 ガリレオ エレクトロ―オプティクス コーポレーション 電子増倍管用薄膜連続的ダイノードの製法
JP2002512737A (ja) * 1997-05-08 2002-04-23 ナノシステムズ,インコーポレイテッド マイクロチャンネルプレートを製造するためのシリコンエッチング方法
JP2003257359A (ja) * 2002-02-20 2003-09-12 Samsung Electronics Co Ltd 炭素ナノチューブを含む電子増幅器及びその製造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9117640B2 (en) 2012-05-18 2015-08-25 Hamamatsu Photonics K.K. Microchannel plate having a main body, image intensifier, ion detector, and inspection device
JPWO2013172278A1 (ja) * 2012-05-18 2016-01-12 浜松ホトニクス株式会社 マイクロチャネルプレート
JPWO2013172417A1 (ja) * 2012-05-18 2016-01-12 浜松ホトニクス株式会社 マイクロチャネルプレート
WO2013172417A1 (ja) * 2012-05-18 2013-11-21 浜松ホトニクス株式会社 マイクロチャネルプレート
US10340129B2 (en) 2015-09-04 2019-07-02 Hamamatsu Photonics K.K. Microchannel plate and electron multiplier
JP2017050239A (ja) * 2015-09-04 2017-03-09 浜松ホトニクス株式会社 マイクロチャンネルプレート及び電子増倍体
WO2017038410A1 (ja) * 2015-09-04 2017-03-09 浜松ホトニクス株式会社 マイクロチャンネルプレート及び電子増倍体
JP2018037297A (ja) * 2016-08-31 2018-03-08 浜松ホトニクス株式会社 電子増倍体の製造方法及び電子増倍体
US10522334B2 (en) 2016-08-31 2019-12-31 Hamamatsu Photonics K.K. Electron multiplier production method and electron multiplier
US10957522B2 (en) 2016-08-31 2021-03-23 Hamamatsu Photonics K.K. Electron multiplier production method and electron multiplier
WO2018159159A1 (ja) * 2017-03-01 2018-09-07 浜松ホトニクス株式会社 マイクロチャンネルプレート及び電子増倍体
JP2018147581A (ja) * 2017-03-01 2018-09-20 浜松ホトニクス株式会社 マイクロチャンネルプレート及び電子増倍体
JP6340102B1 (ja) * 2017-03-01 2018-06-06 浜松ホトニクス株式会社 マイクロチャンネルプレート及び電子増倍体
US10818484B2 (en) 2017-03-01 2020-10-27 Hamamatsu Photonics K.K. Microchannel plate and electron multiplier tube with improved gain and suppressed deterioration

Also Published As

Publication number Publication date
EP2257962A4 (en) 2015-03-04
WO2009148643A2 (en) 2009-12-10
JP6097201B2 (ja) 2017-03-15
WO2009148643A3 (en) 2010-02-25
US20090212680A1 (en) 2009-08-27
EP2257962B1 (en) 2020-04-22
EP2257962A2 (en) 2010-12-08
US7855493B2 (en) 2010-12-21
JP2014029879A (ja) 2014-02-13

Similar Documents

Publication Publication Date Title
JP6097201B2 (ja) イオン移動の障壁を有するマイクロチャネルプレートの製造方法
US8052884B2 (en) Method of fabricating microchannel plate devices with multiple emissive layers
US9368332B2 (en) Microchannel plate devices with tunable resistive films
US8237129B2 (en) Microchannel plate devices with tunable resistive films
JP6138686B2 (ja) ナノダイヤモンド層を有する電子増倍装置
KR101541273B1 (ko) 전자 멀티플라이어 냉 방출 소스를 갖는 이온화 게이지
US20100075445A1 (en) Silicon Microchannel Plate Devices With Smooth Pores And Precise Dimensions
US20130313422A1 (en) Microchannel plate
US20130221828A1 (en) Microchannel plate for electron multiplier
US8237347B2 (en) Field emission device having secondary electron enhancing electrode
JP2007520048A (ja) イオンフィードバックを抑制した平行板型電子増倍管
JP3024539B2 (ja) 電子線励起発光素子
US8246413B2 (en) Method for making field emission device
JPS5812977B2 (ja) イメ−ジカン
JP2001229860A (ja) X線画像検出器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130509

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130710

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140529

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140729

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141219