JP2011233694A - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP2011233694A
JP2011233694A JP2010102213A JP2010102213A JP2011233694A JP 2011233694 A JP2011233694 A JP 2011233694A JP 2010102213 A JP2010102213 A JP 2010102213A JP 2010102213 A JP2010102213 A JP 2010102213A JP 2011233694 A JP2011233694 A JP 2011233694A
Authority
JP
Japan
Prior art keywords
insulating film
gate electrode
silicon
semiconductor device
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010102213A
Other languages
English (en)
Inventor
Kazuhiro Nojima
和弘 野島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Memory Japan Ltd
Original Assignee
Elpida Memory Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elpida Memory Inc filed Critical Elpida Memory Inc
Priority to JP2010102213A priority Critical patent/JP2011233694A/ja
Priority to US13/064,843 priority patent/US8486808B2/en
Publication of JP2011233694A publication Critical patent/JP2011233694A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66666Vertical transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/05Making the transistor
    • H10B12/053Making the transistor the transistor being at least partially in a trench in the substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/09Manufacture or treatment with simultaneous manufacture of the peripheral circuit region and memory cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Semiconductor Memories (AREA)

Abstract

【課題】ダミーシリコンピラーを用いてゲート電極を延長する場合の、シリコンピラーにおける反り変形の発生を抑制する。
【解決手段】半導体装置の製造方法は、第1及び第2のシリコンピラー3,4の側周面3a,4aに形成されたゲート絶縁膜9を覆うゲート電極材料を成膜する工程を備え、ゲート電極材料の成膜量は、ゲート絶縁膜9を介して側周面3aを覆う第1の部分と、ゲート絶縁膜9を介して側周面4aを覆う第2の部分とが接触しないよう制御され、第1及び第2の部分を覆うとともに第1の部分と第2の部分の間の領域を埋めるマスク絶縁膜を形成する工程と、マスク絶縁膜をマスクとして用いてゲート電極材料をエッチングすることにより、ゲート絶縁膜9を介してそれぞれ側周面3a,4aを覆うゲート電極10,10と、ゲート電極10,10とを電気的に接続する導体膜11とを形成する工程とをさら備える。
【選択図】図3

Description

本発明は、半導体装置の製造方法に関し、特に縦型トランジスタを用いる半導体装置の製造方法に関する。
半導体装置、特にメモリデバイスのチップサイズは、低コストの観点から年々縮小されている。これに応じ、DRAM(Dynamic Random Access Memory)では、セルトランジスタ用として4F構造(Fは最小加工寸法)を有する縦型トランジスタの採用が進められている。周辺回路のトランジスタ用としては、セルトランジスタほど縮小化の要請がないことから従来のプレーナー型トランジスタが引き続き採用されているが、セルと周辺回路とでトランジスタの構造が異なると工程数が大幅に増大してしまうことから、最近では、周辺回路のトランジスタにも縦型トランジスタの採用が検討されている(特許文献1参照)。
周辺回路に設置される縦型トランジスタでは、特許文献1に記載されているように、近接する2本のシリコンピラーが用いられる。一方のシリコンピラーはチャネルとして用いられるもので、上部及び下部それぞれに不純物拡散層が設けられ、側面はゲート絶縁膜を介してゲート電極に覆われている。他方のシリコンピラーは、ゲート電極の長さを横方向に延長するためのダミーシリコンピラーであり、延長された部分を利用してゲートコンタクトプラグが設けられる。
ゲート電極は、シリコンピラー及びダミーシリコンピラーの側面にゲート絶縁膜を形成した後、CVD(Chemical Vapor Deposition)法を用いてポリシリコン膜を基板全面に堆積し、さらにエッチバックを行うことで形成される。ゲート電極の膜厚(ポリシリコン膜の堆積量)は、シリコンピラーとダミーシリコンピラーの間の距離の半分以上の厚さに設定される。これにより、シリコンピラーに形成されたゲート電極とダミーシリコンピラーに設けられたゲート電極とが一体化し、ゲートコンタクトプラグを通じてシリコンピラー内のチャネルを制御することが可能になる。
特開2008−288391号公報
ところで、上記縦型トランジスタのゲート電極の材料としては、これまでポリシリコンを用いることが一般的であったが、近年はタングステンや窒化チタンなどのメタル材料を用いることが多くなっている。ゲート電極の空乏化の影響を抑えるためである。
しかしながら、特許文献1に示される半導体装置などのようにダミーシリコンピラーを用いてゲート電極を延長している場合、ゲート電極をメタル材料で構成すると、シリコンピラーに反り変形が発生しやすくなってしまう。以下、詳しく説明する。
ゲート電極には、その形成直後に熱処理が施される。これは収縮性の真正応力を緩和するためであるが、ゲート電極がメタル材料により構成されていると、この熱処理の際にゲート電極が大きく収縮し、シリコンピラー内に大きな圧縮性の熱応力が発生する。これは、メタル材料の熱膨張係数がポリシリコンなどに比べて高いためである。
ダミーシリコンピラーを用いてゲート電極を延長している場合、ゲート電極の構造がシリコンピラーの中心軸に対して非対称であることから、ゲート電極の収縮の影響は、シリコンピラーに不均一に加わることになる。そのため、シリコンピラー内に発生する熱応力も不均一となり、結果として、シリコンピラーに反り変形が発生してしまうのである。
シリコンピラー内に発生する熱応力は、ゲート電極を薄く形成すれば、ある程度軽減されると考えられる。しかしながら、ゲート電極の膜厚には、上述したようにシリコンピラーとダミーシリコンピラーの間の距離の半分以上という制限があるため、ゲート電極を薄くするにも限界がある。
本発明による半導体装置の製造方法は、半導体基板の表面に第1及び第2のシリコンピラーを形成する工程と、前記第1及び第2のシリコンピラーの側周面にゲート絶縁膜を形成する工程と、前記ゲート絶縁膜を覆うゲート電極材料を成膜する工程とを備え、前記ゲート電極材料の成膜量は、前記ゲート絶縁膜を介して前記第1のシリコンピラーの側周面を覆う第1の部分と、前記ゲート絶縁膜を介して前記第2のシリコンピラーの側周面を覆う第2の部分とが接触しないよう制御され、前記第1及び第2の部分を取り囲むとともに前記第1の部分と前記第2の部分の間の領域を埋めるマスク絶縁膜を成膜する工程と、前記マスク絶縁膜をマスクとして用いて前記ゲート電極材料をエッチングすることにより、前記ゲート絶縁膜を介して前記第1のシリコンピラーの側周面を覆う第1のゲート電極と、前記ゲート絶縁膜を介して前記第2のシリコンピラーの側周面を覆う第2のゲート電極と、前記半導体基板の底面に沿って形成され、かつ前記第1のゲート電極と前記第2のゲート電極とを電気的に接続する導体膜とを形成する工程とをさらに備えることを特徴とする。
本発明によれば、第1のゲート電極と第2のゲート電極とが直接接触しないので、第1及び第2のシリコンピラー内に発生する圧縮性の熱応力が均一化される。したがって、第1及び第2のシリコンピラーにおける反り変形の発生が抑制される。また、導体膜を設けたので、第1のゲート電極と第2のゲート電極とが直接接触していなくても、第2のゲート電極と接触するゲートコンタクトプラグを介して、第1のシリコンピラー内に形成されるチャネルを制御することが可能になる。
本発明の背景技術による半導体装置の構造を示す図である、(a)は(b)に示した線分Bに対応する断面における略平面図、(b)は(a)に示した線分Aに対応する断面を示す略断面図である。 ゲート電極を形成した直後の本発明の背景技術による半導体装置の構造を示す図である。(a)(b)はそれぞれ図1(a)(b)に対応している。 本発明の実施の形態による半導体装置の構造を示す図であり、(a)は(b)に示した線分Dに対応する断面における略平面図、(b)は(a)に示した線分Cに対応する断面を示す略断面図である。 本実施の形態による半導体装置の製造方法を説明するための工程図である。(a)は図3(a)に対応する略平面図であり、(b)は図3(b)に対応する略断面図である 本実施の形態による半導体装置の製造方法を説明するための工程図である。(a)は図3(a)に対応する略平面図であり、(b)は図3(b)に対応する略断面図である 本実施の形態による半導体装置の製造方法を説明するための工程図である。(a)は図3(a)に対応する略平面図であり、(b)は図3(b)に対応する略断面図である 本実施の形態による半導体装置の製造方法を説明するための工程図である。(a)は図3(a)に対応する略平面図であり、(b)は図3(b)に対応する略断面図である 本実施の形態による半導体装置の製造方法を説明するための工程図である。(a)は図3(a)に対応する略平面図であり、(b)は図3(b)に対応する略断面図である 本実施の形態による半導体装置の製造方法を説明するための工程図である。(a)は図3(a)に対応する略平面図であり、(b)は図3(b)に対応する略断面図である 本実施の形態による半導体装置の製造方法を説明するための工程図である。(a)は図3(a)に対応する略平面図であり、(b)は図3(b)に対応する略断面図である 本実施の形態による半導体装置の製造方法を説明するための工程図である。(a)は図3(a)に対応する略平面図であり、(b)は図3(b)に対応する略断面図である 本実施の形態による半導体装置の製造方法を説明するための工程図である。(a)は図3(a)に対応する略平面図であり、(b)は図3(b)に対応する略断面図である
本発明の実施の形態について説明する前に、本発明の背景技術による半導体装置とその問題点について、図面を参照しながら説明する。
図1は、本発明の背景技術による半導体装置100の構造を示す図であり、(a)は略平面図、(b)は(a)に示した線分Aに対応する断面を示す略断面図である。図1(a)は、図1(b)に示した線分Bに対応する断面を示している。
図1(a)及び(b)に示すように、本発明の背景技術による半導体装置100は、半導体(シリコン)基板101の一部を除去することにより形成された2つのシリコンピラー(シリコンピラー102及びダミーシリコンピラー103)を備えている。なお、以下で「基板101の底面101a」という場合、シリコンピラー102,103の下面と接する基板101の表面をいう。シリコンピラー102,103は、基板101の底面101aに立設されている。
シリコンピラー102,103の各上面には、シリコン酸化膜104及びシリコン窒化膜105からなるキャップ絶縁膜106が形成される。また、基板101の底面101aにはシリコン酸化膜107が形成される。
シリコンピラー102の側周面102a及びダミーシリコンピラー103の側周面103aにはゲート絶縁膜108が形成される。ゲート絶縁膜108の外側には、さらにゲート電極109が形成される。ゲート電極109は、図1(b)に示すように、側周面102aに形成される部分と側周面103aに形成される部分とが一体化した構造を有している。この一体化構造は、ゲート電極109の膜厚(水平方向の膜厚)をシリコンピラー102,103間の最小距離L(ゲート絶縁膜108の表面間の最小距離)の半分以上とすることによって実現されている。
基板101の底面101aの内側(シリコンピラー102,103の下端に接する部分)には不純物拡散層110が設けられる。また、シリコンピラー102の上端には不純物拡散層111が設けられる。
半導体装置100はさらに、上記各構成を覆うシリコン酸化膜からなる層間絶縁膜120を備えている。層間絶縁膜120には、3本のスルーホール導体121〜123が形成される。スルーホール導体121の下部はゲート電極109の上面に、スルーホール導体122の下部は不純物拡散層110の上面に、スルーホール導体123の下部は不純物拡散層111の上面にそれぞれ接している。スルーホール導体121は、ゲート電極109の上面のうち、ダミーシリコンピラー103の周縁に位置する部分の一部(ダミーシリコンピラー103を挟んでシリコンピラー102と反対側の一部分)に接している。つまり、半導体装置100では、ダミーシリコンピラー103によってゲート電極109が水平方向に延長されている。各スルーホール導体121〜123の各上部は、層間絶縁膜120上に形成された配線パターン(不図示)にそれぞれ接続されている。
以上のような構造を有する半導体装置100では、シリコンピラー102内の不純物拡散層110,111に挟まれた領域に、トランジスタのチャネルが形成される。不純物拡散層110はソース及びドレインの一方として機能し、不純物拡散層111はソース及びドレインの他方として機能する。トランジスタのオンオフ制御は、スルーホール導体121を通じてゲート電極109に与える電界により行われる。
さて、ゲート電極109を形成した直後には、上述したように、ゲート電極109の形成時に発生する収縮性の真正応力を緩和する目的で熱処理が施される。このとき、シリコンピラー102,103内には、上述したように大きな圧縮性の熱応力が発生し、特にシリコンピラー102に反り変形が発生する場合がある。以下、詳しく説明する。
図2は、ゲート電極109を形成した直後の半導体装置100の構造を示す図である。図2(a)(b)はそれぞれ図1(a)(b)に対応している。ゲート電極109を形成した直後であるため、不純物拡散層111や層間絶縁膜120などはまだ形成されていない。
熱処理の際、シリコンピラー102,103の各内部には、図2に示す2種類の熱応力T,Tが発生する。熱応力Tは垂直方向への圧縮応力であり、ゲート電極109を構成するメタル材料が図2(b)に示した矢印S方向に収縮することに伴って発生する応力である。熱応力Tは水平方向への圧縮応力であり、ゲート電極109を構成するメタル材料が図2(a)に示した矢印S方向に収縮することに伴って発生する応力である。
半導体装置100では、図2(a)からも明らかなように、ゲート電極109が、シリコンピラー102,103の各中心軸に対して非対称な構造を有している。そのため、シリコンピラー102,103内部に発生する熱応力T,Tはそれぞれの中心軸に対して不均一となる。その結果として、特に比較的細く構成されているシリコンピラー102に、図示した矢印U方向の反り変形が発生しやすくなっている。
本発明は、このような反り変形の発生を抑制するためになされたもので、各シリコンピラー内に発生する熱応力T,Tをできるだけ均一化することで、反り変形の発生の抑制を実現する。
以下、添付図面を参照しながら、本発明の好ましい実施の形態について詳細に説明する。
図3は、本発明の実施の形態による半導体装置1の構造を示す図であり、(a)は略平面図、(b)は(a)に示した線分Cに対応する断面を示す略断面図である。図3(a)は、図3(b)に示した線分Dに対応する断面を示している。ただし、図3(a)には、線分Dに対応する断面に現れない導体膜11についても、半導体装置1の構造の理解を容易にするために図示している。また、図3には、図示しないSTI(Shallow Trench Isolation)によって囲まれた活性領域内の構造を示している。
半導体装置1は、例えばDRAMの周辺回路用のトランジスタとして用いられるものであるが、本発明はこれに限定されるものではなく、メモリセル内のトランジスタに適用してもよいし、他の種類のメモリやロジック系の回路など様々な種類の回路に適用可能である。
図3(a)及び(b)に示すように、本発明の実施の形態による半導体装置1は、半導体(シリコン)基板2の一部を除去することにより形成された2つのシリコンピラー(第1及び第2のシリコンピラー3,4)を備えている。以下では、第1及び第2のシリコンピラー3,4を結ぶ水平面内の方向をx方向といい、x方向に垂直な水平面内の方向をy方向といい、垂直方向をz方向という。また、「基板2の底面2a」という場合、第1及び第2のシリコンピラー3,4の下面と接する基板2の表面をいう。第1及び第2のシリコンピラー3,4は、基板2の底面2aに立設されている。
第1のシリコンピラー3はトランジスタのチャネルを構成するトランジスタ用ピラーであり、第2のシリコンピラー4はゲート電極を延長するためのダミーピラーである。両者とも基板2の底面2aに対してほぼ垂直に形成されている。
第1のシリコンピラー3は円柱形をしており、xy平面での断面の形状は円形である。一方、第2のシリコンピラー4も柱状ではあるが、xy平面での断面の形状は円形ではなく角丸長方形である。ただし、第1及び第2のシリコンピラー3,4のxy平面での断面の形状はこれらに限られるものではなく、例えば正方形や長方形としてもよい。第1のシリコンピラー3のy方向及びz方向の長さは第2のシリコンピラー4のそれらと等しくなっている一方、第2のシリコンピラー4のx方向の長さは第1のシリコンピラー3のx方向の長さより長くなっている。第2のシリコンピラー4のx方向の長さをこのように長くするのは、後述する層間絶縁層20のさらに上層に形成される配線層の形成マージンを拡大するためである。第1及び第2のシリコンピラー3,4の具体的な大きさは、要求されるトランジスタ特性に応じて設定すればよい。一例を挙げると、第1のシリコンピラー3のx方向、y方向、z方向の長さをそれぞれ70,70,100nm程度とし、第2のシリコンピラー4のx方向、y方向、z方向の長さをそれぞれ100,70,100nm程度とすることが好ましい。
第2のシリコンピラー4の上面には、シリコン酸化膜5及びシリコン窒化膜6からなるキャップ絶縁膜7が形成される。このキャップ絶縁膜7は、第1及び第2のシリコンピラー3,4を形成する際に用いるマスクパターンを除去せずに残しているものである。第1のシリコンピラー3の上面にもキャップ絶縁膜7が残っているが、その中心部分は、後述する第2の不純物拡散層13を形成する過程で除去されている。
基板2の底面2aには、30nm程度の比較的厚いシリコン酸化膜8が形成される。シリコン酸化膜8は、後述する第1及び第2のゲート電極10,10及び導体膜11と、基板2の底面2aとを絶縁分離するために設けられている。
第1のシリコンピラー3の側周面3a及び第2のシリコンピラー4の側周面4aには、膜厚約5nmのゲート絶縁膜9が形成される。ただし、側周面4aに形成されるゲート絶縁膜9はダミーの絶縁膜であって、絶縁膜としては機能するが、トランジスタのゲート絶縁膜として機能するものではない。ゲート絶縁膜9は、キャップ絶縁膜7及びシリコン酸化膜8が設けられている状態でシリコン露出面を酸化することにより形成される。したがって、ゲート絶縁膜9はシリコン酸化膜である。
側周面3aに形成されたゲート絶縁膜9の外側には、第1のゲート電極10が形成される。同様に、側周面4aに形成されたゲート絶縁膜9の外側には、第2のゲート電極10が形成される。第1及び第2のゲート電極10,10はともに、タングステンや窒化チタン、又はこれらの積層材料といったメタル材料によって構成される。
第1及び第2のゲート電極10,10は、互いに直接接しないよう構成される。具体的には、第1及び第2のゲート電極10,10の水平方向の膜厚の合計が、第1及び第2のシリコンピラー3,4間の最小距離L(ゲート絶縁膜9の表面間の最小距離)より小さくなるよう設計されている。第1及び第2のゲート電極10,10の電気的接続は、基板2の底面2aに沿って形成された導体膜11によって実現される。導体膜11は、図3(a)(b)から理解されるように、第1及び第2のゲート電極10,10それぞれの下部を覆うようにして配置され、第1及び第2のゲート電極10,10それぞれの下部を互いに電気的に接続する。導体膜11は、第1及び第2のゲート電極10,10の形成の際、基板2の底面2a上に堆積するメタル材料の一部を除去せずに残したものであり、第1及び第2のゲート電極10,10と同じ材料(メタル材料)により構成される。
このように、第1及び第2のゲート電極10,10が互いに直接接しないよう構成されることから、第1及び第2のシリコンピラー3,4それぞれの側周面3a,4aに形成されるゲート電極は、対応するシリコンピラーの中心軸に対して対称な構造を有している。したがって、半導体装置1では、ゲート電極形成直後の熱処理の際、第1のシリコンピラー3内に発生する熱応力T,T(図2(a)(b)を参照)が均一化され、図2(b)に示したような反り変形の発生が抑制される。また、第2のシリコンピラー4内に発生する熱応力T,Tも均一化され、第2のシリコンピラー4についても、反り変形の発生が抑制される。
基板2の底面2aの内側には第1の不純物拡散層12が設けられる。なお、第1の不純物拡散層12は、第1及び第2のシリコンピラー3,4の真下の領域ではなく、シリコンピラーが形成されていない基板2の平坦領域に位置している。また、第1のシリコンピラー3の上端には第2の不純物拡散層13が設けられる。これら第1及び第2の不純物拡散層12,13は、基板2の底面2a及び第1のシリコンピラー3の上端それぞれに、基板2中の不純物とは反対の導電型を有する不純物をイオン注入することにより形成される。
半導体装置1はさらに、上記各構成を覆うシリコン酸化膜からなる層間絶縁膜20を備えている。層間絶縁膜20の膜厚は、上記した第2の不純物拡散層13やキャップ絶縁膜7の高さを超える膜厚に設定されている。
層間絶縁膜20には、第1乃至第3のスルーホール導体21〜23が形成される。第1のスルーホール導体21はゲートコンタクトプラグを構成する導体であり、その下端は、第2のゲート電極10の上面のうち、第2のシリコンピラー4の周縁に位置する部分の一部(第2のシリコンピラー4を挟んで第1のシリコンピラー3と反対側の一部分)に接している。第2のスルーホール導体22は拡散層コンタクトプラグを構成しており、その下端は、シリコン酸化膜8を貫通して第1の不純物拡散層12の上面に接している。第3のスルーホール導体23も拡散層コンタクトプラグを構成しており、その下面は、キャップ絶縁膜7を貫通して第2の不純物拡散層13の上面に接している。第1乃至第3のスルーホール導体21〜23の各上部は、層間絶縁膜20上に形成された配線パターン(不図示)にそれぞれ接続されている。
以上のような構造を有する半導体装置1では、第1のシリコンピラー3内の第1及び第2の不純物拡散層12,13に挟まれた領域に、トランジスタのチャネルが形成される。第1の不純物拡散層12はソース及びドレインの一方として機能し、第2の不純物拡散層13はソース及びドレインの他方として機能する。
第1のゲート電極10は、導体膜11及び第2のゲート電極10を介して第1のスルーホール導体21と導通している。したがって、半導体装置1では、背景技術による半導体装置100と同じく、第1のスルーホール導体21に与える電界により、トランジスタのオンオフ制御を行うことが可能になっている。
以上説明したように、半導体装置1によれば、第1及び第2のゲート電極10,10が直接接触しないので、ゲート電極形成直後の熱処理の際、第1及び第2のゲート電極10,10がメタル材料によって構成されていることにより第1及び第2のシリコンピラー3,4内に発生する圧縮性の大きな熱応力が均一化され、第1及び第2のシリコンピラー3,4における反り変形の発生が抑制される。また、導体膜11を設けたので、第1及び第2のゲート電極10,10が直接接触していないにも関わらず、第2のゲート電極10とのみ接触するゲートコンタクトプラグ(第1のスルーホール導体21)を介して、第1のシリコンピラー3内に形成されるチャネルを制御することが可能になっている。
次に、本実施の形態による半導体装置1の製造方法について詳細に説明する。
図4〜図9は、本実施の形態による半導体装置1の製造方法を説明するための工程図である。各図の(a)は図3(a)に対応する略平面図であり、各図の(b)は図3(b)に対応する略断面図である。
半導体装置1の製造では、まずシリコン基板2を用意してその表面に第1及び第2のシリコンピラー3,4を形成する。第1及び第2のシリコンピラー3,4の形成では、まず基板2の全面に、保護絶縁膜としてのシリコン酸化膜5と、ハードマスクとしてのシリコン窒化膜6とを積層してなるキャップ絶縁膜7を形成する。特に限定されるものではないが、シリコン酸化膜5及びシリコン窒化膜6はCVD法で形成することができ、シリコン酸化膜5の膜厚は約5nm、シリコン窒化膜6の膜厚は約120nmであることが好ましい。
その後、キャップ絶縁膜7をパターニングすることにより、図4(b)に示すように、第1及び第2のシリコンピラー3,4を形成すべき領域にあるキャップ絶縁膜7を残し、それ以外を除去する。キャップ絶縁膜7を形成したら、次にキャップ絶縁膜7をマスクを用いて、基板2の表面をドライエッチングにより掘り下げる。このエッチング工程により、活性領域の露出面に凹部が形成され、掘り下げられなかった部分は、図4(a)(b)に示すように第1及び第2のシリコンピラー3,4となる。
次に、図5(a)(b)に示すように、第1のシリコンピラー3の側周面3a及び第2のシリコンピラー4の側周面4aにサイドウォール絶縁膜30を形成する。サイドウォール絶縁膜30は、キャップ絶縁膜7を残したまま活性領域の露出面を熱酸化により保護した後、シリコン窒化膜を形成し、さらにこのシリコン窒化膜に異方性エッチバックを施すことより形成する。これにより、側周面3a,4aがサイドウォール絶縁膜30に覆われた状態となる。
次に、HDP(High Density Plasma)法を用いてシリコン酸化膜を堆積し、エッチバックを行うことによって、図6(b)に示すように、基板2の露出面(つまり、基板2の底面2a)にシリコン酸化膜8を形成する。なお、シリコン酸化膜8は熱酸化により形成することもできる。シリコン酸化膜8の膜厚は、第1及び第2のゲート電極10,10及び導体膜11と、基板2の底面2aとを絶縁分離するために十分な厚さとする。具体的には、約30nmとすればよい。
シリコン酸化膜8を形成したら、シリコン酸化膜8を介して基板2中の不純物とは反対の導電型を有する不純物をイオン注入することにより、基板2の底面2aの内側に第1の不純物拡散層12を形成する。
次に、熱リン酸を用いてサイドウォール絶縁膜30を除去した後、露出した側周面3a,4aを熱酸化することにより、図7に示すように、ゲート絶縁膜9を形成する。ゲート絶縁膜9の膜厚は約5nmとすることが好ましい。また、ゲート絶縁膜9を形成した後には、側周面3a,4aの洗浄を行うことが好ましい。
次に、図8(a)(b)に示すように、ゲート絶縁膜9を覆うゲート電極材料31をCVD法により成膜する。ゲート電極材料31としては、ゲート電極の空乏化の影響を抑える目的で、メタル材料を用いる。具体的には、タングステンや窒化チタンなどの単一材料を用いてもよいし、これらを積層させてなる積層材料を用いてもよい。ゲート電極材料31の成膜量は、側周面3aを覆う第1の部分31と、側周面4aを覆う第2の部分31とが直接接触しないよう設定される。具体的には、第1及び第2のシリコンピラー3,4間の最小距離L(ゲート絶縁膜9の表面間の最小距離)が70nmであるとすると、成膜後のゲート電極材料31の水平方向の膜厚が20nmとなるよう、ゲート電極材料31の成膜量を制御すればよい。ゲート電極材料31の成膜量をこのように制御することにより、第1及び第2のシリコンピラー3,4の間に空隙32が形成される。
次に、図9(a)(b)に示すように、空隙32を埋められる程度の膜厚(約30nm以上)を有する絶縁膜33をCVD法により成膜する。この絶縁膜33はシリコン酸化膜とすることが好適である。そして、成膜した絶縁膜33に異方性エッチバックを施す。これにより、絶縁膜33のうち基板2の表面aと平行な部分のみが除去され、図10(a)(b)に示すように、側周面3a,4aをゲート電極材料31の上から覆うとともに、空隙32を埋めるマスク絶縁膜34が形成される。
次に、図11(a)(b)に示すように、マスク絶縁膜34をマスクとして用いてゲート電極材料31をエッチングする。ここまでの工程により、物理的には互いに接していない一方で、電気的には基板2の底面2aに残る薄い導体膜11によって接続された第1及び第2のゲート電極10,10が形成される。そして、図12(a)(b)に示すようにマスク絶縁膜34を除去し、その後、収縮性の真正応力を緩和するために、半導体装置1全体に熱処理を施す。この熱処理は、具体的には窒素雰囲気、1000℃、10秒といった条件の下で行うことが好適である。この熱処理では、上述したように第1及び第2のシリコンピラー3,4内に大きな熱応力が発生するが、半導体装置1ではこの熱応力が均一化されるので、熱処理時の反り変形発生のおそれは小さくなっている。
熱処理が終了したら、基板2の全面にシリコン酸化膜を堆積し、CMP(Chemical Mechanical Polishing)による平坦化を行うことで、キャップ絶縁膜7と同程度の高さの層間絶縁膜を形成し、レジストとフォトリソグラフィを用いて、第1のシリコンピラー3の上面に形成されたキャップ絶縁膜7の一部を除去し、第1のシリコンピラー3の上面を露出させる。そして、露出した第1のシリコンピラー3の上面に選択的エピタキシャル成長によりシリコンを成長させ、さらに不純物イオンを注入することにより、図3に示したように、第2の不純物拡散層13を形成する。その後、基板2の全面にさらにシリコン酸化膜を堆積し、CMPによる平坦化を行うことで層間絶縁膜20を形成し、さらに第1乃至第3のスルーホール導体21〜23を形成するためのスルーホールを形成する。こうして形成したスルーホール内部に窒化チタンとタングステンの積層材料を埋め込むことによって第1乃至第3のスルーホール導体21〜23を形成し、図3に示した半導体装置1が完成する。
以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
例えば、上記実施の形態ではゲート電極材料がメタル材料であることを前提として説明したが、本発明はゲート電極材料がDOPOS(Doped polysilicon)などの非メタル系の材料である場合にも適用できる。非メタル系の材料で構成されたゲート電極を用いる場合にシリコンピラー内に発生する圧縮性の熱応力は、メタル材料で構成されたゲート電極を用いる場合に比べれば小さくなるもののゼロにはなるわけではなく、反り変形発生のおそれもゼロとはならない。本発明によれば、このような反り変形の発生を抑制できる。
1 半導体装置
2 シリコン基板
2a シリコン基板2の底面
3 第1のシリコンピラー
3a 第1のシリコンピラーの側周面
4 第2のシリコンピラー
4a 第2のシリコンピラーの側周面
5 シリコン酸化膜
6 シリコン窒化膜
7 キャップ絶縁膜
8 シリコン酸化膜
9 ゲート絶縁膜
10 第1のゲート電極
10 第2のゲート電極
11 導体膜
12,13 不純物拡散層
20 層間絶縁膜
21 第1のスルーホール導体
22 第2のスルーホール導体
23 第3のスルーホール導体
30 サイドウォール絶縁膜
31 ゲート電極材料
31 ゲート電極材料の第1の部分
31 ゲート電極材料の第2の部分
32 空隙
32 シリコン酸化膜
33 絶縁膜
34 マスク絶縁膜

Claims (7)

  1. 半導体基板の表面に第1及び第2のシリコンピラーを形成する工程と、
    前記第1及び第2のシリコンピラーの側周面にゲート絶縁膜を形成する工程と、
    前記ゲート絶縁膜を覆うゲート電極材料を成膜する工程とを備え、
    前記ゲート電極材料の成膜量は、前記ゲート絶縁膜を介して前記第1のシリコンピラーの側周面を覆う第1の部分と、前記ゲート絶縁膜を介して前記第2のシリコンピラーの側周面を覆う第2の部分とが接触しないよう制御され、
    前記第1及び第2の部分を覆うとともに前記第1の部分と前記第2の部分の間の領域を埋めるマスク絶縁膜を形成する工程と、
    前記マスク絶縁膜をマスクとして用いて前記ゲート電極材料をエッチングすることにより、前記ゲート絶縁膜を介して前記第1のシリコンピラーの側周面を覆う第1のゲート電極と、前記ゲート絶縁膜を介して前記第2のシリコンピラーの側周面を覆う第2のゲート電極と、前記第1のゲート電極と前記第2のゲート電極とを電気的に接続する導体膜とを形成する工程とをさらに備える
    ことを特徴とする半導体装置の製造方法。
  2. 前記マスク絶縁膜は、
    前記第1の部分と前記第2の部分の間の領域を埋められる膜厚を有する絶縁膜を成膜し、該絶縁膜に異方性エッチバックを施すことによって形成される
    ことを特徴とする請求項1に記載の半導体装置の製造方法。
  3. 前記導体膜は、前記第1及び第2のゲート電極それぞれの下部を互いに電気的に接続する
    ことを特徴とする請求項1又は2に記載の半導体装置の製造方法。
  4. 前記導体膜は、前記第1及び第2のゲート電極それぞれの下部を覆うように形成される
    ことを特徴とする請求項1乃至3のいずれか一項に記載の半導体装置の製造方法。
  5. 前記導体膜は、前記第1及び第2のシリコンピラーの下面に接する前記半導体基板の底面に沿って形成される
    ことを特徴とする請求項1乃至4のいずれか一項に記載の半導体装置の製造方法。
  6. 前記マスク絶縁膜を除去する工程と、
    前記半導体装置に熱処理を施す工程とをさらに備える
    ことを特徴とする請求項1乃至5のいずれか一項に半導体装置の製造方法。
  7. 前記ゲート電極材料はメタル材料である
    ことを特徴とする請求項1乃至6のいずれか一項に半導体装置の製造方法。
JP2010102213A 2010-04-27 2010-04-27 半導体装置の製造方法 Withdrawn JP2011233694A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010102213A JP2011233694A (ja) 2010-04-27 2010-04-27 半導体装置の製造方法
US13/064,843 US8486808B2 (en) 2010-04-27 2011-04-20 Manufacturing method of semiconductor device having vertical transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010102213A JP2011233694A (ja) 2010-04-27 2010-04-27 半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2011233694A true JP2011233694A (ja) 2011-11-17

Family

ID=44816155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010102213A Withdrawn JP2011233694A (ja) 2010-04-27 2010-04-27 半導体装置の製造方法

Country Status (2)

Country Link
US (1) US8486808B2 (ja)
JP (1) JP2011233694A (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012089772A (ja) * 2010-10-22 2012-05-10 Elpida Memory Inc 半導体装置の製造方法
JP2013206932A (ja) * 2012-03-27 2013-10-07 Elpida Memory Inc 半導体装置およびその製造方法
US8969949B2 (en) * 2013-03-10 2015-03-03 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method for static random access memory device of vertical tunneling field effect transistor
US10903210B2 (en) * 2015-05-05 2021-01-26 International Business Machines Corporation Sub-fin doped bulk fin field effect transistor (FinFET), Integrated Circuit (IC) and method of manufacture
US9653602B1 (en) * 2016-03-21 2017-05-16 International Business Machines Corporation Tensile and compressive fins for vertical field effect transistors
CN107808901B (zh) * 2016-09-09 2021-08-17 联华电子股份有限公司 半导体元件及其制造方法
JP7311988B2 (ja) * 2019-03-20 2023-07-20 株式会社Screenホールディングス 基板処理方法、半導体製造方法、および、基板処理装置
CN116133380A (zh) * 2021-08-25 2023-05-16 长鑫存储技术有限公司 半导体结构及其形成方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100618875B1 (ko) * 2004-11-08 2006-09-04 삼성전자주식회사 수직 채널 mos 트랜지스터를 구비한 반도체 메모리소자 및 그 제조방법
JP5600373B2 (ja) 2007-05-17 2014-10-01 ピーエスフォー ルクスコ エスエイアールエル 半導体装置及びその製造方法
US7935598B2 (en) * 2007-12-24 2011-05-03 Hynix Semiconductor Inc. Vertical channel transistor and method of fabricating the same
KR100905789B1 (ko) * 2008-01-02 2009-07-02 주식회사 하이닉스반도체 수직형 트랜지스터를 구비한 반도체 소자의 제조방법
KR101026486B1 (ko) * 2008-10-22 2011-04-01 주식회사 하이닉스반도체 반도체 소자 및 그의 제조방법

Also Published As

Publication number Publication date
US20110263099A1 (en) 2011-10-27
US8486808B2 (en) 2013-07-16

Similar Documents

Publication Publication Date Title
US8921930B2 (en) Semiconductor device with buried bit line and method for fabricating the same
US9613967B1 (en) Memory device and method of fabricating the same
US8174064B2 (en) Semiconductor device and method for forming the same
JP2011233694A (ja) 半導体装置の製造方法
JP5583315B2 (ja) 半導体装置及びその製造方法
US20180190661A1 (en) Semiconductor device and method for fabricating the same
JP2010027904A (ja) 半導体装置の製造方法
JP2015216174A (ja) 半導体装置及びその製造方法
TWI497649B (zh) 埋入式字元線結構及其製造方法
US8748978B2 (en) Sense-amp transistor of semiconductor device and method for manufacturing the same
TW202423259A (zh) 半導體記憶體裝置
KR20120126433A (ko) 반도체 소자 및 그 제조 방법
JP2010153509A (ja) 半導体装置およびその製造方法
WO2014125950A1 (ja) 半導体装置及びその製造方法
WO2014069213A1 (ja) 半導体装置およびその製造方法
JP3906198B2 (ja) 半導体記憶装置及びその製造方法
JP2014183209A (ja) 半導体装置及び半導体装置の製造方法
JP2013219179A (ja) 半導体装置及びその製造方法
CN110391185B (zh) 制作半导体元件的方法
US10204914B2 (en) Method for fabricating semiconductor device
KR20090022759A (ko) 수직형 트랜지스터를 구비한 반도체 소자 및 그의 제조방법
JP2009164534A (ja) 半導体装置およびその製造方法
US20190140069A1 (en) Semiconductor structure and manufacturing method thereof
KR100906646B1 (ko) 반도체 메모리 소자 및 그 제조방법
JP2000243722A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130702